Electronic structure of the parent compound of superconducting infinite-layer nickelates

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials Jg. 19; H. 4; S. 381 - 385
Hauptverfasser: Hepting, M., Li, D., Jia, C. J., Lu, H., Paris, E., Tseng, Y., Feng, X., Osada, M., Been, E., Hikita, Y., Chuang, Y.-D., Hussain, Z., Zhou, K. J., Nag, A., Garcia-Fernandez, M., Rossi, M., Huang, H. Y., Huang, D. J., Shen, Z. X., Schmitt, T., Hwang, H. Y., Moritz, B., Zaanen, J., Devereaux, T. P., Lee, W. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.04.2020
Nature Publishing Group
Springer Nature - Nature Publishing Group
Schlagworte:
ISSN:1476-1122, 1476-4660, 1476-4660
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO 2 and NdNiO 2 , while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5 d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with 3 d x 2 − y 2 symmetry in the NiO 2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics 13 – 15 , which are well known for heavy fermion behaviour, where the NiO 2 correlated layers play an analogous role to the 4 f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences.
AbstractList The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO (refs. ) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO and NdNiO , while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics , which are well known for heavy fermion behaviour, where the NiO correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1–10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2−y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13–15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences.
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO 2 and NdNiO 2 , while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5 d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with 3 d x 2 − y 2 symmetry in the NiO 2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics 13 – 15 , which are well known for heavy fermion behaviour, where the NiO 2 correlated layers play an analogous role to the 4 f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences.
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
Author Hwang, H. Y.
Huang, H. Y.
Zhou, K. J.
Zaanen, J.
Jia, C. J.
Lee, W. S.
Rossi, M.
Been, E.
Nag, A.
Garcia-Fernandez, M.
Osada, M.
Shen, Z. X.
Huang, D. J.
Moritz, B.
Tseng, Y.
Hussain, Z.
Schmitt, T.
Devereaux, T. P.
Lu, H.
Li, D.
Hikita, Y.
Paris, E.
Chuang, Y.-D.
Hepting, M.
Feng, X.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-5824-8901
  surname: Hepting
  fullname: Hepting, M.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Max Planck Institute for Solid State Research
– sequence: 2
  givenname: D.
  orcidid: 0000-0001-6894-6765
  surname: Li
  fullname: Li, D.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 3
  givenname: C. J.
  orcidid: 0000-0001-7999-1932
  surname: Jia
  fullname: Jia, C. J.
  email: chunjing@stanford.edu
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 4
  givenname: H.
  surname: Lu
  fullname: Lu, H.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 5
  givenname: E.
  surname: Paris
  fullname: Paris, E.
  organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut
– sequence: 6
  givenname: Y.
  surname: Tseng
  fullname: Tseng, Y.
  organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut
– sequence: 7
  givenname: X.
  surname: Feng
  fullname: Feng, X.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 8
  givenname: M.
  surname: Osada
  fullname: Osada, M.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 9
  givenname: E.
  surname: Been
  fullname: Been, E.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 10
  givenname: Y.
  surname: Hikita
  fullname: Hikita, Y.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 11
  givenname: Y.-D.
  surname: Chuang
  fullname: Chuang, Y.-D.
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 12
  givenname: Z.
  surname: Hussain
  fullname: Hussain, Z.
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 13
  givenname: K. J.
  orcidid: 0000-0001-9293-0595
  surname: Zhou
  fullname: Zhou, K. J.
  organization: Diamond Light Source, Harwell Science and Innovation Campus
– sequence: 14
  givenname: A.
  surname: Nag
  fullname: Nag, A.
  organization: Diamond Light Source, Harwell Science and Innovation Campus
– sequence: 15
  givenname: M.
  surname: Garcia-Fernandez
  fullname: Garcia-Fernandez, M.
  organization: Diamond Light Source, Harwell Science and Innovation Campus
– sequence: 16
  givenname: M.
  orcidid: 0000-0002-4254-0713
  surname: Rossi
  fullname: Rossi, M.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 17
  givenname: H. Y.
  surname: Huang
  fullname: Huang, H. Y.
  organization: NSRRC, Hsinchu Science Park
– sequence: 18
  givenname: D. J.
  surname: Huang
  fullname: Huang, D. J.
  organization: NSRRC, Hsinchu Science Park
– sequence: 19
  givenname: Z. X.
  orcidid: 0000-0002-1454-0281
  surname: Shen
  fullname: Shen, Z. X.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University
– sequence: 20
  givenname: T.
  surname: Schmitt
  fullname: Schmitt, T.
  organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut
– sequence: 21
  givenname: H. Y.
  surname: Hwang
  fullname: Hwang, H. Y.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 22
  givenname: B.
  surname: Moritz
  fullname: Moritz, B.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 23
  givenname: J.
  surname: Zaanen
  fullname: Zaanen, J.
  organization: Instituut-Lorentz for theoretical Physics, Leiden University
– sequence: 24
  givenname: T. P.
  surname: Devereaux
  fullname: Devereaux, T. P.
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
– sequence: 25
  givenname: W. S.
  orcidid: 0000-0001-7677-0421
  surname: Lee
  fullname: Lee, W. S.
  email: leews@stanford.edu
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31959951$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1605376$$D View this record in Osti.gov
BookMark eNp9kUtv1TAQhS1URB_wA9igCDbdBPwcJ0tUFYpUqZtWYmf5OpPWJdcOtrNofz2-ygWkSq03tqzvzJyZc0wOQgxIyHtGPzMqui9ZMgWipaxvqepU-_iKHDGpoZUA9GD_ZozzQ3Kc8z2lnCkFb8ihYL3qe8WOyM_zCV1JMXjX5JIWV5aETRybcofNbBOG0ri4neMSht13XmZMLoahkj7cNj6MPviC7WQfMDW1zC-cbMH8lrwe7ZTx3f4-ITffzq_PLtrLq-8_zr5etk4JKO0GOo3auh5B9gMFvdGiZ6Ogzo4SEESnJAXqNFA-IIeObTgw7CwduGAKxQn5uNaNuXiTXfXi7qrBUMcyDKgSGip0ukJzir8XzMVsfXY4TTZgXLLhQgoqdQddRT89Qe_jkkIdwXCpVV07Z_JFqhJ9PaAr9WFPLZstDmZOfmvTg_m7_gqwFXAp5pxw_IcwanYRmzViUyM2u4jNY9XoJ5o6sy0-hpKsn15U8lWZa5dwi-m_6edFfwAJh7k0
CitedBy_id crossref_primary_10_1103_PhysRevX_10_021061
crossref_primary_10_1038_s41467_024_49533_1
crossref_primary_10_1103_PhysRevB_111_045133
crossref_primary_10_1017_S1431927622009758
crossref_primary_10_1038_s41563_023_01510_7
crossref_primary_10_1038_s41467_023_44616_x
crossref_primary_10_1016_j_cclet_2023_108485
crossref_primary_10_1088_1367_2630_ac465e
crossref_primary_10_3389_fphy_2022_846639
crossref_primary_10_1016_j_ceramint_2024_10_004
crossref_primary_10_1016_j_physc_2023_1354388
crossref_primary_10_1038_s41467_024_49940_4
crossref_primary_10_1002_qute_202200065
crossref_primary_10_1007_s11433_023_2329_x
crossref_primary_10_1038_s42005_021_00621_4
crossref_primary_10_1103_PhysRevB_103_195101
crossref_primary_10_1103_PhysRevMaterials_7_125001
crossref_primary_10_1088_1361_6668_abb11a
crossref_primary_10_3390_molecules28103999
crossref_primary_10_3389_fphy_2021_719534
crossref_primary_10_1063_5_0275212
crossref_primary_10_1038_s41563_022_01330_1
crossref_primary_10_1038_s41598_025_08013_2
crossref_primary_10_1002_adfm_202501893
crossref_primary_10_1002_smll_202304146
crossref_primary_10_1103_PhysRevLett_126_127401
crossref_primary_10_1038_s43586_024_00322_6
crossref_primary_10_1038_s42005_022_00993_1
crossref_primary_10_1103_tptb_8hb4
crossref_primary_10_1063_5_0097618
crossref_primary_10_1088_1361_648X_adb2d2
crossref_primary_10_1063_5_0141039
crossref_primary_10_1103_PhysRevResearch_4_043036
crossref_primary_10_1038_s41597_023_02079_1
crossref_primary_10_1364_PRJ_523591
crossref_primary_10_1038_s42005_023_01163_7
crossref_primary_10_1088_0256_307X_41_11_117404
crossref_primary_10_1088_0256_307X_41_7_077402
crossref_primary_10_1103_PhysRevMaterials_7_114803
crossref_primary_10_1146_annurev_conmatphys_032922_093307
crossref_primary_10_1088_2516_1075_ac5c6a
crossref_primary_10_1557_jmr_2020_261
crossref_primary_10_1103_PhysRevX_10_041002
crossref_primary_10_1209_0295_5075_ac2073
crossref_primary_10_3389_fphy_2022_836959
crossref_primary_10_1103_PhysRevResearch_2_013219
crossref_primary_10_1103_PhysRevResearch_2_013214
crossref_primary_10_1103_PhysRevB_103_L060504
crossref_primary_10_3389_fphy_2022_834658
crossref_primary_10_1016_j_ssc_2024_115434
crossref_primary_10_1002_advs_202302839
crossref_primary_10_1088_1361_648X_ada908
crossref_primary_10_1557_s43578_020_00070_9
crossref_primary_10_3389_fphy_2021_810220
crossref_primary_10_1038_s41586_023_05853_8
crossref_primary_10_1038_s43246_024_00729_4
crossref_primary_10_1002_adma_202415844
crossref_primary_10_1103_PhysRevResearch_2_043144
crossref_primary_10_1017_S1431927621004517
crossref_primary_10_3390_sym14030464
crossref_primary_10_1038_s41578_020_0186_0
crossref_primary_10_21468_SciPostPhysCodeb_51
crossref_primary_10_3389_fphy_2022_842578
crossref_primary_10_1002_adfm_202304187
crossref_primary_10_1103_PhysRevB_111_245121
crossref_primary_10_1063_5_0244086
crossref_primary_10_1088_0256_307X_38_7_077401
crossref_primary_10_1063_5_0064201
crossref_primary_10_1103_PhysRevB_105_085118
crossref_primary_10_1038_s41563_024_01797_0
crossref_primary_10_1103_bq5m_yw6f
crossref_primary_10_1038_s41563_021_01142_9
crossref_primary_10_7498_aps_74_20250171
crossref_primary_10_1038_s41586_023_06129_x
crossref_primary_10_1103_PhysRevB_111_165137
crossref_primary_10_1103_PhysRevLett_126_087001
crossref_primary_10_1016_j_matt_2022_01_020
crossref_primary_10_1038_s41467_024_54660_w
crossref_primary_10_3389_fphy_2022_834682
crossref_primary_10_1103_PhysRevResearch_3_L042015
crossref_primary_10_3390_ma17112546
crossref_primary_10_1038_s41586_024_07482_1
crossref_primary_10_1038_s41586_025_08893_4
crossref_primary_10_1088_1361_6633_adc330
crossref_primary_10_1103_PhysRevB_104_L220505
crossref_primary_10_7498_aps_74_20250856
crossref_primary_10_1103_PhysRevLett_126_206401
crossref_primary_10_1063_5_0174045
crossref_primary_10_1103_PhysRevB_104_035148
crossref_primary_10_1016_j_jssc_2021_122806
crossref_primary_10_1038_s42005_020_0347_x
crossref_primary_10_1103_PhysRevMaterials_9_044802
crossref_primary_10_1016_j_physb_2022_413860
crossref_primary_10_1088_1367_2630_add6cc
crossref_primary_10_1103_PhysRevB_107_165124
crossref_primary_10_1002_adts_202100235
crossref_primary_10_1007_s11433_020_1578_3
crossref_primary_10_1093_nsr_nwaa218
crossref_primary_10_1103_PhysRevB_111_165145
crossref_primary_10_1103_PhysRevResearch_7_L012066
crossref_primary_10_1103_PhysRevX_11_041009
crossref_primary_10_1088_0256_307X_41_8_087402
crossref_primary_10_1080_07315171_2023_2300596
crossref_primary_10_1103_PhysRevB_103_075123
crossref_primary_10_1038_s43246_024_00478_4
crossref_primary_10_1088_1674_1056_ac0bb1
crossref_primary_10_1103_PhysRevResearch_2_023112
crossref_primary_10_1557_s43579_025_00689_x
crossref_primary_10_1103_nhg9_l5l1
crossref_primary_10_1016_j_jpowsour_2025_237457
crossref_primary_10_1088_0256_307X_38_4_047401
crossref_primary_10_3389_fphy_2021_808683
crossref_primary_10_1038_s41563_023_01766_z
crossref_primary_10_1103_PhysRevB_103_115101
crossref_primary_10_1103_PhysRevB_111_075140
crossref_primary_10_1039_D4MH00134F
crossref_primary_10_1126_science_abd7726
crossref_primary_10_1093_nsr_nwad112
crossref_primary_10_1103_7lqb_pjkm
crossref_primary_10_1016_j_commatsci_2020_109853
crossref_primary_10_1038_s42005_023_01464_x
crossref_primary_10_1038_s41467_022_32065_x
crossref_primary_10_1103_PhysRevX_12_011055
crossref_primary_10_1038_s41586_022_05657_2
crossref_primary_10_1002_advs_202305252
crossref_primary_10_1103_PhysRevX_14_040501
crossref_primary_10_1103_PhysRevX_11_011050
crossref_primary_10_1140_epjb_e2020_10343_7
crossref_primary_10_1038_s41535_024_00659_x
crossref_primary_10_3389_fphy_2021_813483
crossref_primary_10_1209_0295_5075_accbe8
crossref_primary_10_1038_s42005_023_01213_0
crossref_primary_10_1088_0256_307X_42_4_047402
crossref_primary_10_1002_adma_202300617
crossref_primary_10_1088_1674_1056_ad6a0d
crossref_primary_10_1088_1361_648X_aba314
crossref_primary_10_1038_s42005_024_01642_5
crossref_primary_10_3389_fphy_2022_824144
crossref_primary_10_1002_aelm_202300116
crossref_primary_10_1103_PhysRevResearch_2_033445
crossref_primary_10_3389_fphy_2022_835942
crossref_primary_10_1103_PhysRevResearch_4_023093
crossref_primary_10_1038_s41467_022_28390_w
crossref_primary_10_1103_PhysRevB_111_045151
crossref_primary_10_3389_fphy_2021_813532
crossref_primary_10_1103_PhysRevX_15_021048
crossref_primary_10_1093_nsr_nwae194
crossref_primary_10_1038_s42005_025_01971_z
crossref_primary_10_1088_1674_1056_abf646
crossref_primary_10_1088_1742_6596_2622_1_012017
crossref_primary_10_1103_PhysRevB_103_085110
crossref_primary_10_1134_S1063776121040026
crossref_primary_10_1038_s41535_023_00568_5
crossref_primary_10_1088_1361_6633_ac5a60
crossref_primary_10_1103_PhysRevB_105_085150
crossref_primary_10_1063_5_0056328
crossref_primary_10_3389_fphy_2021_810394
crossref_primary_10_3389_fphy_2022_836784
crossref_primary_10_1073_pnas_2007683118
crossref_primary_10_1016_j_ceramint_2025_03_089
crossref_primary_10_1088_0256_307X_38_6_067401
crossref_primary_10_1103_PhysRevB_111_085117
crossref_primary_10_1103_PhysRevX_15_011012
crossref_primary_10_1038_s41467_023_41236_3
crossref_primary_10_1007_s11433_021_1871_x
crossref_primary_10_1093_pnasnexus_pgad108
crossref_primary_10_7498_aps_73_20240898
crossref_primary_10_1103_PhysRevB_106_115132
crossref_primary_10_1002_adma_202416187
crossref_primary_10_1016_j_jallcom_2021_160888
crossref_primary_10_1038_s41567_022_01660_6
crossref_primary_10_1038_s41567_022_01684_y
Cites_doi 10.1103/PhysRevLett.114.026801
10.1080/00107518708223691
10.1103/PhysRevB.71.035105
10.1038/320124a0
10.1016/j.physc.2013.09.007
10.1016/j.cpc.2014.05.003
10.1038/ncomms13017
10.1103/PhysRevLett.103.016401
10.1103/PhysRevLett.66.104
10.1103/PhysRevB.70.165109
10.1103/PhysRevLett.100.016404
10.1038/nphys4149
10.1103/PhysRevB.85.165113
10.1063/1.3078276
10.1103/PhysRevB.44.943
10.1016/j.jssc.2005.01.023
10.1103/PhysRevLett.55.418
10.1088/0953-8984/21/39/395502
10.1103/PhysRevB.59.7901
10.1103/PhysRevMaterials.1.021801
10.1103/PhysRevB.39.1541
10.1126/science.1202647
10.1038/nmat2958
10.1021/ja991573i
10.1103/RevModPhys.73.797
10.1016/0022-4596(90)90202-9
10.1038/ncomms4314
10.1038/d41586-019-02518-3
10.1103/PhysRevLett.62.221
10.1103/PhysRevB.77.165127
10.1103/RevModPhys.78.17
10.1038/s41586-019-1496-5
10.1146/annurev-matsci-070115-032057
10.1088/0959-5309/49/4S/308
10.7567/APEX.9.061101
10.1107/S0909049510019862
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
– name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
7X8
OIOZB
OTOTI
DOI 10.1038/s41563-019-0585-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Engineering Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1476-4660
EndPage 385
ExternalDocumentID 1605376
31959951
10_1038_s41563_019_0585_z
Genre Journal Article
GrantInformation_xml – fundername: Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515
GroupedDBID ---
0R~
29M
39C
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DU5
DWQXO
EBS
EE.
ESN
ESX
EXGXG
F5P
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HZ~
KB.
KC.
L6V
M1P
M2P
M7S
NNMJJ
O9-
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
ABAWZ
ABDBF
ACUHS
DB5
EJD
EMOBN
FEDTE
HVGLF
I-F
MK~
NFIDA
NPM
ODYON
RIG
SV3
~8M
3V.
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c536t-b687e7ac9e649d067b7391f30caf46e63854060c7602de2681b261e8a0d2315e3
IEDL.DBID BENPR
ISICitedReferencesCount 291
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508325000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Mon Jul 10 02:30:43 EDT 2023
Thu Sep 04 20:08:16 EDT 2025
Mon Oct 06 17:15:35 EDT 2025
Mon Oct 06 17:01:02 EDT 2025
Thu Apr 03 07:05:23 EDT 2025
Sat Nov 29 03:30:31 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 21 02:40:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-b687e7ac9e649d067b7391f30caf46e63854060c7602de2681b261e8a0d2315e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Gordon and Betty Moore Foundation
Swiss National Science Foundation (SNF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515; GBMF4415; 51NF40_141828; CRSII2_160765/1; AC02-05CH11231
ORCID 0000-0002-5824-8901
0000-0001-7677-0421
0000-0001-6894-6765
0000-0002-4254-0713
0000-0002-1454-0281
0000-0001-9293-0595
0000-0001-7999-1932
0000000214540281
0000000176770421
0000000168946765
0000000179991932
0000000258248901
0000000192930595
0000000242540713
OpenAccessLink https://www.osti.gov/servlets/purl/1605376
PMID 31959951
PQID 2382999967
PQPubID 27576
PageCount 5
ParticipantIDs osti_scitechconnect_1605376
proquest_miscellaneous_2343047868
proquest_journals_2475038214
proquest_journals_2382999967
pubmed_primary_31959951
crossref_primary_10_1038_s41563_019_0585_z
crossref_citationtrail_10_1038_s41563_019_0585_z
springer_journals_10_1038_s41563_019_0585_z
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Springer Nature - Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Springer Nature - Nature Publishing Group
References Hayward, Green, Rosseinsky, Sloan (CR19) 1999; 121
Mostofi (CR37) 2014; 185
Chaloupka, Khaliullin (CR4) 2008; 100
Kurmaev (CR23) 2008; 77
Cococcioni, de Gironcoli (CR33) 2005; 71
Zaanen, Sawatzky (CR25) 1990; 88
Kawai (CR30) 2009; 94
Jia (CR35) 2014; 5
Bisogni (CR24) 2016; 7
Chen (CR26) 1991; 66
Strocov (CR32) 2010; 17
Anisimov, Zaanen, Anderson (CR28) 1991; 44
Jia, Wohlfeld, Wang, Moritz, Devereaux (CR36) 2016; 6
Li (CR11) 2019; 572
Benckiser (CR8) 2011; 10
Zaanen, Sawatzky, Allen (CR21) 1985; 55
Middey (CR6) 2016; 46
Giannozzi (CR34) 2009; 21
Fisk, Ott, Rice, Smith (CR13) 1986; 320
Ikeda, Krockenberger, Irie, Naito, Yamamoto (CR20) 2016; 9
Lee, Nagaosa, Wen (CR17) 2006; 78
Kuiper, Kruizinga, Ghijsen, Sawatzky (CR22) 1989; 62
Sawatzky (CR12) 2019; 572
Stewart (CR15) 2001; 73
Crespin, Isnard, F. Dubois, Choisnet, Odier (CR18) 2005; 178
Anisimov, Bukhvalov, Rice (CR1) 1999; 59
Boris (CR7) 2011; 332
Mott, Peierls (CR16) 1937; 49
Botana, Pardo, Norman (CR3) 2017; 1
Disa (CR9) 2015; 114
Hansmann (CR5) 2009; 103
Zhang (CR10) 2017; 13
Grioni (CR27) 1989; 39
Haverkort, Zwierzycki, Andersen (CR29) 2012; 85
Ikeda, Manabe, Naito (CR31) 2013; 495
Lee, Pickett (CR2) 2004; 70
Coles (CR14) 1987; 28
VI Anisimov (585_CR1) 1999; 59
GA Sawatzky (585_CR12) 2019; 572
J Zaanen (585_CR25) 1990; 88
E Benckiser (585_CR8) 2011; 10
J Zaanen (585_CR21) 1985; 55
MO Crespin (585_CR18) 2005; 178
P Kuiper (585_CR22) 1989; 62
EZ Kurmaev (585_CR23) 2008; 77
VN Strocov (585_CR32) 2010; 17
MW Haverkort (585_CR29) 2012; 85
Z Fisk (585_CR13) 1986; 320
M Cococcioni (585_CR33) 2005; 71
AA Mostofi (585_CR37) 2014; 185
S Middey (585_CR6) 2016; 46
NF Mott (585_CR16) 1937; 49
MA Hayward (585_CR19) 1999; 121
V Bisogni (585_CR24) 2016; 7
A Ikeda (585_CR20) 2016; 9
D Li (585_CR11) 2019; 572
BR Coles (585_CR14) 1987; 28
CT Chen (585_CR26) 1991; 66
K-W Lee (585_CR2) 2004; 70
M Kawai (585_CR30) 2009; 94
VI Anisimov (585_CR28) 1991; 44
CJ Jia (585_CR35) 2014; 5
PA Lee (585_CR17) 2006; 78
AS Botana (585_CR3) 2017; 1
AV Boris (585_CR7) 2011; 332
J Zhang (585_CR10) 2017; 13
J Chaloupka (585_CR4) 2008; 100
P Hansmann (585_CR5) 2009; 103
C Jia (585_CR36) 2016; 6
GR Stewart (585_CR15) 2001; 73
M Grioni (585_CR27) 1989; 39
A Ikeda (585_CR31) 2013; 495
AS Disa (585_CR9) 2015; 114
P Giannozzi (585_CR34) 2009; 21
32661388 - Nat Mater. 2020 Sep;19(9):1036
References_xml – volume: 114
  start-page: 026801
  year: 2015
  ident: CR9
  article-title: Orbital engineering in symmetry-breaking polar heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.026801
– volume: 28
  start-page: 143
  year: 1987
  end-page: 157
  ident: CR14
  article-title: Heavy-fermion intermetallic compounds
  publication-title: Contemp. Phys.
  doi: 10.1080/00107518708223691
– volume: 71
  start-page: 035105
  year: 2005
  ident: CR33
  article-title: Linear response approach to the calculation of the effective interaction parameters in the LDA +  method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.035105
– volume: 320
  start-page: 124
  year: 1986
  end-page: 129
  ident: CR13
  article-title: Heavy-electron metals
  publication-title: Nature
  doi: 10.1038/320124a0
– volume: 495
  start-page: 134
  year: 2013
  end-page: 140
  ident: CR31
  article-title: Improved conductivity of infinite-layer LaNiO thin films by metal organic decomposition
  publication-title: Phys. C
  doi: 10.1016/j.physc.2013.09.007
– volume: 185
  start-page: 2309
  year: 2014
  end-page: 2310
  ident: CR37
  article-title: An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.05.003
– volume: 7
  year: 2016
  ident: CR24
  article-title: Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13017
– volume: 103
  start-page: 016401
  year: 2009
  ident: CR5
  article-title: Turning a nickelate Fermi surface into a cuprate-like one through heterostructuring
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.016401
– volume: 6
  start-page: 021020
  year: 2016
  ident: CR36
  article-title: Using RIXS to uncover elementary charge and spin excitations
  publication-title: Phys. Rev. X
– volume: 66
  start-page: 104
  year: 1991
  ident: CR26
  article-title: Electronic states in La Sr CuO probed by soft-X-ray absorption
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.104
– volume: 70
  start-page: 165109
  year: 2004
  ident: CR2
  article-title: Infinite-layer LaNiO : Ni is not Cu
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.165109
– volume: 100
  start-page: 016404
  year: 2008
  ident: CR4
  article-title: Orbital order and possible superconductivity in LaNiO /LaMO superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.016404
– volume: 13
  start-page: 864
  year: 2017
  end-page: 869
  ident: CR10
  article-title: Large orbital polarization in a metallic square-planar nickelate
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4149
– volume: 85
  start-page: 165113
  year: 2012
  ident: CR29
  article-title: Multiplet ligand-field theory using Wannier orbitals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165113
– volume: 94
  start-page: 082102
  year: 2009
  ident: CR30
  article-title: Reversible changes of epitaxial thin films from perovskite LaNiO to infinite-layer structure LaNiO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3078276
– volume: 44
  start-page: 943
  year: 1991
  ident: CR28
  article-title: Band theory and Mott insulators: Hubbard instead of Stoner
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.943
– volume: 178
  start-page: 1326
  year: 2005
  end-page: 1334
  ident: CR18
  article-title: LaNiO : synthesis and structural characterization
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.01.023
– volume: 55
  start-page: 418
  year: 1985
  ident: CR21
  article-title: Band gaps and electronic structure of transition-metal compounds
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.418
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR34
  article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 59
  start-page: 7901
  year: 1999
  end-page: 7906
  ident: CR1
  article-title: Electronic structure of possible nickelate analogs to the cuprates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7901
– volume: 1
  start-page: 021801(R)
  year: 2017
  ident: CR3
  article-title: Electron doped layered nickelates: spanning the phase diagram of the cuprates
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.021801
– volume: 39
  start-page: 1541
  year: 1989
  ident: CR27
  article-title: Studies of copper valence states with Cu X-ray-absorption spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1541
– volume: 332
  start-page: 937
  year: 2011
  end-page: 940
  ident: CR7
  article-title: Dimensionality control of electronic phase transitions in nickel-oxide superlattices
  publication-title: Science
  doi: 10.1126/science.1202647
– volume: 10
  start-page: 189
  year: 2011
  end-page: 193
  ident: CR8
  article-title: Orbital reflectometry of oxide heterostructures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2958
– volume: 121
  start-page: 8843
  year: 1999
  end-page: 8854
  ident: CR19
  article-title: Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(i) oxide LaNiO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991573i
– volume: 73
  start-page: 797
  year: 2001
  end-page: 855
  ident: CR15
  article-title: Non-Fermi-liquid behavior in - and -electron metals
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.797
– volume: 88
  start-page: 8
  year: 1990
  end-page: 27
  ident: CR25
  article-title: Systematics in band gaps and optical spectra of 3D transition metal compounds
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(90)90202-9
– volume: 5
  year: 2014
  ident: CR35
  article-title: Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4314
– volume: 572
  start-page: 592
  year: 2019
  end-page: 593
  ident: CR12
  article-title: Superconductivity seen in a nickel oxide
  publication-title: Nature
  doi: 10.1038/d41586-019-02518-3
– volume: 62
  start-page: 221
  year: 1989
  ident: CR22
  article-title: Character of holes in Li Ni O and their magnetic behavior
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.221
– volume: 77
  start-page: 165127
  year: 2008
  ident: CR23
  article-title: Oxygen X-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.165127
– volume: 78
  start-page: 17
  year: 2006
  end-page: 85
  ident: CR17
  article-title: Doping a Mott insulator: physics of high-temperature superconductivity
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.17
– volume: 572
  start-page: 624
  year: 2019
  end-page: 627
  ident: CR11
  article-title: Superconductivity in an infinite-layer nickelate
  publication-title: Nature
  doi: 10.1038/s41586-019-1496-5
– volume: 46
  start-page: 305
  year: 2016
  end-page: 334
  ident: CR6
  article-title: Physics of ultrathin films and heterostructures of rare-earth nickelates
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032057
– volume: 49
  start-page: 72
  year: 1937
  end-page: 73
  ident: CR16
  article-title: Discussion of the paper by de Boerand Verwey
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/49/4S/308
– volume: 9
  start-page: 061101
  year: 2016
  ident: CR20
  article-title: Direct observation of infinite NiO planes in LaNiO films
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.061101
– volume: 17
  start-page: 631
  year: 2010
  end-page: 643
  ident: CR32
  article-title: High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049510019862
– volume: 13
  start-page: 864
  year: 2017
  ident: 585_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4149
– volume: 121
  start-page: 8843
  year: 1999
  ident: 585_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991573i
– volume: 572
  start-page: 592
  year: 2019
  ident: 585_CR12
  publication-title: Nature
  doi: 10.1038/d41586-019-02518-3
– volume: 49
  start-page: 72
  year: 1937
  ident: 585_CR16
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/49/4S/308
– volume: 70
  start-page: 165109
  year: 2004
  ident: 585_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.165109
– volume: 320
  start-page: 124
  year: 1986
  ident: 585_CR13
  publication-title: Nature
  doi: 10.1038/320124a0
– volume: 88
  start-page: 8
  year: 1990
  ident: 585_CR25
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(90)90202-9
– volume: 10
  start-page: 189
  year: 2011
  ident: 585_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2958
– volume: 572
  start-page: 624
  year: 2019
  ident: 585_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-1496-5
– volume: 178
  start-page: 1326
  year: 2005
  ident: 585_CR18
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.01.023
– volume: 62
  start-page: 221
  year: 1989
  ident: 585_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.221
– volume: 5
  year: 2014
  ident: 585_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4314
– volume: 1
  start-page: 021801(R)
  year: 2017
  ident: 585_CR3
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.021801
– volume: 103
  start-page: 016401
  year: 2009
  ident: 585_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.016401
– volume: 77
  start-page: 165127
  year: 2008
  ident: 585_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.165127
– volume: 71
  start-page: 035105
  year: 2005
  ident: 585_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.035105
– volume: 17
  start-page: 631
  year: 2010
  ident: 585_CR32
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049510019862
– volume: 21
  start-page: 395502
  year: 2009
  ident: 585_CR34
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 85
  start-page: 165113
  year: 2012
  ident: 585_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165113
– volume: 495
  start-page: 134
  year: 2013
  ident: 585_CR31
  publication-title: Phys. C
  doi: 10.1016/j.physc.2013.09.007
– volume: 73
  start-page: 797
  year: 2001
  ident: 585_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.797
– volume: 78
  start-page: 17
  year: 2006
  ident: 585_CR17
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.17
– volume: 55
  start-page: 418
  year: 1985
  ident: 585_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.418
– volume: 39
  start-page: 1541
  year: 1989
  ident: 585_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1541
– volume: 46
  start-page: 305
  year: 2016
  ident: 585_CR6
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032057
– volume: 185
  start-page: 2309
  year: 2014
  ident: 585_CR37
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.05.003
– volume: 7
  year: 2016
  ident: 585_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13017
– volume: 332
  start-page: 937
  year: 2011
  ident: 585_CR7
  publication-title: Science
  doi: 10.1126/science.1202647
– volume: 100
  start-page: 016404
  year: 2008
  ident: 585_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.016404
– volume: 9
  start-page: 061101
  year: 2016
  ident: 585_CR20
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.061101
– volume: 44
  start-page: 943
  year: 1991
  ident: 585_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.943
– volume: 114
  start-page: 026801
  year: 2015
  ident: 585_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.026801
– volume: 66
  start-page: 104
  year: 1991
  ident: 585_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.104
– volume: 59
  start-page: 7901
  year: 1999
  ident: 585_CR1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7901
– volume: 28
  start-page: 143
  year: 1987
  ident: 585_CR14
  publication-title: Contemp. Phys.
  doi: 10.1080/00107518708223691
– volume: 6
  start-page: 021020
  year: 2016
  ident: 585_CR36
  publication-title: Phys. Rev. X
– volume: 94
  start-page: 082102
  year: 2009
  ident: 585_CR30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3078276
– reference: 32661388 - Nat Mater. 2020 Sep;19(9):1036
SSID ssj0021556
Score 2.7113278
Snippet The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent...
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors . The recent discovery of...
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1–10. The recent discovery...
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms 639/301
639/766
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Copper compounds
Cuprates
Density functional theory
Earth
Electronic properties
Electronic structure
Electrons
Fermions
High temperature
High temperature superconductors
Letter
Materials Science
Nanotechnology
Nickel
Optical and Electronic Materials
Physics
Rare earth elements
Spectrum analysis
Superconductivity
X-ray spectroscopy
Title Electronic structure of the parent compound of superconducting infinite-layer nickelates
URI https://link.springer.com/article/10.1038/s41563-019-0585-z
https://www.ncbi.nlm.nih.gov/pubmed/31959951
https://www.proquest.com/docview/2382999967
https://www.proquest.com/docview/2475038214
https://www.proquest.com/docview/2343047868
https://www.osti.gov/servlets/purl/1605376
Volume 19
WOSCitedRecordID wos000508325000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (Proquest)
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7B0kM59A1NociVemrlkjhe2zlVBS1CQqxW0Ep7sxLHkRAo2W52e-DXdyYvWpVy4WJpk42VZGY833gm3wB8jIQSHj0J9yJXXGYYsBolNU-1S40cO-2zrGk2oadTM58ns27Dre7KKvs1sVmo88rRHvkhuhZcORGd66-Ln5y6RlF2tWuhsQlbxFQmR7B1NJnOLoaQC71l-32RVhyRhejzmrE5rCl0oVqihIeImfntX55pVKGF3Yc6_8mYNo7o5PljH-EFPOsgKPvW6sxL2PDlK9j-g5jwNcwnQ3cc1jLMrpeeVQVDuMioZr1cMSpGp55MdLheL_wSI2sij8UJGKrtFYFZfpMipGc4zTUV3fn6Dfw4mXw_PuVdDwbuxrFa8UwZ7XXqEq9kkqNry3ScREUcurSQyqP1IuRTodMqFLkXClEwxmTepGGOyHHs4x0YlVXp3wIrCsQmBuFK7jI5Nqmhz4Kj2BmfmzCTKoCwf__WdQTl1CfjxjaJ8tjYVmQWRWZJZPY2gE_DJYuWneOhP--RUC1CC-LHdVRI5FY2Ug2lTQD7vdBsZ8a1vZPY_aclZYGNiGQAH4bTaJ-UdElLX61pCkmZTaNMALutCg23GhOzD0LcAD73OnU3-X-f493Dd7oHTwXtCTTVRfswQiXx7-GJ-7W6qpcHsKnnuhnNQWcs-Ovs6AuO52JGo778DcH_Ggs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQk4QHmHPjASvYCsJo7Xdg4IoT7Uqu2qhyLtzU0cR6qokmWzC6I_it_ITLJJQZTeeug1j1Ee38x84xnPALyLhBIePQn3IldcZhiwGiU1T7VLjRw67bOsGTahRyMzHifHS_Cr2wtDZZWdTWwMdV45WiPfRNeClhPZuf40-cZpahRlV7sRGi0sDvzPHxiy1R_3t_H_bgixu3OytccXUwW4G8ZqxjNltNepS7ySSY7GOtNxEhVx6NJCKo94RBKjQqdVKHIvFPI6jDK8ScMcudDQxyj3DtyVGAmRXh2J4z7AQ9_c7mbSiiOPEV0WNTabNQVKVLmU8BAZOr_4yw8OKtTnqzjuP_nZxu3tPr5tH2wZHi0INvvcasQTWPLlU3j4R9vFZzDe6Wf_sLZ_7nzqWVUwJMOMKvLLGaNSe5o4RYfr-cRPXVVSa1wUwFApz4iq8_MUAxaGYr5SSaGvn8OXG3m1FzAoq9K_AlYUyLwMkrHcZXJoUkObnqPYGZ-bMJMqgLD739Yt2q_TFJBz25QBxMa2ELEIEUsQsRcBvO9vmbS9R667eIVAZJE4UfdfR2VSbmYj1TTsCWC1A4ldGKnaXiLk6tOSctxGRDKAt_1ptD6UUkpLX81JhKS8rVEmgJctZPtHjalvERL4AD50GL4U_t_3eH39k76B-3snR4f2cH90sAIPBK1-NHVUqzBAwPg1uOe-z87q6XqjmgxObxravwFyZG6T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VBSE48E0JLWAkuFBZmzhe2zkghGhXVEWrSoC0N5M4jlRRJdvNLoj-NH4dM_kqiNJbD1yT7CjZPM-8yTzPALyIhBIeIwn3IldcZpiwGiU1T7VLjZw47bOsGTahZzMznyeHG_Cz3wtDssreJzaOOq8cfSMfY2hBz4nsXI-LThZxuDt9szjhNEGKKq39OI0WIgf-x3dM3-rX-7v4rl8KMd379O497yYMcDeJ1YpnymivU5d4JZMcHXem4yQq4tClhVQesYmERoVOq1DkXijkeJhxeJOGOfKiiY_R7hW4qiXyhEY2-HFI9jBOtzubtOLIaURfUY3NuKakiVRMCQ-RrfPTP2LiqMK1fR7f_atW24TA6e3_-c-7A7c64s3etivlLmz48h7c_K0d432Y7w0zgVjbV3e99KwqGJJkRkr9csVIgk-TqOhwvV74patKapmLBhgu1iOi8Pw4xUSGoZmvJDX09QP4fCmP9hBGZVX6R8CKAhmZQZKWu0xOTGpoM3QUO-NzE2ZSBRD27966ri07TQc5to08IDa2hYtFuFiCiz0N4NXwk0Xbk-Sii7cIUBYJFXUFdiSfcisbqaaRTwDbPWBs57xqe4aW809Lqn0bEckAng-n0StRqSktfbUmE5LquUaZADZb-A63GlM_IyT2Aez0eD4z_s_neHzxnT6D64ho-2F_drAFNwR9FGnkVdswQrz4J3DNfVsd1cunzSpl8OWykf0LDrt3Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+of+the+parent+compound+of+superconducting+infinite-layer+nickelates&rft.jtitle=Nature+materials&rft.au=Hepting%2C+M&rft.au=Li%2C+D&rft.au=Jia%2C+C+J&rft.au=Lu%2C+H&rft.date=2020-04-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=19&rft.issue=4&rft.spage=381&rft_id=info:doi/10.1038%2Fs41563-019-0585-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon