Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning
Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 4; s. 1429 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.02.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L. |
|---|---|
| AbstractList | Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L. Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L. |
| Audience | Academic |
| Author | Lee, Hojun Chae, Jinyeong Cho, Hyunjun Park, Jieun Kim, Jihie |
| AuthorAffiliation | 2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; jiny419@dgu.ac.kr 1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea; cajun7@dgu.ac.kr (H.L.); chohyunjun1111@gmail.com (H.C.); 5656jieun@dgu.ac.kr (J.P.) 3 Okestro Ltd., Seoul 07326, Korea |
| AuthorAffiliation_xml | – name: 2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; jiny419@dgu.ac.kr – name: 1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea; cajun7@dgu.ac.kr (H.L.); chohyunjun1111@gmail.com (H.C.); 5656jieun@dgu.ac.kr (J.P.) – name: 3 Okestro Ltd., Seoul 07326, Korea |
| Author_xml | – sequence: 1 givenname: Hojun orcidid: 0000-0001-5082-425X surname: Lee fullname: Lee, Hojun – sequence: 2 givenname: Hyunjun orcidid: 0000-0002-1080-9394 surname: Cho fullname: Cho, Hyunjun – sequence: 3 givenname: Jieun orcidid: 0000-0002-3549-347X surname: Park fullname: Park, Jieun – sequence: 4 givenname: Jinyeong orcidid: 0000-0002-4769-9889 surname: Chae fullname: Chae, Jinyeong – sequence: 5 givenname: Jihie orcidid: 0000-0003-2358-4021 surname: Kim fullname: Kim, Jihie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214330$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNURD_gwB9AkbjAIa1jO05yQaqWpay0iEvhak38sfUqsRc7y8e_Z7Jblm5V-TCjmcevPOP3PDvxwZsse12SS8ZacpUoJbzktH2WnWHgRYOFkwf5aXae0poQyhhrXmSnrKIlZ4ycZTCLIaV87lXQJhYfzS7mtxF8siEOmP9y411-04cO-mIZFPT5d5e2GOa_xwhqDDFHMv9itJuaiwFWJp_BZnTBO796mT230Cfz6j5eZN8-zW9nn4vl15vF7HpZqIqJsQBDaMPKTjfElFBpIEJ1TSmoVQy4YlXbGQa10Fp0lhEtbGdqIzRvOBhbdewiW-x1dYC13EQ3QPwjAzi5K4S4khBHp3ojCe_amqCSZSW3VLTQ1q3APRFGu8oQ1Pqw19psu8FoZTxO2h-JHne8u5Or8FM2Tc1Z06DAu3uBGH5sTRrl4JIyfQ_ehG2SVOBHVLxtBaJvH6HrsI0eV7WjGG2ruvpPrQAHcN6GafeTqLyucU1kkkLq8gkKjzaDU2ga67B-dOHNw0EPE_4zCALv94CafBKNPSAlkZP55MF8yF49YpUbYbIBvsL1T9z4C5Sy2Sw |
| CitedBy_id | crossref_primary_10_1038_s41598_025_00570_w crossref_primary_10_1142_S0218001425400051 crossref_primary_10_1016_j_engappai_2023_106126 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1108_DTA_07_2023_0307 crossref_primary_10_1016_j_media_2025_103627 crossref_primary_10_3389_fdgth_2025_1535168 crossref_primary_10_1016_j_heliyon_2024_e27516 crossref_primary_10_1109_JBHI_2023_3236661 |
| Cites_doi | 10.1609/aaai.v35i3.16328 10.1093/jamia/ocv080 10.1109/CVPR.2009.5206848 10.1109/CVPR42600.2020.01059 10.1109/CVPR.2017.369 10.18653/v1/2020.emnlp-main.112 10.3115/1073083.1073135 10.1109/TCSVT.2019.2947482 10.1609/aaai.v35i2.16258 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22041429 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_04b970dd6f314f269a9796220032b5e0 PMC8874388 A781609963 35214330 10_3390_s22041429 |
| Genre | Journal Article |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GrantInformation_xml | – fundername: Information Technology Research Center grantid: IITP-2022-2020-0-01789 – fundername: the National Program for Excellence in Software grantid: 2016-0-00017 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c536t-ae02831bd80e1a5da06cb8162fc3a4c359be3a76dd6bf30d6fbe7e6d484aef5b3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765175400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:36:58 EDT 2025 Tue Nov 04 02:01:41 EST 2025 Sun Nov 09 05:05:46 EST 2025 Tue Oct 07 07:22:27 EDT 2025 Tue Nov 11 11:12:09 EST 2025 Tue Nov 04 18:29:22 EST 2025 Wed Feb 19 02:27:39 EST 2025 Sat Nov 29 07:15:52 EST 2025 Tue Nov 18 21:44:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | transformer deep learning medical image captioning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-ae02831bd80e1a5da06cb8162fc3a4c359be3a76dd6bf30d6fbe7e6d484aef5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4769-9889 0000-0003-2358-4021 0000-0002-1080-9394 0000-0002-3549-347X 0000-0001-5082-425X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2633329575?pq-origsite=%requestingapplication% |
| PMID | 35214330 |
| PQID | 2633329575 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04b970dd6f314f269a9796220032b5e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874388 proquest_miscellaneous_2633854996 proquest_journals_2633329575 gale_infotracmisc_A781609963 gale_infotracacademiconefile_A781609963 pubmed_primary_35214330 crossref_primary_10_3390_s22041429 crossref_citationtrail_10_3390_s22041429 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kohli (ref_15) 2016; 23 ref_14 ref_13 ref_12 ref_11 ref_10 ref_21 ref_20 ref_1 ref_3 ref_2 ref_19 ref_18 Yu (ref_5) 2019; 30 ref_17 ref_16 ref_9 ref_8 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_9 – ident: ref_8 – ident: ref_4 – ident: ref_3 – ident: ref_2 doi: 10.1609/aaai.v35i3.16328 – ident: ref_12 – ident: ref_10 – ident: ref_11 – volume: 23 start-page: 304 year: 2016 ident: ref_15 article-title: Preparing a collection of radiology examinations for distribution and retrieval publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocv080 – ident: ref_17 doi: 10.1109/CVPR.2009.5206848 – ident: ref_6 doi: 10.1109/CVPR42600.2020.01059 – ident: ref_16 doi: 10.1109/CVPR.2017.369 – ident: ref_1 doi: 10.18653/v1/2020.emnlp-main.112 – ident: ref_19 doi: 10.3115/1073083.1073135 – ident: ref_13 – ident: ref_14 – ident: ref_18 – volume: 30 start-page: 4467 year: 2019 ident: ref_5 article-title: Multimodal transformer with multi-view visual representation for image captioning publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2947482 – ident: ref_21 – ident: ref_20 – ident: ref_7 doi: 10.1609/aaai.v35i2.16258 |
| SSID | ssj0023338 |
| Score | 2.419952 |
| Snippet | Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1429 |
| SubjectTerms | Computational linguistics Crop diseases deep learning Electric Power Supplies Electric transformers Evaluation Language processing medical image captioning Medical imaging equipment Natural language interfaces Neural networks Noise transformer |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4oJZnSkEGIcElqmMnfhzLshVIVcWhoN4iO3bESpBW-6j685lxsmEjkLigPWQVT5T4yzjzTTL-DPBWWO25q9qcK4EJipMy98GVeWvaSsYCfypNFD7XFxfm6sp-2Vnqi2rCenngHrgTXnqreQiqlUXZCmWd1VYJqqkSvoopW-fabpOpIdWSmHn1OkISk_qTFdqXRZl45O_ok0T6_3wU78SiaZ3kTuA5O4CHA2Nkp_2VHsK92D2CBzs6go_BzehsbN7RBPVl_jGmLbvcklL8T-9bWS_wn59T_GLfFqsNbuZ362Vac4ehJRu-27DPP_E5w2buZnhf-wS-ns0vZ5_yYe2EvKmkWucuEnEofDA8Fq4KjqvGm0KJtpGubGRlfZROKwTWt5IjvD7qqEJpShfbysunsNddd_E5MI8x35vQBhuQO1njJBcxOIlEI7jKuwzebzGtm0FYnNa3-FFjgkHw1yP8GbwZTW96NY2_GX2gGzMakAB22oFuUQ9uUf_LLTJ4R7e1pmFKMLphtgF2iQSv6lONYCA7VjKD44klDq9m2rx1jHoY3qtaKHQwYZHqZvB6bKYjqWSti9eb3sZQ9q0yeNb70dglZL3IUyVepZ542KTP05Zu8T2Jf2NQKKUxR_8DpBdwX9BsjlSEfgx76-UmvoT95na9WC1fpRH1CyBTJXs priority: 102 providerName: Directory of Open Access Journals |
| Title | Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35214330 https://www.proquest.com/docview/2633329575 https://www.proquest.com/docview/2633854996 https://pubmed.ncbi.nlm.nih.gov/PMC8874388 https://doaj.org/article/04b970dd6f314f269a9796220032b5e0 |
| Volume | 22 |
| WOSCitedRecordID | wos000765175400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgN74P0ILFVASHCJ6tiJ45zQbumKlXarCi2onCI7dqDSkpY-ECd-OzOOm20E4oQiJVE8kex4PPONMw9CXrE801SlVUQFAwNFcR5po5KoklXKbQyHcIHC59lkImezfOrDo9ferXInE52gbrI9o982COGhWZS4Yz5kgnPOcsAab5ffI6whhf9afUGNA9LHxFu0R_rTs4vp59YAg3dkk12Ig6k_XDNGkzhx6PJaJ7nU_X8K6D0N1fWe3FNHp3f-70DuktselobHDR_dIzdsfZ8c7iUrfEDUCDsfjmuMgl9F76y7hpc75Av3uKkbNlUEonNUkuGn-XoLl_HPzcoV9gmBMvQ_h8KzbyDMwpFa-k3hh-Tj6fhy9D7yBRqiMuViEymL6CTWRlIbq9QoKkotY8Gqkquk5GmuLVeZMEboilMjKm0zK0wiE2WrVPNHpFcvavuEhBqAhZamMrkBgJZLxSmzRnFAM0alWgXkzW6KitJnL8ciGlcFWDE4m0U7mwF52ZIum5QdfyM6wXluCTDLtnuwWH0p_KItaKLzjELvKx4nFRO5yrNcMPTnYzq1NCCvkUsKlAX4GZUPaYAhYVat4jiDjwEQXPCAHHUoYQ2X3eYdrxRehqyLa9YIyIu2Gd9Ev7jaLrYNjUQTXwTkccOW7ZAAWgMY5tDLrMOwnTF3W-r5V5dhHDRPwqV8-u9uPSO3GAaDOB_2I9LbrLb2OblZ_tjM16sBOchmmTvLAemfjCfTDwO34wHni1_jgV-cvwHLRUd_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUyTgwL4EChgEgktUx06c-IBQmU7VUaejORRUTsGOHRgJMsMsLH-K38hztk4E4tYDyiFR_BLZzue3OG8BeMZkrKmKcp8KhgaK4tzXRoV-nuQRtwEeogwUHsXjcXJ6Kidb8KuJhXFulQ1PLBm1mWVuj3yXCc45k6hdvJ5_9V3VKPd3tSmhUcHiyP78jibb8tVwH7_vc8YOBif9Q7-uKuBnERcrX1knUgNtEmoDFRlFRaaTQLA84yrMeCS15SoWxgidc2pErm1shQmTUNk80hzfewG2QwQ77cH2ZHg8ed-aeNjHpMpfxLmku0vGaBiEpf56JvXK4gB_ioANGdj1z9wQeAfX_repug5Xa9Wa7FVr4QZs2eImXNlIuHgLVN9NDxkULpJ_4e_b8kxOGu0dr93GNKkqIfgjJ-jJu-lyjafBj9WiLE5EkJLUP7jI8AsyZNJX83pj-za8PZcx3oFeMSvsPSAalSOdmNxIg0qmTBSnzBrFUSMzKtLKg5cNCNKszsDuCoF8TtESc3hJW7x48LQlnVdpR_5G9MYhqSVwmcLLG7PFx7RmPCkNtYwp9j7nQZgzIZWMpWDOJ5HpyFIPXjgcpo6fuWlUdVgGDsllBkv3YpwMNCME92CnQ4l8KOs2N2hMaz64TM-g6MGTttk96Xz7CjtbVzSJ26YQHtytgN8OCc0DVOg59jLuLInOmLstxfRTmSUdpWfIk-T-v7v1GC4dnhyP0tFwfPQALjMX3FL65O9Ab7VY24dwMfu2mi4Xj-qlTuDDeS-Z34i-luE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOgjBgX0JDBAQCC5RHTtx4gNCM11ENVVVoQHNLdixA5UgLWnL8tf4dTxnm0YgbnNAPaSqXyrb-d7mvAXgGRWRIjLMPMIpOiiSMU9pGXhZnIXM-PjhZaLwNJrN4tNTMd-DX00ujA2rbGRiKaj1MrVn5H3KGWNUoHXRz-qwiPlw_Hr11bMdpOyb1qadRgWRY_PzO7pv61eTIT7r55SORyeDN17dYcBLQ8Y3njRWvfpKx8T4MtSS8FTFPqdZymSQslAow2TEteYqY0TzTJnIcB3EgTRZqBj-7wXYjxg6PT3YPxrN5m9bdw_nG1e1jBgTpL-mlAR-UNqyZxqwbBTwpzrY0YfdWM0d5Te-9j9v23W4Wpvc7mHFIzdgz-Q34cpOIcZbIAd2q9xRbjP8C29oyqt70lj1-N0eWLtVhwRvag0A9_1ivcXL6MemKJsWuUjp1i--3MkXFNTuQK7qA-_b8O5c1ngHevkyN_fAVWg0qVhnWmg0PkUsGaFGSwQN0TJU0oGXDSCStK7MbhuEfE7QQ7PYSVrsOPC0JV1V5Uj-RnRkUdUS2Ari5Q_L4mNSC6SEBEpEBGefMT_IKBdSRIJTG6tIVWiIAy8sJhMr5-w2yjpdA5dkK4YlhxFuBroXnDlw0KFE-ZR2hxtkJrV8XCdnsHTgSTts77Qxf7lZbiua2B5fcAfuVkzQLgndBjT0Gc4y6rBHZ83dkXzxqayejlo1YHF8_9_TegyXkE-S6WR2_AAuU5vzUobqH0BvU2zNQ7iYftss1sWjmutd-HDeHPMbwD-few |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+Encoder-Decoder+Transformer+with+Global-Local+Visual+Extractor+for+Medical+Image+Captioning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Hojun&rft.au=Cho%2C+Hyunjun&rft.au=Park%2C+Jieun&rft.au=Chae%2C+Jinyeong&rft.date=2022-02-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041429&rft_id=info%3Apmid%2F35214330&rft.externalDocID=PMC8874388 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |