Multistability in the epithelial-mesenchymal transition network

Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo 1; s. 71 - 17
Hlavní autori: Xin, Ying, Cummins, Bree, Gedeon, Tomáš
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 24.02.2020
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community. Results Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states. Conclusions Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
AbstractList Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community. Results Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states. Conclusions Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community. Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states. Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community.BACKGROUNDThe transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community.Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states.RESULTSPrevious modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states.Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.CONCLUSIONSOur results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
Abstract Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community. Results Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states. Conclusions Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer metastasis. Previous studies, both modeling and experimental, suggested that in addition to E and M states, the network responsible for these phenotypes exhibits intermediate phenotypes between E and M states. The number and importance of such states is subject to intense discussion in the epithelial-mesenchymal transition (EMT) community. Results Previous modeling efforts used traditional bifurcation analysis to explore the number of the steady states that correspond to E, M and intermediate states by varying one or two parameters at a time. Since the system has dozens of parameters that are largely unknown, it remains a challenging problem to fully describe the potential set of states and their relationship across all parameters. We use the computational tool DSGRN (Dynamic Signatures Generated by Regulatory Networks) to explore the intermediate states of an EMT model network by computing summaries of the dynamics across all of parameter space. We find that the only attractors in the system are equilibria, that E and M states dominate across parameter space, but that bistability and multistability are common. Even at extreme levels of some of the known inducers of the transition, there is a certain proportion of the parameter space at which an E or an M state co-exists with other stable steady states. Conclusions Our results suggest that the multistability is broadly present in the EMT network across parameters and thus response of cells to signals may strongly depend on the particular cell line and genetic background.
ArticleNumber 71
Author Cummins, Bree
Xin, Ying
Gedeon, Tomáš
Author_xml – sequence: 1
  givenname: Ying
  surname: Xin
  fullname: Xin, Ying
  organization: Department of Ophthalmology (Wilmer Eye Institute), Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Bree
  surname: Cummins
  fullname: Cummins, Bree
  organization: Department of Mathematical Sciences, Montana State University
– sequence: 3
  givenname: Tomáš
  orcidid: 0000-0001-5555-6741
  surname: Gedeon
  fullname: Gedeon, Tomáš
  email: gedeon@math.montana.edu
  organization: Department of Mathematical Sciences, Montana State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32093616$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gB3BBkbhwCXgcx3YuoKrio1IRFzhbjjPZ9eLYi-0F7b_H27TQVoLTWPb7PnrHM6fVkQ8eq-o5kNcAkr9JQGXXN4SSpmXQNvCoOgEmoKFAuqM75-PqNKUNISAk6Z5Uxy0lfcuBn1TvPu9ctinrwTqb97X1dV5jjVtbirPaNTMm9Ga9n7Wrc9Q-2WyDrz3mXyF-f1o9nrRL-OymnlXfPrz_evGpufry8fLi_KoxXctzMxgh237klCNy08t-JFJyw6WhhPYwARskHzo-TSNlo56INNCV7jTBoR-NaM-qy4U7Br1R22hnHfcqaKuuL0JcKR2zNQ5V1xmpkbERBGNGCA2yx6njFJACUF1YbxfWdjfMOBr0pS93D3r_xdu1WoWfShBWAKQAXt0AYvixw5TVbJNB57THsEuKtpwRxvpr6csH0k3YRV--qqiE5IwSxovqxd1Ef6LczqkIxCIwMaQUcVLGZn0YRAlonQKiDhuhlo1QZSPUYSMUFCc8cN7C_-ehiycVrV9h_Bv636bfVNLHdA
CitedBy_id crossref_primary_10_1093_synbio_ysad005
crossref_primary_10_3390_e23030288
crossref_primary_10_1016_j_chaos_2023_113743
crossref_primary_10_3390_jcm10030472
crossref_primary_10_1038_s41540_024_00423_8
crossref_primary_10_1159_000515289
crossref_primary_10_1017_S0956792520000479
crossref_primary_10_1016_j_seminoncol_2025_152337
crossref_primary_10_1002_cam4_4059
crossref_primary_10_1016_j_mbs_2023_109102
crossref_primary_10_1016_j_mbs_2024_109225
crossref_primary_10_1111_jcmm_16099
crossref_primary_10_1371_journal_pcbi_1008711
crossref_primary_10_3390_biom12030348
crossref_primary_10_1137_21M1456832
crossref_primary_10_1016_j_ceb_2021_01_001
crossref_primary_10_1002_cso2_1017
crossref_primary_10_3390_cells10112863
crossref_primary_10_1007_s11538_022_01035_1
crossref_primary_10_3390_jcm10010060
crossref_primary_10_3389_fsysb_2023_1099951
crossref_primary_10_1038_s41540_023_00289_2
crossref_primary_10_1038_s42003_023_05668_3
crossref_primary_10_1155_2022_7850658
Cites_doi 10.1016/j.trecan.2015.07.006
10.1137/17M1134548
10.1016/0022-5193(72)90157-9
10.1137/15M1052743
10.1371/journal.pcbi.1006121
10.1371/journal.pone.0126522
10.1090/cbms/038
10.1371/journal.pcbi.1005456
10.1038/s41580-018-0080-4
10.1073/pnas.1722609115
10.3934/jcd.2014.1.307
10.1038/nm.3336
10.1038/ni.2703
10.1137/18M1163610
10.1016/0022-5193(73)90208-7
10.1126/science.1228522
10.1038/s41586-018-0040-3
10.1126/scisignal.2005304
10.1007/BF02684771
10.1016/j.cell.2009.11.007
10.3892/or.2012.1781
10.1038/onc.2010.215
10.1158/0008-5472.CAN-11-4094
10.1371/journal.pcbi.1004569
10.18632/oncotarget.8166
10.1007/s10208-015-9272-x
10.18632/oncotarget.3623
10.1016/S1874-575X(02)80030-3
10.1016/j.canlet.2013.02.037
10.1016/j.physd.2017.11.003
10.1016/j.cell.2008.03.027
10.1073/pnas.1318192110
10.1017/S0962492902000065
10.1016/j.bpj.2013.07.011
10.1016/j.molonc.2015.10.002
10.1016/j.cell.2013.06.005
10.1016/bs.ctdb.2014.11.021
ContentType Journal Article
Copyright The Author(s) 2020
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-3413-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 17
ExternalDocumentID oai_doaj_org_article_55c8ae44d1744c77a189ef5621e2112a
PMC7041120
32093616
10_1186_s12859_020_3413_1
Genre Journal Article
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: 5R01GM126555-01
  funderid: http://dx.doi.org/10.13039/100000057
– fundername: Division of Mathematical Sciences
  grantid: 1839299
  funderid: http://dx.doi.org/10.13039/100000121
– fundername: Defense Advanced Research Projects Agency
  grantid: FA8750-17-C-0054
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: NIGMS NIH HHS
  grantid: 5R01GM126555-01
– fundername: NIGMS NIH HHS
  grantid: R01 GM126555
– fundername: ;
  grantid: FA8750-17-C-0054
– fundername: ;
  grantid: 1839299
– fundername: ;
  grantid: 5R01GM126555-01
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c536t-bc7839d626ee6c989d0886c68c20291f14b86b56ffd24daf08c15128a0eb9dc73
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521307300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Dec 08 04:16:42 EST 2025
Tue Nov 04 01:57:58 EST 2025
Thu Oct 02 05:36:26 EDT 2025
Sun Nov 30 03:53:14 EST 2025
Mon Jul 21 05:58:27 EDT 2025
Sat Nov 29 05:40:06 EST 2025
Tue Nov 18 22:22:07 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epithelial-mesenchymal transition
Multistability
Network models
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-bc7839d626ee6c989d0886c68c20291f14b86b56ffd24daf08c15128a0eb9dc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5555-6741
OpenAccessLink https://doaj.org/article/55c8ae44d1744c77a189ef5621e2112a
PMID 32093616
PQID 2378642046
PQPubID 44065
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_55c8ae44d1744c77a189ef5621e2112a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7041120
proquest_miscellaneous_2364044920
proquest_journals_2378642046
pubmed_primary_32093616
crossref_citationtrail_10_1186_s12859_020_3413_1
crossref_primary_10_1186_s12859_020_3413_1
springer_journals_10_1186_s12859_020_3413_1
PublicationCentury 2000
PublicationDate 2020-02-24
PublicationDateYYYYMMDD 2020-02-24
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References L Glass (3413_CR32) 1972; 34
D Jia (3413_CR34) 2015; 6
3413_CR39
F Andriani (3413_CR15) 2016; 10
X-J Tian (3413_CR19) 2013; 105
D Guo (3413_CR23) 2012; 28
Y Nakaya (3413_CR1) 2013; 341
M Yu (3413_CR16) 2013; 339
P Savagner (3413_CR4) 2009; 193
P Crawford-Kahrl (3413_CR31) 2019; 18
M Jolly (3413_CR21) 2016; 10
V Arnoux (3413_CR3) 2005
W Tam (3413_CR17) 2013; 19
B Cummins (3413_CR26) 2016; 15
A Dongre (3413_CR5) 2019; 20
F Font-Closa (3413_CR25) 2018; 115
K Mischaikow (3413_CR38) 2002; 11
P Savagner (3413_CR18) 2015; 112
T Gajewski (3413_CR8) 2013; 14
S Mani (3413_CR6) 2008; 133
M Lu (3413_CR20) 2013; 110
S Kerkar (3413_CR9) 2012; 72
C Chaffer (3413_CR22) 2013; 154
I Pastushenko (3413_CR14) 2018; 556
J Palis (3413_CR36) 1993
CC Conley (3413_CR37) 1978
N Aceto (3413_CR10) 2015; 1
B Cummins (3413_CR28) 2018; 17
L Glass (3413_CR33) 1973; 39
SE Newhouse (3413_CR35) 1979; 50
B Cummins (3413_CR29) 2017
J Thiery (3413_CR2) 2009; 139
T Hong (3413_CR11) 2015; 11
B Huang (3413_CR24) 2017; 13
Z Huttinga (3413_CR30) 2018; 367
W Kalies (3413_CR40) 2014; 1
A Grosse-Wilde (3413_CR13) 2015; 10
3413_CR41
A Singh (3413_CR7) 2010; 29
T Gedeon (3413_CR27) 2018; 14
J Zhang (3413_CR12) 2014; 7
References_xml – volume: 1
  start-page: 44
  year: 2015
  ident: 3413_CR10
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2015.07.006
– volume: 17
  start-page: 1589
  issue: 2
  year: 2018
  ident: 3413_CR28
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/17M1134548
– volume: 34
  start-page: 219
  issue: 2
  year: 1972
  ident: 3413_CR32
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(72)90157-9
– volume: 15
  start-page: 2176
  issue: 4
  year: 2016
  ident: 3413_CR26
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/15M1052743
– volume: 14
  start-page: 1006121
  issue: 4
  year: 2018
  ident: 3413_CR27
  publication-title: PLoS Comput Bio
  doi: 10.1371/journal.pcbi.1006121
– volume: 10
  start-page: 0126522
  year: 2015
  ident: 3413_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126522
– volume-title: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge Studies in Advanced Mathematics, vol. 35
  year: 1993
  ident: 3413_CR36
– volume-title: Isolated Invariant Sets and the Morse Index. Regional conference series in mathematics
  year: 1978
  ident: 3413_CR37
  doi: 10.1090/cbms/038
– volume: 13
  start-page: 1005456
  issue: 3
  year: 2017
  ident: 3413_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005456
– volume: 20
  start-page: 69
  year: 2019
  ident: 3413_CR5
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-018-0080-4
– volume: 115
  start-page: 5902
  issue: 23
  year: 2018
  ident: 3413_CR25
  publication-title: PNAS
  doi: 10.1073/pnas.1722609115
– volume-title: Computational Methods in Systems Biology - 2017, Chap. 19
  year: 2017
  ident: 3413_CR29
– volume: 1
  start-page: 307
  issue: 2
  year: 2014
  ident: 3413_CR40
  publication-title: J Comp Dyn
  doi: 10.3934/jcd.2014.1.307
– volume: 19
  start-page: 1438
  issue: 11
  year: 2013
  ident: 3413_CR17
  publication-title: Nat Med
  doi: 10.1038/nm.3336
– volume: 14
  start-page: 1014
  year: 2013
  ident: 3413_CR8
  publication-title: Nat Immunol
  doi: 10.1038/ni.2703
– volume: 18
  start-page: 418
  issue: 1
  year: 2019
  ident: 3413_CR31
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/18M1163610
– volume: 39
  start-page: 103
  issue: 1
  year: 1973
  ident: 3413_CR33
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(73)90208-7
– volume: 339
  start-page: 580
  year: 2013
  ident: 3413_CR16
  publication-title: Science
  doi: 10.1126/science.1228522
– volume: 556
  start-page: 463
  issue: 7702
  year: 2018
  ident: 3413_CR14
  publication-title: Nature
  doi: 10.1038/s41586-018-0040-3
– volume: 7
  start-page: 91
  issue: 345
  year: 2014
  ident: 3413_CR12
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2005304
– volume: 50
  start-page: 101
  year: 1979
  ident: 3413_CR35
  publication-title: Inst Hautes Études Sci Publ Math
  doi: 10.1007/BF02684771
– volume: 139
  start-page: 871
  year: 2009
  ident: 3413_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 28
  start-page: 241
  year: 2012
  ident: 3413_CR23
  publication-title: Oncol Rep
  doi: 10.3892/or.2012.1781
– volume: 29
  start-page: 4741
  year: 2010
  ident: 3413_CR7
  publication-title: Oncogene
  doi: 10.1038/onc.2010.215
– volume: 72
  start-page: 3125
  year: 2012
  ident: 3413_CR9
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-4094
– volume: 11
  start-page: 1004569
  issue: 11
  year: 2015
  ident: 3413_CR11
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004569
– volume: 10
  start-page: 27067
  issue: 19
  year: 2016
  ident: 3413_CR21
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8166
– ident: 3413_CR41
  doi: 10.1007/s10208-015-9272-x
– volume: 6
  start-page: 15436
  issue: 17
  year: 2015
  ident: 3413_CR34
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3623
– ident: 3413_CR39
  doi: 10.1016/S1874-575X(02)80030-3
– volume: 341
  start-page: 9
  year: 2013
  ident: 3413_CR1
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2013.02.037
– volume: 367
  start-page: 19
  year: 2018
  ident: 3413_CR30
  publication-title: Phys D Nonlinear Phenom
  doi: 10.1016/j.physd.2017.11.003
– volume: 133
  start-page: 704
  year: 2008
  ident: 3413_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.027
– volume: 193
  start-page: 1981
  issue: 9
  year: 2009
  ident: 3413_CR4
  publication-title: Bull Acad Natl Med
– volume: 110
  start-page: 18144
  issue: 45
  year: 2013
  ident: 3413_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1318192110
– volume: 11
  start-page: 435
  year: 2002
  ident: 3413_CR38
  publication-title: Acta Numer
  doi: 10.1017/S0962492902000065
– volume: 105
  start-page: 1079
  year: 2013
  ident: 3413_CR19
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2013.07.011
– volume: 10
  start-page: 253
  year: 2016
  ident: 3413_CR15
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2015.10.002
– volume: 154
  start-page: 61
  year: 2013
  ident: 3413_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.005
– volume-title: Cutaneous wound reepithelialization. Rise and fall of epithelial phenotype
  year: 2005
  ident: 3413_CR3
– volume: 112
  start-page: 273
  year: 2015
  ident: 3413_CR18
  publication-title: Curr Top Dev Biol
  doi: 10.1016/bs.ctdb.2014.11.021
SSID ssj0017805
Score 2.4769678
Snippet Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and...
The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and cancer...
Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue development and...
Abstract Background The transitions between epithelial (E) and mesenchymal (M) cell phenotypes are essential in many biological processes like tissue...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Algorithms
Analysis and modelling of complex systems
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Boolean
Cancer
Cell adhesion & migration
Complex systems
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Epithelial-Mesenchymal Transition
Genotype & phenotype
Life Sciences
Medical prognosis
Mesenchyme
Metastasis
Microarrays
Models, Biological
Motility
Multistability
Network models
Phenotype
Research Article
Software
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNzRQUJA4gazajuPHqQJExanqAaTeLMd2aKU2u-xuK-2_Z8bxploevXCNHcvJzNjf5xnPEPKuTaYDO8IaYVpSGRtJvbRAVgDJCdvDjsHGYhP66MicnNjjcuC2LGGVmzUxL9RxFvCMfF802gBWBjp3MP9JsWoUeldLCY3b5A5mSRA5dO948iJgvv7iyeRG7S85ZmujSJhw7aZ8ay_KKfv_hjP_DJf8zWeat6LDh__7EY_IgwJC64-j1jwmt9LwhNwby1Kun5KDfCsXYGMOnF3XZ0MNMLFOc7y_cQ4KSy_wzlI4XV_AKCvc7XLgVz2MMeXPyPfDL98-f6Wl0AINbaNWtAsacFIEbpOSCtbYCGuPCsoEwYTlPZedUV2r-j4KGX3PTECgYDxLnY1BN8_JzjAb0i6pfQsdZZdAzFH2XWeAz_guiCSiDcC9KsI2v9yFkoUci2Gcu8xGjHKjlBxIyaGUHK_I--mV-ZiC46bOn1COU0fMnp0fzBY_XDFG17bB-CRlBDomg9aeG5t6QII8AR8WviJ7G_G5YtJLdy27irydmsEY0cPihzS7xD5KMimtYBV5MSrNNJNGMNsoDm_rLXXamup2y3B2mhN-ayZhWjDmh43iXU_rn3_i5c0f8YrcF2gJeDtf7pGd1eIyvSZ3wxXo1-JNtqNfzJ4kDw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxVBEC4kKnhxXyZGGcGTMtjT09PLSVQMnoK4kVvT25hAMi-89yK8f5-qnkWeRkGvM91NUV3VVR-1ATxvk_aoRzQjTIlKxEZUThgEK-jJcdOhxWDDsAl1cKAPD83HsY57NWW7TyHJ_FJntdby1aqmXmsVwR16eSuEPFfR2mma1_Dp87c5dEBN-sfw5aXbtgxQ7tN_mXP5e47kL4HSbH_2b_0X5bfh5uhulm8G-bgDV1J_F64PAyg39-B1rr9FBzGnyG7K475Eh7BMZ1SpcYKiWZ1SdVI42pziKWuyaznFq-yH7PH78HX__Zd3H6pxpEIV2kauKx8UekQRUUxKMhhtIr4yMkgdOOOm7mrhtfSt7LrIRXQd04FcAu1Y8iYG1TyAnX7Rp0dQuhYXCp_wQqPovNeIXJwPPPFoAqKsAtjEZxvGfuM09uLEZtyhpR34YpEvlvhi6wJezFvOhmYbf1v8li5vXkh9svOHxfK7HdXOtm3QLgkREXiJoJSrtUkd-nx1QuTLXQF709XbUXlXljdKIyxjQhbwbP6NakexFNenxTmtkYIJYTgr4OEgKTMlDWemkTXuVlsytEXq9p_--Ci39lZMIFl45stJkn6S9UdO7P7T6sdwg5MoUlm-2IOd9fI8PYFr4QeK2_Jp1qUL3vwZgA
  priority: 102
  providerName: Springer Nature
Title Multistability in the epithelial-mesenchymal transition network
URI https://link.springer.com/article/10.1186/s12859-020-3413-1
https://www.ncbi.nlm.nih.gov/pubmed/32093616
https://www.proquest.com/docview/2378642046
https://www.proquest.com/docview/2364044920
https://pubmed.ncbi.nlm.nih.gov/PMC7041120
https://doaj.org/article/55c8ae44d1744c77a189ef5621e2112a
Volume 21
WOSCitedRecordID wos000521307300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0KvhS_HZrPVbwSQlNstl8PImVFkU8lvrB6UvYzWZpod2W9ircf-9Mdu_0_HzxJbCbD4bJJDM_ZjID8LSMtsFzRDXCjGKqLRSrlUOwgpacdB1qDD4UmzDTqZ3NXPVDqS-KCRvSAw-M2ynLYOuoVIumswrG1MK62KHWFhGxi0ymETduCaZG_wFl6h99mMLqnQtBedoYQSW6tZlY00IpWf_vLMxfAyV_8pYmJbR_CzZH6zF_OVB9G67E_g7cGOpJLu7Ci_ScFu29FPG6yI_6HO27PJ7Rw4tjlDR2Qo-NwuHiBFeZk5pKEVt5PwSD34OP-3sfXr1mY4UEFspCz1kTDBo4LYKSGHVw1rV4aeigbZBcOtEJ1VjdlLrrWqnauuM2kIa3NY-Na4Mp7sNGf9rHh5DXJQ5UTcT9aVXXNBaBSN0EGWXrAoKmDPiSYz6M6cOpisWxTzDCaj8w2SOTPTHZiwyeraacDbkz_jZ4l7ZhNZDSXqcfKAx-FAb_L2HIYHu5iX48ixdeFsYiyuJKZ_Bk1Y2niFwjdR9PL2mMVlwpJ3kGD4Y9X1FSSO4KLXC2WZOGNVLXe_qjw5Sp23CFZOGaz5dy852sP3Ji639w4hHclCTu9PhebcPG_PwyPobr4StK4fkErpqZSa2dwLXdvWl1MEkHCNu3hk0oArbCtiq_YH_15l31Gb8O3n_6BgFWHk8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAioX3hRDASPBBWTVXq_3cUAVr6pVSsShSL1t7d01rdQ6IUlB-VP8RmbWdqrw6K0HrvF6NbG_eXye2RmAF4VXFeoRzQiTPOEu50nJNZIVjOSYrtFjpO2wCTkcqoMD_XkFfvZnYaissreJwVC7kaVv5JsslwpjZaRzW-NvCU2NouxqP0KjhcXAz38gZZu-2f2A7_clY9sf99_vJN1UgcQWuZgllZUYFDgM5L0XVivtUNGEFcqylOmsznilRFWIunaMu7JOlSWvqMrUV9pZmeO-V-Aqz5UkvRrIZJG1oPkAXeY0U2JzmlF3uIQIGvmKJFvyfWFEwN_i2j_LM3_L0QbXt33rf3tot-FmF2THb1utuAMrvrkL19uxm_N7sBVOHWNYHAqD5_FxE2MYHPsxnU85QYVMTulMlj2an-IuM_LmobAtbtqa-fvw5VKkfwCrzajxDyEuC1zIK48wdryuKoV8raws88xpi9wygrR_xcZ2XdZp2MeJCWxLCdOiwiAqDKHCZBG8WtwybluMXLT4HeFmsZC6g4cfRpOvpjM2piisKj3nDukmt1KWmdK-xkg388j3WRnBRg8X05msqTnHSgTPF5fR2FAGqWz86IzWCJ5yrlkawXoL0oUkOUt1LjK8Wy7Bd0nU5SvN8VFoaC5TjmLhnq97oJ-L9c8n8ejiP_EM1nb2P-2Zvd3h4DHcYKSF1ImAb8DqbHLmn8A1-x2xNnkadDiGw8vG_y9HCIDA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQOcQL5SqEFggST6CojuP4eELlWIFAq0oc6pvl2A6t1GZXu1uk_ffM2EmqhYKEeI3HljOesefTXIQ8r4NqQI-wR5jkBfcVLyzXAFbAkmO6hReDpmYTcjpVR0f6sO9zuhyi3QeXZMppwCpN3Wp_7tuk4krsL0usu1Yg9MFbuAD4c5VjHD3C9c_fRjcCFuzvXZmXTtt4jGLN_ssMzd_jJX9xmsa3aLL9339xm9zqzdD8IMnNHXIldHfJ9dSYcn2PvIp5uWA4xtDZdX7S5WAo5mGOGRynILLFGWYtueP1Gayywvcuhn7lXYoqv0--Tt59efO-6FstFK6uxKponARLyQO6CUE4rbSH20c4oRyjTJdtyRslmlq0rWfc25Yqh6aCsjQ02jtZ7ZCtbtaFhyS3NRDyJsBBe942jQJEYxvHAvPaAfrKCB14blxfhxzbYZyaiEeUMIkvBvhikC-mzMiLcco8FeH4G_FrPMiREOtnxw-zxXfTq6Opa6ds4NwDIONOSlsqHVqwBcsAiJjZjOwNYmB6pV4aVkkFcI1ykZFn4zCoI_pYbBdm50gjOOVcM5qRB0lqxp1UjOpKlDBbbsjTxlY3R7qT41jyW1IO24I1Xw5SdbGtP3Li0T9RPyU3Dt9OzKcP04-75CZDqcTMfb5HtlaL8_CYXHM_QPIWT6KK_QSH5yVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistability+in+the+epithelial-mesenchymal+transition+network&rft.jtitle=BMC+bioinformatics&rft.au=Xin%2C+Ying&rft.au=Cummins%2C+Bree&rft.au=Gedeon%2C+Tom%C3%A1%C5%A1&rft.date=2020-02-24&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=71&rft_id=info:doi/10.1186%2Fs12859-020-3413-1&rft_id=info%3Apmid%2F32093616&rft.externalDocID=32093616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon