Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach

Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical engineering online Ročník 18; číslo 1; s. 15 - 17
Hlavní autori: Sbrollini, Agnese, De Jongh, Marjolein C., Ter Haar, C. Cato, Treskes, Roderick W., Man, Sumche, Burattini, Laura, Swenne, Cees A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 12.02.2019
Springer Nature B.V
BMC
Predmet:
ISSN:1475-925X, 1475-925X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs. Methods We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization. Results Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively). Conclusions Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
AbstractList Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs. Methods We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization. Results Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively). Conclusions Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs. Methods We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization. Results Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively). Conclusions Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs.BACKGROUNDSerial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs.We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization.METHODSWe developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization.Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively).RESULTSApplication of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively).Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.CONCLUSIONSOur method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
Abstract Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs. Methods We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization. Results Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively). Conclusions Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the same individual. Here, we present a novel algorithm to construct dedicated deep-learning neural networks (NNs) that are specialized in detecting newly emerging or aggravating existing cardiac pathology in serial ECGs. We developed a novel deep-learning method for serial ECG analysis and tested its performance in detection of heart failure in post-infarction patients, and in the detection of ischemia in patients who underwent elective percutaneous coronary intervention. Core of the method is the repeated structuring and learning procedure that, when fed with 13 serial ECG difference features (intra-individual differences in: QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at most three hidden layers. An optimization process reduces the possibility of obtaining an inefficient NN due to adverse initialization. Application of our method to the two clinical ECG databases yielded 3-layer NN architectures, both showing high testing performances (areas under the receiver operating curves were 84% and 83%, respectively). Our method was successful in two different clinical serial ECG applications. Further studies will investigate if other problem-specific NNs can successfully be constructed, and even if it will be possible to construct a universal NN to detect any pathologic ECG change.
ArticleNumber 15
Author Burattini, Laura
Treskes, Roderick W.
Man, Sumche
Ter Haar, C. Cato
De Jongh, Marjolein C.
Swenne, Cees A.
Sbrollini, Agnese
Author_xml – sequence: 1
  givenname: Agnese
  surname: Sbrollini
  fullname: Sbrollini, Agnese
  organization: Cardiology Department, Leiden University Medical Center, Information Engineering Department, Università Politecnica delle Marche
– sequence: 2
  givenname: Marjolein C.
  surname: De Jongh
  fullname: De Jongh, Marjolein C.
  organization: Cardiology Department, Leiden University Medical Center
– sequence: 3
  givenname: C. Cato
  surname: Ter Haar
  fullname: Ter Haar, C. Cato
  organization: Cardiology Department, Leiden University Medical Center
– sequence: 4
  givenname: Roderick W.
  surname: Treskes
  fullname: Treskes, Roderick W.
  organization: Cardiology Department, Leiden University Medical Center
– sequence: 5
  givenname: Sumche
  surname: Man
  fullname: Man, Sumche
  organization: Cardiology Department, Leiden University Medical Center
– sequence: 6
  givenname: Laura
  surname: Burattini
  fullname: Burattini, Laura
  organization: Information Engineering Department, Università Politecnica delle Marche
– sequence: 7
  givenname: Cees A.
  surname: Swenne
  fullname: Swenne, Cees A.
  email: c.a.swenne@lumc.nl
  organization: Cardiology Department, Leiden University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30755195$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARfcAHsEGR2LAJ-BE7MQskVPGoVIkFILGzjp2TXF_52sHJLbp_j9OU0laCle3jmTljnzktjkIMWBTPKXlNaSvfTJQp3laEqopITir1qDihdSMqxcSPozv74-J0mraEMEKkelIcc9IIQZU4KcJXTA58iR7tnKKF1Lk4JBg3h3KOZYdzrpcBf_lDiTtMgwtDGVMJQwZdwbwcr0lgyxHmTfRxOLwtITNxrDxCCgsExjFFsJunxeMe_ITPbtaz4vvHD9_OP1eXXz5dnL-_rKzgcq5UD1gTikoS06OUzABvqKICqRFSCMNpaxsqmGTCAErGGBDaoMGuk4YLflZcrLpdhK0ek9tBOugITl8XYho0pNlZj5rXrepFa7lpsEYijGHG9krIvu3qjvCs9W7VGvdmh53FMCfw90Tv3wS30UO80jJ7FrXKAq9uBFL8ucdp1js3WfQeAsb9pBlthZCM0KXXywfQbdynkL9qQXEqJRUL6sVdR7dW_ow1A-gKsClOU8L-FkKJXqKj1-joHB29REcvLpsHHOvmPOC4PMr5_zLZypxylzBg-mv636Tfb4HZcA
CitedBy_id crossref_primary_10_1016_j_jelectrocard_2021_10_005
crossref_primary_10_1016_j_jelectrocard_2022_10_005
crossref_primary_10_1016_j_cie_2021_107651
crossref_primary_10_1109_TAI_2024_3400749
crossref_primary_10_3390_diagnostics11071255
crossref_primary_10_1016_j_heliyon_2024_e41195
crossref_primary_10_3390_s20040969
crossref_primary_10_1109_ACCESS_2022_3213065
crossref_primary_10_3103_S0027134922060042
crossref_primary_10_3390_app14020817
crossref_primary_10_1016_j_bspc_2022_104185
crossref_primary_10_1016_j_jelectrocard_2023_11_002
crossref_primary_10_1088_1361_6579_ace241
crossref_primary_10_3390_s20123570
crossref_primary_10_1016_j_bspc_2020_102310
crossref_primary_10_3390_e24121828
crossref_primary_10_1007_s10741_022_10283_1
crossref_primary_10_3390_ijerph19095680
crossref_primary_10_1111_pace_14891
crossref_primary_10_1111_anec_12722
crossref_primary_10_3390_math10122049
crossref_primary_10_2196_42788
Cites_doi 10.1109/TMI.2017.2746879
10.1109/TBME.2016.2631620
10.1093/eurheartj/ehx393
10.1186/1472-6947-5-3
10.1109/CIC.2005.1588151
10.1016/j.media.2017.01.004
10.1109/72.839013
10.1016/j.jelectrocard.2013.04.004
10.1109/ACCESS.2018.2807700
10.1055/s-0038-1634799
10.1016/j.hrthm.2006.05.025
10.1002/bem.20541
10.1016/j.jelectrocard.2008.01.012
10.1016/j.artmed.2006.07.006
10.2307/2531595
10.1016/j.jelectrocard.2015.05.002
10.1016/j.jelectrocard.2015.04.016
10.1016/S0893-6080(05)80056-5
10.1016/j.jelectrocard.2014.04.011
10.1016/j.jelectrocard.2014.03.008
10.1007/s00521-016-2510-6
10.1016/0735-1097(92)90093-3
10.1016/j.jelectrocard.2008.07.006
10.1016/j.ijcard.2013.10.013
ContentType Journal Article
Copyright The Author(s) 2019
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12938-019-0630-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 17
ExternalDocumentID oai_doaj_org_article_3489f58c3b7e4e05bb2bcf956f8d4d03
PMC6371549
30755195
10_1186_s12938_019_0630_9
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-9fae401e960bfe662ba371915e1b5655b318c7152625bae6222a017ebedd6b353
IEDL.DBID DOA
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458725600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-925X
IngestDate Fri Oct 03 12:32:01 EDT 2025
Tue Nov 04 01:59:20 EST 2025
Fri Sep 05 12:02:32 EDT 2025
Mon Oct 06 18:18:01 EDT 2025
Thu Apr 03 07:10:09 EDT 2025
Tue Nov 18 20:52:07 EST 2025
Sat Nov 29 01:47:55 EST 2025
Sat Sep 06 07:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Constructive algorithm
Vectorcardiography
Serial electrocardiography
Neural networks
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-9fae401e960bfe662ba371915e1b5655b318c7152625bae6222a017ebedd6b353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/3489f58c3b7e4e05bb2bcf956f8d4d03
PMID 30755195
PQID 2183166153
PQPubID 42562
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_3489f58c3b7e4e05bb2bcf956f8d4d03
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371549
proquest_miscellaneous_2185562013
proquest_journals_2183166153
pubmed_primary_30755195
crossref_primary_10_1186_s12938_019_0630_9
crossref_citationtrail_10_1186_s12938_019_0630_9
springer_journals_10_1186_s12938_019_0630_9
PublicationCentury 2000
PublicationDate 2019-02-12
PublicationDateYYYYMMDD 2019-02-12
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2019
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References RWC Scherptong (630_CR28) 2008; 41
PW Macfarlane (630_CR5) 1990; 29
CC Haar Ter (630_CR23) 2013; 46
B Eftekhar (630_CR25) 2005; 5
A Gogna (630_CR6) 2017; 64
RW Treskes (630_CR20) 2015; 48
SA Waien (630_CR2) 1992; 20
S Man (630_CR15) 2015; 48
S Jahandideh (630_CR24) 2010; 31
Y Xia (630_CR9) 2018; 6
SE Luijnenburg (630_CR1) 2013; 169
ER DeLong (630_CR27) 1988; 44
B Ibanez (630_CR3) 2018; 39
Z Gao (630_CR7) 2017; 37
MF Møller (630_CR17) 1993; 6
I Goodfellow (630_CR19) 2016
M Green (630_CR26) 2006; 38
Z Gao (630_CR8) 2018; 37
W Li (630_CR10) 2017; 18
HHM Draisma (630_CR14) 2006; 3
R Parekh (630_CR11) 2000; 11
BJA Schijvenaars (630_CR4) 2008; 41
HHM Draisma (630_CR13) 2005; 32
SG Warren (630_CR21) 2014; 47
CC Haar Ter (630_CR22) 2014; 47
MC Jongh De (630_CR16) 2017; 44
G King (630_CR18) 2001; 9
KG Kapanova (630_CR12) 2018; 29
References_xml – volume: 9
  start-page: 137
  year: 2001
  ident: 630_CR18
  publication-title: J Prod Anal
– volume: 37
  start-page: 273
  issue: 1
  year: 2018
  ident: 630_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2746879
– volume: 64
  start-page: 2196
  issue: 9
  year: 2017
  ident: 630_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2631620
– volume: 39
  start-page: 119
  issue: 2
  year: 2018
  ident: 630_CR3
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehx393
– volume: 5
  start-page: 3
  year: 2005
  ident: 630_CR25
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-5-3
– volume: 18
  issue: 4
  year: 2017
  ident: 630_CR10
  publication-title: IEEE Sens J.
– volume: 32
  start-page: 515
  year: 2005
  ident: 630_CR13
  publication-title: Comput Cardiol.
  doi: 10.1109/CIC.2005.1588151
– volume: 37
  start-page: 1
  year: 2017
  ident: 630_CR7
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.004
– volume: 11
  start-page: 436
  issue: 2
  year: 2000
  ident: 630_CR11
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.839013
– volume: 44
  start-page: 1
  year: 2017
  ident: 630_CR16
  publication-title: Comput Cardiol.
– volume: 46
  start-page: 302
  issue: 4
  year: 2013
  ident: 630_CR23
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2013.04.004
– volume: 6
  start-page: 16529
  year: 2018
  ident: 630_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807700
– volume: 29
  start-page: 354
  issue: 4
  year: 1990
  ident: 630_CR5
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634799
– volume-title: Deep learning
  year: 2016
  ident: 630_CR19
– volume: 3
  start-page: 1092
  issue: 9
  year: 2006
  ident: 630_CR14
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2006.05.025
– volume: 31
  start-page: 164
  issue: 2
  year: 2010
  ident: 630_CR24
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20541
– volume: 41
  start-page: 190
  issue: 3
  year: 2008
  ident: 630_CR4
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2008.01.012
– volume: 38
  start-page: 305
  issue: 3
  year: 2006
  ident: 630_CR26
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2006.07.006
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 630_CR27
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 48
  start-page: 463
  issue: 4
  year: 2015
  ident: 630_CR15
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2015.05.002
– volume: 48
  start-page: 498
  issue: 4
  year: 2015
  ident: 630_CR20
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2015.04.016
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 630_CR17
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 47
  start-page: 402
  issue: 4
  year: 2014
  ident: 630_CR21
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2014.04.011
– volume: 47
  start-page: 500
  issue: 4
  year: 2014
  ident: 630_CR22
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2014.03.008
– volume: 29
  start-page: 1481
  issue: 5
  year: 2018
  ident: 630_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2510-6
– volume: 20
  start-page: 295
  issue: 2
  year: 1992
  ident: 630_CR2
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(92)90093-3
– volume: 41
  start-page: 648
  issue: 6
  year: 2008
  ident: 630_CR28
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2008.07.006
– volume: 169
  start-page: 439
  issue: 6
  year: 2013
  ident: 630_CR1
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2013.10.013
SSID ssj0020069
Score 2.3733191
Snippet Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made...
Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made ECG in the...
Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a previously made...
Abstract Background Serial electrocardiography aims to contribute to electrocardiogram (ECG) diagnosis by comparing the ECG under consideration with a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Acute coronary syndromes
Algorithms
Automation
Biomaterials
Biomedical Engineering and Bioengineering
BioMedical Engineering and the Heart
Biomedical Engineering/Biotechnology
Biotechnology
Change detection
Complexity
Congestive heart failure
Constructive algorithm
Deep learning
Echocardiography
EKG
Electrocardiography
Engineering
Heart failure
Heart rate
Infarction
Integrals
Ischemia
Myocardial infarction
Neural networks
Optimization
Pathology
Patients
Physiology
Serial electrocardiography
Vectorcardiography
Ventricle
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQHHuUVKMhInEBWk3XsOFwQICoOUPUAUm-Wx3aWSlWy7G6R-PfMON6U5dEL18SW7Mx4Hp7J9zH2PMaoawNKKNc0ojYlCNeoVqDzlsaDCiokSX9sDg_N8XF7lC_cVrmtcmMTk6EOg6c78n1y5ZWm8OT14psg1iiqrmYKjcvsCqEkyNS6dzQlXATDmyuZldH7K_Jt1LpF_93LUrRbvihB9v8tzvyzXfK3mmlyRQe3_ncTt9nNHITyN6PW3GGXYr_LbvwCTbjLrn3KRfe7rB9v0HhmzPGpg3UEuubrgYdIdQiO4fnpD06_GxPtER-W3M2J28hRXzVPk5znRICcLvJfcYcz40Jk2oo536Cb32NfDt5_fvdBZJoG4ZXUa9F2LmKWFjEXgi5qPQMnG0wDVawAw0UFaDZ8g3ECplrgosaIxKEdQO0JQYNU8j7b6Yc-PmRcNRUEU0MXKqhVG0C2ZSuhhDpKJyUUrNwIzPqMYU5UGqc25TJG21HGFmVsSca2LdiLacpiBPC4aPBb0oJpIGFvpwfDcm7zUbayNm2njJfQxDqWCmAGvsM8szOhDqUs2N5G-DYbhJU9l3zBnk2v8ShTfcb1cThLYxSGoxiUF-zBqHLTStAUKwICKlizpYxbS91-0598TXDhGqWhatzby43ani_rn1_i0cWbeMyuz9I5ImacPbazXp7FJ-yq_74-WS2fplP4E0kLOx8
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLdgIAQPfAwYhYGCxBOoWu_SpClvgJh4gAnxpb1FcZMek6Z2urtN4r_HTtPCwUCC1yaWosSOf66dnwGehBB0aVDlylVVXpoCc1epOifnLU2DyisfT_ptdXBgDg_r9-kd92qsdh9TkvGmjmZt9N6KPRMXXvGreVnk9UW4RN7OsDV--PhlirKYezelL88V23BAkaf_PHD5e43kL4nS6H_2b_zXym_C9QQ3xYtBP27BhdBtw7WfSAi34cq7lF6_Dd3wr0yk3jhNrFUdKK3Fuhc-cMZBEBA__ib4YTE3OBL9UrgFdzFyXEEtopBrBLc6jr_snwtHkuEkTw0qFmLkMb8Dn_dff3r1Jk8NGfJGSb3O69YFiscCRT3YBq3n6GRFAZ8KMyRgqJAuiKYiREBBFbqgCXs4snjSE-81SiXvwlbXd-EeCFXN0JsSWz_DUtUeZV3UEgssg3RSYgbFeEq2SWzl3DTj2MaoxWg77KqlXbW8q7bO4OkkcjJQdfxt8ks--mkis2zHD_1yYZPRWlmaulWmkViFMhQKcY5NSxFla3zpC5nB7qg4Npn-yjLmnGnG0Rk8nobJaDkT47rQn8Y5ioAnwe8MdgY9m1ZCl65iyp8Mqg0N3Fjq5kh39DUSg2s6DYr3M3g26uGPZf1xJ-7_0-wHcHUeFZlb4uzC1np5Gh7C5eZsfbRaPoqW-B2EUjDG
  priority: 102
  providerName: Springer Nature
Title Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach
URI https://link.springer.com/article/10.1186/s12938-019-0630-9
https://www.ncbi.nlm.nih.gov/pubmed/30755195
https://www.proquest.com/docview/2183166153
https://www.proquest.com/docview/2185562013
https://pubmed.ncbi.nlm.nih.gov/PMC6371549
https://doaj.org/article/3489f58c3b7e4e05bb2bcf956f8d4d03
Volume 18
WOSCitedRecordID wos000458725600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RSV
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0iuCDaNW6Wo8IPilLdy-bj_XNSouCPY5W5XwKySZbC2Wv3F0F_3tnstmz5-eLLwt7SSBkZm5-k5n9DcDzEIKstBO5sErllS5cbpWoc3TeXDdOeOGjpN-ryUTPZvX0Sqsvqgnr6YH7g9vjla5boRvuVKhCIZwbu6ZFVN9qX_me5xNRzxBMpVCLCHhTDrPUcm9JXo2KtuiLe17k9YYXimT9v0OYvxZK_pQtjU7o8C7cSeiRve53fQ-uhW4bbl_hFNyGW0cpW34fuv7qi6VWN00sPe0ZqtlqznygBAJDXH3-jdF3wtSviM0XzJ5SUyJLBdEsLrINo87F8Qb-FbO4Mlzkqd_EKRtoyR_Ax8ODD2_e5qm_Qt4ILld53dqA4VXAIMa1Qcqxs1xh_CZC6RDnCYf23ih08BgjORskQgmLBoxi9146LvhD2OrmXXgETKjSeV251peuErV3vC5q7gpXBW45dxkUw3mbJpGPUw-McxODEC1NLyKDIjIkIlNn8GK95KJn3vjb5H0S4noikWbHH1CVTFIl8y9VymB3UAGTLHlpCEKWkmBxBs_Ww2iDlFixXZhfxjkCcSSi6Qx2eo1Z7wT_QwUx-GSgNnRpY6ubI93Zl8jzLVEaGL5n8HLQuh_b-uNJPP4fJ_GEri_ongntZbwLW6vFZXgKN5uvq7PlYgTX1UzFpx7Bjf2DyfR4FM1vRJWz0_g8wZHpu6PpZ3w7Pvn0HflKNck
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOgTjgcu4BQYYCV5A0dI6ThwkhLhNq9ZWfRjS9mTs2OkmTUlpO9D-FL-Rc5yko1z2tgdeY1uy48_n4nN8PoDnzrkklkaEQqdpGMvIhDoVWYjKm8vcCCus3-lBOhrJg4NsvAY_2rcwlFbZykQvqG2V0x35NqnybkLmydvp15BYoyi62lJo1LDYc2ff0WWbv-l_xP190evtfNr_sBs2rAJhLniyCLNCO3QqHJrupnBJ0jOap-i1CNc1aN0IgyjPU1Rr6BkY7RJUoBphi4u1NjGeJQJF_nqMYJcdWB_3h-PDpYtHhX-b2GlXJttz0qaULEYv_XkUZivaz5ME_M2y_TNB87corVd-Ozf_t992C240ZjZ7V5-L27Dmyk24_kvxxU24OmzSCu5AWd8RsoYTKPc5unUpb7aomHUUaWHogJycMXpQTcROrJoxPSH2Jk2Z48wP0jkjimcfqnjNNI5007Ah5piwtn77Xfh8KWu_B52yKt0DYCLtGitjU9iuiUVmDc-ijJvIxI5rzk0AUQsQlTdV2oks5ER5b00mqsaUQkwpwpTKAni5HDKtS5Rc1Pk9oW7ZkaqL-w_VbKIaYaV4LLNCyJyb1MUuEsb0TF6gJ11IG9uIB7DVgk01Im-uzpEWwLNlMworikDp0lWnvo9AgxvdjgDu1xBfzgSVjaBSRwGkK-BfmepqS3l85AuiJ7gbIsa1vWqPyfm0_vknHl68iKdwbXd_OFCD_mjvEWz0_BkmHqAt6Cxmp-4xXMm_LY7nsyeNDGDw5bLPz08NlJh3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQRU8cBRoAwWMxBMoanZ9xOGNawWirCpxqG-WHTtLpSpZ7aZI_HtmnAMWChLiNbYlH2P7m8z4-wAehxCU0E6m0uZ5KnTmUpvLIsXLm-vSSS99XOnDfD7Xx8fFUa9zuh6y3YeQZPemgVia6vZg6atui2t1sKZbipKw6AU9z9LiIlwSpBlE7vqHz6PHRTy8fSjz3GYbl1Hk7D8PaP6eL_lL0DTeRbPr_z2KG3Cth6HseWc3N-FCqHfg6k_khDuw_b4Pu9-CuvuHxnrNnDLmsHZU16xtmA8UiWAI0E-_MXpwTMJHrFkxuyB1I0uZ1Sw2siUjCeT4K_8Zs9gyLNNeuGLBBn7z2_Bp9vrjyzdpL9SQlpKrNi0qG9BPC-gNuSooNXWW5-gIyjBxCBilw4OjzBEpoLPlbFCISSyeBGg_3ivHJb8DW3VThz1gMp84r4Wr_MQJWXjHi6zgLnMicMu5SyAbVsyUPYs5iWmcmujNaGW6WTU4q4Zm1RQJPBmbLDsKj79VfkFmMFYk9u34oVktTL-ZDRe6qKQuucuDCJl0burKCj3NSnvhM57A_mBEpj8S1oaw6EQRvk7g0ViMm5kiNLYOzVmsIxGQIixPYLezubEneBhLogJKIN-wxo2ubpbUJ18iYbjC1ZACx_Z0sMkf3frjTNz9p9oPYfvo1cwcvp2_uwdXptGmSTVnH7ba1Vm4D5fLr-3JevUgbtDvhW08jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serial+electrocardiography+to+detect+newly+emerging+or+aggravating+cardiac+pathology%3A+a+deep-learning+approach&rft.jtitle=Biomedical+engineering+online&rft.au=Sbrollini%2C+Agnese&rft.au=De+Jongh%2C+Marjolein+C.&rft.au=Ter+Haar%2C+C.+Cato&rft.au=Treskes%2C+Roderick+W.&rft.date=2019-02-12&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-019-0630-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12938_019_0630_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon