Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning

Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 4; s. 1429
Hlavní autori: Lee, Hojun, Cho, Hyunjun, Park, Jieun, Chae, Jinyeong, Kim, Jihie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 01.02.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.
AbstractList Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.
Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.
Audience Academic
Author Lee, Hojun
Chae, Jinyeong
Cho, Hyunjun
Park, Jieun
Kim, Jihie
AuthorAffiliation 2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; jiny419@dgu.ac.kr
1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea; cajun7@dgu.ac.kr (H.L.); chohyunjun1111@gmail.com (H.C.); 5656jieun@dgu.ac.kr (J.P.)
3 Okestro Ltd., Seoul 07326, Korea
AuthorAffiliation_xml – name: 2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea; jiny419@dgu.ac.kr
– name: 1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea; cajun7@dgu.ac.kr (H.L.); chohyunjun1111@gmail.com (H.C.); 5656jieun@dgu.ac.kr (J.P.)
– name: 3 Okestro Ltd., Seoul 07326, Korea
Author_xml – sequence: 1
  givenname: Hojun
  orcidid: 0000-0001-5082-425X
  surname: Lee
  fullname: Lee, Hojun
– sequence: 2
  givenname: Hyunjun
  orcidid: 0000-0002-1080-9394
  surname: Cho
  fullname: Cho, Hyunjun
– sequence: 3
  givenname: Jieun
  orcidid: 0000-0002-3549-347X
  surname: Park
  fullname: Park, Jieun
– sequence: 4
  givenname: Jinyeong
  orcidid: 0000-0002-4769-9889
  surname: Chae
  fullname: Chae, Jinyeong
– sequence: 5
  givenname: Jihie
  orcidid: 0000-0003-2358-4021
  surname: Kim
  fullname: Kim, Jihie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214330$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AkbjAIa1jO05yQaqWpay0iEvhak38sfUqsRc7y8e_Z7Jblm5V-TCjmcevPOP3PDvxwZsse12SS8ZacpUoJbzktH2WnWHgRYOFkwf5aXae0poQyhhrXmSnrKIlZ4ycZTCLIaV87lXQJhYfzS7mtxF8siEOmP9y411-04cO-mIZFPT5d5e2GOa_xwhqDDFHMv9itJuaiwFWJp_BZnTBO796mT230Cfz6j5eZN8-zW9nn4vl15vF7HpZqIqJsQBDaMPKTjfElFBpIEJ1TSmoVQy4YlXbGQa10Fp0lhEtbGdqIzRvOBhbdewiW-x1dYC13EQ3QPwjAzi5K4S4khBHp3ojCe_amqCSZSW3VLTQ1q3APRFGu8oQ1Pqw19psu8FoZTxO2h-JHne8u5Or8FM2Tc1Z06DAu3uBGH5sTRrl4JIyfQ_ehG2SVOBHVLxtBaJvH6HrsI0eV7WjGG2ruvpPrQAHcN6GafeTqLyucU1kkkLq8gkKjzaDU2ga67B-dOHNw0EPE_4zCALv94CafBKNPSAlkZP55MF8yF49YpUbYbIBvsL1T9z4C5Sy2Sw
CitedBy_id crossref_primary_10_1038_s41598_025_00570_w
crossref_primary_10_1142_S0218001425400051
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1108_DTA_07_2023_0307
crossref_primary_10_1016_j_media_2025_103627
crossref_primary_10_3389_fdgth_2025_1535168
crossref_primary_10_1016_j_heliyon_2024_e27516
crossref_primary_10_1109_JBHI_2023_3236661
Cites_doi 10.1609/aaai.v35i3.16328
10.1093/jamia/ocv080
10.1109/CVPR.2009.5206848
10.1109/CVPR42600.2020.01059
10.1109/CVPR.2017.369
10.18653/v1/2020.emnlp-main.112
10.3115/1073083.1073135
10.1109/TCSVT.2019.2947482
10.1609/aaai.v35i2.16258
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22041429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_04b970dd6f314f269a9796220032b5e0
PMC8874388
A781609963
35214330
10_3390_s22041429
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Information Technology Research Center
  grantid: IITP-2022-2020-0-01789
– fundername: the National Program for Excellence in Software
  grantid: 2016-0-00017
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-ae02831bd80e1a5da06cb8162fc3a4c359be3a76dd6bf30d6fbe7e6d484aef5b3
IEDL.DBID PIMPY
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765175400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:36:58 EDT 2025
Tue Nov 04 02:01:41 EST 2025
Sun Nov 09 05:05:46 EST 2025
Tue Oct 07 07:22:27 EDT 2025
Tue Nov 11 11:12:09 EST 2025
Tue Nov 04 18:29:22 EST 2025
Wed Feb 19 02:27:39 EST 2025
Sat Nov 29 07:15:52 EST 2025
Tue Nov 18 21:44:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords transformer
deep learning
medical image captioning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-ae02831bd80e1a5da06cb8162fc3a4c359be3a76dd6bf30d6fbe7e6d484aef5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4769-9889
0000-0003-2358-4021
0000-0002-1080-9394
0000-0002-3549-347X
0000-0001-5082-425X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2633329575?pq-origsite=%requestingapplication%
PMID 35214330
PQID 2633329575
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_04b970dd6f314f269a9796220032b5e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874388
proquest_miscellaneous_2633854996
proquest_journals_2633329575
gale_infotracmisc_A781609963
gale_infotracacademiconefile_A781609963
pubmed_primary_35214330
crossref_primary_10_3390_s22041429
crossref_citationtrail_10_3390_s22041429
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kohli (ref_15) 2016; 23
ref_14
ref_13
ref_12
ref_11
ref_10
ref_21
ref_20
ref_1
ref_3
ref_2
ref_19
ref_18
Yu (ref_5) 2019; 30
ref_17
ref_16
ref_9
ref_8
ref_4
ref_7
ref_6
References_xml – ident: ref_9
– ident: ref_8
– ident: ref_4
– ident: ref_3
– ident: ref_2
  doi: 10.1609/aaai.v35i3.16328
– ident: ref_12
– ident: ref_10
– ident: ref_11
– volume: 23
  start-page: 304
  year: 2016
  ident: ref_15
  article-title: Preparing a collection of radiology examinations for distribution and retrieval
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocv080
– ident: ref_17
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_6
  doi: 10.1109/CVPR42600.2020.01059
– ident: ref_16
  doi: 10.1109/CVPR.2017.369
– ident: ref_1
  doi: 10.18653/v1/2020.emnlp-main.112
– ident: ref_19
  doi: 10.3115/1073083.1073135
– ident: ref_13
– ident: ref_14
– ident: ref_18
– volume: 30
  start-page: 4467
  year: 2019
  ident: ref_5
  article-title: Multimodal transformer with multi-view visual representation for image captioning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2947482
– ident: ref_21
– ident: ref_20
– ident: ref_7
  doi: 10.1609/aaai.v35i2.16258
SSID ssj0023338
Score 2.419952
Snippet Transformer-based approaches have shown good results in image captioning tasks. However, current approaches have a limitation in generating text from global...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1429
SubjectTerms Computational linguistics
Crop diseases
deep learning
Electric Power Supplies
Electric transformers
Evaluation
Language processing
medical image captioning
Medical imaging equipment
Natural language interfaces
Neural networks
Noise
transformer
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4oJZnSkEGIcElqmMnfhzLshVIVcWhoN4iO3bESpBW-6j685lxsmEjkLigPWQVT5T4yzjzTTL-DPBWWO25q9qcK4EJipMy98GVeWvaSsYCfypNFD7XFxfm6sp-2Vnqi2rCenngHrgTXnqreQiqlUXZCmWd1VYJqqkSvoopW-fabpOpIdWSmHn1OkISk_qTFdqXRZl45O_ok0T6_3wU78SiaZ3kTuA5O4CHA2Nkp_2VHsK92D2CBzs6go_BzehsbN7RBPVl_jGmLbvcklL8T-9bWS_wn59T_GLfFqsNbuZ362Vac4ehJRu-27DPP_E5w2buZnhf-wS-ns0vZ5_yYe2EvKmkWucuEnEofDA8Fq4KjqvGm0KJtpGubGRlfZROKwTWt5IjvD7qqEJpShfbysunsNddd_E5MI8x35vQBhuQO1njJBcxOIlEI7jKuwzebzGtm0FYnNa3-FFjgkHw1yP8GbwZTW96NY2_GX2gGzMakAB22oFuUQ9uUf_LLTJ4R7e1pmFKMLphtgF2iQSv6lONYCA7VjKD44klDq9m2rx1jHoY3qtaKHQwYZHqZvB6bKYjqWSti9eb3sZQ9q0yeNb70dglZL3IUyVepZ542KTP05Zu8T2Jf2NQKKUxR_8DpBdwX9BsjlSEfgx76-UmvoT95na9WC1fpRH1CyBTJXs
  priority: 102
  providerName: Directory of Open Access Journals
Title Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning
URI https://www.ncbi.nlm.nih.gov/pubmed/35214330
https://www.proquest.com/docview/2633329575
https://www.proquest.com/docview/2633854996
https://pubmed.ncbi.nlm.nih.gov/PMC8874388
https://doaj.org/article/04b970dd6f314f269a9796220032b5e0
Volume 22
WOSCitedRecordID wos000765175400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgN74P0ILFVASHCJ6tiJ45zQbumKlXarCi2onCI7dqDSkpY-ECd-OzOOm20E4oQiJVE8kex4PPONMw9CXrE801SlVUQFAwNFcR5po5KoklXKbQyHcIHC59lkImezfOrDo9ferXInE52gbrI9o982COGhWZS4Yz5kgnPOcsAab5ffI6whhf9afUGNA9LHxFu0R_rTs4vp59YAg3dkk12Ig6k_XDNGkzhx6PJaJ7nU_X8K6D0N1fWe3FNHp3f-70DuktselobHDR_dIzdsfZ8c7iUrfEDUCDsfjmuMgl9F76y7hpc75Av3uKkbNlUEonNUkuGn-XoLl_HPzcoV9gmBMvQ_h8KzbyDMwpFa-k3hh-Tj6fhy9D7yBRqiMuViEymL6CTWRlIbq9QoKkotY8Gqkquk5GmuLVeZMEboilMjKm0zK0wiE2WrVPNHpFcvavuEhBqAhZamMrkBgJZLxSmzRnFAM0alWgXkzW6KitJnL8ciGlcFWDE4m0U7mwF52ZIum5QdfyM6wXluCTDLtnuwWH0p_KItaKLzjELvKx4nFRO5yrNcMPTnYzq1NCCvkUsKlAX4GZUPaYAhYVat4jiDjwEQXPCAHHUoYQ2X3eYdrxRehqyLa9YIyIu2Gd9Ev7jaLrYNjUQTXwTkccOW7ZAAWgMY5tDLrMOwnTF3W-r5V5dhHDRPwqV8-u9uPSO3GAaDOB_2I9LbrLb2OblZ_tjM16sBOchmmTvLAemfjCfTDwO34wHni1_jgV-cvwHLRUd_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUyTgwL4EChgEgktUx06c-IBQmU7VUaejORRUTsGOHRgJMsMsLH-K38hztk4E4tYDyiFR_BLZzue3OG8BeMZkrKmKcp8KhgaK4tzXRoV-nuQRtwEeogwUHsXjcXJ6Kidb8KuJhXFulQ1PLBm1mWVuj3yXCc45k6hdvJ5_9V3VKPd3tSmhUcHiyP78jibb8tVwH7_vc8YOBif9Q7-uKuBnERcrX1knUgNtEmoDFRlFRaaTQLA84yrMeCS15SoWxgidc2pErm1shQmTUNk80hzfewG2QwQ77cH2ZHg8ed-aeNjHpMpfxLmku0vGaBiEpf56JvXK4gB_ioANGdj1z9wQeAfX_repug5Xa9Wa7FVr4QZs2eImXNlIuHgLVN9NDxkULpJ_4e_b8kxOGu0dr93GNKkqIfgjJ-jJu-lyjafBj9WiLE5EkJLUP7jI8AsyZNJX83pj-za8PZcx3oFeMSvsPSAalSOdmNxIg0qmTBSnzBrFUSMzKtLKg5cNCNKszsDuCoF8TtESc3hJW7x48LQlnVdpR_5G9MYhqSVwmcLLG7PFx7RmPCkNtYwp9j7nQZgzIZWMpWDOJ5HpyFIPXjgcpo6fuWlUdVgGDsllBkv3YpwMNCME92CnQ4l8KOs2N2hMaz64TM-g6MGTttk96Xz7CjtbVzSJ26YQHtytgN8OCc0DVOg59jLuLInOmLstxfRTmSUdpWfIk-T-v7v1GC4dnhyP0tFwfPQALjMX3FL65O9Ab7VY24dwMfu2mi4Xj-qlTuDDeS-Z34i-luE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOgjBgX0JDBAQCC5RHTtx4gNCM11ENVVVoQHNLdixA5UgLWnL8tf4dTxnm0YgbnNAPaSqXyrb-d7mvAXgGRWRIjLMPMIpOiiSMU9pGXhZnIXM-PjhZaLwNJrN4tNTMd-DX00ujA2rbGRiKaj1MrVn5H3KGWNUoHXRz-qwiPlw_Hr11bMdpOyb1qadRgWRY_PzO7pv61eTIT7r55SORyeDN17dYcBLQ8Y3njRWvfpKx8T4MtSS8FTFPqdZymSQslAow2TEteYqY0TzTJnIcB3EgTRZqBj-7wXYjxg6PT3YPxrN5m9bdw_nG1e1jBgTpL-mlAR-UNqyZxqwbBTwpzrY0YfdWM0d5Te-9j9v23W4Wpvc7mHFIzdgz-Q34cpOIcZbIAd2q9xRbjP8C29oyqt70lj1-N0eWLtVhwRvag0A9_1ivcXL6MemKJsWuUjp1i--3MkXFNTuQK7qA-_b8O5c1ngHevkyN_fAVWg0qVhnWmg0PkUsGaFGSwQN0TJU0oGXDSCStK7MbhuEfE7QQ7PYSVrsOPC0JV1V5Uj-RnRkUdUS2Ari5Q_L4mNSC6SEBEpEBGefMT_IKBdSRIJTG6tIVWiIAy8sJhMr5-w2yjpdA5dkK4YlhxFuBroXnDlw0KFE-ZR2hxtkJrV8XCdnsHTgSTts77Qxf7lZbiua2B5fcAfuVkzQLgndBjT0Gc4y6rBHZ83dkXzxqayejlo1YHF8_9_TegyXkE-S6WR2_AAuU5vzUobqH0BvU2zNQ7iYftss1sWjmutd-HDeHPMbwD-few
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+Encoder-Decoder+Transformer+with+Global-Local+Visual+Extractor+for+Medical+Image+Captioning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Hojun&rft.au=Cho%2C+Hyunjun&rft.au=Park%2C+Jieun&rft.au=Chae%2C+Jinyeong&rft.date=2022-02-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041429&rft_id=info%3Apmid%2F35214330&rft.externalDocID=PMC8874388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon