High-entropy functional materials

While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select fun...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials research Ročník 33; číslo 19; s. 3138 - 3155
Hlavní autoři: Gao, Michael C., Miracle, Daniel B., Maurice, David, Yan, Xuehui, Zhang, Yong, Hawk, Jeffrey A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 14.10.2018
Springer International Publishing
Springer Nature B.V
Materials Research Society
Témata:
ISSN:0884-2914, 2044-5326
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling.
AbstractList While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling.
While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. As a result, perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling.
Author Hawk, Jeffrey A.
Gao, Michael C.
Yan, Xuehui
Miracle, Daniel B.
Maurice, David
Zhang, Yong
Author_xml – sequence: 1
  givenname: Michael C.
  surname: Gao
  fullname: Gao, Michael C.
  email: Michael.Gao@netl.doe.gov
  organization: National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA; and AECOM, Albany, Oregon 97321, USA
– sequence: 2
  givenname: Daniel B.
  surname: Miracle
  fullname: Miracle, Daniel B.
  organization: †AF Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA
– sequence: 3
  givenname: David
  surname: Maurice
  fullname: Maurice, David
  organization: ‡National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA
– sequence: 4
  givenname: Xuehui
  surname: Yan
  fullname: Yan, Xuehui
  organization: §The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China
– sequence: 5
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: §The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China
– sequence: 6
  givenname: Jeffrey A.
  surname: Hawk
  fullname: Hawk, Jeffrey A.
  organization: ‡National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA
BackLink https://www.osti.gov/servlets/purl/1509730$$D View this record in Osti.gov
BookMark eNqFkM1KAzEYRYNUsK3ufICqW6fmfyZLKWqFghtdh0wm06Z0kpqki769GaYgCOrqW-Tcm8uZgJHzzgBwjeAcMVY-bLswxxBVc4LJGRhjSGnBCOYjMIZVRQssEL0Akxi3ECIGSzoGN0u73hTGpeD3x1l7cDpZ79Ru1qlkglW7eAnO23zM1elOwcfz0_tiWazeXl4Xj6tCM8JTwTljqmrrsiWa61oprrTWpoItQU3JaN0IwiuBqRGQ06Z_VoxAqhveME44mYLbodfHZGXUNhm90d45o5PMa0VJYIbuBmgf_OfBxCS3_hDy3ihxRXOPEFj8SSEkysyVPXU_UDr4GINp5T7YToWjRFD2PmX2KXufMvvMOP6B54mqt5WCsrvfQsUQirnbrU34XvILPz99oro62GZt_gl8AUNalwM
CitedBy_id crossref_primary_10_1016_j_scriptamat_2020_06_017
crossref_primary_10_1016_j_jmmm_2024_171853
crossref_primary_10_1016_j_jallcom_2021_160640
crossref_primary_10_1038_s41467_019_09700_1
crossref_primary_10_1063_5_0003149
crossref_primary_10_1016_j_jallcom_2025_181463
crossref_primary_10_1007_s12598_024_02619_7
crossref_primary_10_3390_ma16062495
crossref_primary_10_1016_j_jmst_2020_07_014
crossref_primary_10_1063_1_5135324
crossref_primary_10_1021_acs_chemmater_5c00213
crossref_primary_10_1002_adma_202102139
crossref_primary_10_1038_s41598_021_87527_x
crossref_primary_10_1016_j_ceramint_2022_11_161
crossref_primary_10_1557_jmr_2019_405
crossref_primary_10_1016_j_intermet_2020_106802
crossref_primary_10_1002_sus2_215
crossref_primary_10_1002_adma_202402442
crossref_primary_10_1016_j_jmmm_2024_172134
crossref_primary_10_1021_jacs_1c01580
crossref_primary_10_1002_smll_202401443
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1016_j_ijhydene_2024_09_064
crossref_primary_10_1016_j_jallcom_2021_163221
crossref_primary_10_3390_e22070740
crossref_primary_10_1063_5_0065067
crossref_primary_10_1016_j_jallcom_2023_169561
crossref_primary_10_1002_adma_202510911
crossref_primary_10_1016_j_heliyon_2024_e32715
crossref_primary_10_1007_s10948_022_06420_4
crossref_primary_10_1002_adma_202410060
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1016_j_ceramint_2023_02_070
crossref_primary_10_1088_2515_7655_accc54
crossref_primary_10_1016_j_cpc_2022_108398
crossref_primary_10_1016_j_jallcom_2019_06_324
crossref_primary_10_1016_j_jallcom_2025_179048
crossref_primary_10_1038_s41598_023_42101_5
crossref_primary_10_1016_j_mtphys_2021_100394
crossref_primary_10_1063_5_0064308
crossref_primary_10_1016_j_jallcom_2020_157424
crossref_primary_10_1038_s41467_023_41359_7
crossref_primary_10_1016_j_apmt_2024_102164
crossref_primary_10_1016_j_jallcom_2019_152523
crossref_primary_10_1016_j_jallcom_2021_162501
crossref_primary_10_1016_j_jmmm_2025_173035
crossref_primary_10_1039_D2RA03807B
crossref_primary_10_1016_j_ijhydene_2023_04_029
crossref_primary_10_1021_acsaenm_5c00208
crossref_primary_10_1007_s11595_021_2467_x
crossref_primary_10_1002_advs_202203219
crossref_primary_10_1016_j_jallcom_2019_03_133
crossref_primary_10_1016_j_mtcomm_2022_103241
crossref_primary_10_1016_j_scriptamat_2020_10_049
crossref_primary_10_1126_science_aaz1598
crossref_primary_10_1007_s11665_024_09731_w
crossref_primary_10_1016_j_jallcom_2025_182006
crossref_primary_10_3390_met9030382
crossref_primary_10_1016_j_jmst_2020_10_071
crossref_primary_10_1016_j_mtcomm_2024_108821
crossref_primary_10_1016_j_ijhydene_2025_150830
crossref_primary_10_1016_j_jeurceramsoc_2022_03_006
crossref_primary_10_1016_j_actamat_2023_118970
crossref_primary_10_1016_j_addma_2024_104387
crossref_primary_10_1016_j_msea_2024_147015
crossref_primary_10_1002_smll_202309574
crossref_primary_10_1016_j_jallcom_2022_167337
crossref_primary_10_1111_tran_12519
crossref_primary_10_1016_j_jallcom_2022_167451
crossref_primary_10_1016_j_jeurceramsoc_2022_08_034
crossref_primary_10_1016_j_mtphys_2023_101116
crossref_primary_10_1038_s41598_022_21209_0
crossref_primary_10_1107_S1600576724004497
crossref_primary_10_1007_s44210_025_00058_2
crossref_primary_10_1016_j_intermet_2022_107610
crossref_primary_10_1016_j_jmst_2024_10_002
crossref_primary_10_1088_1757_899X_1107_1_012162
crossref_primary_10_1016_j_jece_2025_118132
crossref_primary_10_1063_5_0160477
crossref_primary_10_1016_j_mtla_2021_101250
crossref_primary_10_1557_s43577_025_00943_6
crossref_primary_10_1016_j_matdes_2021_110313
crossref_primary_10_1016_j_mtla_2021_101133
crossref_primary_10_1088_2053_1591_acac62
crossref_primary_10_3390_met10081072
crossref_primary_10_1016_j_jmmm_2024_172234
crossref_primary_10_1016_j_jpcs_2020_109905
crossref_primary_10_1016_j_jallcom_2021_162154
crossref_primary_10_1038_s41598_019_50015_4
crossref_primary_10_1016_j_actamat_2020_08_008
crossref_primary_10_1016_j_matlet_2021_129965
crossref_primary_10_1002_ange_202315371
crossref_primary_10_1016_j_actamat_2025_120747
crossref_primary_10_1016_j_jallcom_2024_178025
crossref_primary_10_1002_adma_202006723
crossref_primary_10_1016_j_pmatsci_2020_100688
crossref_primary_10_1016_j_ceramint_2023_01_200
crossref_primary_10_1039_D5TA03392F
crossref_primary_10_1007_s11242_022_01880_7
crossref_primary_10_3390_molecules26092470
crossref_primary_10_1002_advs_202402340
crossref_primary_10_1016_j_mtla_2023_101744
crossref_primary_10_1016_j_surfcoat_2023_129618
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1016_j_commatsci_2022_111218
crossref_primary_10_1016_j_vacuum_2023_112854
crossref_primary_10_1002_anie_202315371
crossref_primary_10_1039_D2NR01635D
crossref_primary_10_1016_j_ijhydene_2020_10_106
crossref_primary_10_1016_j_matdes_2024_112664
crossref_primary_10_3390_molecules24152799
crossref_primary_10_1016_j_jeurceramsoc_2020_05_040
crossref_primary_10_1016_j_solidstatesciences_2024_107728
crossref_primary_10_1016_j_jmmm_2022_169142
crossref_primary_10_1016_j_ceramint_2021_11_181
crossref_primary_10_1016_j_mseb_2023_116485
crossref_primary_10_1007_s11661_025_07928_9
crossref_primary_10_3390_hydrogen5010008
crossref_primary_10_1016_j_ceramint_2023_12_095
crossref_primary_10_1016_j_jallcom_2023_169282
crossref_primary_10_1016_j_actamat_2019_04_007
crossref_primary_10_1016_j_jallcom_2024_177632
crossref_primary_10_1038_s41598_021_87786_8
crossref_primary_10_1016_j_jallcom_2019_06_277
crossref_primary_10_1002_ente_202400061
crossref_primary_10_1016_j_jallcom_2018_11_235
crossref_primary_10_1016_j_jallcom_2020_156838
crossref_primary_10_1016_j_scriptamat_2024_115989
crossref_primary_10_1134_S0036029524701520
crossref_primary_10_1016_j_jallcom_2022_166040
crossref_primary_10_1007_s00339_022_05364_9
crossref_primary_10_1002_sus2_47
crossref_primary_10_1177_09544062211008935
crossref_primary_10_1002_adma_202101342
crossref_primary_10_1063_1_5119373
crossref_primary_10_1016_j_jallcom_2023_171483
crossref_primary_10_1002_aenm_202402042
crossref_primary_10_1016_j_jallcom_2022_167827
crossref_primary_10_1016_j_jmst_2021_01_054
crossref_primary_10_1016_j_jallcom_2019_153548
crossref_primary_10_1002_smll_202302609
crossref_primary_10_1016_j_ijhydene_2022_02_113
crossref_primary_10_1016_j_jeurceramsoc_2024_117126
crossref_primary_10_1016_j_crhy_2018_09_004
crossref_primary_10_1016_j_matchar_2020_110179
crossref_primary_10_1080_09500839_2022_2120644
crossref_primary_10_1016_j_jallcom_2024_173977
crossref_primary_10_1016_j_jallcom_2021_161779
crossref_primary_10_1016_j_jallcom_2020_158115
crossref_primary_10_1016_j_jallcom_2020_158357
crossref_primary_10_3390_ma16031245
crossref_primary_10_1016_j_matchemphys_2025_130876
crossref_primary_10_1088_1674_4926_45_3_030202
crossref_primary_10_1016_j_healthplace_2021_102620
crossref_primary_10_1016_j_mattod_2021_03_018
crossref_primary_10_1016_j_cej_2025_159591
crossref_primary_10_1016_j_ceramint_2019_11_239
crossref_primary_10_1016_j_jallcom_2022_163714
crossref_primary_10_1016_j_oceram_2025_100811
crossref_primary_10_1016_j_mseb_2023_116454
crossref_primary_10_1016_j_ccr_2025_216435
crossref_primary_10_1007_s40145_021_0477_y
crossref_primary_10_1557_jmr_2020_43
crossref_primary_10_1016_j_jallcom_2019_03_411
crossref_primary_10_3390_e20110872
crossref_primary_10_1007_s00339_021_04988_7
crossref_primary_10_1016_j_actamat_2021_116843
crossref_primary_10_1039_D1EE00505G
crossref_primary_10_1109_TMAG_2022_3232722
crossref_primary_10_1007_s11665_022_06896_0
crossref_primary_10_1007_s10853_025_11420_5
crossref_primary_10_1016_j_jallcom_2025_179594
crossref_primary_10_1016_j_matchemphys_2023_127761
crossref_primary_10_1080_01411594_2022_2048656
crossref_primary_10_1149_1945_7111_ad6d93
crossref_primary_10_4028_p_Bk26wY
crossref_primary_10_1016_j_jallcom_2023_168794
crossref_primary_10_1063_5_0134915
crossref_primary_10_1016_j_jmmm_2020_167432
crossref_primary_10_1016_j_pmatsci_2024_101332
crossref_primary_10_1016_j_intermet_2024_108233
crossref_primary_10_1063_5_0017989
crossref_primary_10_1088_1361_6463_aca1ce
crossref_primary_10_1080_10584587_2025_2483640
crossref_primary_10_1002_aelm_202200327
crossref_primary_10_1007_s44210_022_00004_6
crossref_primary_10_1016_j_ceramint_2022_03_310
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_3390_met14060608
crossref_primary_10_1016_j_calphad_2023_102617
crossref_primary_10_1007_s11664_021_09343_3
crossref_primary_10_1016_j_intermet_2024_108343
crossref_primary_10_1007_s10853_020_05171_8
crossref_primary_10_1016_j_scriptamat_2024_116485
crossref_primary_10_1002_adts_202000195
crossref_primary_10_1016_j_jallcom_2024_176255
crossref_primary_10_1016_j_jmmm_2025_173108
crossref_primary_10_1007_s11661_024_07635_x
crossref_primary_10_1007_s12274_021_3805_1
crossref_primary_10_1016_j_apmt_2019_04_014
crossref_primary_10_1016_j_jallcom_2019_153228
crossref_primary_10_3390_ma12244222
crossref_primary_10_1002_adem_202400541
crossref_primary_10_3390_ma16031044
crossref_primary_10_1002_adfm_202202372
crossref_primary_10_1016_j_jeurceramsoc_2019_05_017
crossref_primary_10_1007_s11665_023_08983_2
Cites_doi 10.1016/j.ijhydene.2014.02.067
10.1016/j.jallcom.2016.09.271
10.1007/978-3-319-27013-5_3
10.1016/j.actamat.2013.01.042
10.1016/j.jmmm.2017.06.124
10.1088/0022-3727/39/21/019
10.1016/j.rser.2017.01.063
10.1038/s41529-017-0009-y
10.1063/1.4932571
10.1016/j.jallcom.2015.12.125
10.1016/j.jallcom.2016.11.417
10.1002/adma.201702712
10.1038/srep36770
10.1016/j.surfin.2017.06.012
10.1016/j.intermet.2017.04.007
10.1007/978-3-319-27013-5_15
10.1007/978-3-319-27013-5_7
10.1007/978-3-319-27013-5_12
10.1063/1.4803530
10.1002/pssr.201600043
10.3390/e15104504
10.1021/acs.chemmater.7b04578
10.1007/s11837-017-2523-3
10.3166/acsm.31.723-736
10.1016/j.intermet.2015.06.015
10.1063/1.4798340
10.1021/acs.chemmater.6b04076
10.1016/j.jeurceramsoc.2016.09.018
10.1103/PhysRevLett.30.92
10.1016/j.intermet.2006.08.005
10.1016/j.jmmm.2014.07.023
10.1088/1674-1056/18/5/055
10.1016/j.ijhydene.2017.02.061
10.1016/j.intermet.2016.12.002
10.1016/j.jallcom.2016.09.186
10.1021/jacs.5b07284
10.1063/1.4935489
10.1016/j.intermet.2015.11.005
10.1080/21663831.2016.1220433
10.1002/adem.200300567
10.1016/j.jmmm.2017.04.017
10.1007/s11661-013-2000-8
10.1103/PhysRevMaterials.2.034801
10.1103/PhysRev.97.74
10.1038/ncomms7529
10.3389/fmats.2018.00026
10.1016/j.matlet.2017.03.159
10.1557/jmr.2017.341
10.1126/science.268.5218.1738
10.1063/1.4832615
10.1088/0022-3727/41/23/235402
10.1038/nature09996
10.1038/ncomms9485
10.1016/j.intermet.2015.09.009
10.1016/j.mseb.2009.05.024
10.1016/j.jallcom.2012.12.095
10.1038/ncomms9736
10.1007/978-3-319-27013-5_14
10.1007/s12613-013-0764-x
10.1016/j.actamat.2017.03.013
10.1016/j.intermet.2015.08.014
10.1016/j.jct.2015.07.016
10.1016/j.scriptamat.2009.09.015
10.1038/srep37946
10.1016/j.matdes.2016.04.053
10.1016/j.actamat.2016.12.021
10.1007/s11837-013-0772-3
10.1038/srep20159
10.1016/j.ijhydene.2013.05.071
10.1002/adma.200901072
10.1016/j.ijhydene.2010.06.012
10.1016/j.scriptamat.2017.03.029
10.1007/s11837-013-0761-6
10.1038/ncomms6964
10.1016/j.intermet.2014.08.008
10.1016/j.actamat.2012.10.040
10.1039/C5RA28088E
10.1073/pnas.1716981114
10.1007/978-3-319-27013-5
10.1016/j.jallcom.2018.02.189
10.1016/j.pnsc.2012.11.011
10.1016/j.ijhydene.2013.07.096
10.1038/s41598-017-10774-4
10.1016/j.jallcom.2009.11.104
10.1080/21663831.2016.1244116
10.1016/j.tsf.2009.06.020
10.1016/j.jallcom.2017.02.070
10.1016/j.physc.2015.03.003
10.1016/j.surfcoat.2008.01.014
10.3390/e16010494
10.1016/j.jallcom.2010.10.210
10.1557/jmr.2017.366
10.1063/1.3538936
10.3390/nano2040379
10.1007/978-3-319-27013-5_9
10.1038/srep01455
10.1016/j.jmmm.2013.11.049
10.1038/s41524-017-0060-9
10.1016/j.pmatsci.2013.10.001
10.1016/j.actamat.2015.08.050
10.1016/j.scriptamat.2017.08.040
10.1038/srep15755
10.1103/PhysRevLett.113.107001
10.1016/j.ijhydene.2017.09.039
10.1038/s41524-017-0049-4
10.1016/j.intermet.2018.01.016
10.1038/nmat2090
10.1016/j.actamat.2017.12.037
10.3390/e18080308
10.1002/adma.201002180
10.1016/j.surfcoat.2009.01.016
10.3390/met7020043
10.1016/j.actamat.2016.08.081
10.1063/1.2841810
10.1016/j.cossms.2017.08.001
10.1002/adem.201200104
10.1103/PhysRevB.96.014437
10.1016/j.msea.2003.10.257
10.1016/j.electacta.2008.06.036
10.1016/j.actamat.2009.02.026
10.1016/j.cossms.2015.06.001
10.1016/j.actamat.2017.06.027
10.1007/s11661-015-3091-1
10.1016/j.msea.2011.10.110
10.1016/j.intermet.2015.06.014
10.1002/adma.201202919
10.1155/2018/3016304
10.1073/pnas.1615926113
ContentType Journal Article
Copyright Copyright © Materials Research Society 2018
The Materials Research Society 2018
The Materials Research Society 2018.
Copyright_xml – notice: Copyright © Materials Research Society 2018
– notice: The Materials Research Society 2018
– notice: The Materials Research Society 2018.
CorporateAuthor National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
CorporateAuthor_xml – name: National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
DBID AAYXX
CITATION
3V.
7SR
7WY
7WZ
7XB
87Z
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
HCIFZ
JG9
K60
K6~
KB.
L.-
L.0
M0C
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0W
OIOZB
OTOTI
DOI 10.1557/jmr.2018.323
DatabaseName CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Materials Research Database
CrossRef


Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate M.C. Gao et al.: High-entropy functional materials
EISSN 2044-5326
EndPage 3155
ExternalDocumentID 1509730
10_1557_jmr_2018_323
GroupedDBID -2P
-E.
-~X
.DC
.FH
0E1
0R~
2JN
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
8UJ
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAFGU
AAGFV
AAHNG
AAIKC
AAKTX
AAMNW
AARAB
AASVR
AATID
AATNV
AAUKB
AAYFA
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKAS
ABKKG
ABMQK
ABMWE
ABMYL
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABUWG
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACCHT
ACGFO
ACGFS
ACHSB
ACIGE
ACIHN
ACIMK
ACIWK
ACQFJ
ACQPF
ACREK
ACTTH
ACUIJ
ACUYZ
ACVWB
ACWGA
ACWMK
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADGEJ
ADOCW
ADOXG
AEAQA
AEBAK
AEFTE
AEHGV
AEMSY
AEMTW
AENEX
AENGE
AESKC
AESTI
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFNRJ
AFUTZ
AGLWM
AGMZJ
AGOOT
AGQEE
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJDOV
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
AUXHV
AYIQA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CFAFE
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
DWQXO
EBS
EJD
F5P
FIGPU
FRNLG
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
K60
K6~
KB.
KC.
KCGVB
KFECR
L98
LLZTM
M-V
M0C
M7~
NIKVX
NPVJJ
NQJWS
O9-
P2P
PDBOC
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
RR0
RSV
S0W
S6-
S6U
SAAAG
SJN
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
WXY
YQT
ZMEZD
ZMTXR
ZYDXJ
~02
-2V
3V.
AACDK
AAEWM
AAJBT
AASML
AATMM
ABAKF
ABDPE
ABZUI
ACDTI
ACETC
ACPIV
ACRPL
ADNMO
ADOVH
ADOVT
AEFQL
AEMFK
AI.
AIGIU
AKZCZ
ARZZG
BCGOX
BESQT
BJBOZ
BQFHP
CCUQV
CFBFF
CGQII
EBLON
GROUPED_ABI_INFORM_COMPLETE
KAFGG
LHUNA
M8.
PKN
PQBZA
ROL
SCG
SCLPG
SJYHP
VH1
VOH
ZDLDU
ZE2
ZJOSE
~V1
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
L.-
L.0
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
CHEAL
OIOZB
OTOTI
ID FETCH-LOGICAL-c536t-6655a8fb7f3c6cbaa6accce80f31d754bd9368924e9064da6aca5304cd6d56363
IEDL.DBID BENPR
ISICitedReferencesCount 239
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452650400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-2914
IngestDate Wed Nov 29 06:12:13 EST 2023
Wed Sep 17 23:58:17 EDT 2025
Wed Sep 17 23:56:24 EDT 2025
Tue Nov 18 22:37:21 EST 2025
Sat Nov 29 07:47:16 EST 2025
Fri Feb 21 02:43:31 EST 2025
Wed Mar 13 05:42:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords magnetic properties
thermoelectric
superconducting
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-6655a8fb7f3c6cbaa6accce80f31d754bd9368924e9064da6aca5304cd6d56363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
CONTR-PUB-478
FE0004000
FE
OpenAccessLink https://www.osti.gov/servlets/purl/1509730
PQID 2119756379
PQPubID 626330
PageCount 18
ParticipantIDs osti_scitechconnect_1509730
proquest_journals_2845639929
proquest_journals_2119756379
crossref_primary_10_1557_jmr_2018_323
crossref_citationtrail_10_1557_jmr_2018_323
springer_journals_10_1557_jmr_2018_323
cambridge_journals_10_1557_jmr_2018_323
PublicationCentury 2000
PublicationDate 2018-10-14
PublicationDateYYYYMMDD 2018-10-14
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-14
  day: 14
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
– name: Warrendale
– name: United States
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationTitleAlternate J. Mater. Res
PublicationYear 2018
Publisher Cambridge University Press
Springer International Publishing
Springer Nature B.V
Materials Research Society
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
– name: Springer Nature B.V
– name: Materials Research Society
References Shen, Sun, Hu, Zhang, Cheng 2009; 21
Green, Takeuchi, Hattrick-Simpers 2013; 113
Tan, Shi, Hao, Chi, Bailey, Zhao, Uher, Wolverton, Dravid, Kanatzidis 2015; 137
Snyder, Toberer 2008; 7
Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei 2016; 6
Herzer 2013; 61
Huang, Yeh 2010; 62
Gao, Zhang, Gao, Zhang, Ouyang, Widom, Hawk 2017; 21
Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter 2015; 107
Wang, Zhang, Qiao, Chen 2007; 15
Zhao, Lee, Lee, Kim, Han, Ramamurty, Suh, Jang 2017; 42
Widom, Huhn, Maiti, Steurer 2014; 45
Fan, Wang, Wu, Liu, Lu 2016; 6
Miracle, Senkov 2017; 122
Huang, Yeh 2009; 518
Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria 2015; 6
Lucas, Mauger, Munoz, Xiao, Sheets, Semiatin, Horwath, Turgut 2011; 109
Wei, Sun, Chen, Han, Li 2017; 435
Luo, Li, Raabe 2017; 7
Anand, Wynn, Handley, Freeman 2018; 146
Zuo, Li, Ren, Zhang 2014; 371
Kumar, Jain, Ichikawa, Kojima, Dey 2017; 72
Zhang, Fu, Zhang, Shi, Wang, Wang, Wang, Zhang 2010; 502
Körmann, Hickel, Neugebauer 2016; 20
Yang, Yang, Wu, Chen, Mao, Luo 2016; 663
Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi 2014; 1
Gao, Zhang, Guo, Qiao, Hawk 2016; 47
Shen, Li, Sun, Shen 2009; 18
Tsai, Wang, Lai, Yeh, Gan 2008; 92
Chen, Han, Yang, Cheng, Zou 2012; 22
Stolze, Tao, von Rohr, Kong, Cava 2018; 30
Kumar, Banerjee, Pillai, Bharadwaj 2013; 38
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang 2004; 6
Miracle, Miller, Senkov, Woodward, Uchic, Tiley 2014; 16
Senkov, Miller, Miracle, Woodward 2015; 6
Kao, Chen, Sheu, Lin, Lin, Yeh, Lin, Liou, Wang 2010; 35
Tsai, Lai, Yeh, Gan 2008; 41
Jin, Bei 2018; 5
Qiu, Thomas, Gibson, Fraser, Birbilis 2017; 1
Pei, Wang, Snyder 2012; 24
Takeuchi, Amiya, Wada, Yubuta 2015; 66
Ma, Zhang 2012; 532
Kunce, Polanski, Bystrzycki 2014; 39
Huhn, Widom 2013; 65
Kunce, Polanski, Czujko 2017; 42
Zhao, Lee, Seok, Lee, Phaniraj, Suh, Ha, Kim, Ramamurty, Jang 2017; 135
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu 2014; 61
Gao, Alman 2013; 15
Huang, Holmström, Eriksson, Vitos 2018; 95
Zuo, Yang, Liaw, Zhang 2015; 67
Yin, Nash 2015; 91
Lai, Cheng, Lin, Yeh 2008; 202
Schneeweiss, Friak, Dudova, Holec, Sob, Kriegner, Holy, Beran, George, Neugebauer, Dlouhy 2017; 96
Xie, Weidenkaff, Tang, Zhang, Poon, Tritt 2012; 2
Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw 2015; 6
Zuo, Ren, Liaw, Zhang 2013; 20
Cantor, Chang, Knight, Vincent 2004; 375–377
Wang, Zheng, Xu, Wang 2014; 355
Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller 2013; 113
Zhang, Zuo, Cheng, Liaw 2013; 3
Li, Xu, Gu, Pan, Yu, Tan, Hou 2018; 746
Berardan, Franger, Dragoe, Meena, Dragoe 2016; 10
Fan, Wang, Wu, Liu, Lu 2017; 5
Choi, Jo, Sohn, Lee, Lee 2018; 4
Yeh 2013; 65
Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber 2015; 6
Mishra, Shahi 2017; 442
Kao, Chen, Chen, Chu, Yeh, Lin 2011; 509
Berardan, Meena, Franger, Herrero, Dragoe 2017; 704
Lai, Lin, Yeh, Davison 2006; 39
Zaddach, Niu, Oni, Fan, LeBeau, Irving, Koch 2016; 68
Chou, Chang, Chen, Yeh 2009; 163
Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo 2018; 142
Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya 2017; 37
Kunce, Polanski, Bystrzycki 2013; 38
Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun 2017; 114
Matthias 1955; 97
Pei, Shi, LaLonde, Wang, Chen, Snyder 2011; 473
Shang, Axinte, Ge, Zhang, Wang 2017; 9
Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu 2017; 125
Takeuchi, Wada, Zhang 2017; 82
Huang, Yeh 2009; 203
Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo 2016; 6
Xiang, Sun, Briceno, Lou, Wang, Chang, Wallacefreedman, Chen, Schultz 1995; 268
Belyea, Lucas, Michel, Horwath, Miller 2015; 5
Gorsse, Miracle, Senkov 2017; 135
Koch 2017; 32
Ma, Grabowski, Kormann, Neugebauer, Raabe 2015; 100
Chu, Canfield, Dynes, Fisk, Batlogg, Deutscher, Geballe, Zhao, Greene, Hosono, Maple 2015; 514
Collver, Hammond 1973; 30
Tariq, Naeem, Hasan, Akhter, Siddique 2013; 556
Huang, Li, Li, Schonecker, Bergqvist, Holmstrom, Varga, Vitos 2016; 103
von Rohr, Winiarski, Tao, Klimczuk, Cava 2016; 113
Cheng, Lai, Lin, Yeh 2006; 31
Perrin, Sorescu, Burton, Laughlin, McHenry 2017; 69
Otto, Yang, Bei, George 2013; 61
Ji, Wang, Wang, Zhang, Wang, Zhang, Fu 2015; 56
Zhang, Xu, Tan, Hou, Wu, Tan, Yu 2017; 693
Vrtnik, Kozelj, Meden, Maiti, Steurer, Feuerbacher, Dolinsek 2017; 695
Li, Wang, Liu 2017; 694
Gutfleisch, Willard, Brück, Chen, Sankar, Liu 2011; 23
Yao, Zhang, Liu, Li, Ye, Liu, Tong 2008; 53
Wei, Tao, Sun, Chen, Sun, Li 2017; 197
Yu, Zhang, Cheng, Zhang, Ma, Li, Li, Liaw, Liu 2016; 70
Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk 2017; 2018
Liu, Chen, Zhao, Qin, Jiang, Zhang, Sha, Shi, Uher, Zhang, Chen 2017; 29
Liu, Zhu, Li, Jiang 2012; 14
Sahlberg, Karlsson, Zlotea, Jansson 2016; 6
Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek 2014; 113
Feng, Liaw, Gao, Widom 2017; 3
Orabi, Hwang, Lin, Gautier, Fontaine, Kim, Rhyee, Wee, Fornari 2017; 29
Yu, Zhu, Shi, Zhang, Zhao, He 2009; 57
Qi, Li, Takeuchi, Xie, Miao, Zhang 2015; 66
Lin, Cheng, Yeh, Chin 2016; 18
von Rohr, Cava 2018; 2
Shi, Yang, Liaw 2017; 7
Shafeie, Guo, Hu, Fahlquist, Erhart, Palmqvist 2015; 118
Li, Wang, Liu 2017; 87
Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang 2017; 130
Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kubel, Bhattacharya, Gandhif, Hahn 2017; 5
Gao, Gao, Hawk, Ouyang, Alman, Widom 2017; 32
Schneeweiss, Friak, Dudova, Holec, Sob, Kriegner, Holy, Beran, George, Neugebauer, Dlouhy (CR49) 2017; 96
Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (CR58) 2015; 107
Kunce, Polanski, Bystrzycki (CR86) 2014; 39
Gao, Alman (CR130) 2013; 15
Sahlberg, Karlsson, Zlotea, Jansson (CR85) 2016; 6
Xiang, Sun, Briceno, Lou, Wang, Chang, Wallacefreedman, Chen, Schultz (CR84) 1995; 268
Tan, Shi, Hao, Chi, Bailey, Zhao, Uher, Wolverton, Dravid, Kanatzidis (CR71) 2015; 137
Okamoto (CR90) 2000
Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun (CR77) 2017; 114
Yeh, Chen, Shih, Zhang, Zuo, Gao, Yeh, Liaw, Zhang (CR11) 2016
Matthias (CR82) 1955; 97
Yeh, Gao, Yeh, Liaw, Zhang (CR7) 2016
Li, Xu, Gu, Pan, Yu, Tan, Hou (CR50) 2018; 746
Herzer (CR53) 2013; 61
Stolze, Tao, von Rohr, Kong, Cava (CR81) 2018; 30
Miracle, Senkov (CR6) 2017; 122
Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (CR101) 2015; 6
Shen, Li, Sun, Shen (CR61) 2009; 18
Jin, Bei (CR62) 2018; 5
Anand, Wynn, Handley, Freeman (CR107) 2018; 146
Cantor, Chang, Knight, Vincent (CR2) 2004; 375–377
Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller (CR54) 2013; 113
Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang (CR46) 2017; 130
Perrin, Sorescu, Burton, Laughlin, McHenry (CR12) 2017; 69
Miracle, Miller, Senkov, Woodward, Uchic, Tiley (CR8) 2014; 16
Tariq, Naeem, Hasan, Akhter, Siddique (CR31) 2013; 556
Zhao, Lee, Seok, Lee, Phaniraj, Suh, Ha, Kim, Ramamurty, Jang (CR96) 2017; 135
Yao, Zhang, Liu, Li, Ye, Liu, Tong (CR23) 2008; 53
Widom, Huhn, Maiti, Steurer (CR126) 2014; 45
Pei, Shi, LaLonde, Wang, Chen, Snyder (CR67) 2011; 473
Huang, Yeh (CR116) 2010; 62
Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya (CR103) 2017; 37
Gao, Zhang, Gao, Zhang, Ouyang, Widom, Hawk (CR3) 2017; 21
Kunce, Polanski, Czujko (CR89) 2017; 42
Yeh, Yeh, Chang, Gao, Yeh, Liaw, Zhang (CR21) 2016
Green, Takeuchi, Hattrick-Simpers (CR97) 2013; 113
Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk (CR19) 2017; 2018
Gorsse, Miracle, Senkov (CR9) 2017; 135
Snyder, Toberer (CR64) 2008; 7
Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu (CR13) 2017; 125
Pei, Wang, Snyder (CR70) 2012; 24
von Rohr, Winiarski, Tao, Klimczuk, Cava (CR79) 2016; 113
Lucas, Mauger, Munoz, Xiao, Sheets, Semiatin, Horwath, Turgut (CR26) 2011; 109
Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek (CR76) 2014; 113
Chu, Canfield, Dynes, Fisk, Batlogg, Deutscher, Geballe, Zhao, Greene, Hosono, Maple (CR75) 2015; 514
Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber (CR65) 2015; 6
Tian, Wang, Irving, Vitos, Gao, Yeh, Liaw, Zhang (CR122) 2016
Fan, Wang, Wu, Liu, Lu (CR16) 2016; 6
Lai, Cheng, Lin, Yeh (CR111) 2008; 202
Senkov, Miller, Miracle, Woodward (CR128) 2015; 6
Gao, Yeh, Liaw, Zhang (CR5) 2016
Huang, Yeh (CR114) 2009; 518
Gao, Gao, Hawk, Ouyang, Alman, Widom (CR121) 2017; 32
Ma, Grabowski, Kormann, Neugebauer, Raabe (CR55) 2015; 100
Lai, Lin, Yeh, Davison (CR110) 2006; 39
Huang, Holmström, Eriksson, Vitos (CR56) 2018; 95
Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw (CR124) 2015; 6
Qiu, Thomas, Gibson, Fraser, Birbilis (CR18) 2017; 1
Mishra, Shahi (CR44) 2017; 442
Belyea, Lucas, Michel, Horwath, Miller (CR59) 2015; 5
Fan, Wang, Wu, Liu, Lu (CR15) 2017; 5
Zhao, Lee, Lee, Kim, Han, Ramamurty, Suh, Jang (CR95) 2017; 42
Vrtnik, Kozelj, Meden, Maiti, Steurer, Feuerbacher, Dolinsek (CR78) 2017; 695
Ma, Zhang (CR28) 2012; 532
Wei, Tao, Sun, Chen, Sun, Li (CR42) 2017; 197
Tsai, Wang, Lai, Yeh, Gan (CR113) 2008; 92
Collver, Hammond (CR83) 1973; 30
Zuo, Li, Ren, Zhang (CR33) 2014; 371
Körmann, Hickel, Neugebauer (CR57) 2016; 20
Kumar, Banerjee, Pillai, Bharadwaj (CR93) 2013; 38
Yin, Nash (CR100) 2015; 91
Takeuchi, Amiya, Wada, Yubuta (CR117) 2015; 66
Zuo, Ren, Liaw, Zhang (CR30) 2013; 20
Zuo, Yang, Liaw, Zhang (CR34) 2015; 67
Chen, Han, Yang, Cheng, Zou (CR69) 2012; 22
Yang, Yang, Wu, Chen, Mao, Luo (CR92) 2016; 663
Tsai, Lai, Yeh, Gan (CR112) 2008; 41
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (CR4) 2014; 61
Huhn, Widom (CR127) 2013; 65
Qi, Li, Takeuchi, Xie, Miao, Zhang (CR36) 2015; 66
Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi (CR68) 2014; 1
Kunce, Polanski, Bystrzycki (CR87) 2013; 38
Orabi, Hwang, Lin, Gautier, Fontaine, Kim, Rhyee, Wee, Fornari (CR72) 2017; 29
Xie, Weidenkaff, Tang, Zhang, Poon, Tritt (CR99) 2012; 2
Luo, Li, Raabe (CR94) 2017; 7
Choi, Jo, Sohn, Lee, Lee (CR125) 2018; 4
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (CR1) 2004; 6
Wei, Sun, Chen, Han, Li (CR43) 2017; 435
Li, Wang, Liu (CR45) 2017; 87
von Rohr, Cava (CR80) 2018; 2
Zhang, Zuo, Cheng, Liaw (CR29) 2013; 3
Feng, Liaw, Gao, Widom (CR120) 2017; 3
Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei (CR63) 2016; 6
Shi, Yang, Liaw (CR17) 2017; 7
Otto, Yang, Bei, George (CR119) 2013; 61
Yeh, Lin, Tsai, Chang, Gao, Yeh, Liaw, Zhang (CR20) 2016
Liu, Chen, Zhao, Qin, Jiang, Zhang, Sha, Shi, Uher, Zhang, Chen (CR73) 2017; 29
Zhang, Gao, Gao, Yeh, Liaw, Zhang (CR129) 2016
Shafeie, Guo, Hu, Fahlquist, Erhart, Palmqvist (CR14) 2015; 118
Li, Wang, Liu (CR41) 2017; 694
Kumar, Jain, Ichikawa, Kojima, Dey (CR91) 2017; 72
Kao, Chen, Chen, Chu, Yeh, Lin (CR25) 2011; 509
Chou, Chang, Chen, Yeh (CR66) 2009; 163
Kao, Chen, Sheu, Lin, Lin, Yeh, Lin, Liou, Wang (CR88) 2010; 35
Koch (CR10) 2017; 32
Wang, Zheng, Xu, Wang (CR32) 2014; 355
Lin, Cheng, Yeh, Chin (CR39) 2016; 18
Yu, Zhu, Shi, Zhang, Zhao, He (CR98) 2009; 57
Hott, Kleiner, Wolf, Zwicknagl, Narlikar (CR74) 2005
Huang, Li, Li, Schonecker, Bergqvist, Holmstrom, Varga, Vitos (CR37) 2016; 103
Yu, Zhang, Cheng, Zhang, Ma, Li, Li, Liaw, Liu (CR38) 2016; 70
Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kubel, Bhattacharya, Gandhif, Hahn (CR104) 2017; 5
Takeuchi, Wada, Zhang (CR118) 2017; 82
Berardan, Meena, Franger, Herrero, Dragoe (CR105) 2017; 704
Zhang, Fu, Zhang, Shi, Wang, Wang, Wang, Zhang (CR24) 2010; 502
Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (CR108) 2016; 6
Zaddach, Niu, Oni, Fan, LeBeau, Irving, Koch (CR40) 2016; 68
Gutfleisch, Willard, Brück, Chen, Sankar, Liu (CR52) 2011; 23
Shang, Axinte, Ge, Zhang, Wang (CR47) 2017; 9
Yeh (CR51) 2013; 65
Zhang, Xu, Tan, Hou, Wu, Tan, Yu (CR48) 2017; 693
Liu, Zhu, Li, Jiang (CR27) 2012; 14
Wang, Zhang, Qiao, Chen (CR22) 2007; 15
Shen, Sun, Hu, Zhang, Cheng (CR60) 2009; 21
Huang, Yeh (CR115) 2009; 203
Berardan, Franger, Dragoe, Meena, Dragoe (CR106) 2016; 10
Cheng, Lai, Lin, Yeh (CR109) 2006; 31
Gao, Zhang, Guo, Qiao, Hawk (CR123) 2016; 47
Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo (CR102) 2018; 142
Ji, Wang, Wang, Zhang, Wang, Zhang, Fu (CR35) 2015; 56
S0884291418003230_ref50
S0884291418003230_ref54
S0884291418003230_ref53
S0884291418003230_ref52
S0884291418003230_ref51
S0884291418003230_ref58
S0884291418003230_ref6
S0884291418003230_ref57
S0884291418003230_ref7
S0884291418003230_ref4
S0884291418003230_ref56
S0884291418003230_ref55
S0884291418003230_ref5
S0884291418003230_ref2
S0884291418003230_ref3
S0884291418003230_ref1
S0884291418003230_ref59
S0884291418003230_ref106
S0884291418003230_ref105
S0884291418003230_ref104
S0884291418003230_ref103
S0884291418003230_ref102
S0884291418003230_ref101
S0884291418003230_ref100
S0884291418003230_ref60
S0884291418003230_ref65
S0884291418003230_ref64
S0884291418003230_ref63
S0884291418003230_ref62
S0884291418003230_ref69
S0884291418003230_ref68
S0884291418003230_ref67
S0884291418003230_ref66
Rodriguez (S0884291418003230_ref19) 2017; 2018
Okamoto (S0884291418003230_ref90) 2000
S0884291418003230_ref32
S0884291418003230_ref31
S0884291418003230_ref119
S0884291418003230_ref30
S0884291418003230_ref118
S0884291418003230_ref36
S0884291418003230_ref35
S0884291418003230_ref34
S0884291418003230_ref33
S0884291418003230_ref39
S0884291418003230_ref38
S0884291418003230_ref37
S0884291418003230_ref120
Fan (S0884291418003230_ref15) 2017; 5
S0884291418003230_ref128
S0884291418003230_ref127
S0884291418003230_ref126
S0884291418003230_ref125
S0884291418003230_ref124
S0884291418003230_ref123
S0884291418003230_ref122
S0884291418003230_ref121
S0884291418003230_ref43
S0884291418003230_ref109
S0884291418003230_ref42
S0884291418003230_ref108
S0884291418003230_ref41
S0884291418003230_ref107
S0884291418003230_ref40
S0884291418003230_ref47
S0884291418003230_ref46
S0884291418003230_ref45
S0884291418003230_ref44
S0884291418003230_ref49
S0884291418003230_ref48
S0884291418003230_ref117
S0884291418003230_ref116
S0884291418003230_ref115
S0884291418003230_ref114
S0884291418003230_ref113
S0884291418003230_ref112
S0884291418003230_ref111
S0884291418003230_ref110
S0884291418003230_ref94
S0884291418003230_ref93
S0884291418003230_ref92
S0884291418003230_ref91
S0884291418003230_ref98
S0884291418003230_ref10
S0884291418003230_ref97
S0884291418003230_ref96
S0884291418003230_ref95
S0884291418003230_ref14
S0884291418003230_ref13
S0884291418003230_ref12
S0884291418003230_ref11
S0884291418003230_ref99
S0884291418003230_ref18
S0884291418003230_ref17
S0884291418003230_ref16
S0884291418003230_ref21
S0884291418003230_ref20
S0884291418003230_ref129
S0884291418003230_ref25
Shen (S0884291418003230_ref61) 2009; 18
S0884291418003230_ref24
S0884291418003230_ref23
S0884291418003230_ref22
S0884291418003230_ref29
S0884291418003230_ref28
S0884291418003230_ref27
S0884291418003230_ref26
S0884291418003230_ref130
S0884291418003230_ref72
S0884291418003230_ref71
S0884291418003230_ref70
S0884291418003230_ref76
S0884291418003230_ref75
S0884291418003230_ref73
S0884291418003230_ref79
S0884291418003230_ref78
S0884291418003230_ref77
Hott (S0884291418003230_ref74) 2005
S0884291418003230_ref83
S0884291418003230_ref82
S0884291418003230_ref81
S0884291418003230_ref80
S0884291418003230_ref87
S0884291418003230_ref86
S0884291418003230_ref85
S0884291418003230_ref84
S0884291418003230_ref89
S0884291418003230_ref88
S0884291418003230_ref8
S0884291418003230_ref9
References_xml – volume: 103
  start-page: 71
  year: 2016
  article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys
  publication-title: Mater. Des.
– volume: 32
  start-page: 3627
  year: 2017
  article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity
  publication-title: J. Mater. Res.
– volume: 4
  start-page: 1
  year: 2018
  article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study
  publication-title: npj Comput. Mater.
– volume: 69
  start-page: 2125
  year: 2017
  article-title: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys
  publication-title: JOM
– volume: 1
  start-page: 011305
  year: 2014
  article-title: Nanoscale thermal transport. II. 2003–2012
  publication-title: Appl. Phys. Rev.
– volume: 109
  start-page: 07E307
  year: 2011
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 357
  year: 2007
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
– volume: 371
  start-page: 60
  year: 2014
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn. Mater.
– volume: 21
  start-page: 238
  year: 2017
  article-title: Thermodynamics of concentrated solid solution alloys
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 137
  start-page: 11507
  year: 2015
  article-title: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 448
  year: 2017
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 2018
  start-page: 3016304
  year: 2017
  article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions
  publication-title: Adv. Mater. Sci. Eng.
– volume: 53
  start-page: 8359
  year: 2008
  article-title: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 4545
  year: 2009
  article-title: Recent progress in exploring magnetocaloric materials
  publication-title: Adv. Mater.
– volume: 57
  start-page: 2757
  year: 2009
  article-title: High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering
  publication-title: Acta Mater.
– volume: 35
  start-page: 9046
  year: 2010
  article-title: Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 6529
  year: 2015
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
– volume: 70
  start-page: 82
  year: 2016
  article-title: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering
  publication-title: Intermetallics
– volume: 38
  start-page: 12180
  year: 2013
  article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
– volume: 704
  start-page: 693
  year: 2017
  article-title: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
  publication-title: J. Alloys Compd.
– volume: 72
  start-page: 791
  year: 2017
  article-title: Development of vanadium based hydrogen storage material: A review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 146
  start-page: 119
  year: 2018
  article-title: Phase stability and distortion in high-entropy oxides
  publication-title: Acta Mater.
– volume: 96
  start-page: 014437
  year: 2017
  article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 27154
  year: 2017
  article-title: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 196
  year: 2014
  article-title: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy
  publication-title: Metall. Mater. Trans. A
– volume: 100
  start-page: 90
  year: 2015
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
– volume: 6
  start-page: 37946
  year: 2016
  article-title: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics
  publication-title: Sci. Rep.
– volume: 56
  start-page: 24
  year: 2015
  article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
– volume: 663
  start-page: 460
  year: 2016
  article-title: Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0 ≤ x ≤ 2) alloys
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 535
  year: 2012
  article-title: Nanostructured thermoelectric materials: Current research and future challenge
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 87
  start-page: 21
  year: 2017
  article-title: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys
  publication-title: Intermetallics
– volume: 10
  start-page: 328
  year: 2016
  article-title: Colossal dielectric constant in high entropy oxides
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 61
  start-page: 1
  year: 2014
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 39
  start-page: 9904
  year: 2014
  article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 36770
  year: 2016
  article-title: Superior hydrogen storage in high entropy alloys
  publication-title: Sci. Rep.
– volume: 202
  start-page: 3732
  year: 2008
  article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: Surf. Coating. Technol.
– volume: 113
  start-page: 107001
  year: 2014
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 2058
  year: 2009
  article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd
  publication-title: Chin. Phys. B
– volume: 130
  start-page: 10
  year: 2017
  article-title: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping
  publication-title: Acta Mater.
– volume: 42
  start-page: 12015
  year: 2017
  article-title: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 1
  year: 2018
  article-title: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance
  publication-title: Front. Mater.
– volume: 38
  start-page: 13335
  year: 2013
  article-title: Hydrogen storage properties of Ti2−xCrVMx (M = Fe, Co, Ni) alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 102
  year: 2017
  article-title: Multicomponent equiatomic rare earth oxides
  publication-title: Mater. Res. Lett.
– volume: 2
  start-page: 379
  year: 2012
  article-title: Recent advances in nanostructured thermoelectric half-heusler compounds
  publication-title: Nanomaterials
– volume: 435
  start-page: 184
  year: 2017
  article-title: Effect of cooling rate on the phase structure and magnetic properties of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 high entropy alloy
  publication-title: J. Magn. Magn. Mater.
– volume: 15
  start-page: 4504
  year: 2013
  article-title: Searching for next single-phase high-entropy alloy compositions
  publication-title: Entropy
– volume: 518
  start-page: 180
  year: 2009
  article-title: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings
  publication-title: Thin Solid Films
– volume: 9
  start-page: 36
  year: 2017
  article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering
  publication-title: Surf. Interfaces
– volume: 197
  start-page: 87
  year: 2017
  article-title: Soft magnetic Fe26.7Co26.7Ni26.6Si9B11 high entropy metallic glass with good bending ductility
  publication-title: Mater. Lett.
– volume: 3
  start-page: 1455
  year: 2013
  article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability
  publication-title: Sci. Rep.
– volume: 61
  start-page: 2628
  year: 2013
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater.
– volume: 18
  start-page: 308
  year: 2016
  article-title: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films
  publication-title: Entropy
– volume: 65
  start-page: 1759
  year: 2013
  article-title: Alloy design strategies and future trends in high-entropy alloys
  publication-title: JOM
– volume: 268
  start-page: 1738
  year: 1995
  article-title: A combinatorial approach to materials discovery
  publication-title: Science
– volume: 509
  start-page: 1607
  year: 2011
  article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 31
  start-page: 723
  year: 2006
  article-title: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets
  publication-title: Ann. Chimie Sci. Matériaux
– volume: 65
  start-page: 1772
  year: 2013
  article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W
  publication-title: JOM
– volume: 16
  start-page: 494
  year: 2014
  article-title: Exploration and development of high entropy alloys for structural applications
  publication-title: Entropy
– volume: 113
  start-page: E7144
  year: 2016
  article-title: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 299
  year: 2004
  article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 693
  start-page: 1061
  year: 2017
  article-title: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 107
  start-page: 142404
  year: 2015
  article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
– volume: 375–377
  start-page: 213
  year: 2004
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng., A
– volume: 203
  start-page: 1891
  year: 2009
  article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating
  publication-title: Surf. Coating. Technol.
– volume: 125
  start-page: 481
  year: 2017
  article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect
  publication-title: Acta Mater.
– volume: 7
  start-page: 43
  year: 2017
  article-title: Corrosion-resistant high-entropy alloys: A review
  publication-title: Metals
– volume: 32
  start-page: 3435
  year: 2017
  article-title: Nanocrystalline high-entropy alloys
  publication-title: J. Mater. Res.
– volume: 7
  start-page: 9892
  year: 2017
  article-title: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy
  publication-title: Sci. Rep.
– volume: 695
  start-page: 3530
  year: 2017
  article-title: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 919
  year: 2012
  article-title: Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys
  publication-title: Adv. Engin. Mater.
– volume: 91
  start-page: 1
  year: 2015
  article-title: Standard enthalpies of formation of selected XYZ half-Heusler compounds
  publication-title: J. Chem. Thermodyn.
– volume: 5
  start-page: 15755
  year: 2015
  article-title: Tunable magnetocaloric effect in transition metal alloys
  publication-title: Sci. Rep.
– volume: 6
  start-page: 8485
  year: 2015
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
– volume: 114
  start-page: 13144
  year: 2017
  article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 612
  year: 2017
  article-title: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials
  publication-title: Chem. Mater.
– volume: 5
  start-page: 187
  year: 2017
  article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys
  publication-title: Mater. Res. Lett.
– volume: 694
  start-page: 55
  year: 2017
  article-title: A ductile high entropy alloy with attractive magnetic properties
  publication-title: J. Alloys Compd.
– volume: 61
  start-page: 718
  year: 2013
  article-title: Modern soft magnets: Amorphous and nanocrystalline materials
  publication-title: Acta Mater.
– volume: 113
  start-page: 231101
  year: 2013
  article-title: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
  publication-title: J. Appl. Phys.
– volume: 62
  start-page: 105
  year: 2010
  article-title: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings
  publication-title: Scripta Mater.
– volume: 355
  start-page: 58
  year: 2014
  article-title: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys
  publication-title: J. Magn. Magn. Mater.
– volume: 6
  start-page: 5964
  year: 2015
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
– volume: 30
  start-page: 92
  year: 1973
  article-title: Superconductivity in amorphous transition-metal alloy films
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 107
  year: 2016
  article-title: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy
  publication-title: Intermetallics
– volume: 20
  start-page: 77
  year: 2016
  article-title: Influence of magnetic excitations on the phase stability of metals and steels
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 142
  start-page: 116
  year: 2018
  article-title: A new class of high-entropy perovskite oxides
  publication-title: Scripta Mater.
– volume: 442
  start-page: 218
  year: 2017
  article-title: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys
  publication-title: J. Magn. Magn. Mater.
– volume: 23
  start-page: 821
  year: 2011
  article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
– volume: 118
  start-page: 184905
  year: 2015
  article-title: High-entropy alloys as high-temperature thermoelectric materials
  publication-title: J. Appl. Phys.
– volume: 532
  start-page: 480
  year: 2012
  article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Sci. Eng., A
– volume: 556
  start-page: 79
  year: 2013
  article-title: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 15
  year: 2017
  article-title: Corrosion of high entropy alloys
  publication-title: npj Mater. Degrad.
– volume: 67
  start-page: 171
  year: 2015
  article-title: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy
  publication-title: Intermetallics
– volume: 6
  start-page: 8736
  year: 2015
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
  publication-title: Nat. Commun.
– volume: 82
  start-page: 107
  year: 2017
  article-title: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds
  publication-title: Intermetallics
– volume: 95
  start-page: 80
  year: 2018
  article-title: Mapping the magnetic transition temperatures for medium- and high-entropy alloys
  publication-title: Intermetallics
– volume: 7
  start-page: 105
  year: 2008
  article-title: Complex thermoelectric materials
  publication-title: Nat. Mater.
– volume: 514
  start-page: 437
  year: 2015
  article-title: Epilogue: Superconducting materials past, present and future
  publication-title: Phys. C
– volume: 24
  start-page: 6125
  year: 2012
  article-title: Band engineering of thermoelectric materials
  publication-title: Adv. Mater.
– volume: 746
  start-page: 285
  year: 2018
  article-title: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 473
  start-page: 66
  year: 2011
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
– volume: 66
  start-page: 56
  year: 2015
  article-title: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry
  publication-title: Intermetallics
– volume: 20
  start-page: 549
  year: 2013
  article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 30
  start-page: 906
  year: 2018
  article-title: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice
  publication-title: Chem. Mater.
– volume: 41
  start-page: 235402
  year: 2008
  article-title: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings
  publication-title: J. Phys. D: Appl. Phys.
– volume: 502
  start-page: 295
  year: 2010
  article-title: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 52164
  year: 2016
  article-title: Thermoelectric high-entropy alloys with low lattice thermal conductivity
  publication-title: RSC Adv.
– volume: 3
  start-page: 50
  year: 2017
  article-title: First-principles prediction of high-entropy-alloy stability
  publication-title: npj Comput. Mater.
– volume: 113
  start-page: 17A923
  year: 2013
  article-title: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 39
  start-page: 4628
  year: 2006
  article-title: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 034801
  year: 2018
  article-title: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor
  publication-title: Phys. Rev. Mater.
– volume: 135
  start-page: 54
  year: 2017
  article-title: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement
  publication-title: Scripta Mater.
– volume: 37
  start-page: 747
  year: 2017
  article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides
  publication-title: J. Eur. Ceram. Soc.
– volume: 6
  start-page: 20159
  year: 2016
  article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity
  publication-title: Sci. Rep.
– volume: 66
  start-page: 8
  year: 2015
  article-title: Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses
  publication-title: Intermetallics
– volume: 92
  start-page: 052109
  year: 2008
  article-title: Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 177
  year: 2017
  article-title: Mapping the world of complex concentrated alloys
  publication-title: Acta Mater.
– volume: 163
  start-page: 184
  year: 2009
  article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys
  publication-title: Mater. Sci. Eng., B
– volume: 29
  start-page: 1702712
  year: 2017
  article-title: Entropy as a gene-like performance indicator promoting thermoelectric materials
  publication-title: Adv. Mater.
– volume: 97
  start-page: 74
  year: 1955
  article-title: Empirical relation between superconductivity and the number of valence electrons per atom
  publication-title: Phys. Rev.
– volume: 47
  start-page: 3322
  year: 2016
  article-title: High-entropy alloys in hexagonal close packed structure
  publication-title: Metall. Mater. Trans. A
– volume: 39
  start-page: 9904
  year: 2014
  ident: CR86
  article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.067
– volume: 693
  start-page: 1061
  year: 2017
  ident: CR48
  article-title: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) ( = 0–1.2) high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.09.271
– start-page: 51
  year: 2016
  ident: CR7
  article-title: Physical metallurgy
  publication-title: High Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_3
– volume: 61
  start-page: 2628
  year: 2013
  ident: CR119
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.01.042
– volume: 442
  start-page: 218
  year: 2017
  ident: CR44
  article-title: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.06.124
– volume: 39
  start-page: 4628
  year: 2006
  ident: CR110
  article-title: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/21/019
– volume: 72
  start-page: 791
  year: 2017
  ident: CR91
  article-title: Development of vanadium based hydrogen storage material: A review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.01.063
– volume: 1
  start-page: 15
  year: 2017
  ident: CR18
  article-title: Corrosion of high entropy alloys
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-017-0009-y
– volume: 107
  start-page: 142404
  year: 2015
  ident: CR58
  article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932571
– volume: 663
  start-page: 460
  year: 2016
  ident: CR92
  article-title: Hydrogen storage and cyclic properties of (VFe) (TiCrCo) Zr (0 ≤ ≤ 2) alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.125
– volume: 695
  start-page: 3530
  year: 2017
  ident: CR78
  article-title: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.11.417
– volume: 29
  start-page: 1702712
  year: 2017
  ident: CR73
  article-title: Entropy as a gene-like performance indicator promoting thermoelectric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702712
– volume: 6
  start-page: 36770
  year: 2016
  ident: CR85
  article-title: Superior hydrogen storage in high entropy alloys
  publication-title: Sci. Rep.
  doi: 10.1038/srep36770
– volume: 9
  start-page: 36
  year: 2017
  ident: CR47
  article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2017.06.012
– volume: 87
  start-page: 21
  year: 2017
  ident: CR45
  article-title: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl) high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2017.04.007
– start-page: 493
  year: 2016
  ident: CR21
  article-title: Potential applications and prospects
  publication-title: High Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_15
– start-page: 237
  year: 2016
  ident: CR11
  article-title: Functional properties
  publication-title: High Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_7
– start-page: 399
  year: 2016
  ident: CR129
  article-title: CALPHAD modeling of high-entropy alloys
  publication-title: High-Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_12
– volume: 113
  start-page: 231101
  year: 2013
  ident: CR97
  article-title: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4803530
– volume: 10
  start-page: 328
  year: 2016
  ident: CR106
  article-title: Colossal dielectric constant in high entropy oxides
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201600043
– volume: 15
  start-page: 4504
  year: 2013
  ident: CR130
  article-title: Searching for next single-phase high-entropy alloy compositions
  publication-title: Entropy
  doi: 10.3390/e15104504
– year: 2000
  ident: CR90
  publication-title: Desk Handbook: Phase Diagrams for Binary Alloys
– volume: 30
  start-page: 906
  year: 2018
  ident: CR81
  article-title: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04578
– volume: 69
  start-page: 2125
  year: 2017
  ident: CR12
  article-title: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys
  publication-title: JOM
  doi: 10.1007/s11837-017-2523-3
– volume: 31
  start-page: 723
  year: 2006
  ident: CR109
  article-title: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets
  publication-title: Ann. Chimie Sci. Matériaux
  doi: 10.3166/acsm.31.723-736
– volume: 66
  start-page: 8
  year: 2015
  ident: CR36
  article-title: Soft magnetic Fe Co Ni (B, Si) high entropy bulk metallic glasses
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.06.015
– volume: 113
  start-page: 17A923
  year: 2013
  ident: CR54
  article-title: Thermomagnetic analysis of FeCoCr Ni alloys: Magnetic entropy of high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798340
– volume: 29
  start-page: 612
  year: 2017
  ident: CR72
  article-title: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04076
– volume: 37
  start-page: 747
  year: 2017
  ident: CR103
  article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.09.018
– volume: 30
  start-page: 92
  year: 1973
  ident: CR83
  article-title: Superconductivity in amorphous transition-metal alloy films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.30.92
– volume: 15
  start-page: 357
  year: 2007
  ident: CR22
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTi alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2006.08.005
– volume: 371
  start-page: 60
  year: 2014
  ident: CR33
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.07.023
– volume: 18
  start-page: 2058
  year: 2009
  ident: CR61
  article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La R Fe Si compounds with R = Ce, Pr, and Nd
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/18/5/055
– volume: 42
  start-page: 12015
  year: 2017
  ident: CR95
  article-title: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.061
– volume: 82
  start-page: 107
  year: 2017
  ident: CR118
  article-title: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L1 structure in Pettifor map for binary compounds
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2016.12.002
– volume: 694
  start-page: 55
  year: 2017
  ident: CR41
  article-title: A ductile high entropy alloy with attractive magnetic properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.09.186
– volume: 137
  start-page: 11507
  year: 2015
  ident: CR71
  article-title: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07284
– volume: 118
  start-page: 184905
  year: 2015
  ident: CR14
  article-title: High-entropy alloys as high-temperature thermoelectric materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4935489
– volume: 70
  start-page: 82
  year: 2016
  ident: CR38
  article-title: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.11.005
– volume: 5
  start-page: 102
  year: 2017
  ident: CR104
  article-title: Multicomponent equiatomic rare earth oxides
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1220433
– volume: 6
  start-page: 299
  year: 2004
  ident: CR1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 435
  start-page: 184
  year: 2017
  ident: CR43
  article-title: Effect of cooling rate on the phase structure and magnetic properties of Fe Co Ni Si B P high entropy alloy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.04.017
– volume: 45
  start-page: 196
  year: 2014
  ident: CR126
  article-title: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-2000-8
– volume: 2
  start-page: 034801
  year: 2018
  ident: CR80
  article-title: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.034801
– volume: 97
  start-page: 74
  year: 1955
  ident: CR82
  article-title: Empirical relation between superconductivity and the number of valence electrons per atom
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.97.74
– volume: 6
  start-page: 6529
  year: 2015
  ident: CR128
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 5
  start-page: 1
  year: 2018
  ident: CR62
  article-title: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2018.00026
– volume: 197
  start-page: 87
  year: 2017
  ident: CR42
  article-title: Soft magnetic Fe Co Ni Si B high entropy metallic glass with good bending ductility
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.159
– volume: 32
  start-page: 3435
  year: 2017
  ident: CR10
  article-title: Nanocrystalline high-entropy alloys
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.341
– volume: 268
  start-page: 1738
  year: 1995
  ident: CR84
  article-title: A combinatorial approach to materials discovery
  publication-title: Science
  doi: 10.1126/science.268.5218.1738
– volume: 1
  start-page: 011305
  year: 2014
  ident: CR68
  article-title: Nanoscale thermal transport. II. 2003–2012
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4832615
– volume: 41
  start-page: 235402
  year: 2008
  ident: CR112
  article-title: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N coatings
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/23/235402
– volume: 473
  start-page: 66
  year: 2011
  ident: CR67
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 6
  start-page: 8485
  year: 2015
  ident: CR101
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9485
– volume: 68
  start-page: 107
  year: 2016
  ident: CR40
  article-title: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.09.009
– volume: 163
  start-page: 184
  year: 2009
  ident: CR66
  article-title: Microstructure, thermophysical and electrical properties in Al CoCrFeNi (0 ≤ ≤ 2) high-entropy alloys
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2009.05.024
– start-page: 1
  year: 2005
  ident: CR74
  article-title: Superconducting materials—A topical overview
  publication-title: Frontiers in Superconducting Materials
– volume: 556
  start-page: 79
  year: 2013
  ident: CR31
  article-title: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.12.095
– volume: 6
  start-page: 8736
  year: 2015
  ident: CR65
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9736
– start-page: 469
  year: 2016
  ident: CR20
  article-title: High-entropy coatings
  publication-title: High Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_14
– volume: 20
  start-page: 549
  year: 2013
  ident: CR30
  article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl Si high entropy alloy
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-013-0764-x
– volume: 130
  start-page: 10
  year: 2017
  ident: CR46
  article-title: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.013
– volume: 67
  start-page: 171
  year: 2015
  ident: CR34
  article-title: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.08.014
– volume: 91
  start-page: 1
  year: 2015
  ident: CR100
  article-title: Standard enthalpies of formation of selected XYZ half-Heusler compounds
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2015.07.016
– volume: 62
  start-page: 105
  year: 2010
  ident: CR116
  article-title: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2009.09.015
– volume: 6
  start-page: 37946
  year: 2016
  ident: CR108
  article-title: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics
  publication-title: Sci. Rep.
  doi: 10.1038/srep37946
– volume: 103
  start-page: 71
  year: 2016
  ident: CR37
  article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.04.053
– volume: 125
  start-page: 481
  year: 2017
  ident: CR13
  article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.021
– volume: 65
  start-page: 1772
  year: 2013
  ident: CR127
  article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W
  publication-title: JOM
  doi: 10.1007/s11837-013-0772-3
– volume: 6
  start-page: 20159
  year: 2016
  ident: CR63
  article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity
  publication-title: Sci. Rep.
  doi: 10.1038/srep20159
– volume: 38
  start-page: 12180
  year: 2013
  ident: CR87
  article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.071
– volume: 21
  start-page: 4545
  year: 2009
  ident: CR60
  article-title: Recent progress in exploring magnetocaloric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901072
– volume: 35
  start-page: 9046
  year: 2010
  ident: CR88
  article-title: Hydrogen storage properties of multi-principal-component CoFeMnTi V Zr alloys
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.012
– volume: 135
  start-page: 54
  year: 2017
  ident: CR96
  article-title: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.03.029
– volume: 65
  start-page: 1759
  year: 2013
  ident: CR51
  article-title: Alloy design strategies and future trends in high-entropy alloys
  publication-title: JOM
  doi: 10.1007/s11837-013-0761-6
– volume: 6
  start-page: 5964
  year: 2015
  ident: CR124
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6964
– volume: 56
  start-page: 24
  year: 2015
  ident: CR35
  article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2014.08.008
– volume: 61
  start-page: 718
  year: 2013
  ident: CR53
  article-title: Modern soft magnets: Amorphous and nanocrystalline materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.10.040
– volume: 6
  start-page: 52164
  year: 2016
  ident: CR16
  article-title: Thermoelectric high-entropy alloys with low lattice thermal conductivity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28088E
– volume: 114
  start-page: 13144
  year: 2017
  ident: CR77
  article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1716981114
– year: 2016
  ident: CR5
  publication-title: High-Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5
– volume: 746
  start-page: 285
  year: 2018
  ident: CR50
  article-title: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl) Ga (0 ≤ ≤ 0.08) high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.02.189
– volume: 22
  start-page: 535
  year: 2012
  ident: CR69
  article-title: Nanostructured thermoelectric materials: Current research and future challenge
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2012.11.011
– volume: 38
  start-page: 13335
  year: 2013
  ident: CR93
  article-title: Hydrogen storage properties of Ti CrVM (M = Fe, Co, Ni) alloys
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.07.096
– volume: 7
  start-page: 9892
  year: 2017
  ident: CR94
  article-title: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10774-4
– volume: 502
  start-page: 295
  year: 2010
  ident: CR24
  article-title: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.11.104
– volume: 5
  start-page: 187
  year: 2017
  ident: CR15
  article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1244116
– volume: 518
  start-page: 180
  year: 2009
  ident: CR114
  article-title: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.06.020
– volume: 704
  start-page: 693
  year: 2017
  ident: CR105
  article-title: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.02.070
– volume: 514
  start-page: 437
  year: 2015
  ident: CR75
  article-title: Epilogue: Superconducting materials past, present and future
  publication-title: Phys. C
  doi: 10.1016/j.physc.2015.03.003
– volume: 202
  start-page: 3732
  year: 2008
  ident: CR111
  article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2008.01.014
– volume: 16
  start-page: 494
  year: 2014
  ident: CR8
  article-title: Exploration and development of high entropy alloys for structural applications
  publication-title: Entropy
  doi: 10.3390/e16010494
– volume: 509
  start-page: 1607
  year: 2011
  ident: CR25
  article-title: Electrical, magnetic, and Hall properties of Al CoCrFeNi high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.10.210
– volume: 32
  start-page: 3627
  year: 2017
  ident: CR121
  article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.366
– volume: 109
  start-page: 07E307
  year: 2011
  ident: CR26
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3538936
– volume: 2
  start-page: 379
  year: 2012
  ident: CR99
  article-title: Recent advances in nanostructured thermoelectric half-heusler compounds
  publication-title: Nanomaterials
  doi: 10.3390/nano2040379
– volume: 113
  start-page: E7144
  year: 2016
  ident: CR79
  article-title: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 299
  year: 2016
  ident: CR122
  article-title: Applications of coherent potential approximation to HEAs
  publication-title: High-Entropy Alloys: Fundamentals and Applications
  doi: 10.1007/978-3-319-27013-5_9
– volume: 3
  start-page: 1455
  year: 2013
  ident: CR29
  article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability
  publication-title: Sci. Rep.
  doi: 10.1038/srep01455
– volume: 355
  start-page: 58
  year: 2014
  ident: CR32
  article-title: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.11.049
– volume: 4
  start-page: 1
  year: 2018
  ident: CR125
  article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0060-9
– volume: 61
  start-page: 1
  year: 2014
  ident: CR4
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 100
  start-page: 90
  year: 2015
  ident: CR55
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.050
– volume: 142
  start-page: 116
  year: 2018
  ident: CR102
  article-title: A new class of high-entropy perovskite oxides
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.08.040
– volume: 5
  start-page: 15755
  year: 2015
  ident: CR59
  article-title: Tunable magnetocaloric effect in transition metal alloys
  publication-title: Sci. Rep.
  doi: 10.1038/srep15755
– volume: 113
  start-page: 107001
  year: 2014
  ident: CR76
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.107001
– volume: 42
  start-page: 27154
  year: 2017
  ident: CR89
  article-title: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.039
– volume: 3
  start-page: 50
  year: 2017
  ident: CR120
  article-title: First-principles prediction of high-entropy-alloy stability
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0049-4
– volume: 95
  start-page: 80
  year: 2018
  ident: CR56
  article-title: Mapping the magnetic transition temperatures for medium- and high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.01.016
– volume: 7
  start-page: 105
  year: 2008
  ident: CR64
  article-title: Complex thermoelectric materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 146
  start-page: 119
  year: 2018
  ident: CR107
  article-title: Phase stability and distortion in high-entropy oxides
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.12.037
– volume: 18
  start-page: 308
  year: 2016
  ident: CR39
  article-title: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films
  publication-title: Entropy
  doi: 10.3390/e18080308
– volume: 23
  start-page: 821
  year: 2011
  ident: CR52
  article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002180
– volume: 203
  start-page: 1891
  year: 2009
  ident: CR115
  article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2009.01.016
– volume: 7
  start-page: 43
  year: 2017
  ident: CR17
  article-title: Corrosion-resistant high-entropy alloys: A review
  publication-title: Metals
  doi: 10.3390/met7020043
– volume: 122
  start-page: 448
  year: 2017
  ident: CR6
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 92
  start-page: 052109
  year: 2008
  ident: CR113
  article-title: Thermally stable amorphous (AlMoNbSiTaTiVZr) N nitride film as diffusion barrier in copper metallization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2841810
– volume: 21
  start-page: 238
  year: 2017
  ident: CR3
  article-title: Thermodynamics of concentrated solid solution alloys
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2017.08.001
– volume: 14
  start-page: 919
  year: 2012
  ident: CR27
  article-title: Microstructure and magnetic properties of FeNiCuMnTiSn high entropy alloys
  publication-title: Adv. Engin. Mater.
  doi: 10.1002/adem.201200104
– volume: 96
  start-page: 014437
  year: 2017
  ident: CR49
  article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.014437
– volume: 375–377
  start-page: 213
  year: 2004
  ident: CR2
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.10.257
– volume: 53
  start-page: 8359
  year: 2008
  ident: CR23
  article-title: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.06.036
– volume: 57
  start-page: 2757
  year: 2009
  ident: CR98
  article-title: High-performance half-Heusler thermoelectric materials Hf Zr NiSn Sb prepared by levitation melting and spark plasma sintering
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.02.026
– volume: 20
  start-page: 77
  year: 2016
  ident: CR57
  article-title: Influence of magnetic excitations on the phase stability of metals and steels
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2015.06.001
– volume: 135
  start-page: 177
  year: 2017
  ident: CR9
  article-title: Mapping the world of complex concentrated alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.027
– volume: 47
  start-page: 3322
  year: 2016
  ident: CR123
  article-title: High-entropy alloys in hexagonal close packed structure
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3091-1
– volume: 532
  start-page: 480
  year: 2012
  ident: CR28
  article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.10.110
– volume: 2018
  start-page: 3016304
  year: 2017
  ident: CR19
  article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi and CoCrFeNi Mo under sodium chloride aqueous conditions
  publication-title: Adv. Mater. Sci. Eng.
– volume: 66
  start-page: 56
  year: 2015
  ident: CR117
  article-title: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.06.014
– volume: 24
  start-page: 6125
  year: 2012
  ident: CR70
  article-title: Band engineering of thermoelectric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202919
– ident: S0884291418003230_ref6
  doi: 10.1016/j.actamat.2016.08.081
– ident: S0884291418003230_ref97
  doi: 10.1063/1.4803530
– ident: S0884291418003230_ref78
  doi: 10.1016/j.jallcom.2016.11.417
– volume: 2018
  start-page: 3016304
  year: 2017
  ident: S0884291418003230_ref19
  article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2018/3016304
– ident: S0884291418003230_ref77
  doi: 10.1073/pnas.1716981114
– ident: S0884291418003230_ref76
  doi: 10.1103/PhysRevLett.113.107001
– ident: S0884291418003230_ref42
  doi: 10.1016/j.matlet.2017.03.159
– ident: S0884291418003230_ref113
  doi: 10.1063/1.2841810
– ident: S0884291418003230_ref79
  doi: 10.1073/pnas.1615926113
– ident: S0884291418003230_ref4
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: S0884291418003230_ref96
  doi: 10.1016/j.scriptamat.2017.03.029
– ident: S0884291418003230_ref62
  doi: 10.3389/fmats.2018.00026
– ident: S0884291418003230_ref54
  doi: 10.1063/1.4798340
– ident: S0884291418003230_ref120
  doi: 10.1038/s41524-017-0049-4
– ident: S0884291418003230_ref37
  doi: 10.1016/j.matdes.2016.04.053
– ident: S0884291418003230_ref53
  doi: 10.1016/j.actamat.2012.10.040
– ident: S0884291418003230_ref81
  doi: 10.1021/acs.chemmater.7b04578
– ident: S0884291418003230_ref52
  doi: 10.1002/adma.201002180
– ident: S0884291418003230_ref75
  doi: 10.1016/j.physc.2015.03.003
– ident: S0884291418003230_ref87
  doi: 10.1016/j.ijhydene.2013.05.071
– ident: S0884291418003230_ref99
  doi: 10.3390/nano2040379
– ident: S0884291418003230_ref109
  doi: 10.3166/acsm.31.723-736
– ident: S0884291418003230_ref93
  doi: 10.1016/j.ijhydene.2013.07.096
– ident: S0884291418003230_ref119
  doi: 10.1016/j.actamat.2013.01.042
– ident: S0884291418003230_ref46
  doi: 10.1016/j.actamat.2017.03.013
– ident: S0884291418003230_ref31
  doi: 10.1016/j.jallcom.2012.12.095
– ident: S0884291418003230_ref121
  doi: 10.1557/jmr.2017.366
– ident: S0884291418003230_ref38
  doi: 10.1016/j.intermet.2015.11.005
– ident: S0884291418003230_ref86
  doi: 10.1016/j.ijhydene.2014.02.067
– ident: S0884291418003230_ref27
  doi: 10.1002/adem.201200104
– volume: 18
  start-page: 2058
  year: 2009
  ident: S0884291418003230_ref61
  article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/18/5/055
– ident: S0884291418003230_ref17
  doi: 10.3390/met7020043
– ident: S0884291418003230_ref48
  doi: 10.1016/j.jallcom.2016.09.271
– ident: S0884291418003230_ref16
  doi: 10.1039/C5RA28088E
– ident: S0884291418003230_ref85
  doi: 10.1038/srep36770
– ident: S0884291418003230_ref12
  doi: 10.1007/s11837-017-2523-3
– ident: S0884291418003230_ref2
  doi: 10.1016/j.msea.2003.10.257
– ident: S0884291418003230_ref45
  doi: 10.1016/j.intermet.2017.04.007
– ident: S0884291418003230_ref21
  doi: 10.1007/978-3-319-27013-5_15
– ident: S0884291418003230_ref58
  doi: 10.1063/1.4932571
– ident: S0884291418003230_ref57
  doi: 10.1016/j.cossms.2015.06.001
– ident: S0884291418003230_ref67
  doi: 10.1038/nature09996
– ident: S0884291418003230_ref18
  doi: 10.1038/s41529-017-0009-y
– ident: S0884291418003230_ref41
  doi: 10.1016/j.jallcom.2016.09.186
– ident: S0884291418003230_ref110
  doi: 10.1088/0022-3727/39/21/019
– ident: S0884291418003230_ref89
  doi: 10.1016/j.ijhydene.2017.09.039
– ident: S0884291418003230_ref50
  doi: 10.1016/j.jallcom.2018.02.189
– ident: S0884291418003230_ref100
  doi: 10.1016/j.jct.2015.07.016
– ident: S0884291418003230_ref92
  doi: 10.1016/j.jallcom.2015.12.125
– ident: S0884291418003230_ref34
  doi: 10.1016/j.intermet.2015.08.014
– ident: S0884291418003230_ref7
  doi: 10.1007/978-3-319-27013-5_3
– ident: S0884291418003230_ref107
  doi: 10.1016/j.actamat.2017.12.037
– ident: S0884291418003230_ref103
  doi: 10.1016/j.jeurceramsoc.2016.09.018
– ident: S0884291418003230_ref39
  doi: 10.3390/e18080308
– ident: S0884291418003230_ref98
  doi: 10.1016/j.actamat.2009.02.026
– ident: S0884291418003230_ref10
  doi: 10.1557/jmr.2017.341
– ident: S0884291418003230_ref40
  doi: 10.1016/j.intermet.2015.09.009
– ident: S0884291418003230_ref36
  doi: 10.1016/j.intermet.2015.06.015
– ident: S0884291418003230_ref128
  doi: 10.1038/ncomms7529
– ident: S0884291418003230_ref125
  doi: 10.1038/s41524-017-0060-9
– ident: S0884291418003230_ref65
  doi: 10.1038/ncomms9736
– ident: S0884291418003230_ref64
  doi: 10.1038/nmat2090
– ident: S0884291418003230_ref3
  doi: 10.1016/j.cossms.2017.08.001
– ident: S0884291418003230_ref69
  doi: 10.1016/j.pnsc.2012.11.011
– ident: S0884291418003230_ref130
  doi: 10.3390/e15104504
– ident: S0884291418003230_ref55
  doi: 10.1016/j.actamat.2015.08.050
– ident: S0884291418003230_ref84
  doi: 10.1126/science.268.5218.1738
– ident: S0884291418003230_ref127
  doi: 10.1007/s11837-013-0772-3
– ident: S0884291418003230_ref82
  doi: 10.1103/PhysRev.97.74
– start-page: 1
  volume-title: Frontiers in Superconducting Materials
  year: 2005
  ident: S0884291418003230_ref74
– ident: S0884291418003230_ref106
  doi: 10.1002/pssr.201600043
– ident: S0884291418003230_ref70
  doi: 10.1002/adma.201202919
– ident: S0884291418003230_ref49
  doi: 10.1103/PhysRevB.96.014437
– ident: S0884291418003230_ref59
  doi: 10.1038/srep15755
– ident: S0884291418003230_ref11
  doi: 10.1007/978-3-319-27013-5_7
– ident: S0884291418003230_ref68
  doi: 10.1063/1.4832615
– volume-title: Desk Handbook: Phase Diagrams for Binary Alloys
  year: 2000
  ident: S0884291418003230_ref90
– ident: S0884291418003230_ref112
  doi: 10.1088/0022-3727/41/23/235402
– ident: S0884291418003230_ref114
  doi: 10.1016/j.tsf.2009.06.020
– ident: S0884291418003230_ref129
  doi: 10.1007/978-3-319-27013-5_12
– ident: S0884291418003230_ref72
  doi: 10.1021/acs.chemmater.6b04076
– ident: S0884291418003230_ref116
  doi: 10.1016/j.scriptamat.2009.09.015
– ident: S0884291418003230_ref66
  doi: 10.1016/j.mseb.2009.05.024
– ident: S0884291418003230_ref35
  doi: 10.1016/j.intermet.2014.08.008
– ident: S0884291418003230_ref102
  doi: 10.1016/j.scriptamat.2017.08.040
– ident: S0884291418003230_ref43
  doi: 10.1016/j.jmmm.2017.04.017
– ident: S0884291418003230_ref44
  doi: 10.1016/j.jmmm.2017.06.124
– ident: S0884291418003230_ref124
  doi: 10.1038/ncomms6964
– ident: S0884291418003230_ref73
  doi: 10.1002/adma.201702712
– ident: S0884291418003230_ref88
  doi: 10.1016/j.ijhydene.2010.06.012
– ident: S0884291418003230_ref80
  doi: 10.1103/PhysRevMaterials.2.034801
– volume: 5
  start-page: 187
  year: 2017
  ident: S0884291418003230_ref15
  article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1244116
– ident: S0884291418003230_ref33
  doi: 10.1016/j.jmmm.2014.07.023
– ident: S0884291418003230_ref83
  doi: 10.1103/PhysRevLett.30.92
– ident: S0884291418003230_ref94
  doi: 10.1038/s41598-017-10774-4
– ident: S0884291418003230_ref108
  doi: 10.1038/srep37946
– ident: S0884291418003230_ref51
  doi: 10.1007/s11837-013-0761-6
– ident: S0884291418003230_ref122
  doi: 10.1007/978-3-319-27013-5_9
– ident: S0884291418003230_ref30
  doi: 10.1007/s12613-013-0764-x
– ident: S0884291418003230_ref71
  doi: 10.1021/jacs.5b07284
– ident: S0884291418003230_ref24
  doi: 10.1016/j.jallcom.2009.11.104
– ident: S0884291418003230_ref111
  doi: 10.1016/j.surfcoat.2008.01.014
– ident: S0884291418003230_ref29
  doi: 10.1038/srep01455
– ident: S0884291418003230_ref115
  doi: 10.1016/j.surfcoat.2009.01.016
– ident: S0884291418003230_ref126
  doi: 10.1007/s11661-013-2000-8
– ident: S0884291418003230_ref25
  doi: 10.1016/j.jallcom.2010.10.210
– ident: S0884291418003230_ref26
  doi: 10.1063/1.3538936
– ident: S0884291418003230_ref95
  doi: 10.1016/j.ijhydene.2017.02.061
– ident: S0884291418003230_ref28
  doi: 10.1016/j.msea.2011.10.110
– ident: S0884291418003230_ref118
  doi: 10.1016/j.intermet.2016.12.002
– ident: S0884291418003230_ref13
  doi: 10.1016/j.actamat.2016.12.021
– ident: S0884291418003230_ref91
  doi: 10.1016/j.rser.2017.01.063
– ident: S0884291418003230_ref14
  doi: 10.1063/1.4935489
– ident: S0884291418003230_ref56
  doi: 10.1016/j.intermet.2018.01.016
– ident: S0884291418003230_ref117
  doi: 10.1016/j.intermet.2015.06.014
– ident: S0884291418003230_ref60
  doi: 10.1002/adma.200901072
– ident: S0884291418003230_ref8
  doi: 10.3390/e16010494
– ident: S0884291418003230_ref23
  doi: 10.1016/j.electacta.2008.06.036
– ident: S0884291418003230_ref5
  doi: 10.1007/978-3-319-27013-5
– ident: S0884291418003230_ref32
  doi: 10.1016/j.jmmm.2013.11.049
– ident: S0884291418003230_ref63
  doi: 10.1038/srep20159
– ident: S0884291418003230_ref104
  doi: 10.1080/21663831.2016.1220433
– ident: S0884291418003230_ref123
  doi: 10.1007/s11661-015-3091-1
– ident: S0884291418003230_ref47
  doi: 10.1016/j.surfin.2017.06.012
– ident: S0884291418003230_ref9
  doi: 10.1016/j.actamat.2017.06.027
– ident: S0884291418003230_ref1
  doi: 10.1002/adem.200300567
– ident: S0884291418003230_ref20
  doi: 10.1007/978-3-319-27013-5_14
– ident: S0884291418003230_ref101
  doi: 10.1038/ncomms9485
– ident: S0884291418003230_ref105
  doi: 10.1016/j.jallcom.2017.02.070
– ident: S0884291418003230_ref22
  doi: 10.1016/j.intermet.2006.08.005
SSID ssj0015074
Score 2.6498487
SecondaryResourceType review_article
Snippet While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been...
SourceID osti
proquest
crossref
springer
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3138
SubjectTerms Alloys
Applied and Technical Physics
Biomaterials
Computation
Electricity distribution
Entropy
Functional materials
High entropy alloys
Hydrogen storage
Inorganic Chemistry
Intermetallic compounds
Invited Review
Magnetic fields
Magnetic properties
Magnetism
Materials Engineering
Materials research
MATERIALS SCIENCE
Mechanical properties
Nanotechnology
Phase transitions
Recording equipment
Solid solutions
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60KujBR1WsrVLBx0FWdjfZbHIUUTxIEV_0tuS1oGhb2ir4783so7bFit4WMoFMMtn5JjN8A3BoiLZ-IIkXGqU856-lx43Cbu4hSalQYawzdv2buNXi7ba4LQLFQVntXqYksz911qPHhe0vb0jfGfAzEpJ5WHCOjuNFvLt_GmUNHLahOWqkXigCWhS6T88ep1GYcEeVrrtWE1BzKjuaOZ2rtf8udx1WC3jZPM_tYQPmbKcKK2Okg1VYyoo-9WATDrDIw8Pn3W7vs4keLn8YbDoUmxvmFjxeXT5cXHtFywRPR4QNPcaiSPJUxSnRTCspmdRaW-6nJDBxRJURhHEXc1nhsIjBYRkRn2rDTMQII9tQ6XQ7dgeaUpFQhdJIbQQ1qRVUUKuU5IrEkfFtDU5Gu5gUhj9IMKZw6idO_QTVT5z6NTgt9zjRBfM4NsB4nSF9NJLu5YwbM-TqeFyJQwpId6uxLkgPnRwSEPk1aJSn-L04ZLOLnZqx-HmYOzSJRL1u-Lg81N9V2_2rYB2W8RO9XkAbUBn23-0eLOqP4fOgv5-Z8RcUme66
  priority: 102
  providerName: Springer Nature
Title High-entropy functional materials
URI https://www.cambridge.org/core/product/identifier/S0884291418003230/type/journal_article
https://link.springer.com/article/10.1557/jmr.2018.323
https://www.proquest.com/docview/2119756379
https://www.proquest.com/docview/2845639929
https://www.osti.gov/servlets/purl/1509730
Volume 33
WOSCitedRecordID wos000452650400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: 7WY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: M0C
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: KB.
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ_IIQk-KPIRT5AcicoDKexuv7ZPRgiERLkQVD6eNv3aBKJ3J3ea-N87c9u7EyO8-NJk00m2nU47v04nvwF4HbiPWW45K4JzDP21ZWVwVM294LUwrtB-zK7_UXe75eWlOU0Bt2FKq5ycieODOvQ9xcj3iIlMS8W1eTf4zqhqFL2uphIaczBP_aIF8_uH3dOz6TsCoh3R4EjBCpOLlPoupd67-UZ0oHm5y6lU0YxY4Y6DavVxo90Bn3-9l47d0NGz_53AEjxNALTzvrGY5_Ao9pbhyR-0hMuwME4L9cMV2KI0EEYB4P7gV4d8YBM67CDObUx3Fb4cHX4-OGapqALzkqsRU0pKW9ZO19wr76xV1nsfy6zmedBSuGC4KvFWFg2ilUDdVvJM-KACjl7xNWj1-r34AjrW8cIVNlgfjAh1NMKI6JwtHdcyZLEN21OtVmlrDCu6daD-K9R_RfqvUP9t2JnovPKJm5xKZHy9R_rNVHrQcHLcI7dOy1chliBCXE-ZQ36EckRRlLVhY7JOs8HNFunf3SXiTaLyxe63E0N4eGovH_7NOiySJHnDXGxAa3T7I76Cx_7n6Hp4uwlz-uJqMxk1fn3Y38X2JDvA9uzT-W_fDwB4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gikEPPlDiCuqQiB5My8z0Y6YPxhiQQFg2HCDhNvZrEozsruwK4U_5G62ax64Q4MbBc9dMz0xVdX3VXfMVwDvPXYgTw1nqrWUYrw3LvaVu7ikvhbZp5ip2_V7W7-dHR3p_Dv60_8JQWWW7JlYLtR862iNfJyayTCqe6S-jX4y6RtHpattCozaL3XBxjinb-PPOJup3LU23vh1sbLOmqwBzkqsJU0pKk5c2K7lTzhqjjHMu5HHJE59JYb3mKse0JGgM156GjcSk33nlcX7F8b734L4Q6A5UKhhvTE8tEFuJGrUKlupENIX2UmbrP06IfDTJP3FqjDSjcbgUDjtDdOtLUPfK6WwV9Lae_G-f6yk8buB19LX2h2cwFwaL8Ogf0sVFeFAVvbrxc1ilIhdG29vD0UVEEb7eGI0QxdeO-QIO7-Rpl6AzGA7CS4iM5alNjTfOa-HLoIUWwVqTW55JH4cufJhqsWgcf1xQToX6LlDfBem7QH134WOr48I1zOvUAOTnDdJrU-lRzThyg9wymUuBSInofh3VRbkJyhEBU9yFldYuZg83M4rrh3NE00RUjMPvW8O7_dVe3T7NW1jYPtjrFb2d_u4yPKSrKO4nYgU6k9Pf4TXMu7PJ8fj0TeVIEXy_a1P8Cz6oWX4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VABUceJQi0hYwEoUDWuJ4X94DqipKRNUq6gFEOZl9WWoFSWgCVf8av44ZPxKKaG89cN6xvfZ8szM7O_4G4HngPqZ9y1kWnGPory3Lg6Nu7hkvhXGZ9hW7_r4eDvPDQ3OwBL_af2GorLJdE6uFOow95ch7xESmpeLa9MqmLOJgZ7A1-c6ogxSdtLbtNGqI7MWzU9y-Td_s7qCuN7Ns8O7D2_es6TDAvORqxpSS0ual0yX3yjtrlfXexzwteT9oKVwwXOW4RYkGXXegYSt5KnxQAeeiON73GlzXhHu0Jf3p8_wEA-MsUUewgmWmL5qieyl17_gbEZH289ecmiQtKB3OucbOGE38XNj710lt5QAHd__nT3cP7jRhd7Jd28l9WIqjFbj9BxnjCtysimH99AE8o-IXRmnv8eQsIc9fJ0wTjO5rg12Fj1cy24fQGY1H8REk1vHMZTZYH4wIZTTCiOiczR3XMqSxCy_nGi2aBWFa0F4LdV-g7gvSfYG678KrVt-FbxjZqTHI1wukN-fSk5qJ5AK5dYJOgREU0QB7qpfyM5QjYqa0CxstRhaTWwDk38M5RtlEYIzDL1oQXv5qa5c_5iksIwKL_d3h3jrcoovq-sgN6MxOfsTHcMP_nB1NT55UNpXAl6tG4m_bkWKX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+functional+materials&rft.jtitle=Journal+of+materials+research&rft.au=Gao%2C+Michael+C.&rft.au=Miracle%2C+Daniel+B.&rft.au=Maurice%2C+David&rft.au=Yan%2C+Xuehui&rft.date=2018-10-14&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=33&rft.issue=19&rft.spage=3138&rft.epage=3155&rft_id=info:doi/10.1557%2Fjmr.2018.323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_jmr_2018_323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon