Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks

Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phe...

Full description

Saved in:
Bibliographic Details
Published in:International journal for computer assisted radiology and surgery Vol. 13; no. 12; pp. 1905 - 1913
Main Authors: Antonio, Victor Andrew A., Ono, Naoaki, Saito, Akira, Sato, Tetsuo, Altaf-Ul-Amin, Md, Kanaya, Shigehiko
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2018
Springer Nature B.V
Subjects:
ISSN:1861-6410, 1861-6429, 1861-6429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions. Methods In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size 2048 × 2048 . We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images. Results We were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with 2048 × 2048 input provides a 98.9% classification accuracy. Conclusion This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
AbstractList Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions. Methods In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size 2048 × 2048 . We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images. Results We were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with 2048 × 2048 input provides a 98.9% classification accuracy. Conclusion This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions.PURPOSEConvolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions.In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size [Formula: see text]. We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images.METHODSIn order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size [Formula: see text]. We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images.We were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with [Formula: see text] input provides a 98.9% classification accuracy.RESULTSWe were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with [Formula: see text] input provides a 98.9% classification accuracy.This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.CONCLUSIONThis study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
PurposeConvolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions.MethodsIn order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size 2048×2048. We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images.ResultsWe were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with 2048×2048 input provides a 98.9% classification accuracy.ConclusionThis study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions. In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size [Formula: see text]. We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images. We were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with [Formula: see text] input provides a 98.9% classification accuracy. This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
Author Kanaya, Shigehiko
Ono, Naoaki
Saito, Akira
Antonio, Victor Andrew A.
Sato, Tetsuo
Altaf-Ul-Amin, Md
Author_xml – sequence: 1
  givenname: Victor Andrew A.
  surname: Antonio
  fullname: Antonio, Victor Andrew A.
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology
– sequence: 2
  givenname: Naoaki
  orcidid: 0000-0002-7722-055X
  surname: Ono
  fullname: Ono, Naoaki
  email: nono@is.naist.jp
  organization: Data Science Center, Nara Institute of Science and Technology
– sequence: 3
  givenname: Akira
  surname: Saito
  fullname: Saito, Akira
  organization: Division for Health Service Promotion, University of Tokyo
– sequence: 4
  givenname: Tetsuo
  surname: Sato
  fullname: Sato, Tetsuo
  organization: Graduate School of information Science, Nara Institute of Science and Technology
– sequence: 5
  givenname: Md
  surname: Altaf-Ul-Amin
  fullname: Altaf-Ul-Amin, Md
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology
– sequence: 6
  givenname: Shigehiko
  surname: Kanaya
  fullname: Kanaya, Shigehiko
  organization: Graduate School of Science and Technology, Nara Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30159833$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_wA9ggS2zYBPxM4g0SuuIlVWIDa8txxqmLYwc7adV_jy-3LVAJVh5pzvl8RucUHcUUAaHnlLymhHRvCqVS9A2hfUN7Lhv2CJ3QvqVNK5g6up8pOUanpVwSImTH5RN0zAmVquf8BF3vginFO2_N6lPEyeGwxQmbEWKyJlsf02zwmk0sNvtlTTPgsg3rzQIFu5xmvJj1IoU0VUTAfjZTXWzFV8gIsGCb4lUK255e9xHW65S_l6fosTOhwLPb9wx9-_D-6-5Tc_7l4-fdu_PGSt6ujeVqMJxbR-jQU2EpUwJUKzrhlB2MGFslRSsVSGnJSGxHnBAWiFNkkDByfobeHrjLNswwWoj1lKCXXIPmG52M139vor_QU7rSLWO8k7ICXt0CcvqxQVn17IuFEEyEtBXNiOqkYqLb__XygfQybbleXVWUU9YxTkVVvfgz0X2Uu06qoDsIbE6lZHDa-vVXOzWgD5oSvW9fH9rXtX29b1-z6qQPnHfw_3nYwVOqNk6Qf4f-t-knGGrE9Q
CitedBy_id crossref_primary_10_1007_s11042_022_13412_y
crossref_primary_10_1007_s11042_022_13566_9
crossref_primary_10_1002_1878_0261_13014
crossref_primary_10_1002_jbio_202300174
crossref_primary_10_3390_cancers15153981
crossref_primary_10_3390_diagnostics13071353
crossref_primary_10_1007_s00500_020_05048_7
crossref_primary_10_1038_s41379_021_00987_4
crossref_primary_10_1016_j_compbiomed_2022_105209
crossref_primary_10_1155_2020_6153657
Cites_doi 10.1109/ICASSP.2014.6853873
10.1109/TMI.2015.2458702
10.1016/j.artmed.2015.04.004
10.1007/s10278-013-9622-7
10.1371/journal.pone.0036530
10.1109/ISBI.2012.6235544
10.1016/j.trsl.2015.08.001
10.1016/j.neucom.2016.12.083
10.1109/TMI.2016.2528162
10.1038/nature13385
10.1007/s11263-015-0816-y
10.1007/978-3-642-40763-5_12
10.1136/amiajnl-2012-001540
10.1109/TMI.2015.2482920
10.4103/2153-3539.112694
10.1007/978-3-642-21735-7_7
10.1080/21681163.2015.1135299
10.1200/JCO.2005.05.1748
10.1109/ISBI.2013.6556499
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1007/s11548-018-1835-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 1913
ExternalDocumentID PMC6223755
30159833
10_1007_s11548_018_1835_2
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 15H01123
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: 15H01123
– fundername: ;
  grantid: 15H01123
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
7X7
88E
8FI
8FJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c536t-c39ba33cf01b814c1294e96474f9cba4d6954659e55c0d0c70f44ce0f90b5ed33
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449775700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
1861-6429
IngestDate Thu Aug 21 14:04:53 EDT 2025
Sun Nov 09 11:17:28 EST 2025
Tue Oct 07 06:57:55 EDT 2025
Wed Feb 19 02:34:20 EST 2025
Sat Nov 29 01:30:15 EST 2025
Tue Nov 18 22:18:58 EST 2025
Fri Feb 21 02:42:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Deep learning
Autoencoder
Independent subspace analysis
Lung cancer
Computer-aided diagnosis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-c39ba33cf01b814c1294e96474f9cba4d6954659e55c0d0c70f44ce0f90b5ed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7722-055X
OpenAccessLink https://link.springer.com/10.1007/s11548-018-1835-2
PMID 30159833
PQID 2131272314
PQPubID 2043910
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223755
proquest_miscellaneous_2097592473
proquest_journals_2131272314
pubmed_primary_30159833
crossref_citationtrail_10_1007_s11548_018_1835_2
crossref_primary_10_1007_s11548_018_1835_2
springer_journals_10_1007_s11548_018_1835_2
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References RothHRLuLLiuJYaoJSeffACherryKKimLSummersRMImproving computer-aided detection using convolutional neural networks and random view aggregationIEEE Trans Med Imaging20163551170118110.1109/TMI.2015.2482920
HayesDNMontiSParmigianiGGilksCBNaokiKBhattacharjeeASocinskiMAPerouCMeyersonMGene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohortsJ Clin Oncol20062431507950901:CAS:528:DC%2BD28Xht1Gnur3I10.1200/JCO.2005.05.1748
MasciJonathanMeierUeliCireşanDanSchmidhuberJürgenStacked Convolutional Auto-Encoders for Hierarchical Feature ExtractionLecture Notes in Computer Science2011Berlin, HeidelbergSpringer Berlin Heidelberg5259
The Cancer Genome Atlas Research NetworkComprehensive molecular profiling of lung adenocarcinomaNature201451154355010.1038/nature13385
MalonCCosattoEClassification of mitotic figures with convolutional neural networks and seeded blob featuresJ Pathol Inform20134910.4103/2153-3539.112694
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision (ECCV 2014), Lecture notes in computer science. Springer, vol 8689, pp 818–833
ClarkKVendtBSmithKFreymannJKirbyJKoppelPMooreSPhillipsSMaffittDPringleMTarboxLPriorFThe Cncer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging201326601045105710.1007/s10278-013-9622-7
Le Q, Han J, Gray J, Spellman P, Borowsky A, Parvin B (2012) Learning invariant features of tumor signatures. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI), pp 302–305
ChangHangNayakNanditaSpellmanPaul T.ParvinBahramCharacterization of Tissue Histopathology via Predictive Sparse Decomposition and Spatial Pyramid MatchingAdvanced Information Systems Engineering2013Berlin, HeidelbergSpringer Berlin Heidelberg919810.1007/978-3-642-40763-5_12
KothariSPhanJHStokesTHWangMDPathology imaging informatics for quantitative analysis of whole-slide imagesJ Am Med Inform Assoc20132061099110810.1136/amiajnl-2012-001540
Nayak N, Chang H, Borowsky A, Spellman P, Parvin B (2013) Classification of tumor histopathology via sparse feature learning. In: 2013 IEEE 10th international symposium on biomedical imaging, pp 410–413
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zhe X (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467
ArevaloJCruz-RoaAAriasVRomeroEGonzálezFAAn unsupervised feature learning framework for basal cell carcinoma image analysisArtif Intell Med201364213114510.1016/j.artmed.2015.04.004
ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129810.1109/TMI.2016.2528162
Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EIC (2014) Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1626–1630
HayesDLeeCRobertsPBellMBThorneLSchallheimJBernardPFunkhouserBSubtypes of lung adenocarcinoma derived from gene expression patterns are recapitulated using a tissue microarray system and immunohistochemistryCancer Res2007679188188
ChengXZhangLZhengYDeep similarity learning for multimodal medical imagesComput Methods Biomech Biomed Eng Imaging Vis20186324825210.1080/21681163.2015.1135299
WilkersonMDYinXWalterVZhaoNCabanskiCRHaywardMCMillerCRSocinskiMAParsonsAMThorneLBHaithcockBEVeeramachaneniNKFunkhouserWKRandellSHBernardPSPerouCMHayesDNDifferential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylationPLoS ONE201275e365301:CAS:528:DC%2BC38Xns1Ghu70%3D10.1371/journal.pone.0036530
ChangJTHLeeYMHuangRSThe impact of the Cancer Genome Atlas on lung cancerTransl Res201516665685851:CAS:528:DC%2BC2MXhsVeqtbbP10.1016/j.trsl.2015.08.001
XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imaging201635111913010.1109/TMI.2015.2458702
FurushoYKuboTIkedaKRoles of pre-training in deep neural networks from information theoretical perspectiveNeurocomputing2017248767910.1016/j.neucom.2016.12.083
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMBergACFei-FeiLImageNet large scale visual recognition challengeComput Sci2015115321125210.1007/s11263-015-0816-y
Y Furusho (1835_CR7) 2017; 248
1835_CR11
1835_CR22
Jonathan Masci (1835_CR13) 2011
C Malon (1835_CR12) 2013; 4
MD Wilkerson (1835_CR19) 2012; 7
S Kothari (1835_CR10) 2013; 20
1835_CR20
X Cheng (1835_CR5) 2018; 6
The Cancer Genome Atlas Research Network (1835_CR18) 2014; 511
O Russakovsky (1835_CR16) 2015; 115
J Arevalo (1835_CR2) 2013; 64
1835_CR14
Hang Chang (1835_CR3) 2013
K Clark (1835_CR6) 2013; 26
D Hayes (1835_CR8) 2007; 67
DN Hayes (1835_CR9) 2006; 24
HR Roth (1835_CR15) 2016; 35
J Xu (1835_CR21) 2016; 35
1835_CR1
HC Shin (1835_CR17) 2016; 35
JTH Chang (1835_CR4) 2015; 166
References_xml – reference: WilkersonMDYinXWalterVZhaoNCabanskiCRHaywardMCMillerCRSocinskiMAParsonsAMThorneLBHaithcockBEVeeramachaneniNKFunkhouserWKRandellSHBernardPSPerouCMHayesDNDifferential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylationPLoS ONE201275e365301:CAS:528:DC%2BC38Xns1Ghu70%3D10.1371/journal.pone.0036530
– reference: Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EIC (2014) Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1626–1630
– reference: KothariSPhanJHStokesTHWangMDPathology imaging informatics for quantitative analysis of whole-slide imagesJ Am Med Inform Assoc20132061099110810.1136/amiajnl-2012-001540
– reference: MasciJonathanMeierUeliCireşanDanSchmidhuberJürgenStacked Convolutional Auto-Encoders for Hierarchical Feature ExtractionLecture Notes in Computer Science2011Berlin, HeidelbergSpringer Berlin Heidelberg5259
– reference: ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129810.1109/TMI.2016.2528162
– reference: ChengXZhangLZhengYDeep similarity learning for multimodal medical imagesComput Methods Biomech Biomed Eng Imaging Vis20186324825210.1080/21681163.2015.1135299
– reference: HayesDNMontiSParmigianiGGilksCBNaokiKBhattacharjeeASocinskiMAPerouCMeyersonMGene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohortsJ Clin Oncol20062431507950901:CAS:528:DC%2BD28Xht1Gnur3I10.1200/JCO.2005.05.1748
– reference: MalonCCosattoEClassification of mitotic figures with convolutional neural networks and seeded blob featuresJ Pathol Inform20134910.4103/2153-3539.112694
– reference: ChangHangNayakNanditaSpellmanPaul T.ParvinBahramCharacterization of Tissue Histopathology via Predictive Sparse Decomposition and Spatial Pyramid MatchingAdvanced Information Systems Engineering2013Berlin, HeidelbergSpringer Berlin Heidelberg919810.1007/978-3-642-40763-5_12
– reference: FurushoYKuboTIkedaKRoles of pre-training in deep neural networks from information theoretical perspectiveNeurocomputing2017248767910.1016/j.neucom.2016.12.083
– reference: Nayak N, Chang H, Borowsky A, Spellman P, Parvin B (2013) Classification of tumor histopathology via sparse feature learning. In: 2013 IEEE 10th international symposium on biomedical imaging, pp 410–413
– reference: The Cancer Genome Atlas Research NetworkComprehensive molecular profiling of lung adenocarcinomaNature201451154355010.1038/nature13385
– reference: RothHRLuLLiuJYaoJSeffACherryKKimLSummersRMImproving computer-aided detection using convolutional neural networks and random view aggregationIEEE Trans Med Imaging20163551170118110.1109/TMI.2015.2482920
– reference: ClarkKVendtBSmithKFreymannJKirbyJKoppelPMooreSPhillipsSMaffittDPringleMTarboxLPriorFThe Cncer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging201326601045105710.1007/s10278-013-9622-7
– reference: Le Q, Han J, Gray J, Spellman P, Borowsky A, Parvin B (2012) Learning invariant features of tumor signatures. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI), pp 302–305
– reference: HayesDLeeCRobertsPBellMBThorneLSchallheimJBernardPFunkhouserBSubtypes of lung adenocarcinoma derived from gene expression patterns are recapitulated using a tissue microarray system and immunohistochemistryCancer Res2007679188188
– reference: ArevaloJCruz-RoaAAriasVRomeroEGonzálezFAAn unsupervised feature learning framework for basal cell carcinoma image analysisArtif Intell Med201364213114510.1016/j.artmed.2015.04.004
– reference: ChangJTHLeeYMHuangRSThe impact of the Cancer Genome Atlas on lung cancerTransl Res201516665685851:CAS:528:DC%2BC2MXhsVeqtbbP10.1016/j.trsl.2015.08.001
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMBergACFei-FeiLImageNet large scale visual recognition challengeComput Sci2015115321125210.1007/s11263-015-0816-y
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zhe X (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467
– reference: XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imaging201635111913010.1109/TMI.2015.2458702
– reference: Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision (ECCV 2014), Lecture notes in computer science. Springer, vol 8689, pp 818–833
– ident: 1835_CR1
– ident: 1835_CR20
  doi: 10.1109/ICASSP.2014.6853873
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 1835_CR21
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 64
  start-page: 131
  issue: 2
  year: 2013
  ident: 1835_CR2
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2015.04.004
– volume: 26
  start-page: 1045
  issue: 60
  year: 2013
  ident: 1835_CR6
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 7
  start-page: e36530
  issue: 5
  year: 2012
  ident: 1835_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036530
– ident: 1835_CR11
  doi: 10.1109/ISBI.2012.6235544
– volume: 166
  start-page: 568
  issue: 6
  year: 2015
  ident: 1835_CR4
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2015.08.001
– volume: 248
  start-page: 76
  year: 2017
  ident: 1835_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.083
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 1835_CR17
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 67
  start-page: 188
  issue: 9
  year: 2007
  ident: 1835_CR8
  publication-title: Cancer Res
– volume: 511
  start-page: 543
  year: 2014
  ident: 1835_CR18
  publication-title: Nature
  doi: 10.1038/nature13385
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 1835_CR16
  publication-title: Comput Sci
  doi: 10.1007/s11263-015-0816-y
– start-page: 91
  volume-title: Advanced Information Systems Engineering
  year: 2013
  ident: 1835_CR3
  doi: 10.1007/978-3-642-40763-5_12
– volume: 20
  start-page: 1099
  issue: 6
  year: 2013
  ident: 1835_CR10
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001540
– volume: 35
  start-page: 1170
  issue: 5
  year: 2016
  ident: 1835_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2482920
– volume: 4
  start-page: 9
  year: 2013
  ident: 1835_CR12
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.112694
– start-page: 52
  volume-title: Lecture Notes in Computer Science
  year: 2011
  ident: 1835_CR13
  doi: 10.1007/978-3-642-21735-7_7
– volume: 6
  start-page: 248
  issue: 3
  year: 2018
  ident: 1835_CR5
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
  doi: 10.1080/21681163.2015.1135299
– volume: 24
  start-page: 5079
  issue: 31
  year: 2006
  ident: 1835_CR9
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.05.1748
– ident: 1835_CR14
  doi: 10.1109/ISBI.2013.6556499
– ident: 1835_CR22
SSID ssj0045735
Score 2.240696
Snippet Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we...
Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we...
PurposeConvolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1905
SubjectTerms Adenocarcinoma of Lung - classification
Adenocarcinoma of Lung - diagnosis
Adenocarcinoma of Lung - genetics
Artificial neural networks
Biopsy
Classification
Computer Imaging
Computer Science
Entropy (Information theory)
Feature extraction
Feature recognition
Health Informatics
Humans
Image analysis
Image classification
Image Processing, Computer-Assisted - methods
Imaging
Medicine
Medicine & Public Health
Neural networks
Neural Networks (Computer)
Object recognition
Original
Original Article
Pattern recognition
Pattern Recognition and Graphics
Radiology
Surgery
Transcriptome
Tumors
Vision
Title Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
URI https://link.springer.com/article/10.1007/s11548-018-1835-2
https://www.ncbi.nlm.nih.gov/pubmed/30159833
https://www.proquest.com/docview/2131272314
https://www.proquest.com/docview/2097592473
https://pubmed.ncbi.nlm.nih.gov/PMC6223755
Volume 13
WOSCitedRecordID wos000449775700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BQGgvFAbbwkZlJJ5AkZzYjp1HhDbtYUyIj6lvUeI4rNKaTE26_fvcuUmqMkCCZ1_axLn73c-5L4C3VDupKpsj-nEXykqhSZmS7MpHuazQPnp-ea4vLsxsln7u67jbIdt9CEl6pN4UuxG7xqMvnnqQNoSIu4_Q2xma1_Dl6-UAv1JpP1UzMkkUJjIaQ5m_-4ltZ3SPYd5PlPwlWuqd0Onkv27_GTztOSf7sFaS5_DA1XswGeY5sN689-DJpz7Q_gLu_LBMSiPyb441FbtGWGA5whR6vyVKNYucdeTpPO40C8faVUFfdFtGNSuMZh0PyMrmC8StllGW_Q9WOnfDKN29V3tcr9fZ6O1L-H568u3jWdjPaAitEkkXWpEWuRC24lFhImmRPkhH1a2ySm2RyzJJadx66pSyvORW80pK63iV8kK5Uoh92Kmb2h0Cw-0xuopLJJxGupgXWgtboBhySKmLJAA-vKzM9g3MaY7GdbZpvUx7nOEeZ7THWRzAu_GSm3X3jr8JHw8akPWG3GZxJFBrkQTLAN6My2iCFFfJa9esUIanWuE5VosADtYKM_4b4qdKjcAVvaVKowC1995eqedXvs13gsxNKxXA-0GhNrf1x4d49U_SR7Abe42k9Jxj2OmWK_caHtvbbt4up_BQz8zUW9dPrvkfeA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VULVcoKUUQmnrSj0VRXJiO06OqAKBuqyqliJuUeI4dCU2QZtd-PvMeJOsFgoSPXvysmc-f868AL5S7qQqTYbox60vS4UmFRdkV87LZYR23vPzgR4O44uL5Gebx9100e6dS9Ih9SLZjdg1Hn3x1IO0wUfcXaUHUcH8X7_PO_iVSruumkEcBX4kg96V-a9bLG9GDxjmw0DJe95StwkdbfzX67-B9ZZzsoO5kryFF7bahI2unwNrzXsTXp22jvZ3cOuaZVIYkVs5VpfsCmGBZQhTuPtNUKoeZ2xKO53DnXpsWTPL6Y9uwyhnhVGv4w5Z2WiMuNUwirK_ZIW114zC3Vu1x_FqHo3ebMGfo8Oz78d-26PBN0pEU9-IJM-EMCUP8jiQBumDtJTdKsvE5JksooTarSdWKcMLbjQvpTSWlwnPlS2EeA8rVV3ZHWA4PbEuwwIJZyxtyHOthclRDDmk1HnkAe8WKzVtAXPqo3GVLkov0xynOMcpzXEaevCtv-R6Xr3jKeG9TgPS1pCbNAwEai2SYOnBl34YTZD8Klll6xnK8EQrPMdq4cH2XGH6pyF-qiQWOKKXVKkXoPLeyyPV6K8r8x0hc9NKebDfKdTitR79iN1nSX-G18dnp4N0cDL88QHWQqedFKqzByvTycx-hJfmZjpqJp-cjd0BaQQhdA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hgioutJRXoAUjcQJFdWI7To6IdgWirCoBVW9R4thlpW6y2mTh7zPjJLtaCkiIsycve-bz58wL4BXlTipnCkQ_bkPpFJpUWpFdeS-XEdp7zy_O9HSaXl5m50Of03aMdh9dkn1OA1VpqrvjReWON4lvxLTxGIwnIKQQIWLwbUlx9HRc_3wxQrFU2nfYjNIkChMUGN2av7vF9sZ0g23eDJr8xXPqN6TJ3n9_yj7cG7goe9srz324ZesD2Bv7PLDB7A9g99PggH8AP3wTTQov8ivKGseuES5YgfCFu-ISpZp5wTraAT0eNXPL2lVJf3pbRrksjHogj4jLZnPEs5ZR9P0Vq6xdMAqDH8wBx-s-Sr19CF8np1_evQ-H3g2hUSLpQiOyshDCOB6VaSQN0gppKetVusyUhaySjNqwZ1YpwytuNHdSGstdxktlKyEewU7d1PYJMJyeVLu4QiKaShvzUmthShRDbil1mQTAx4XLzVDYnPprXOebksw0xznOcU5znMcBvF5fsuirevxN-HDUhnww8DaPI4HajORYBvByPYymSf6WorbNCmV4phWeb7UI4HGvPOunIa6qLBU4orfUai1AZb-3R-rZN1_-O0FGp5UK4M2oXJvX-uNHPP0n6Rewe34yyc8-TD8-g7uxV06K4DmEnW65skdwx3zvZu3yuTe3nzsHKlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+lung+adenocarcinoma+transcriptome+subtypes+from+pathological+images+using+deep+convolutional+networks&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Antonio%2C+Victor+Andrew+A&rft.au=Ono%2C+Naoaki&rft.au=Saito%2C+Akira&rft.au=Sato%2C+Tetsuo&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=12&rft.spage=1905&rft.epage=1913&rft_id=info:doi/10.1007%2Fs11548-018-1835-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon