Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS

The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of chemical physics Ročník 153; číslo 13; s. 134110
Hlavní autori: Páll, Szilárd, Zhmurov, Artem, Bauer, Paul, Abraham, Mark, Lundborg, Magnus, Gray, Alan, Hess, Berk, Lindahl, Erik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 07.10.2020
ISSN:1089-7690, 1089-7690
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.
AbstractList The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.
Author Páll, Szilárd
Abraham, Mark
Bauer, Paul
Zhmurov, Artem
Gray, Alan
Lundborg, Magnus
Hess, Berk
Lindahl, Erik
Author_xml – sequence: 1
  givenname: Szilárd
  surname: Páll
  fullname: Páll, Szilárd
– sequence: 2
  givenname: Artem
  surname: Zhmurov
  fullname: Zhmurov, Artem
– sequence: 3
  givenname: Paul
  surname: Bauer
  fullname: Bauer, Paul
– sequence: 4
  givenname: Mark
  surname: Abraham
  fullname: Abraham, Mark
– sequence: 5
  givenname: Magnus
  surname: Lundborg
  fullname: Lundborg, Magnus
– sequence: 6
  givenname: Alan
  surname: Gray
  fullname: Gray, Alan
– sequence: 7
  givenname: Berk
  surname: Hess
  fullname: Hess, Berk
– sequence: 8
  givenname: Erik
  surname: Lindahl
  fullname: Lindahl, Erik
BookMark eNpNjz1PwzAYhC1UJNrCwD_wyJJiO7Edj1UFLVJRJT4mhuqN_QYFOXaJkwF-fQNlYLrT6dHpbkYmIQYk5JqzBWcqv5ULxngpuTojU85Kk2ll2OSfvyCzlD7YSGlRTMnbBnvs4jsGjEOiB-jAe_TNN_RNDBSCo2AteuxOQaxpGz3awUNH3VeAtrGJpqYdgx8g0SbQ9dPucbl6viTnNfiEV386J6_3dy-rTbbdrR9Wy21mZa76rJJaSFRWc1dJyZ2uQDFZCF05I7hjapxuOdMAtrZFgUpW1kjOhc6hrB0Tc3Jz6j108XPA1O_bJo2bPfye2ouiMEZxZYQ4Aj3VV6w
CitedBy_id crossref_primary_10_3389_fmolb_2025_1654434
crossref_primary_10_1016_j_brainresbull_2025_111266
crossref_primary_10_1002_chem_202500623
crossref_primary_10_3389_fvets_2024_1431233
crossref_primary_10_1002_ddr_70096
crossref_primary_10_1080_08927022_2024_2331237
crossref_primary_10_1016_j_fsirep_2023_100120
crossref_primary_10_1016_j_desal_2025_118979
crossref_primary_10_1080_07391102_2025_2543373
crossref_primary_10_1371_journal_pcbi_1013367
crossref_primary_10_1002_jcc_27229
crossref_primary_10_1186_s13036_023_00378_0
crossref_primary_10_1093_hmg_ddae159
crossref_primary_10_1134_S0036024423050035
crossref_primary_10_3389_fphar_2023_1208740
crossref_primary_10_3390_molecules27217276
crossref_primary_10_1016_j_jep_2024_118333
crossref_primary_10_1038_s41598_025_10927_w
crossref_primary_10_1016_j_chemphyslip_2025_105497
crossref_primary_10_3390_polym15122680
crossref_primary_10_1039_D5SC03855C
crossref_primary_10_1038_s41467_025_62855_y
crossref_primary_10_1016_j_virusres_2025_199562
crossref_primary_10_3390_molecules28196912
crossref_primary_10_1146_annurev_fluid_032822_025933
crossref_primary_10_1039_D5CP01726B
crossref_primary_10_1016_j_celrep_2023_112926
crossref_primary_10_1016_j_ejmech_2025_118151
crossref_primary_10_1039_D4RA08205B
crossref_primary_10_1002_wcms_70041
crossref_primary_10_1016_j_csbj_2025_07_027
crossref_primary_10_4103_NRR_NRR_D_23_00875
crossref_primary_10_1002_admi_202400525
crossref_primary_10_7554_eLife_90820
crossref_primary_10_1016_j_ijbiomac_2024_137119
crossref_primary_10_1038_s41467_023_38681_5
crossref_primary_10_1080_00268976_2023_2297819
crossref_primary_10_1016_j_mtcomm_2025_113834
crossref_primary_10_1016_j_ejmech_2023_115129
crossref_primary_10_1016_j_procbio_2023_11_002
crossref_primary_10_3390_membranes13070629
crossref_primary_10_1063_5_0210919
crossref_primary_10_1007_s00436_022_07650_0
crossref_primary_10_1186_s12964_024_01969_0
crossref_primary_10_1016_j_lwt_2025_117716
crossref_primary_10_1126_sciadv_adp7171
crossref_primary_10_1016_j_carbpol_2025_123600
crossref_primary_10_1038_s41598_024_79503_y
crossref_primary_10_1016_j_bpj_2025_07_012
crossref_primary_10_1126_sciadv_adv9568
crossref_primary_10_1109_TC_2024_3375613
crossref_primary_10_3390_idr15030031
crossref_primary_10_1021_acs_langmuir_5c01813
crossref_primary_10_1080_07391102_2023_2266502
crossref_primary_10_1016_j_nexres_2025_100221
crossref_primary_10_1016_j_compositesb_2022_109712
crossref_primary_10_3390_biom14030350
crossref_primary_10_1016_j_cels_2024_03_002
crossref_primary_10_7554_eLife_95453_3
crossref_primary_10_1002_jcc_27026
crossref_primary_10_1038_s42003_023_04412_1
crossref_primary_10_1016_j_bbrc_2025_152216
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1002_cbdv_202500777
crossref_primary_10_3390_metabo14110575
crossref_primary_10_1039_D2SC06471E
crossref_primary_10_1016_j_molcel_2023_07_030
crossref_primary_10_3390_ijms232113082
crossref_primary_10_1016_j_memsci_2025_124367
crossref_primary_10_3389_fmolb_2022_1037445
crossref_primary_10_55959_MSU0137_0952_16_80_2_4
crossref_primary_10_1038_s41598_025_06000_1
crossref_primary_10_1080_10408398_2023_2238054
crossref_primary_10_1093_protein_gzae003
crossref_primary_10_1186_s12931_022_02271_8
crossref_primary_10_1371_journal_pcbi_1011255
crossref_primary_10_1080_07391102_2024_2321246
crossref_primary_10_1016_j_cpc_2024_109112
crossref_primary_10_1007_s11426_024_2664_3
crossref_primary_10_1016_j_ijbiomac_2024_129810
crossref_primary_10_3389_fphar_2024_1435254
crossref_primary_10_1007_s11030_022_10491_9
crossref_primary_10_1038_s41594_024_01470_9
crossref_primary_10_1021_acscatal_5c00526
crossref_primary_10_1016_j_bpj_2025_08_021
crossref_primary_10_1016_j_jmgm_2025_109059
crossref_primary_10_1016_j_biomaterials_2024_122907
crossref_primary_10_1016_j_theriogenology_2025_02_022
crossref_primary_10_1038_s41598_025_92805_z
crossref_primary_10_1016_j_bmc_2025_118292
crossref_primary_10_1039_D4SM00493K
crossref_primary_10_1186_s13568_022_01489_5
crossref_primary_10_1002_slct_202400353
crossref_primary_10_1007_s11227_025_07063_7
crossref_primary_10_1016_j_polymer_2024_126855
crossref_primary_10_1038_s41524_024_01259_w
crossref_primary_10_1063_4_0000765
crossref_primary_10_7554_eLife_90851
crossref_primary_10_1016_j_foodhyd_2025_111189
crossref_primary_10_1016_j_envpol_2024_123549
crossref_primary_10_1016_j_enzmictec_2024_110532
crossref_primary_10_1038_s41598_024_71634_6
crossref_primary_10_1016_j_ijbiomac_2025_144014
crossref_primary_10_1128_aem_00827_24
crossref_primary_10_1038_s41467_024_48775_3
crossref_primary_10_1016_j_jmb_2025_169129
crossref_primary_10_1007_s10570_023_05352_z
crossref_primary_10_1002_prot_26855
crossref_primary_10_1038_s41467_023_40233_w
crossref_primary_10_1016_j_saa_2025_126039
crossref_primary_10_1038_s41467_025_55995_8
crossref_primary_10_1016_j_jhazmat_2024_134020
crossref_primary_10_1002_cbdv_202402991
crossref_primary_10_1002_jcc_70126
crossref_primary_10_1002_adma_202508666
crossref_primary_10_1016_j_seppur_2024_130864
crossref_primary_10_1007_s12032_025_02896_x
crossref_primary_10_1002_cbdv_202401548
crossref_primary_10_1038_s44318_024_00165_7
crossref_primary_10_7555_JBR_35_20210111
crossref_primary_10_1002_prot_26749
crossref_primary_10_1038_s41467_025_58719_0
crossref_primary_10_1021_acs_jcim_5c01475
crossref_primary_10_1021_acs_jpcb_5c04464
crossref_primary_10_1016_j_cplett_2024_141145
crossref_primary_10_1021_acs_jcim_4c02375
crossref_primary_10_1016_j_molliq_2025_127397
crossref_primary_10_3390_foods14142422
crossref_primary_10_1007_s12274_024_6841_9
crossref_primary_10_1016_j_chroma_2023_463921
crossref_primary_10_1080_07391102_2021_2016488
crossref_primary_10_1080_07391102_2022_2097312
crossref_primary_10_1038_s42004_025_01647_3
crossref_primary_10_1016_j_sbi_2025_103082
crossref_primary_10_1021_acsnano_4c16059
crossref_primary_10_3390_gels11070521
crossref_primary_10_1016_j_compbiomed_2024_109136
crossref_primary_10_1371_journal_pcbi_1012341
crossref_primary_10_1038_s42004_023_00962_x
crossref_primary_10_1002_pca_3235
crossref_primary_10_1007_s11030_024_10893_x
crossref_primary_10_1038_s41467_024_49000_x
crossref_primary_10_1089_rej_2024_0092
crossref_primary_10_1016_j_foodres_2024_114653
crossref_primary_10_1021_acs_langmuir_5c02878
crossref_primary_10_1007_s12033_024_01200_y
crossref_primary_10_1016_j_molstruc_2024_139583
crossref_primary_10_1007_s11227_025_07069_1
crossref_primary_10_3390_ijms241411671
crossref_primary_10_1002_smll_202406757
crossref_primary_10_1016_j_fochms_2025_100244
crossref_primary_10_1016_j_jmgm_2023_108624
crossref_primary_10_3390_molecules29174236
crossref_primary_10_5812_gct_112646
crossref_primary_10_1016_j_cell_2025_04_039
crossref_primary_10_1063_5_0211053
crossref_primary_10_1016_j_chphi_2023_100455
crossref_primary_10_1093_nar_gkad991
crossref_primary_10_1002_mlf2_12150
crossref_primary_10_1021_acs_chemmater_5c01589
crossref_primary_10_2174_0109298673334173241003060139
crossref_primary_10_1021_jacs_3c12502
crossref_primary_10_1093_pcp_pcae147
crossref_primary_10_1016_j_jmgm_2022_108267
crossref_primary_10_1016_j_csbj_2024_10_031
crossref_primary_10_1016_j_ijbiomac_2024_136643
crossref_primary_10_1002_wcms_1622
crossref_primary_10_1002_anie_202400599
crossref_primary_10_3389_fphar_2025_1555062
crossref_primary_10_1016_j_colsurfb_2023_113440
crossref_primary_10_1080_07391102_2024_2438357
crossref_primary_10_1109_ACCESS_2025_3587457
crossref_primary_10_1016_j_bbrc_2025_151991
crossref_primary_10_1088_1674_1056_ad1a92
crossref_primary_10_1016_j_jece_2022_108789
crossref_primary_10_1016_j_biochi_2025_03_008
crossref_primary_10_1007_s42535_022_00525_w
crossref_primary_10_1016_j_jmgm_2023_108527
crossref_primary_10_1038_s41380_021_01250_7
crossref_primary_10_1038_s41467_025_58641_5
crossref_primary_10_1007_s00894_025_06379_8
crossref_primary_10_1371_journal_pcbi_1011415
crossref_primary_10_1016_j_foodchem_2024_141819
crossref_primary_10_1038_s41467_021_23254_1
crossref_primary_10_3390_ijms24108783
crossref_primary_10_1016_j_molliq_2023_123573
crossref_primary_10_1002_biot_202400280
crossref_primary_10_1016_j_bioorg_2024_107944
crossref_primary_10_1016_j_fbio_2025_107005
crossref_primary_10_3389_fmicb_2024_1357470
crossref_primary_10_1016_j_bbamem_2022_183994
crossref_primary_10_3389_fphar_2023_1208968
crossref_primary_10_1111_1751_7915_70096
crossref_primary_10_1016_j_ejphar_2025_177773
crossref_primary_10_1038_s41392_023_01625_y
crossref_primary_10_1002_ange_202514744
crossref_primary_10_1007_s10570_022_04863_5
crossref_primary_10_3390_ph16050737
crossref_primary_10_3390_colloids8040041
crossref_primary_10_1016_j_ijbiomac_2025_141387
crossref_primary_10_1073_pnas_2405732121
crossref_primary_10_1038_s41594_025_01495_8
crossref_primary_10_1038_s41598_025_96976_7
crossref_primary_10_1016_j_chemolab_2024_105145
crossref_primary_10_1007_s13246_025_01548_8
crossref_primary_10_1073_pnas_2208081119
crossref_primary_10_3390_v14122813
crossref_primary_10_1007_s42514_023_00169_5
crossref_primary_10_1002_ardp_202400671
crossref_primary_10_1007_s10238_025_01809_6
crossref_primary_10_1007_s10930_023_10141_5
crossref_primary_10_1021_acs_jmedchem_5c00282
crossref_primary_10_1016_j_fbio_2025_106977
crossref_primary_10_1016_j_bej_2024_109372
crossref_primary_10_1007_s12013_024_01375_w
crossref_primary_10_1016_j_ijbiomac_2024_133205
crossref_primary_10_2174_0113816128349577240927071706
crossref_primary_10_1002_chem_202403718
crossref_primary_10_1002_jsde_12778
crossref_primary_10_1016_j_foodchem_2025_144237
crossref_primary_10_1002_wcms_1535
crossref_primary_10_1016_j_neo_2024_100970
crossref_primary_10_1007_s42979_024_02958_3
crossref_primary_10_1021_acs_jcim_5c00415
crossref_primary_10_1021_acs_biochem_5c00208
crossref_primary_10_1371_journal_pntd_0012623
crossref_primary_10_1080_1062936X_2024_2306336
crossref_primary_10_1134_S1070363224100189
crossref_primary_10_1016_j_csbj_2024_01_009
crossref_primary_10_3390_ijms22094990
crossref_primary_10_3390_molecules28104110
crossref_primary_10_1016_j_jep_2025_120178
crossref_primary_10_1016_j_heliyon_2024_e31958
crossref_primary_10_1093_mmy_myae080
crossref_primary_10_1016_j_flatc_2024_100752
crossref_primary_10_7498_aps_74_20241487
crossref_primary_10_1080_07391102_2023_2289045
crossref_primary_10_3233_JAD_240235
crossref_primary_10_1134_S1063774524602697
crossref_primary_10_1002_slct_202501621
crossref_primary_10_1021_acsptsci_5c00055
crossref_primary_10_3389_fchem_2023_1185224
crossref_primary_10_1021_acs_jctc_4c01318
crossref_primary_10_1021_jacsau_5c00218
crossref_primary_10_1016_j_ijbiomac_2025_141340
crossref_primary_10_1016_j_bpj_2025_09_004
crossref_primary_10_1002_advs_202501462
crossref_primary_10_1016_j_coviro_2021_04_004
crossref_primary_10_1021_acs_jpcb_4c06914
crossref_primary_10_1016_j_ijbiomac_2024_131356
crossref_primary_10_3389_fchem_2023_1174363
crossref_primary_10_3390_ph16040576
crossref_primary_10_1080_07391102_2023_2201838
crossref_primary_10_1021_acsami_5c12410
crossref_primary_10_1016_j_chemosphere_2022_135863
crossref_primary_10_1002_biot_202400098
crossref_primary_10_1016_j_bbamcr_2024_119858
crossref_primary_10_1016_j_csbj_2025_09_015
crossref_primary_10_1038_s41467_024_51904_7
crossref_primary_10_15252_embr_202256467
crossref_primary_10_1038_s41467_025_60593_9
crossref_primary_10_1080_07391102_2023_2192801
crossref_primary_10_12688_openreseurope_16920_3
crossref_primary_10_1093_nar_gkac1194
crossref_primary_10_2174_1570180820666221214152939
crossref_primary_10_1016_j_drudis_2024_103990
crossref_primary_10_1007_s10853_025_10790_0
crossref_primary_10_1016_j_abb_2025_110404
crossref_primary_10_1073_pnas_2411763121
crossref_primary_10_1016_j_vetmic_2025_110729
crossref_primary_10_1038_s41467_024_51781_0
crossref_primary_10_3389_fcell_2023_1214962
crossref_primary_10_1002_chem_202401734
crossref_primary_10_15252_embj_2022111185
crossref_primary_10_1038_s41467_023_39410_8
crossref_primary_10_1038_s41598_024_61439_y
crossref_primary_10_1039_D5CP00817D
crossref_primary_10_1080_10408398_2023_2301427
crossref_primary_10_3389_fimmu_2023_1142573
crossref_primary_10_1021_jacs_3c10862
crossref_primary_10_1038_s41467_023_38467_9
crossref_primary_10_7554_eLife_90820_3
crossref_primary_10_1002_bmc_5932
crossref_primary_10_1016_j_foodres_2025_116153
crossref_primary_10_3390_ijms25063512
crossref_primary_10_1016_j_jconrel_2024_07_010
crossref_primary_10_3389_fchem_2023_1103792
crossref_primary_10_7554_eLife_90174
crossref_primary_10_1038_s41467_025_61217_y
crossref_primary_10_1016_j_foodchem_2025_144899
crossref_primary_10_34172_bi_2021_22143
crossref_primary_10_1038_s41586_023_06804_z
crossref_primary_10_1080_13880209_2025_2547744
crossref_primary_10_1016_j_ces_2025_122517
crossref_primary_10_3390_molecules29204881
crossref_primary_10_1002_cpe_70129
crossref_primary_10_1016_j_sajb_2024_10_010
crossref_primary_10_1016_j_csbj_2025_04_029
crossref_primary_10_7554_eLife_90174_3
crossref_primary_10_1002_pro_4891
crossref_primary_10_1016_j_est_2023_109707
crossref_primary_10_1128_jvi_00253_24
crossref_primary_10_1016_j_cjac_2023_100315
crossref_primary_10_1038_s41594_023_01011_w
crossref_primary_10_1371_journal_pone_0309049
crossref_primary_10_1016_j_neuron_2023_08_006
crossref_primary_10_1111_jcmm_18358
crossref_primary_10_1016_j_foodchem_2025_143657
crossref_primary_10_3390_cancers14174153
crossref_primary_10_1016_j_str_2025_04_019
crossref_primary_10_1038_s44386_025_00014_5
crossref_primary_10_1016_j_bioactmat_2025_09_020
crossref_primary_10_1002_prot_26189
crossref_primary_10_1016_j_ijpharm_2023_123372
crossref_primary_10_1039_D4SM01534G
crossref_primary_10_1021_acsomega_5c00151
crossref_primary_10_1021_acs_jafc_4c09532
crossref_primary_10_1080_07391102_2023_2245047
crossref_primary_10_1002_ange_202400599
crossref_primary_10_1007_s10118_023_2968_5
crossref_primary_10_1371_journal_ppat_1012593
crossref_primary_10_1177_10943420221128233
crossref_primary_10_1016_j_jinf_2023_07_014
crossref_primary_10_21105_joss_08321
crossref_primary_10_1021_jacs_4c11142
crossref_primary_10_1002_pgr2_70013
crossref_primary_10_1038_s41467_024_47588_8
crossref_primary_10_1080_07391102_2023_2200490
crossref_primary_10_1038_s41598_024_62743_3
crossref_primary_10_1016_j_ijbiomac_2023_128568
crossref_primary_10_1093_bib_bbae025
crossref_primary_10_1016_j_fbio_2024_104442
crossref_primary_10_1080_07391102_2024_2437529
crossref_primary_10_1103_vtw2_z4f8
crossref_primary_10_1016_j_jconrel_2025_114234
crossref_primary_10_1016_j_procbio_2021_10_022
crossref_primary_10_1016_j_bioorg_2025_108719
crossref_primary_10_1016_j_trechm_2021_04_003
crossref_primary_10_1042_EBC20220218
crossref_primary_10_1080_07391102_2024_2436552
crossref_primary_10_1038_s41598_024_80753_z
crossref_primary_10_1038_s41598_024_59899_3
crossref_primary_10_1111_febs_70051
crossref_primary_10_3390_ijms22115464
crossref_primary_10_1038_s41467_025_57124_x
crossref_primary_10_1021_jacs_3c12034
crossref_primary_10_1016_j_compbiomed_2025_109969
crossref_primary_10_1038_s41467_025_56171_8
crossref_primary_10_3389_fendo_2022_813772
crossref_primary_10_3390_microorganisms13020253
crossref_primary_10_1007_s00232_025_00345_4
crossref_primary_10_1016_j_apsb_2023_12_013
crossref_primary_10_1016_j_jhazmat_2025_139870
crossref_primary_10_1038_s41467_022_34354_x
crossref_primary_10_1016_j_colsurfa_2025_137382
crossref_primary_10_1016_j_bpj_2022_09_009
crossref_primary_10_1016_j_heliyon_2024_e40404
crossref_primary_10_1021_acs_langmuir_5c02180
crossref_primary_10_7554_eLife_95453
crossref_primary_10_1038_s41598_025_86646_z
crossref_primary_10_2174_0113816128365808250413155927
crossref_primary_10_1016_j_jechem_2024_06_053
crossref_primary_10_3103_S009639252560067X
crossref_primary_10_1038_s41467_023_38509_2
crossref_primary_10_1063_5_0249193
crossref_primary_10_1073_pnas_2207965119
crossref_primary_10_3390_cells13242096
crossref_primary_10_1002_advs_202303195
crossref_primary_10_1007_s11224_025_02515_5
crossref_primary_10_1063_5_0160417
crossref_primary_10_1038_s42003_025_08696_3
crossref_primary_10_1016_j_biortech_2025_133206
crossref_primary_10_1016_j_jhazmat_2024_133935
crossref_primary_10_1038_s41589_022_01139_8
crossref_primary_10_1016_j_mcat_2023_113271
crossref_primary_10_1016_j_bioelechem_2024_108798
crossref_primary_10_3390_ijms252212287
crossref_primary_10_1186_s13036_023_00342_y
crossref_primary_10_1080_01902148_2021_1998734
crossref_primary_10_1063_5_0055522
crossref_primary_10_1016_j_jmb_2025_168937
crossref_primary_10_1038_s44318_024_00063_y
crossref_primary_10_1002_anie_202514744
crossref_primary_10_1016_j_csbj_2023_07_020
crossref_primary_10_1021_acs_jctc_4c01624
crossref_primary_10_3389_fmicb_2025_1625765
crossref_primary_10_1002_jcb_30160
crossref_primary_10_3390_biom13010107
crossref_primary_10_1080_14756366_2023_2295241
crossref_primary_10_1186_s41065_024_00348_6
crossref_primary_10_1021_acs_jafc_5c08532
crossref_primary_10_1371_journal_pgen_1011828
crossref_primary_10_1016_j_intimp_2025_115029
crossref_primary_10_1080_07391102_2023_2294835
crossref_primary_10_7554_eLife_90851_3
crossref_primary_10_1016_j_carbpol_2023_120853
crossref_primary_10_1016_j_molstruc_2025_142457
crossref_primary_10_1016_j_ijbiomac_2024_139325
crossref_primary_10_1016_j_bbapap_2022_140757
crossref_primary_10_1038_s41467_025_56940_5
crossref_primary_10_1016_j_bioorg_2025_108764
crossref_primary_10_1016_j_jscs_2023_101652
ContentType Journal Article
DBID 7X8
DOI 10.1063/5.0018516
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
7X8
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c536t-b5725e6c71db551d7ba605427bd921d06089c107aacfc44e65bc9511273a8fd02
IEDL.DBID 7X8
ISICitedReferencesCount 547
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578502400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7690
IngestDate Thu Jul 10 19:08:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-b5725e6c71db551d7ba605427bd921d06089c107aacfc44e65bc9511273a8fd02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285625
PQID 2449961692
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2449961692
PublicationCentury 2000
PublicationDate 2020-10-07
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-07
  day: 07
PublicationDecade 2020
PublicationTitle The Journal of chemical physics
PublicationYear 2020
SSID ssj0001724
Score 2.724626
Snippet The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled...
SourceID proquest
SourceType Aggregation Database
StartPage 134110
Title Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS
URI https://www.proquest.com/docview/2449961692
Volume 153
WOSCitedRecordID wos000578502400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnrxURXfrOB1Mdkku9mTlGLtQav4gIKHMtkHFNpETfH3O5sHPXgRvOeQnZ3MfN_MZD5CrpwLIY2MYbGUSFCAK5YKAOa40qlKQYCrlrjey9EoHY_VU1NwK5uxyjYmVoHaFNrXyK8xDSE0D4XiNx-fzKtG-e5qI6GxSjoRQhnv1XK83BaOyTmuB-wVk0gD281CIrr2lRRMVaH4FYOrxDLY-e8r7ZLtBlLSXu0De2TF5l2y2W-V3Lpkoxrz1OU-eR_66ZcCncYi46d-7_dsZmfNv5gUckNBa8xEtV_QwtF5q59LTS1eX9JyOm9Ev0o6zend8-NDr_9yQN4Gt6_9IWvkFZhOIrFgWSJ5YoWWockQNxmZAXKbmMvMKB6aQKDZNLJDAO10HFuRZFp5fCYjSJ0J-CFZy4vcHhEaJ8o5THQ2ABkjqFMWoRQkwtO5wDh-TC5bC07w7L4nAdVBJ0sbnvzhmVOyxT3f9Q18eUY6Dj9Re07W9fdiWn5dVLf_A27vudk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+parallelization+and+acceleration+of+molecular+dynamics+simulations+in+GROMACS&rft.jtitle=The+Journal+of+chemical+physics&rft.au=P%C3%A1ll%2C+Szil%C3%A1rd&rft.au=Zhmurov%2C+Artem&rft.au=Bauer%2C+Paul&rft.au=Abraham%2C+Mark&rft.date=2020-10-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=153&rft.issue=13&rft.spage=134110&rft_id=info:doi/10.1063%2F5.0018516&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7690&client=summon