High-entropy functional materials
While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select fun...
Uloženo v:
| Vydáno v: | Journal of materials research Ročník 33; číslo 19; s. 3138 - 3155 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
14.10.2018
Springer International Publishing Springer Nature B.V Materials Research Society |
| Témata: | |
| ISSN: | 0884-2914, 2044-5326 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling. |
|---|---|
| AbstractList | While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. Perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling. While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select functional properties of HEAs, including soft magnetic, magnetocaloric, physical, thermoelectric, superconducting, and hydrogen storage. Comparisons of functional properties between HEAs and conventional low- and medium-entropy materials are provided, and examples are illustrated using computational modeling and tuning the composition of existing functional materials through substitutional or interstitial mixing. Extending the concept of high configurational entropy to a wide range of materials such as intermetallics, ceramics, and semiconductors through the isostructural design approach is discussed. As a result, perspectives are offered in designing future high-performance functional materials utilizing the high-entropy concepts and high-throughput predictive computational modeling. |
| Author | Hawk, Jeffrey A. Gao, Michael C. Yan, Xuehui Miracle, Daniel B. Maurice, David Zhang, Yong |
| Author_xml | – sequence: 1 givenname: Michael C. surname: Gao fullname: Gao, Michael C. email: Michael.Gao@netl.doe.gov organization: National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA; and AECOM, Albany, Oregon 97321, USA – sequence: 2 givenname: Daniel B. surname: Miracle fullname: Miracle, Daniel B. organization: †AF Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, USA – sequence: 3 givenname: David surname: Maurice fullname: Maurice, David organization: ‡National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA – sequence: 4 givenname: Xuehui surname: Yan fullname: Yan, Xuehui organization: §The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China – sequence: 5 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: §The State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People’s Republic of China – sequence: 6 givenname: Jeffrey A. surname: Hawk fullname: Hawk, Jeffrey A. organization: ‡National Energy Technology Laboratory, Materials Engineering and Manufacturing Directorate, Albany, Oregon 97321, USA |
| BackLink | https://www.osti.gov/servlets/purl/1509730$$D View this record in Osti.gov |
| BookMark | eNqFkM1KAzEYRYNUsK3ufICqW6fmfyZLKWqFghtdh0wm06Z0kpqki769GaYgCOrqW-Tcm8uZgJHzzgBwjeAcMVY-bLswxxBVc4LJGRhjSGnBCOYjMIZVRQssEL0Akxi3ECIGSzoGN0u73hTGpeD3x1l7cDpZ79Ru1qlkglW7eAnO23zM1elOwcfz0_tiWazeXl4Xj6tCM8JTwTljqmrrsiWa61oprrTWpoItQU3JaN0IwiuBqRGQ06Z_VoxAqhveME44mYLbodfHZGXUNhm90d45o5PMa0VJYIbuBmgf_OfBxCS3_hDy3ihxRXOPEFj8SSEkysyVPXU_UDr4GINp5T7YToWjRFD2PmX2KXufMvvMOP6B54mqt5WCsrvfQsUQirnbrU34XvILPz99oro62GZt_gl8AUNalwM |
| CitedBy_id | crossref_primary_10_1016_j_scriptamat_2020_06_017 crossref_primary_10_1016_j_jmmm_2024_171853 crossref_primary_10_1016_j_jallcom_2021_160640 crossref_primary_10_1038_s41467_019_09700_1 crossref_primary_10_1063_5_0003149 crossref_primary_10_1016_j_jallcom_2025_181463 crossref_primary_10_1007_s12598_024_02619_7 crossref_primary_10_3390_ma16062495 crossref_primary_10_1016_j_jmst_2020_07_014 crossref_primary_10_1063_1_5135324 crossref_primary_10_1021_acs_chemmater_5c00213 crossref_primary_10_1002_adma_202102139 crossref_primary_10_1038_s41598_021_87527_x crossref_primary_10_1016_j_ceramint_2022_11_161 crossref_primary_10_1557_jmr_2019_405 crossref_primary_10_1016_j_intermet_2020_106802 crossref_primary_10_1002_sus2_215 crossref_primary_10_1002_adma_202402442 crossref_primary_10_1016_j_jmmm_2024_172134 crossref_primary_10_1021_jacs_1c01580 crossref_primary_10_1002_smll_202401443 crossref_primary_10_1016_j_mser_2021_100645 crossref_primary_10_1016_j_ijhydene_2024_09_064 crossref_primary_10_1016_j_jallcom_2021_163221 crossref_primary_10_3390_e22070740 crossref_primary_10_1063_5_0065067 crossref_primary_10_1016_j_jallcom_2023_169561 crossref_primary_10_1002_adma_202510911 crossref_primary_10_1016_j_heliyon_2024_e32715 crossref_primary_10_1007_s10948_022_06420_4 crossref_primary_10_1002_adma_202410060 crossref_primary_10_1002_adma_202412337 crossref_primary_10_1016_j_ceramint_2023_02_070 crossref_primary_10_1088_2515_7655_accc54 crossref_primary_10_1016_j_cpc_2022_108398 crossref_primary_10_1016_j_jallcom_2019_06_324 crossref_primary_10_1016_j_jallcom_2025_179048 crossref_primary_10_1038_s41598_023_42101_5 crossref_primary_10_1016_j_mtphys_2021_100394 crossref_primary_10_1063_5_0064308 crossref_primary_10_1016_j_jallcom_2020_157424 crossref_primary_10_1038_s41467_023_41359_7 crossref_primary_10_1016_j_apmt_2024_102164 crossref_primary_10_1016_j_jallcom_2019_152523 crossref_primary_10_1016_j_jallcom_2021_162501 crossref_primary_10_1016_j_jmmm_2025_173035 crossref_primary_10_1039_D2RA03807B crossref_primary_10_1016_j_ijhydene_2023_04_029 crossref_primary_10_1021_acsaenm_5c00208 crossref_primary_10_1007_s11595_021_2467_x crossref_primary_10_1002_advs_202203219 crossref_primary_10_1016_j_jallcom_2019_03_133 crossref_primary_10_1016_j_mtcomm_2022_103241 crossref_primary_10_1016_j_scriptamat_2020_10_049 crossref_primary_10_1126_science_aaz1598 crossref_primary_10_1007_s11665_024_09731_w crossref_primary_10_1016_j_jallcom_2025_182006 crossref_primary_10_3390_met9030382 crossref_primary_10_1016_j_jmst_2020_10_071 crossref_primary_10_1016_j_mtcomm_2024_108821 crossref_primary_10_1016_j_ijhydene_2025_150830 crossref_primary_10_1016_j_jeurceramsoc_2022_03_006 crossref_primary_10_1016_j_actamat_2023_118970 crossref_primary_10_1016_j_addma_2024_104387 crossref_primary_10_1016_j_msea_2024_147015 crossref_primary_10_1002_smll_202309574 crossref_primary_10_1016_j_jallcom_2022_167337 crossref_primary_10_1111_tran_12519 crossref_primary_10_1016_j_jallcom_2022_167451 crossref_primary_10_1016_j_jeurceramsoc_2022_08_034 crossref_primary_10_1016_j_mtphys_2023_101116 crossref_primary_10_1038_s41598_022_21209_0 crossref_primary_10_1107_S1600576724004497 crossref_primary_10_1007_s44210_025_00058_2 crossref_primary_10_1016_j_intermet_2022_107610 crossref_primary_10_1016_j_jmst_2024_10_002 crossref_primary_10_1088_1757_899X_1107_1_012162 crossref_primary_10_1016_j_jece_2025_118132 crossref_primary_10_1063_5_0160477 crossref_primary_10_1016_j_mtla_2021_101250 crossref_primary_10_1557_s43577_025_00943_6 crossref_primary_10_1016_j_matdes_2021_110313 crossref_primary_10_1016_j_mtla_2021_101133 crossref_primary_10_1088_2053_1591_acac62 crossref_primary_10_3390_met10081072 crossref_primary_10_1016_j_jmmm_2024_172234 crossref_primary_10_1016_j_jpcs_2020_109905 crossref_primary_10_1016_j_jallcom_2021_162154 crossref_primary_10_1038_s41598_019_50015_4 crossref_primary_10_1016_j_actamat_2020_08_008 crossref_primary_10_1016_j_matlet_2021_129965 crossref_primary_10_1002_ange_202315371 crossref_primary_10_1016_j_actamat_2025_120747 crossref_primary_10_1016_j_jallcom_2024_178025 crossref_primary_10_1002_adma_202006723 crossref_primary_10_1016_j_pmatsci_2020_100688 crossref_primary_10_1016_j_ceramint_2023_01_200 crossref_primary_10_1039_D5TA03392F crossref_primary_10_1007_s11242_022_01880_7 crossref_primary_10_3390_molecules26092470 crossref_primary_10_1002_advs_202402340 crossref_primary_10_1016_j_mtla_2023_101744 crossref_primary_10_1016_j_surfcoat_2023_129618 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1016_j_commatsci_2022_111218 crossref_primary_10_1016_j_vacuum_2023_112854 crossref_primary_10_1002_anie_202315371 crossref_primary_10_1039_D2NR01635D crossref_primary_10_1016_j_ijhydene_2020_10_106 crossref_primary_10_1016_j_matdes_2024_112664 crossref_primary_10_3390_molecules24152799 crossref_primary_10_1016_j_jeurceramsoc_2020_05_040 crossref_primary_10_1016_j_solidstatesciences_2024_107728 crossref_primary_10_1016_j_jmmm_2022_169142 crossref_primary_10_1016_j_ceramint_2021_11_181 crossref_primary_10_1016_j_mseb_2023_116485 crossref_primary_10_1007_s11661_025_07928_9 crossref_primary_10_3390_hydrogen5010008 crossref_primary_10_1016_j_ceramint_2023_12_095 crossref_primary_10_1016_j_jallcom_2023_169282 crossref_primary_10_1016_j_actamat_2019_04_007 crossref_primary_10_1016_j_jallcom_2024_177632 crossref_primary_10_1038_s41598_021_87786_8 crossref_primary_10_1016_j_jallcom_2019_06_277 crossref_primary_10_1002_ente_202400061 crossref_primary_10_1016_j_jallcom_2018_11_235 crossref_primary_10_1016_j_jallcom_2020_156838 crossref_primary_10_1016_j_scriptamat_2024_115989 crossref_primary_10_1134_S0036029524701520 crossref_primary_10_1016_j_jallcom_2022_166040 crossref_primary_10_1007_s00339_022_05364_9 crossref_primary_10_1002_sus2_47 crossref_primary_10_1177_09544062211008935 crossref_primary_10_1002_adma_202101342 crossref_primary_10_1063_1_5119373 crossref_primary_10_1016_j_jallcom_2023_171483 crossref_primary_10_1002_aenm_202402042 crossref_primary_10_1016_j_jallcom_2022_167827 crossref_primary_10_1016_j_jmst_2021_01_054 crossref_primary_10_1016_j_jallcom_2019_153548 crossref_primary_10_1002_smll_202302609 crossref_primary_10_1016_j_ijhydene_2022_02_113 crossref_primary_10_1016_j_jeurceramsoc_2024_117126 crossref_primary_10_1016_j_crhy_2018_09_004 crossref_primary_10_1016_j_matchar_2020_110179 crossref_primary_10_1080_09500839_2022_2120644 crossref_primary_10_1016_j_jallcom_2024_173977 crossref_primary_10_1016_j_jallcom_2021_161779 crossref_primary_10_1016_j_jallcom_2020_158115 crossref_primary_10_1016_j_jallcom_2020_158357 crossref_primary_10_3390_ma16031245 crossref_primary_10_1016_j_matchemphys_2025_130876 crossref_primary_10_1088_1674_4926_45_3_030202 crossref_primary_10_1016_j_healthplace_2021_102620 crossref_primary_10_1016_j_mattod_2021_03_018 crossref_primary_10_1016_j_cej_2025_159591 crossref_primary_10_1016_j_ceramint_2019_11_239 crossref_primary_10_1016_j_jallcom_2022_163714 crossref_primary_10_1016_j_oceram_2025_100811 crossref_primary_10_1016_j_mseb_2023_116454 crossref_primary_10_1016_j_ccr_2025_216435 crossref_primary_10_1007_s40145_021_0477_y crossref_primary_10_1557_jmr_2020_43 crossref_primary_10_1016_j_jallcom_2019_03_411 crossref_primary_10_3390_e20110872 crossref_primary_10_1007_s00339_021_04988_7 crossref_primary_10_1016_j_actamat_2021_116843 crossref_primary_10_1039_D1EE00505G crossref_primary_10_1109_TMAG_2022_3232722 crossref_primary_10_1007_s11665_022_06896_0 crossref_primary_10_1007_s10853_025_11420_5 crossref_primary_10_1016_j_jallcom_2025_179594 crossref_primary_10_1016_j_matchemphys_2023_127761 crossref_primary_10_1080_01411594_2022_2048656 crossref_primary_10_1149_1945_7111_ad6d93 crossref_primary_10_4028_p_Bk26wY crossref_primary_10_1016_j_jallcom_2023_168794 crossref_primary_10_1063_5_0134915 crossref_primary_10_1016_j_jmmm_2020_167432 crossref_primary_10_1016_j_pmatsci_2024_101332 crossref_primary_10_1016_j_intermet_2024_108233 crossref_primary_10_1063_5_0017989 crossref_primary_10_1088_1361_6463_aca1ce crossref_primary_10_1080_10584587_2025_2483640 crossref_primary_10_1002_aelm_202200327 crossref_primary_10_1007_s44210_022_00004_6 crossref_primary_10_1016_j_ceramint_2022_03_310 crossref_primary_10_1039_D4EE03708A crossref_primary_10_3390_met14060608 crossref_primary_10_1016_j_calphad_2023_102617 crossref_primary_10_1007_s11664_021_09343_3 crossref_primary_10_1016_j_intermet_2024_108343 crossref_primary_10_1007_s10853_020_05171_8 crossref_primary_10_1016_j_scriptamat_2024_116485 crossref_primary_10_1002_adts_202000195 crossref_primary_10_1016_j_jallcom_2024_176255 crossref_primary_10_1016_j_jmmm_2025_173108 crossref_primary_10_1007_s11661_024_07635_x crossref_primary_10_1007_s12274_021_3805_1 crossref_primary_10_1016_j_apmt_2019_04_014 crossref_primary_10_1016_j_jallcom_2019_153228 crossref_primary_10_3390_ma12244222 crossref_primary_10_1002_adem_202400541 crossref_primary_10_3390_ma16031044 crossref_primary_10_1002_adfm_202202372 crossref_primary_10_1016_j_jeurceramsoc_2019_05_017 crossref_primary_10_1007_s11665_023_08983_2 |
| Cites_doi | 10.1016/j.ijhydene.2014.02.067 10.1016/j.jallcom.2016.09.271 10.1007/978-3-319-27013-5_3 10.1016/j.actamat.2013.01.042 10.1016/j.jmmm.2017.06.124 10.1088/0022-3727/39/21/019 10.1016/j.rser.2017.01.063 10.1038/s41529-017-0009-y 10.1063/1.4932571 10.1016/j.jallcom.2015.12.125 10.1016/j.jallcom.2016.11.417 10.1002/adma.201702712 10.1038/srep36770 10.1016/j.surfin.2017.06.012 10.1016/j.intermet.2017.04.007 10.1007/978-3-319-27013-5_15 10.1007/978-3-319-27013-5_7 10.1007/978-3-319-27013-5_12 10.1063/1.4803530 10.1002/pssr.201600043 10.3390/e15104504 10.1021/acs.chemmater.7b04578 10.1007/s11837-017-2523-3 10.3166/acsm.31.723-736 10.1016/j.intermet.2015.06.015 10.1063/1.4798340 10.1021/acs.chemmater.6b04076 10.1016/j.jeurceramsoc.2016.09.018 10.1103/PhysRevLett.30.92 10.1016/j.intermet.2006.08.005 10.1016/j.jmmm.2014.07.023 10.1088/1674-1056/18/5/055 10.1016/j.ijhydene.2017.02.061 10.1016/j.intermet.2016.12.002 10.1016/j.jallcom.2016.09.186 10.1021/jacs.5b07284 10.1063/1.4935489 10.1016/j.intermet.2015.11.005 10.1080/21663831.2016.1220433 10.1002/adem.200300567 10.1016/j.jmmm.2017.04.017 10.1007/s11661-013-2000-8 10.1103/PhysRevMaterials.2.034801 10.1103/PhysRev.97.74 10.1038/ncomms7529 10.3389/fmats.2018.00026 10.1016/j.matlet.2017.03.159 10.1557/jmr.2017.341 10.1126/science.268.5218.1738 10.1063/1.4832615 10.1088/0022-3727/41/23/235402 10.1038/nature09996 10.1038/ncomms9485 10.1016/j.intermet.2015.09.009 10.1016/j.mseb.2009.05.024 10.1016/j.jallcom.2012.12.095 10.1038/ncomms9736 10.1007/978-3-319-27013-5_14 10.1007/s12613-013-0764-x 10.1016/j.actamat.2017.03.013 10.1016/j.intermet.2015.08.014 10.1016/j.jct.2015.07.016 10.1016/j.scriptamat.2009.09.015 10.1038/srep37946 10.1016/j.matdes.2016.04.053 10.1016/j.actamat.2016.12.021 10.1007/s11837-013-0772-3 10.1038/srep20159 10.1016/j.ijhydene.2013.05.071 10.1002/adma.200901072 10.1016/j.ijhydene.2010.06.012 10.1016/j.scriptamat.2017.03.029 10.1007/s11837-013-0761-6 10.1038/ncomms6964 10.1016/j.intermet.2014.08.008 10.1016/j.actamat.2012.10.040 10.1039/C5RA28088E 10.1073/pnas.1716981114 10.1007/978-3-319-27013-5 10.1016/j.jallcom.2018.02.189 10.1016/j.pnsc.2012.11.011 10.1016/j.ijhydene.2013.07.096 10.1038/s41598-017-10774-4 10.1016/j.jallcom.2009.11.104 10.1080/21663831.2016.1244116 10.1016/j.tsf.2009.06.020 10.1016/j.jallcom.2017.02.070 10.1016/j.physc.2015.03.003 10.1016/j.surfcoat.2008.01.014 10.3390/e16010494 10.1016/j.jallcom.2010.10.210 10.1557/jmr.2017.366 10.1063/1.3538936 10.3390/nano2040379 10.1007/978-3-319-27013-5_9 10.1038/srep01455 10.1016/j.jmmm.2013.11.049 10.1038/s41524-017-0060-9 10.1016/j.pmatsci.2013.10.001 10.1016/j.actamat.2015.08.050 10.1016/j.scriptamat.2017.08.040 10.1038/srep15755 10.1103/PhysRevLett.113.107001 10.1016/j.ijhydene.2017.09.039 10.1038/s41524-017-0049-4 10.1016/j.intermet.2018.01.016 10.1038/nmat2090 10.1016/j.actamat.2017.12.037 10.3390/e18080308 10.1002/adma.201002180 10.1016/j.surfcoat.2009.01.016 10.3390/met7020043 10.1016/j.actamat.2016.08.081 10.1063/1.2841810 10.1016/j.cossms.2017.08.001 10.1002/adem.201200104 10.1103/PhysRevB.96.014437 10.1016/j.msea.2003.10.257 10.1016/j.electacta.2008.06.036 10.1016/j.actamat.2009.02.026 10.1016/j.cossms.2015.06.001 10.1016/j.actamat.2017.06.027 10.1007/s11661-015-3091-1 10.1016/j.msea.2011.10.110 10.1016/j.intermet.2015.06.014 10.1002/adma.201202919 10.1155/2018/3016304 10.1073/pnas.1615926113 |
| ContentType | Journal Article |
| Copyright | Copyright © Materials Research Society 2018 The Materials Research Society 2018 The Materials Research Society 2018. |
| Copyright_xml | – notice: Copyright © Materials Research Society 2018 – notice: The Materials Research Society 2018 – notice: The Materials Research Society 2018. |
| CorporateAuthor | National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States) |
| CorporateAuthor_xml | – name: National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States) |
| DBID | AAYXX CITATION 3V. 7SR 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ JG9 K60 K6~ KB. L.- L.0 M0C PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0W OIOZB OTOTI |
| DOI | 10.1557/jmr.2018.323 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Engineered Materials Abstracts ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| DocumentTitleAlternate | M.C. Gao et al.: High-entropy functional materials |
| EISSN | 2044-5326 |
| EndPage | 3155 |
| ExternalDocumentID | 1509730 10_1557_jmr_2018_323 |
| GroupedDBID | -2P -E. -~X .DC .FH 0E1 0R~ 2JN 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAFGU AAGFV AAHNG AAIKC AAKTX AAMNW AARAB AASVR AATID AATNV AAUKB AAYFA ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKAS ABKKG ABMQK ABMWE ABMYL ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ACAOD ACBEA ACBEK ACBMC ACCHT ACGFO ACGFS ACHSB ACIGE ACIHN ACIMK ACIWK ACQFJ ACQPF ACREK ACTTH ACUIJ ACUYZ ACVWB ACWGA ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADGEJ ADOCW ADOXG AEAQA AEBAK AEFTE AEHGV AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFNRJ AFUTZ AGLWM AGMZJ AGOOT AGQEE AHQXX AIGNW AIHIV AIOIP AISIE AJCYY AJDOV AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ATUCA AUXHV AYIQA BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CBIIA CCPQU CFAFE CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBS EJD F5P FIGPU FRNLG HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KB. KC. KCGVB KFECR L98 LLZTM M-V M0C M7~ NIKVX NPVJJ NQJWS O9- P2P PDBOC PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS RR0 RSV S0W S6- S6U SAAAG SJN SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU WXY YQT ZMEZD ZMTXR ZYDXJ ~02 -2V 3V. AACDK AAEWM AAJBT AASML AATMM ABAKF ABDPE ABZUI ACDTI ACETC ACPIV ACRPL ADNMO ADOVH ADOVT AEFQL AEMFK AI. AIGIU AKZCZ ARZZG BCGOX BESQT BJBOZ BQFHP CCUQV CFBFF CGQII EBLON GROUPED_ABI_INFORM_COMPLETE KAFGG LHUNA M8. PKN PQBZA ROL SCG SCLPG SJYHP VH1 VOH ZDLDU ZE2 ZJOSE ~V1 AAUYE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 L.- L.0 PKEHL PQEST PQUKI PRINS PUEGO Q9U CHEAL OIOZB OTOTI |
| ID | FETCH-LOGICAL-c536t-6655a8fb7f3c6cbaa6accce80f31d754bd9368924e9064da6aca5304cd6d56363 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452650400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-2914 |
| IngestDate | Wed Nov 29 06:12:13 EST 2023 Wed Sep 17 23:58:17 EDT 2025 Wed Sep 17 23:56:24 EDT 2025 Tue Nov 18 22:37:21 EST 2025 Sat Nov 29 07:47:16 EST 2025 Fri Feb 21 02:43:31 EST 2025 Wed Mar 13 05:42:17 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | magnetic properties thermoelectric superconducting |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-6655a8fb7f3c6cbaa6accce80f31d754bd9368924e9064da6aca5304cd6d56363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE CONTR-PUB-478 FE0004000 FE |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1509730 |
| PQID | 2119756379 |
| PQPubID | 626330 |
| PageCount | 18 |
| ParticipantIDs | osti_scitechconnect_1509730 proquest_journals_2845639929 proquest_journals_2119756379 crossref_primary_10_1557_jmr_2018_323 crossref_citationtrail_10_1557_jmr_2018_323 springer_journals_10_1557_jmr_2018_323 cambridge_journals_10_1557_jmr_2018_323 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-14 |
| PublicationDateYYYYMMDD | 2018-10-14 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: Cham – name: Warrendale – name: United States |
| PublicationTitle | Journal of materials research |
| PublicationTitleAbbrev | Journal of Materials Research |
| PublicationTitleAlternate | J. Mater. Res |
| PublicationYear | 2018 |
| Publisher | Cambridge University Press Springer International Publishing Springer Nature B.V Materials Research Society |
| Publisher_xml | – name: Cambridge University Press – name: Springer International Publishing – name: Springer Nature B.V – name: Materials Research Society |
| References | Shen, Sun, Hu, Zhang, Cheng 2009; 21 Green, Takeuchi, Hattrick-Simpers 2013; 113 Tan, Shi, Hao, Chi, Bailey, Zhao, Uher, Wolverton, Dravid, Kanatzidis 2015; 137 Snyder, Toberer 2008; 7 Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei 2016; 6 Herzer 2013; 61 Huang, Yeh 2010; 62 Gao, Zhang, Gao, Zhang, Ouyang, Widom, Hawk 2017; 21 Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter 2015; 107 Wang, Zhang, Qiao, Chen 2007; 15 Zhao, Lee, Lee, Kim, Han, Ramamurty, Suh, Jang 2017; 42 Widom, Huhn, Maiti, Steurer 2014; 45 Fan, Wang, Wu, Liu, Lu 2016; 6 Miracle, Senkov 2017; 122 Huang, Yeh 2009; 518 Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria 2015; 6 Lucas, Mauger, Munoz, Xiao, Sheets, Semiatin, Horwath, Turgut 2011; 109 Wei, Sun, Chen, Han, Li 2017; 435 Luo, Li, Raabe 2017; 7 Anand, Wynn, Handley, Freeman 2018; 146 Zuo, Li, Ren, Zhang 2014; 371 Kumar, Jain, Ichikawa, Kojima, Dey 2017; 72 Zhang, Fu, Zhang, Shi, Wang, Wang, Wang, Zhang 2010; 502 Körmann, Hickel, Neugebauer 2016; 20 Yang, Yang, Wu, Chen, Mao, Luo 2016; 663 Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi 2014; 1 Gao, Zhang, Guo, Qiao, Hawk 2016; 47 Shen, Li, Sun, Shen 2009; 18 Tsai, Wang, Lai, Yeh, Gan 2008; 92 Chen, Han, Yang, Cheng, Zou 2012; 22 Stolze, Tao, von Rohr, Kong, Cava 2018; 30 Kumar, Banerjee, Pillai, Bharadwaj 2013; 38 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang 2004; 6 Miracle, Miller, Senkov, Woodward, Uchic, Tiley 2014; 16 Senkov, Miller, Miracle, Woodward 2015; 6 Kao, Chen, Sheu, Lin, Lin, Yeh, Lin, Liou, Wang 2010; 35 Tsai, Lai, Yeh, Gan 2008; 41 Jin, Bei 2018; 5 Qiu, Thomas, Gibson, Fraser, Birbilis 2017; 1 Pei, Wang, Snyder 2012; 24 Takeuchi, Amiya, Wada, Yubuta 2015; 66 Ma, Zhang 2012; 532 Kunce, Polanski, Bystrzycki 2014; 39 Huhn, Widom 2013; 65 Kunce, Polanski, Czujko 2017; 42 Zhao, Lee, Seok, Lee, Phaniraj, Suh, Ha, Kim, Ramamurty, Jang 2017; 135 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu 2014; 61 Gao, Alman 2013; 15 Huang, Holmström, Eriksson, Vitos 2018; 95 Zuo, Yang, Liaw, Zhang 2015; 67 Yin, Nash 2015; 91 Lai, Cheng, Lin, Yeh 2008; 202 Schneeweiss, Friak, Dudova, Holec, Sob, Kriegner, Holy, Beran, George, Neugebauer, Dlouhy 2017; 96 Xie, Weidenkaff, Tang, Zhang, Poon, Tritt 2012; 2 Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw 2015; 6 Zuo, Ren, Liaw, Zhang 2013; 20 Cantor, Chang, Knight, Vincent 2004; 375–377 Wang, Zheng, Xu, Wang 2014; 355 Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller 2013; 113 Zhang, Zuo, Cheng, Liaw 2013; 3 Li, Xu, Gu, Pan, Yu, Tan, Hou 2018; 746 Berardan, Franger, Dragoe, Meena, Dragoe 2016; 10 Fan, Wang, Wu, Liu, Lu 2017; 5 Choi, Jo, Sohn, Lee, Lee 2018; 4 Yeh 2013; 65 Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber 2015; 6 Mishra, Shahi 2017; 442 Kao, Chen, Chen, Chu, Yeh, Lin 2011; 509 Berardan, Meena, Franger, Herrero, Dragoe 2017; 704 Lai, Lin, Yeh, Davison 2006; 39 Zaddach, Niu, Oni, Fan, LeBeau, Irving, Koch 2016; 68 Chou, Chang, Chen, Yeh 2009; 163 Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo 2018; 142 Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya 2017; 37 Kunce, Polanski, Bystrzycki 2013; 38 Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun 2017; 114 Matthias 1955; 97 Pei, Shi, LaLonde, Wang, Chen, Snyder 2011; 473 Shang, Axinte, Ge, Zhang, Wang 2017; 9 Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu 2017; 125 Takeuchi, Wada, Zhang 2017; 82 Huang, Yeh 2009; 203 Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo 2016; 6 Xiang, Sun, Briceno, Lou, Wang, Chang, Wallacefreedman, Chen, Schultz 1995; 268 Belyea, Lucas, Michel, Horwath, Miller 2015; 5 Gorsse, Miracle, Senkov 2017; 135 Koch 2017; 32 Ma, Grabowski, Kormann, Neugebauer, Raabe 2015; 100 Chu, Canfield, Dynes, Fisk, Batlogg, Deutscher, Geballe, Zhao, Greene, Hosono, Maple 2015; 514 Collver, Hammond 1973; 30 Tariq, Naeem, Hasan, Akhter, Siddique 2013; 556 Huang, Li, Li, Schonecker, Bergqvist, Holmstrom, Varga, Vitos 2016; 103 von Rohr, Winiarski, Tao, Klimczuk, Cava 2016; 113 Cheng, Lai, Lin, Yeh 2006; 31 Perrin, Sorescu, Burton, Laughlin, McHenry 2017; 69 Otto, Yang, Bei, George 2013; 61 Ji, Wang, Wang, Zhang, Wang, Zhang, Fu 2015; 56 Zhang, Xu, Tan, Hou, Wu, Tan, Yu 2017; 693 Vrtnik, Kozelj, Meden, Maiti, Steurer, Feuerbacher, Dolinsek 2017; 695 Li, Wang, Liu 2017; 694 Gutfleisch, Willard, Brück, Chen, Sankar, Liu 2011; 23 Yao, Zhang, Liu, Li, Ye, Liu, Tong 2008; 53 Wei, Tao, Sun, Chen, Sun, Li 2017; 197 Yu, Zhang, Cheng, Zhang, Ma, Li, Li, Liaw, Liu 2016; 70 Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk 2017; 2018 Liu, Chen, Zhao, Qin, Jiang, Zhang, Sha, Shi, Uher, Zhang, Chen 2017; 29 Liu, Zhu, Li, Jiang 2012; 14 Sahlberg, Karlsson, Zlotea, Jansson 2016; 6 Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek 2014; 113 Feng, Liaw, Gao, Widom 2017; 3 Orabi, Hwang, Lin, Gautier, Fontaine, Kim, Rhyee, Wee, Fornari 2017; 29 Yu, Zhu, Shi, Zhang, Zhao, He 2009; 57 Qi, Li, Takeuchi, Xie, Miao, Zhang 2015; 66 Lin, Cheng, Yeh, Chin 2016; 18 von Rohr, Cava 2018; 2 Shi, Yang, Liaw 2017; 7 Shafeie, Guo, Hu, Fahlquist, Erhart, Palmqvist 2015; 118 Li, Wang, Liu 2017; 87 Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang 2017; 130 Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kubel, Bhattacharya, Gandhif, Hahn 2017; 5 Gao, Gao, Hawk, Ouyang, Alman, Widom 2017; 32 Schneeweiss, Friak, Dudova, Holec, Sob, Kriegner, Holy, Beran, George, Neugebauer, Dlouhy (CR49) 2017; 96 Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (CR58) 2015; 107 Kunce, Polanski, Bystrzycki (CR86) 2014; 39 Gao, Alman (CR130) 2013; 15 Sahlberg, Karlsson, Zlotea, Jansson (CR85) 2016; 6 Xiang, Sun, Briceno, Lou, Wang, Chang, Wallacefreedman, Chen, Schultz (CR84) 1995; 268 Tan, Shi, Hao, Chi, Bailey, Zhao, Uher, Wolverton, Dravid, Kanatzidis (CR71) 2015; 137 Okamoto (CR90) 2000 Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun (CR77) 2017; 114 Yeh, Chen, Shih, Zhang, Zuo, Gao, Yeh, Liaw, Zhang (CR11) 2016 Matthias (CR82) 1955; 97 Yeh, Gao, Yeh, Liaw, Zhang (CR7) 2016 Li, Xu, Gu, Pan, Yu, Tan, Hou (CR50) 2018; 746 Herzer (CR53) 2013; 61 Stolze, Tao, von Rohr, Kong, Cava (CR81) 2018; 30 Miracle, Senkov (CR6) 2017; 122 Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (CR101) 2015; 6 Shen, Li, Sun, Shen (CR61) 2009; 18 Jin, Bei (CR62) 2018; 5 Anand, Wynn, Handley, Freeman (CR107) 2018; 146 Cantor, Chang, Knight, Vincent (CR2) 2004; 375–377 Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller (CR54) 2013; 113 Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang (CR46) 2017; 130 Perrin, Sorescu, Burton, Laughlin, McHenry (CR12) 2017; 69 Miracle, Miller, Senkov, Woodward, Uchic, Tiley (CR8) 2014; 16 Tariq, Naeem, Hasan, Akhter, Siddique (CR31) 2013; 556 Zhao, Lee, Seok, Lee, Phaniraj, Suh, Ha, Kim, Ramamurty, Jang (CR96) 2017; 135 Yao, Zhang, Liu, Li, Ye, Liu, Tong (CR23) 2008; 53 Widom, Huhn, Maiti, Steurer (CR126) 2014; 45 Pei, Shi, LaLonde, Wang, Chen, Snyder (CR67) 2011; 473 Huang, Yeh (CR116) 2010; 62 Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya (CR103) 2017; 37 Gao, Zhang, Gao, Zhang, Ouyang, Widom, Hawk (CR3) 2017; 21 Kunce, Polanski, Czujko (CR89) 2017; 42 Yeh, Yeh, Chang, Gao, Yeh, Liaw, Zhang (CR21) 2016 Green, Takeuchi, Hattrick-Simpers (CR97) 2013; 113 Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk (CR19) 2017; 2018 Gorsse, Miracle, Senkov (CR9) 2017; 135 Snyder, Toberer (CR64) 2008; 7 Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu (CR13) 2017; 125 Pei, Wang, Snyder (CR70) 2012; 24 von Rohr, Winiarski, Tao, Klimczuk, Cava (CR79) 2016; 113 Lucas, Mauger, Munoz, Xiao, Sheets, Semiatin, Horwath, Turgut (CR26) 2011; 109 Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek (CR76) 2014; 113 Chu, Canfield, Dynes, Fisk, Batlogg, Deutscher, Geballe, Zhao, Greene, Hosono, Maple (CR75) 2015; 514 Zhang, Stocks, Jin, Lu, Bei, Sales, Wang, Beland, Stoller, Samolyuk, Caro, Caro, Weber (CR65) 2015; 6 Tian, Wang, Irving, Vitos, Gao, Yeh, Liaw, Zhang (CR122) 2016 Fan, Wang, Wu, Liu, Lu (CR16) 2016; 6 Lai, Cheng, Lin, Yeh (CR111) 2008; 202 Senkov, Miller, Miracle, Woodward (CR128) 2015; 6 Gao, Yeh, Liaw, Zhang (CR5) 2016 Huang, Yeh (CR114) 2009; 518 Gao, Gao, Hawk, Ouyang, Alman, Widom (CR121) 2017; 32 Ma, Grabowski, Kormann, Neugebauer, Raabe (CR55) 2015; 100 Lai, Lin, Yeh, Davison (CR110) 2006; 39 Huang, Holmström, Eriksson, Vitos (CR56) 2018; 95 Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw (CR124) 2015; 6 Qiu, Thomas, Gibson, Fraser, Birbilis (CR18) 2017; 1 Mishra, Shahi (CR44) 2017; 442 Belyea, Lucas, Michel, Horwath, Miller (CR59) 2015; 5 Fan, Wang, Wu, Liu, Lu (CR15) 2017; 5 Zhao, Lee, Lee, Kim, Han, Ramamurty, Suh, Jang (CR95) 2017; 42 Vrtnik, Kozelj, Meden, Maiti, Steurer, Feuerbacher, Dolinsek (CR78) 2017; 695 Ma, Zhang (CR28) 2012; 532 Wei, Tao, Sun, Chen, Sun, Li (CR42) 2017; 197 Tsai, Wang, Lai, Yeh, Gan (CR113) 2008; 92 Collver, Hammond (CR83) 1973; 30 Zuo, Li, Ren, Zhang (CR33) 2014; 371 Körmann, Hickel, Neugebauer (CR57) 2016; 20 Kumar, Banerjee, Pillai, Bharadwaj (CR93) 2013; 38 Yin, Nash (CR100) 2015; 91 Takeuchi, Amiya, Wada, Yubuta (CR117) 2015; 66 Zuo, Ren, Liaw, Zhang (CR30) 2013; 20 Zuo, Yang, Liaw, Zhang (CR34) 2015; 67 Chen, Han, Yang, Cheng, Zou (CR69) 2012; 22 Yang, Yang, Wu, Chen, Mao, Luo (CR92) 2016; 663 Tsai, Lai, Yeh, Gan (CR112) 2008; 41 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (CR4) 2014; 61 Huhn, Widom (CR127) 2013; 65 Qi, Li, Takeuchi, Xie, Miao, Zhang (CR36) 2015; 66 Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi (CR68) 2014; 1 Kunce, Polanski, Bystrzycki (CR87) 2013; 38 Orabi, Hwang, Lin, Gautier, Fontaine, Kim, Rhyee, Wee, Fornari (CR72) 2017; 29 Xie, Weidenkaff, Tang, Zhang, Poon, Tritt (CR99) 2012; 2 Luo, Li, Raabe (CR94) 2017; 7 Choi, Jo, Sohn, Lee, Lee (CR125) 2018; 4 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (CR1) 2004; 6 Wei, Sun, Chen, Han, Li (CR43) 2017; 435 Li, Wang, Liu (CR45) 2017; 87 von Rohr, Cava (CR80) 2018; 2 Zhang, Zuo, Cheng, Liaw (CR29) 2013; 3 Feng, Liaw, Gao, Widom (CR120) 2017; 3 Jin, Sales, Stocks, Samolyuk, Daene, Weber, Zhang, Bei (CR63) 2016; 6 Shi, Yang, Liaw (CR17) 2017; 7 Otto, Yang, Bei, George (CR119) 2013; 61 Yeh, Lin, Tsai, Chang, Gao, Yeh, Liaw, Zhang (CR20) 2016 Liu, Chen, Zhao, Qin, Jiang, Zhang, Sha, Shi, Uher, Zhang, Chen (CR73) 2017; 29 Zhang, Gao, Gao, Yeh, Liaw, Zhang (CR129) 2016 Shafeie, Guo, Hu, Fahlquist, Erhart, Palmqvist (CR14) 2015; 118 Li, Wang, Liu (CR41) 2017; 694 Kumar, Jain, Ichikawa, Kojima, Dey (CR91) 2017; 72 Kao, Chen, Chen, Chu, Yeh, Lin (CR25) 2011; 509 Chou, Chang, Chen, Yeh (CR66) 2009; 163 Kao, Chen, Sheu, Lin, Lin, Yeh, Lin, Liou, Wang (CR88) 2010; 35 Koch (CR10) 2017; 32 Wang, Zheng, Xu, Wang (CR32) 2014; 355 Lin, Cheng, Yeh, Chin (CR39) 2016; 18 Yu, Zhu, Shi, Zhang, Zhao, He (CR98) 2009; 57 Hott, Kleiner, Wolf, Zwicknagl, Narlikar (CR74) 2005 Huang, Li, Li, Schonecker, Bergqvist, Holmstrom, Varga, Vitos (CR37) 2016; 103 Yu, Zhang, Cheng, Zhang, Ma, Li, Li, Liaw, Liu (CR38) 2016; 70 Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kubel, Bhattacharya, Gandhif, Hahn (CR104) 2017; 5 Takeuchi, Wada, Zhang (CR118) 2017; 82 Berardan, Meena, Franger, Herrero, Dragoe (CR105) 2017; 704 Zhang, Fu, Zhang, Shi, Wang, Wang, Wang, Zhang (CR24) 2010; 502 Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (CR108) 2016; 6 Zaddach, Niu, Oni, Fan, LeBeau, Irving, Koch (CR40) 2016; 68 Gutfleisch, Willard, Brück, Chen, Sankar, Liu (CR52) 2011; 23 Shang, Axinte, Ge, Zhang, Wang (CR47) 2017; 9 Yeh (CR51) 2013; 65 Zhang, Xu, Tan, Hou, Wu, Tan, Yu (CR48) 2017; 693 Liu, Zhu, Li, Jiang (CR27) 2012; 14 Wang, Zhang, Qiao, Chen (CR22) 2007; 15 Shen, Sun, Hu, Zhang, Cheng (CR60) 2009; 21 Huang, Yeh (CR115) 2009; 203 Berardan, Franger, Dragoe, Meena, Dragoe (CR106) 2016; 10 Cheng, Lai, Lin, Yeh (CR109) 2006; 31 Gao, Zhang, Guo, Qiao, Hawk (CR123) 2016; 47 Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo (CR102) 2018; 142 Ji, Wang, Wang, Zhang, Wang, Zhang, Fu (CR35) 2015; 56 S0884291418003230_ref50 S0884291418003230_ref54 S0884291418003230_ref53 S0884291418003230_ref52 S0884291418003230_ref51 S0884291418003230_ref58 S0884291418003230_ref6 S0884291418003230_ref57 S0884291418003230_ref7 S0884291418003230_ref4 S0884291418003230_ref56 S0884291418003230_ref55 S0884291418003230_ref5 S0884291418003230_ref2 S0884291418003230_ref3 S0884291418003230_ref1 S0884291418003230_ref59 S0884291418003230_ref106 S0884291418003230_ref105 S0884291418003230_ref104 S0884291418003230_ref103 S0884291418003230_ref102 S0884291418003230_ref101 S0884291418003230_ref100 S0884291418003230_ref60 S0884291418003230_ref65 S0884291418003230_ref64 S0884291418003230_ref63 S0884291418003230_ref62 S0884291418003230_ref69 S0884291418003230_ref68 S0884291418003230_ref67 S0884291418003230_ref66 Rodriguez (S0884291418003230_ref19) 2017; 2018 Okamoto (S0884291418003230_ref90) 2000 S0884291418003230_ref32 S0884291418003230_ref31 S0884291418003230_ref119 S0884291418003230_ref30 S0884291418003230_ref118 S0884291418003230_ref36 S0884291418003230_ref35 S0884291418003230_ref34 S0884291418003230_ref33 S0884291418003230_ref39 S0884291418003230_ref38 S0884291418003230_ref37 S0884291418003230_ref120 Fan (S0884291418003230_ref15) 2017; 5 S0884291418003230_ref128 S0884291418003230_ref127 S0884291418003230_ref126 S0884291418003230_ref125 S0884291418003230_ref124 S0884291418003230_ref123 S0884291418003230_ref122 S0884291418003230_ref121 S0884291418003230_ref43 S0884291418003230_ref109 S0884291418003230_ref42 S0884291418003230_ref108 S0884291418003230_ref41 S0884291418003230_ref107 S0884291418003230_ref40 S0884291418003230_ref47 S0884291418003230_ref46 S0884291418003230_ref45 S0884291418003230_ref44 S0884291418003230_ref49 S0884291418003230_ref48 S0884291418003230_ref117 S0884291418003230_ref116 S0884291418003230_ref115 S0884291418003230_ref114 S0884291418003230_ref113 S0884291418003230_ref112 S0884291418003230_ref111 S0884291418003230_ref110 S0884291418003230_ref94 S0884291418003230_ref93 S0884291418003230_ref92 S0884291418003230_ref91 S0884291418003230_ref98 S0884291418003230_ref10 S0884291418003230_ref97 S0884291418003230_ref96 S0884291418003230_ref95 S0884291418003230_ref14 S0884291418003230_ref13 S0884291418003230_ref12 S0884291418003230_ref11 S0884291418003230_ref99 S0884291418003230_ref18 S0884291418003230_ref17 S0884291418003230_ref16 S0884291418003230_ref21 S0884291418003230_ref20 S0884291418003230_ref129 S0884291418003230_ref25 Shen (S0884291418003230_ref61) 2009; 18 S0884291418003230_ref24 S0884291418003230_ref23 S0884291418003230_ref22 S0884291418003230_ref29 S0884291418003230_ref28 S0884291418003230_ref27 S0884291418003230_ref26 S0884291418003230_ref130 S0884291418003230_ref72 S0884291418003230_ref71 S0884291418003230_ref70 S0884291418003230_ref76 S0884291418003230_ref75 S0884291418003230_ref73 S0884291418003230_ref79 S0884291418003230_ref78 S0884291418003230_ref77 Hott (S0884291418003230_ref74) 2005 S0884291418003230_ref83 S0884291418003230_ref82 S0884291418003230_ref81 S0884291418003230_ref80 S0884291418003230_ref87 S0884291418003230_ref86 S0884291418003230_ref85 S0884291418003230_ref84 S0884291418003230_ref89 S0884291418003230_ref88 S0884291418003230_ref8 S0884291418003230_ref9 |
| References_xml | – volume: 103 start-page: 71 year: 2016 article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys publication-title: Mater. Des. – volume: 32 start-page: 3627 year: 2017 article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity publication-title: J. Mater. Res. – volume: 4 start-page: 1 year: 2018 article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study publication-title: npj Comput. Mater. – volume: 69 start-page: 2125 year: 2017 article-title: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys publication-title: JOM – volume: 1 start-page: 011305 year: 2014 article-title: Nanoscale thermal transport. II. 2003–2012 publication-title: Appl. Phys. Rev. – volume: 109 start-page: 07E307 year: 2011 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J. Appl. Phys. – volume: 15 start-page: 357 year: 2007 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics – volume: 371 start-page: 60 year: 2014 article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy publication-title: J. Magn. Magn. Mater. – volume: 21 start-page: 238 year: 2017 article-title: Thermodynamics of concentrated solid solution alloys publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 137 start-page: 11507 year: 2015 article-title: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 448 year: 2017 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 2018 start-page: 3016304 year: 2017 article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions publication-title: Adv. Mater. Sci. Eng. – volume: 53 start-page: 8359 year: 2008 article-title: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy publication-title: Electrochim. Acta – volume: 21 start-page: 4545 year: 2009 article-title: Recent progress in exploring magnetocaloric materials publication-title: Adv. Mater. – volume: 57 start-page: 2757 year: 2009 article-title: High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering publication-title: Acta Mater. – volume: 35 start-page: 9046 year: 2010 article-title: Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 6529 year: 2015 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. – volume: 70 start-page: 82 year: 2016 article-title: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering publication-title: Intermetallics – volume: 38 start-page: 12180 year: 2013 article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy – volume: 704 start-page: 693 year: 2017 article-title: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. – volume: 72 start-page: 791 year: 2017 article-title: Development of vanadium based hydrogen storage material: A review publication-title: Renewable Sustainable Energy Rev. – volume: 146 start-page: 119 year: 2018 article-title: Phase stability and distortion in high-entropy oxides publication-title: Acta Mater. – volume: 96 start-page: 014437 year: 2017 article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy publication-title: Phys. Rev. B – volume: 42 start-page: 27154 year: 2017 article-title: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 196 year: 2014 article-title: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy publication-title: Metall. Mater. Trans. A – volume: 100 start-page: 90 year: 2015 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one publication-title: Acta Mater. – volume: 6 start-page: 37946 year: 2016 article-title: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. – volume: 56 start-page: 24 year: 2015 article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics – volume: 663 start-page: 460 year: 2016 article-title: Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0 ≤ x ≤ 2) alloys publication-title: J. Alloys Compd. – volume: 22 start-page: 535 year: 2012 article-title: Nanostructured thermoelectric materials: Current research and future challenge publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 87 start-page: 21 year: 2017 article-title: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys publication-title: Intermetallics – volume: 10 start-page: 328 year: 2016 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 61 start-page: 1 year: 2014 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 39 start-page: 9904 year: 2014 article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 36770 year: 2016 article-title: Superior hydrogen storage in high entropy alloys publication-title: Sci. Rep. – volume: 202 start-page: 3732 year: 2008 article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings publication-title: Surf. Coating. Technol. – volume: 113 start-page: 107001 year: 2014 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. – volume: 18 start-page: 2058 year: 2009 article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd publication-title: Chin. Phys. B – volume: 130 start-page: 10 year: 2017 article-title: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping publication-title: Acta Mater. – volume: 42 start-page: 12015 year: 2017 article-title: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 1 year: 2018 article-title: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance publication-title: Front. Mater. – volume: 38 start-page: 13335 year: 2013 article-title: Hydrogen storage properties of Ti2−xCrVMx (M = Fe, Co, Ni) alloys publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 102 year: 2017 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. – volume: 2 start-page: 379 year: 2012 article-title: Recent advances in nanostructured thermoelectric half-heusler compounds publication-title: Nanomaterials – volume: 435 start-page: 184 year: 2017 article-title: Effect of cooling rate on the phase structure and magnetic properties of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 high entropy alloy publication-title: J. Magn. Magn. Mater. – volume: 15 start-page: 4504 year: 2013 article-title: Searching for next single-phase high-entropy alloy compositions publication-title: Entropy – volume: 518 start-page: 180 year: 2009 article-title: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings publication-title: Thin Solid Films – volume: 9 start-page: 36 year: 2017 article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering publication-title: Surf. Interfaces – volume: 197 start-page: 87 year: 2017 article-title: Soft magnetic Fe26.7Co26.7Ni26.6Si9B11 high entropy metallic glass with good bending ductility publication-title: Mater. Lett. – volume: 3 start-page: 1455 year: 2013 article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability publication-title: Sci. Rep. – volume: 61 start-page: 2628 year: 2013 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater. – volume: 18 start-page: 308 year: 2016 article-title: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films publication-title: Entropy – volume: 65 start-page: 1759 year: 2013 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: JOM – volume: 268 start-page: 1738 year: 1995 article-title: A combinatorial approach to materials discovery publication-title: Science – volume: 509 start-page: 1607 year: 2011 article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys publication-title: J. Alloys Compd. – volume: 31 start-page: 723 year: 2006 article-title: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets publication-title: Ann. Chimie Sci. Matériaux – volume: 65 start-page: 1772 year: 2013 article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W publication-title: JOM – volume: 16 start-page: 494 year: 2014 article-title: Exploration and development of high entropy alloys for structural applications publication-title: Entropy – volume: 113 start-page: E7144 year: 2016 article-title: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 299 year: 2004 article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 693 start-page: 1061 year: 2017 article-title: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys publication-title: J. Alloys Compd. – volume: 107 start-page: 142404 year: 2015 article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. – volume: 375–377 start-page: 213 year: 2004 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng., A – volume: 203 start-page: 1891 year: 2009 article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating publication-title: Surf. Coating. Technol. – volume: 125 start-page: 481 year: 2017 article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect publication-title: Acta Mater. – volume: 7 start-page: 43 year: 2017 article-title: Corrosion-resistant high-entropy alloys: A review publication-title: Metals – volume: 32 start-page: 3435 year: 2017 article-title: Nanocrystalline high-entropy alloys publication-title: J. Mater. Res. – volume: 7 start-page: 9892 year: 2017 article-title: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy publication-title: Sci. Rep. – volume: 695 start-page: 3530 year: 2017 article-title: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys publication-title: J. Alloys Compd. – volume: 14 start-page: 919 year: 2012 article-title: Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys publication-title: Adv. Engin. Mater. – volume: 91 start-page: 1 year: 2015 article-title: Standard enthalpies of formation of selected XYZ half-Heusler compounds publication-title: J. Chem. Thermodyn. – volume: 5 start-page: 15755 year: 2015 article-title: Tunable magnetocaloric effect in transition metal alloys publication-title: Sci. Rep. – volume: 6 start-page: 8485 year: 2015 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. – volume: 114 start-page: 13144 year: 2017 article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 612 year: 2017 article-title: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials publication-title: Chem. Mater. – volume: 5 start-page: 187 year: 2017 article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys publication-title: Mater. Res. Lett. – volume: 694 start-page: 55 year: 2017 article-title: A ductile high entropy alloy with attractive magnetic properties publication-title: J. Alloys Compd. – volume: 61 start-page: 718 year: 2013 article-title: Modern soft magnets: Amorphous and nanocrystalline materials publication-title: Acta Mater. – volume: 113 start-page: 231101 year: 2013 article-title: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials publication-title: J. Appl. Phys. – volume: 62 start-page: 105 year: 2010 article-title: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings publication-title: Scripta Mater. – volume: 355 start-page: 58 year: 2014 article-title: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys publication-title: J. Magn. Magn. Mater. – volume: 6 start-page: 5964 year: 2015 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. – volume: 30 start-page: 92 year: 1973 article-title: Superconductivity in amorphous transition-metal alloy films publication-title: Phys. Rev. Lett. – volume: 68 start-page: 107 year: 2016 article-title: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy publication-title: Intermetallics – volume: 20 start-page: 77 year: 2016 article-title: Influence of magnetic excitations on the phase stability of metals and steels publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 142 start-page: 116 year: 2018 article-title: A new class of high-entropy perovskite oxides publication-title: Scripta Mater. – volume: 442 start-page: 218 year: 2017 article-title: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys publication-title: J. Magn. Magn. Mater. – volume: 23 start-page: 821 year: 2011 article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient publication-title: Adv. Mater. – volume: 118 start-page: 184905 year: 2015 article-title: High-entropy alloys as high-temperature thermoelectric materials publication-title: J. Appl. Phys. – volume: 532 start-page: 480 year: 2012 article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy publication-title: Mater. Sci. Eng., A – volume: 556 start-page: 79 year: 2013 article-title: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy publication-title: J. Alloys Compd. – volume: 1 start-page: 15 year: 2017 article-title: Corrosion of high entropy alloys publication-title: npj Mater. Degrad. – volume: 67 start-page: 171 year: 2015 article-title: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy publication-title: Intermetallics – volume: 6 start-page: 8736 year: 2015 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. – volume: 82 start-page: 107 year: 2017 article-title: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L10 structure in Pettifor map for binary compounds publication-title: Intermetallics – volume: 95 start-page: 80 year: 2018 article-title: Mapping the magnetic transition temperatures for medium- and high-entropy alloys publication-title: Intermetallics – volume: 7 start-page: 105 year: 2008 article-title: Complex thermoelectric materials publication-title: Nat. Mater. – volume: 514 start-page: 437 year: 2015 article-title: Epilogue: Superconducting materials past, present and future publication-title: Phys. C – volume: 24 start-page: 6125 year: 2012 article-title: Band engineering of thermoelectric materials publication-title: Adv. Mater. – volume: 746 start-page: 285 year: 2018 article-title: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x ≤ 0.08) high-entropy alloys publication-title: J. Alloy. Comp. – volume: 473 start-page: 66 year: 2011 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature – volume: 66 start-page: 56 year: 2015 article-title: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry publication-title: Intermetallics – volume: 20 start-page: 549 year: 2013 article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy publication-title: Int. J. Miner. Metall. Mater. – volume: 30 start-page: 906 year: 2018 article-title: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice publication-title: Chem. Mater. – volume: 41 start-page: 235402 year: 2008 article-title: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings publication-title: J. Phys. D: Appl. Phys. – volume: 502 start-page: 295 year: 2010 article-title: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy publication-title: J. Alloys Compd. – volume: 6 start-page: 52164 year: 2016 article-title: Thermoelectric high-entropy alloys with low lattice thermal conductivity publication-title: RSC Adv. – volume: 3 start-page: 50 year: 2017 article-title: First-principles prediction of high-entropy-alloy stability publication-title: npj Comput. Mater. – volume: 113 start-page: 17A923 year: 2013 article-title: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys publication-title: J. Appl. Phys. – volume: 39 start-page: 4628 year: 2006 article-title: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 034801 year: 2018 article-title: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor publication-title: Phys. Rev. Mater. – volume: 135 start-page: 54 year: 2017 article-title: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement publication-title: Scripta Mater. – volume: 37 start-page: 747 year: 2017 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. – volume: 6 start-page: 20159 year: 2016 article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity publication-title: Sci. Rep. – volume: 66 start-page: 8 year: 2015 article-title: Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses publication-title: Intermetallics – volume: 92 start-page: 052109 year: 2008 article-title: Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization publication-title: Appl. Phys. Lett. – volume: 135 start-page: 177 year: 2017 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. – volume: 163 start-page: 184 year: 2009 article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys publication-title: Mater. Sci. Eng., B – volume: 29 start-page: 1702712 year: 2017 article-title: Entropy as a gene-like performance indicator promoting thermoelectric materials publication-title: Adv. Mater. – volume: 97 start-page: 74 year: 1955 article-title: Empirical relation between superconductivity and the number of valence electrons per atom publication-title: Phys. Rev. – volume: 47 start-page: 3322 year: 2016 article-title: High-entropy alloys in hexagonal close packed structure publication-title: Metall. Mater. Trans. A – volume: 39 start-page: 9904 year: 2014 ident: CR86 article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.067 – volume: 693 start-page: 1061 year: 2017 ident: CR48 article-title: The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) ( = 0–1.2) high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.09.271 – start-page: 51 year: 2016 ident: CR7 article-title: Physical metallurgy publication-title: High Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_3 – volume: 61 start-page: 2628 year: 2013 ident: CR119 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.01.042 – volume: 442 start-page: 218 year: 2017 ident: CR44 article-title: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.06.124 – volume: 39 start-page: 4628 year: 2006 ident: CR110 article-title: Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/39/21/019 – volume: 72 start-page: 791 year: 2017 ident: CR91 article-title: Development of vanadium based hydrogen storage material: A review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.01.063 – volume: 1 start-page: 15 year: 2017 ident: CR18 article-title: Corrosion of high entropy alloys publication-title: npj Mater. Degrad. doi: 10.1038/s41529-017-0009-y – volume: 107 start-page: 142404 year: 2015 ident: CR58 article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932571 – volume: 663 start-page: 460 year: 2016 ident: CR92 article-title: Hydrogen storage and cyclic properties of (VFe) (TiCrCo) Zr (0 ≤ ≤ 2) alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.125 – volume: 695 start-page: 3530 year: 2017 ident: CR78 article-title: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.11.417 – volume: 29 start-page: 1702712 year: 2017 ident: CR73 article-title: Entropy as a gene-like performance indicator promoting thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.201702712 – volume: 6 start-page: 36770 year: 2016 ident: CR85 article-title: Superior hydrogen storage in high entropy alloys publication-title: Sci. Rep. doi: 10.1038/srep36770 – volume: 9 start-page: 36 year: 2017 ident: CR47 article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2017.06.012 – volume: 87 start-page: 21 year: 2017 ident: CR45 article-title: Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl) high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2017.04.007 – start-page: 493 year: 2016 ident: CR21 article-title: Potential applications and prospects publication-title: High Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_15 – start-page: 237 year: 2016 ident: CR11 article-title: Functional properties publication-title: High Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_7 – start-page: 399 year: 2016 ident: CR129 article-title: CALPHAD modeling of high-entropy alloys publication-title: High-Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_12 – volume: 113 start-page: 231101 year: 2013 ident: CR97 article-title: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials publication-title: J. Appl. Phys. doi: 10.1063/1.4803530 – volume: 10 start-page: 328 year: 2016 ident: CR106 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201600043 – volume: 15 start-page: 4504 year: 2013 ident: CR130 article-title: Searching for next single-phase high-entropy alloy compositions publication-title: Entropy doi: 10.3390/e15104504 – year: 2000 ident: CR90 publication-title: Desk Handbook: Phase Diagrams for Binary Alloys – volume: 30 start-page: 906 year: 2018 ident: CR81 article-title: Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04578 – volume: 69 start-page: 2125 year: 2017 ident: CR12 article-title: The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys publication-title: JOM doi: 10.1007/s11837-017-2523-3 – volume: 31 start-page: 723 year: 2006 ident: CR109 article-title: Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets publication-title: Ann. Chimie Sci. Matériaux doi: 10.3166/acsm.31.723-736 – volume: 66 start-page: 8 year: 2015 ident: CR36 article-title: Soft magnetic Fe Co Ni (B, Si) high entropy bulk metallic glasses publication-title: Intermetallics doi: 10.1016/j.intermet.2015.06.015 – volume: 113 start-page: 17A923 year: 2013 ident: CR54 article-title: Thermomagnetic analysis of FeCoCr Ni alloys: Magnetic entropy of high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4798340 – volume: 29 start-page: 612 year: 2017 ident: CR72 article-title: Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe:Ga materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04076 – volume: 37 start-page: 747 year: 2017 ident: CR103 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.09.018 – volume: 30 start-page: 92 year: 1973 ident: CR83 article-title: Superconductivity in amorphous transition-metal alloy films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.30.92 – volume: 15 start-page: 357 year: 2007 ident: CR22 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTi alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2006.08.005 – volume: 371 start-page: 60 year: 2014 ident: CR33 article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.07.023 – volume: 18 start-page: 2058 year: 2009 ident: CR61 article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La R Fe Si compounds with R = Ce, Pr, and Nd publication-title: Chin. Phys. B doi: 10.1088/1674-1056/18/5/055 – volume: 42 start-page: 12015 year: 2017 ident: CR95 article-title: Hydrogen-induced nanohardness variations in a CoCrFeMnNi high-entropy alloy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.061 – volume: 82 start-page: 107 year: 2017 ident: CR118 article-title: MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L1 structure in Pettifor map for binary compounds publication-title: Intermetallics doi: 10.1016/j.intermet.2016.12.002 – volume: 694 start-page: 55 year: 2017 ident: CR41 article-title: A ductile high entropy alloy with attractive magnetic properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.09.186 – volume: 137 start-page: 11507 year: 2015 ident: CR71 article-title: Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07284 – volume: 118 start-page: 184905 year: 2015 ident: CR14 article-title: High-entropy alloys as high-temperature thermoelectric materials publication-title: J. Appl. Phys. doi: 10.1063/1.4935489 – volume: 70 start-page: 82 year: 2016 ident: CR38 article-title: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering publication-title: Intermetallics doi: 10.1016/j.intermet.2015.11.005 – volume: 5 start-page: 102 year: 2017 ident: CR104 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1220433 – volume: 6 start-page: 299 year: 2004 ident: CR1 article-title: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 435 start-page: 184 year: 2017 ident: CR43 article-title: Effect of cooling rate on the phase structure and magnetic properties of Fe Co Ni Si B P high entropy alloy publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.04.017 – volume: 45 start-page: 196 year: 2014 ident: CR126 article-title: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-2000-8 – volume: 2 start-page: 034801 year: 2018 ident: CR80 article-title: Isoelectronic substitutions and aluminium alloying in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.034801 – volume: 97 start-page: 74 year: 1955 ident: CR82 article-title: Empirical relation between superconductivity and the number of valence electrons per atom publication-title: Phys. Rev. doi: 10.1103/PhysRev.97.74 – volume: 6 start-page: 6529 year: 2015 ident: CR128 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. doi: 10.1038/ncomms7529 – volume: 5 start-page: 1 year: 2018 ident: CR62 article-title: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance publication-title: Front. Mater. doi: 10.3389/fmats.2018.00026 – volume: 197 start-page: 87 year: 2017 ident: CR42 article-title: Soft magnetic Fe Co Ni Si B high entropy metallic glass with good bending ductility publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.03.159 – volume: 32 start-page: 3435 year: 2017 ident: CR10 article-title: Nanocrystalline high-entropy alloys publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.341 – volume: 268 start-page: 1738 year: 1995 ident: CR84 article-title: A combinatorial approach to materials discovery publication-title: Science doi: 10.1126/science.268.5218.1738 – volume: 1 start-page: 011305 year: 2014 ident: CR68 article-title: Nanoscale thermal transport. II. 2003–2012 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4832615 – volume: 41 start-page: 235402 year: 2008 ident: CR112 article-title: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)N coatings publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/23/235402 – volume: 473 start-page: 66 year: 2011 ident: CR67 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature doi: 10.1038/nature09996 – volume: 6 start-page: 8485 year: 2015 ident: CR101 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. doi: 10.1038/ncomms9485 – volume: 68 start-page: 107 year: 2016 ident: CR40 article-title: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2015.09.009 – volume: 163 start-page: 184 year: 2009 ident: CR66 article-title: Microstructure, thermophysical and electrical properties in Al CoCrFeNi (0 ≤ ≤ 2) high-entropy alloys publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2009.05.024 – start-page: 1 year: 2005 ident: CR74 article-title: Superconducting materials—A topical overview publication-title: Frontiers in Superconducting Materials – volume: 556 start-page: 79 year: 2013 ident: CR31 article-title: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.12.095 – volume: 6 start-page: 8736 year: 2015 ident: CR65 article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys publication-title: Nat. Commun. doi: 10.1038/ncomms9736 – start-page: 469 year: 2016 ident: CR20 article-title: High-entropy coatings publication-title: High Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_14 – volume: 20 start-page: 549 year: 2013 ident: CR30 article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl Si high entropy alloy publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-013-0764-x – volume: 130 start-page: 10 year: 2017 ident: CR46 article-title: Tailoring magnetic behaviors of CoFeMnNiX (X = Al, Ga, and Sn) high entropy alloys by metal doping publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.013 – volume: 67 start-page: 171 year: 2015 ident: CR34 article-title: Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2015.08.014 – volume: 91 start-page: 1 year: 2015 ident: CR100 article-title: Standard enthalpies of formation of selected XYZ half-Heusler compounds publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2015.07.016 – volume: 62 start-page: 105 year: 2010 ident: CR116 article-title: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2009.09.015 – volume: 6 start-page: 37946 year: 2016 ident: CR108 article-title: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. doi: 10.1038/srep37946 – volume: 103 start-page: 71 year: 2016 ident: CR37 article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.04.053 – volume: 125 start-page: 481 year: 2017 ident: CR13 article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.021 – volume: 65 start-page: 1772 year: 2013 ident: CR127 article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W publication-title: JOM doi: 10.1007/s11837-013-0772-3 – volume: 6 start-page: 20159 year: 2016 ident: CR63 article-title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity publication-title: Sci. Rep. doi: 10.1038/srep20159 – volume: 38 start-page: 12180 year: 2013 ident: CR87 article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.071 – volume: 21 start-page: 4545 year: 2009 ident: CR60 article-title: Recent progress in exploring magnetocaloric materials publication-title: Adv. Mater. doi: 10.1002/adma.200901072 – volume: 35 start-page: 9046 year: 2010 ident: CR88 article-title: Hydrogen storage properties of multi-principal-component CoFeMnTi V Zr alloys publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.06.012 – volume: 135 start-page: 54 year: 2017 ident: CR96 article-title: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.03.029 – volume: 65 start-page: 1759 year: 2013 ident: CR51 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: JOM doi: 10.1007/s11837-013-0761-6 – volume: 6 start-page: 5964 year: 2015 ident: CR124 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 56 start-page: 24 year: 2015 ident: CR35 article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics doi: 10.1016/j.intermet.2014.08.008 – volume: 61 start-page: 718 year: 2013 ident: CR53 article-title: Modern soft magnets: Amorphous and nanocrystalline materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.10.040 – volume: 6 start-page: 52164 year: 2016 ident: CR16 article-title: Thermoelectric high-entropy alloys with low lattice thermal conductivity publication-title: RSC Adv. doi: 10.1039/C5RA28088E – volume: 114 start-page: 13144 year: 2017 ident: CR77 article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1716981114 – year: 2016 ident: CR5 publication-title: High-Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5 – volume: 746 start-page: 285 year: 2018 ident: CR50 article-title: Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl) Ga (0 ≤ ≤ 0.08) high-entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.02.189 – volume: 22 start-page: 535 year: 2012 ident: CR69 article-title: Nanostructured thermoelectric materials: Current research and future challenge publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2012.11.011 – volume: 38 start-page: 13335 year: 2013 ident: CR93 article-title: Hydrogen storage properties of Ti CrVM (M = Fe, Co, Ni) alloys publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.07.096 – volume: 7 start-page: 9892 year: 2017 ident: CR94 article-title: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy publication-title: Sci. Rep. doi: 10.1038/s41598-017-10774-4 – volume: 502 start-page: 295 year: 2010 ident: CR24 article-title: Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.11.104 – volume: 5 start-page: 187 year: 2017 ident: CR15 article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1244116 – volume: 518 start-page: 180 year: 2009 ident: CR114 article-title: Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.06.020 – volume: 704 start-page: 693 year: 2017 ident: CR105 article-title: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.070 – volume: 514 start-page: 437 year: 2015 ident: CR75 article-title: Epilogue: Superconducting materials past, present and future publication-title: Phys. C doi: 10.1016/j.physc.2015.03.003 – volume: 202 start-page: 3732 year: 2008 ident: CR111 article-title: Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2008.01.014 – volume: 16 start-page: 494 year: 2014 ident: CR8 article-title: Exploration and development of high entropy alloys for structural applications publication-title: Entropy doi: 10.3390/e16010494 – volume: 509 start-page: 1607 year: 2011 ident: CR25 article-title: Electrical, magnetic, and Hall properties of Al CoCrFeNi high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.10.210 – volume: 32 start-page: 3627 year: 2017 ident: CR121 article-title: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.366 – volume: 109 start-page: 07E307 year: 2011 ident: CR26 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3538936 – volume: 2 start-page: 379 year: 2012 ident: CR99 article-title: Recent advances in nanostructured thermoelectric half-heusler compounds publication-title: Nanomaterials doi: 10.3390/nano2040379 – volume: 113 start-page: E7144 year: 2016 ident: CR79 article-title: Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 299 year: 2016 ident: CR122 article-title: Applications of coherent potential approximation to HEAs publication-title: High-Entropy Alloys: Fundamentals and Applications doi: 10.1007/978-3-319-27013-5_9 – volume: 3 start-page: 1455 year: 2013 ident: CR29 article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability publication-title: Sci. Rep. doi: 10.1038/srep01455 – volume: 355 start-page: 58 year: 2014 ident: CR32 article-title: Microstructure and magnetic properties of mechanically alloyed FeSiSAlNi(Nb) high entropy alloys publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.11.049 – volume: 4 start-page: 1 year: 2018 ident: CR125 article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0060-9 – volume: 61 start-page: 1 year: 2014 ident: CR4 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 100 start-page: 90 year: 2015 ident: CR55 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.050 – volume: 142 start-page: 116 year: 2018 ident: CR102 article-title: A new class of high-entropy perovskite oxides publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.08.040 – volume: 5 start-page: 15755 year: 2015 ident: CR59 article-title: Tunable magnetocaloric effect in transition metal alloys publication-title: Sci. Rep. doi: 10.1038/srep15755 – volume: 113 start-page: 107001 year: 2014 ident: CR76 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.107001 – volume: 42 start-page: 27154 year: 2017 ident: CR89 article-title: Microstructures and hydrogen storage properties of La–Ni–Fe–V–Mn alloys publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.039 – volume: 3 start-page: 50 year: 2017 ident: CR120 article-title: First-principles prediction of high-entropy-alloy stability publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0049-4 – volume: 95 start-page: 80 year: 2018 ident: CR56 article-title: Mapping the magnetic transition temperatures for medium- and high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2018.01.016 – volume: 7 start-page: 105 year: 2008 ident: CR64 article-title: Complex thermoelectric materials publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 146 start-page: 119 year: 2018 ident: CR107 article-title: Phase stability and distortion in high-entropy oxides publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.12.037 – volume: 18 start-page: 308 year: 2016 ident: CR39 article-title: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films publication-title: Entropy doi: 10.3390/e18080308 – volume: 23 start-page: 821 year: 2011 ident: CR52 article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient publication-title: Adv. Mater. doi: 10.1002/adma.201002180 – volume: 203 start-page: 1891 year: 2009 ident: CR115 article-title: Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2009.01.016 – volume: 7 start-page: 43 year: 2017 ident: CR17 article-title: Corrosion-resistant high-entropy alloys: A review publication-title: Metals doi: 10.3390/met7020043 – volume: 122 start-page: 448 year: 2017 ident: CR6 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 92 start-page: 052109 year: 2008 ident: CR113 article-title: Thermally stable amorphous (AlMoNbSiTaTiVZr) N nitride film as diffusion barrier in copper metallization publication-title: Appl. Phys. Lett. doi: 10.1063/1.2841810 – volume: 21 start-page: 238 year: 2017 ident: CR3 article-title: Thermodynamics of concentrated solid solution alloys publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2017.08.001 – volume: 14 start-page: 919 year: 2012 ident: CR27 article-title: Microstructure and magnetic properties of FeNiCuMnTiSn high entropy alloys publication-title: Adv. Engin. Mater. doi: 10.1002/adem.201200104 – volume: 96 start-page: 014437 year: 2017 ident: CR49 article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.014437 – volume: 375–377 start-page: 213 year: 2004 ident: CR2 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2003.10.257 – volume: 53 start-page: 8359 year: 2008 ident: CR23 article-title: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.06.036 – volume: 57 start-page: 2757 year: 2009 ident: CR98 article-title: High-performance half-Heusler thermoelectric materials Hf Zr NiSn Sb prepared by levitation melting and spark plasma sintering publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.02.026 – volume: 20 start-page: 77 year: 2016 ident: CR57 article-title: Influence of magnetic excitations on the phase stability of metals and steels publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2015.06.001 – volume: 135 start-page: 177 year: 2017 ident: CR9 article-title: Mapping the world of complex concentrated alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.027 – volume: 47 start-page: 3322 year: 2016 ident: CR123 article-title: High-entropy alloys in hexagonal close packed structure publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-015-3091-1 – volume: 532 start-page: 480 year: 2012 ident: CR28 article-title: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.10.110 – volume: 2018 start-page: 3016304 year: 2017 ident: CR19 article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi and CoCrFeNi Mo under sodium chloride aqueous conditions publication-title: Adv. Mater. Sci. Eng. – volume: 66 start-page: 56 year: 2015 ident: CR117 article-title: Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry publication-title: Intermetallics doi: 10.1016/j.intermet.2015.06.014 – volume: 24 start-page: 6125 year: 2012 ident: CR70 article-title: Band engineering of thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.201202919 – ident: S0884291418003230_ref6 doi: 10.1016/j.actamat.2016.08.081 – ident: S0884291418003230_ref97 doi: 10.1063/1.4803530 – ident: S0884291418003230_ref78 doi: 10.1016/j.jallcom.2016.11.417 – volume: 2018 start-page: 3016304 year: 2017 ident: S0884291418003230_ref19 article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2018/3016304 – ident: S0884291418003230_ref77 doi: 10.1073/pnas.1716981114 – ident: S0884291418003230_ref76 doi: 10.1103/PhysRevLett.113.107001 – ident: S0884291418003230_ref42 doi: 10.1016/j.matlet.2017.03.159 – ident: S0884291418003230_ref113 doi: 10.1063/1.2841810 – ident: S0884291418003230_ref79 doi: 10.1073/pnas.1615926113 – ident: S0884291418003230_ref4 doi: 10.1016/j.pmatsci.2013.10.001 – ident: S0884291418003230_ref96 doi: 10.1016/j.scriptamat.2017.03.029 – ident: S0884291418003230_ref62 doi: 10.3389/fmats.2018.00026 – ident: S0884291418003230_ref54 doi: 10.1063/1.4798340 – ident: S0884291418003230_ref120 doi: 10.1038/s41524-017-0049-4 – ident: S0884291418003230_ref37 doi: 10.1016/j.matdes.2016.04.053 – ident: S0884291418003230_ref53 doi: 10.1016/j.actamat.2012.10.040 – ident: S0884291418003230_ref81 doi: 10.1021/acs.chemmater.7b04578 – ident: S0884291418003230_ref52 doi: 10.1002/adma.201002180 – ident: S0884291418003230_ref75 doi: 10.1016/j.physc.2015.03.003 – ident: S0884291418003230_ref87 doi: 10.1016/j.ijhydene.2013.05.071 – ident: S0884291418003230_ref99 doi: 10.3390/nano2040379 – ident: S0884291418003230_ref109 doi: 10.3166/acsm.31.723-736 – ident: S0884291418003230_ref93 doi: 10.1016/j.ijhydene.2013.07.096 – ident: S0884291418003230_ref119 doi: 10.1016/j.actamat.2013.01.042 – ident: S0884291418003230_ref46 doi: 10.1016/j.actamat.2017.03.013 – ident: S0884291418003230_ref31 doi: 10.1016/j.jallcom.2012.12.095 – ident: S0884291418003230_ref121 doi: 10.1557/jmr.2017.366 – ident: S0884291418003230_ref38 doi: 10.1016/j.intermet.2015.11.005 – ident: S0884291418003230_ref86 doi: 10.1016/j.ijhydene.2014.02.067 – ident: S0884291418003230_ref27 doi: 10.1002/adem.201200104 – volume: 18 start-page: 2058 year: 2009 ident: S0884291418003230_ref61 article-title: Effect of R substitution on magnetic properties and magnetocaloric effects of La1−xRxFe11.5Si1.5 compounds with R = Ce, Pr, and Nd publication-title: Chin. Phys. B doi: 10.1088/1674-1056/18/5/055 – ident: S0884291418003230_ref17 doi: 10.3390/met7020043 – ident: S0884291418003230_ref48 doi: 10.1016/j.jallcom.2016.09.271 – ident: S0884291418003230_ref16 doi: 10.1039/C5RA28088E – ident: S0884291418003230_ref85 doi: 10.1038/srep36770 – ident: S0884291418003230_ref12 doi: 10.1007/s11837-017-2523-3 – ident: S0884291418003230_ref2 doi: 10.1016/j.msea.2003.10.257 – ident: S0884291418003230_ref45 doi: 10.1016/j.intermet.2017.04.007 – ident: S0884291418003230_ref21 doi: 10.1007/978-3-319-27013-5_15 – ident: S0884291418003230_ref58 doi: 10.1063/1.4932571 – ident: S0884291418003230_ref57 doi: 10.1016/j.cossms.2015.06.001 – ident: S0884291418003230_ref67 doi: 10.1038/nature09996 – ident: S0884291418003230_ref18 doi: 10.1038/s41529-017-0009-y – ident: S0884291418003230_ref41 doi: 10.1016/j.jallcom.2016.09.186 – ident: S0884291418003230_ref110 doi: 10.1088/0022-3727/39/21/019 – ident: S0884291418003230_ref89 doi: 10.1016/j.ijhydene.2017.09.039 – ident: S0884291418003230_ref50 doi: 10.1016/j.jallcom.2018.02.189 – ident: S0884291418003230_ref100 doi: 10.1016/j.jct.2015.07.016 – ident: S0884291418003230_ref92 doi: 10.1016/j.jallcom.2015.12.125 – ident: S0884291418003230_ref34 doi: 10.1016/j.intermet.2015.08.014 – ident: S0884291418003230_ref7 doi: 10.1007/978-3-319-27013-5_3 – ident: S0884291418003230_ref107 doi: 10.1016/j.actamat.2017.12.037 – ident: S0884291418003230_ref103 doi: 10.1016/j.jeurceramsoc.2016.09.018 – ident: S0884291418003230_ref39 doi: 10.3390/e18080308 – ident: S0884291418003230_ref98 doi: 10.1016/j.actamat.2009.02.026 – ident: S0884291418003230_ref10 doi: 10.1557/jmr.2017.341 – ident: S0884291418003230_ref40 doi: 10.1016/j.intermet.2015.09.009 – ident: S0884291418003230_ref36 doi: 10.1016/j.intermet.2015.06.015 – ident: S0884291418003230_ref128 doi: 10.1038/ncomms7529 – ident: S0884291418003230_ref125 doi: 10.1038/s41524-017-0060-9 – ident: S0884291418003230_ref65 doi: 10.1038/ncomms9736 – ident: S0884291418003230_ref64 doi: 10.1038/nmat2090 – ident: S0884291418003230_ref3 doi: 10.1016/j.cossms.2017.08.001 – ident: S0884291418003230_ref69 doi: 10.1016/j.pnsc.2012.11.011 – ident: S0884291418003230_ref130 doi: 10.3390/e15104504 – ident: S0884291418003230_ref55 doi: 10.1016/j.actamat.2015.08.050 – ident: S0884291418003230_ref84 doi: 10.1126/science.268.5218.1738 – ident: S0884291418003230_ref127 doi: 10.1007/s11837-013-0772-3 – ident: S0884291418003230_ref82 doi: 10.1103/PhysRev.97.74 – start-page: 1 volume-title: Frontiers in Superconducting Materials year: 2005 ident: S0884291418003230_ref74 – ident: S0884291418003230_ref106 doi: 10.1002/pssr.201600043 – ident: S0884291418003230_ref70 doi: 10.1002/adma.201202919 – ident: S0884291418003230_ref49 doi: 10.1103/PhysRevB.96.014437 – ident: S0884291418003230_ref59 doi: 10.1038/srep15755 – ident: S0884291418003230_ref11 doi: 10.1007/978-3-319-27013-5_7 – ident: S0884291418003230_ref68 doi: 10.1063/1.4832615 – volume-title: Desk Handbook: Phase Diagrams for Binary Alloys year: 2000 ident: S0884291418003230_ref90 – ident: S0884291418003230_ref112 doi: 10.1088/0022-3727/41/23/235402 – ident: S0884291418003230_ref114 doi: 10.1016/j.tsf.2009.06.020 – ident: S0884291418003230_ref129 doi: 10.1007/978-3-319-27013-5_12 – ident: S0884291418003230_ref72 doi: 10.1021/acs.chemmater.6b04076 – ident: S0884291418003230_ref116 doi: 10.1016/j.scriptamat.2009.09.015 – ident: S0884291418003230_ref66 doi: 10.1016/j.mseb.2009.05.024 – ident: S0884291418003230_ref35 doi: 10.1016/j.intermet.2014.08.008 – ident: S0884291418003230_ref102 doi: 10.1016/j.scriptamat.2017.08.040 – ident: S0884291418003230_ref43 doi: 10.1016/j.jmmm.2017.04.017 – ident: S0884291418003230_ref44 doi: 10.1016/j.jmmm.2017.06.124 – ident: S0884291418003230_ref124 doi: 10.1038/ncomms6964 – ident: S0884291418003230_ref73 doi: 10.1002/adma.201702712 – ident: S0884291418003230_ref88 doi: 10.1016/j.ijhydene.2010.06.012 – ident: S0884291418003230_ref80 doi: 10.1103/PhysRevMaterials.2.034801 – volume: 5 start-page: 187 year: 2017 ident: S0884291418003230_ref15 article-title: Thermoelectric performance of PbSnTeSe high-entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1244116 – ident: S0884291418003230_ref33 doi: 10.1016/j.jmmm.2014.07.023 – ident: S0884291418003230_ref83 doi: 10.1103/PhysRevLett.30.92 – ident: S0884291418003230_ref94 doi: 10.1038/s41598-017-10774-4 – ident: S0884291418003230_ref108 doi: 10.1038/srep37946 – ident: S0884291418003230_ref51 doi: 10.1007/s11837-013-0761-6 – ident: S0884291418003230_ref122 doi: 10.1007/978-3-319-27013-5_9 – ident: S0884291418003230_ref30 doi: 10.1007/s12613-013-0764-x – ident: S0884291418003230_ref71 doi: 10.1021/jacs.5b07284 – ident: S0884291418003230_ref24 doi: 10.1016/j.jallcom.2009.11.104 – ident: S0884291418003230_ref111 doi: 10.1016/j.surfcoat.2008.01.014 – ident: S0884291418003230_ref29 doi: 10.1038/srep01455 – ident: S0884291418003230_ref115 doi: 10.1016/j.surfcoat.2009.01.016 – ident: S0884291418003230_ref126 doi: 10.1007/s11661-013-2000-8 – ident: S0884291418003230_ref25 doi: 10.1016/j.jallcom.2010.10.210 – ident: S0884291418003230_ref26 doi: 10.1063/1.3538936 – ident: S0884291418003230_ref95 doi: 10.1016/j.ijhydene.2017.02.061 – ident: S0884291418003230_ref28 doi: 10.1016/j.msea.2011.10.110 – ident: S0884291418003230_ref118 doi: 10.1016/j.intermet.2016.12.002 – ident: S0884291418003230_ref13 doi: 10.1016/j.actamat.2016.12.021 – ident: S0884291418003230_ref91 doi: 10.1016/j.rser.2017.01.063 – ident: S0884291418003230_ref14 doi: 10.1063/1.4935489 – ident: S0884291418003230_ref56 doi: 10.1016/j.intermet.2018.01.016 – ident: S0884291418003230_ref117 doi: 10.1016/j.intermet.2015.06.014 – ident: S0884291418003230_ref60 doi: 10.1002/adma.200901072 – ident: S0884291418003230_ref8 doi: 10.3390/e16010494 – ident: S0884291418003230_ref23 doi: 10.1016/j.electacta.2008.06.036 – ident: S0884291418003230_ref5 doi: 10.1007/978-3-319-27013-5 – ident: S0884291418003230_ref32 doi: 10.1016/j.jmmm.2013.11.049 – ident: S0884291418003230_ref63 doi: 10.1038/srep20159 – ident: S0884291418003230_ref104 doi: 10.1080/21663831.2016.1220433 – ident: S0884291418003230_ref123 doi: 10.1007/s11661-015-3091-1 – ident: S0884291418003230_ref47 doi: 10.1016/j.surfin.2017.06.012 – ident: S0884291418003230_ref9 doi: 10.1016/j.actamat.2017.06.027 – ident: S0884291418003230_ref1 doi: 10.1002/adem.200300567 – ident: S0884291418003230_ref20 doi: 10.1007/978-3-319-27013-5_14 – ident: S0884291418003230_ref101 doi: 10.1038/ncomms9485 – ident: S0884291418003230_ref105 doi: 10.1016/j.jallcom.2017.02.070 – ident: S0884291418003230_ref22 doi: 10.1016/j.intermet.2006.08.005 |
| SSID | ssj0015074 |
| Score | 2.6498487 |
| SecondaryResourceType | review_article |
| Snippet | While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been... |
| SourceID | osti proquest crossref springer cambridge |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3138 |
| SubjectTerms | Alloys Applied and Technical Physics Biomaterials Computation Electricity distribution Entropy Functional materials High entropy alloys Hydrogen storage Inorganic Chemistry Intermetallic compounds Invited Review Magnetic fields Magnetic properties Magnetism Materials Engineering Materials research MATERIALS SCIENCE Mechanical properties Nanotechnology Phase transitions Recording equipment Solid solutions |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60KujBR1WsrVLBx0FWdjfZbHIUUTxIEV_0tuS1oGhb2ir4783so7bFit4WMoFMMtn5JjN8A3BoiLZ-IIkXGqU856-lx43Cbu4hSalQYawzdv2buNXi7ba4LQLFQVntXqYksz911qPHhe0vb0jfGfAzEpJ5WHCOjuNFvLt_GmUNHLahOWqkXigCWhS6T88ep1GYcEeVrrtWE1BzKjuaOZ2rtf8udx1WC3jZPM_tYQPmbKcKK2Okg1VYyoo-9WATDrDIw8Pn3W7vs4keLn8YbDoUmxvmFjxeXT5cXHtFywRPR4QNPcaiSPJUxSnRTCspmdRaW-6nJDBxRJURhHEXc1nhsIjBYRkRn2rDTMQII9tQ6XQ7dgeaUpFQhdJIbQQ1qRVUUKuU5IrEkfFtDU5Gu5gUhj9IMKZw6idO_QTVT5z6NTgt9zjRBfM4NsB4nSF9NJLu5YwbM-TqeFyJQwpId6uxLkgPnRwSEPk1aJSn-L04ZLOLnZqx-HmYOzSJRL1u-Lg81N9V2_2rYB2W8RO9XkAbUBn23-0eLOqP4fOgv5-Z8RcUme66 priority: 102 providerName: Springer Nature |
| Title | High-entropy functional materials |
| URI | https://www.cambridge.org/core/product/identifier/S0884291418003230/type/journal_article https://link.springer.com/article/10.1557/jmr.2018.323 https://www.proquest.com/docview/2119756379 https://www.proquest.com/docview/2845639929 https://www.osti.gov/servlets/purl/1509730 |
| Volume | 33 |
| WOSCitedRecordID | wos000452650400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: 7WY dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: M0C dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: KB. dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2044-5326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ_IIQk-KPIRT5AcicoDKexuv7ZPRgiERLkQVD6eNv3aBKJ3J3ea-N87c9u7EyO8-NJk00m2nU47v04nvwF4HbiPWW45K4JzDP21ZWVwVM294LUwrtB-zK7_UXe75eWlOU0Bt2FKq5ycieODOvQ9xcj3iIlMS8W1eTf4zqhqFL2uphIaczBP_aIF8_uH3dOz6TsCoh3R4EjBCpOLlPoupd67-UZ0oHm5y6lU0YxY4Y6DavVxo90Bn3-9l47d0NGz_53AEjxNALTzvrGY5_Ao9pbhyR-0hMuwME4L9cMV2KI0EEYB4P7gV4d8YBM67CDObUx3Fb4cHX4-OGapqALzkqsRU0pKW9ZO19wr76xV1nsfy6zmedBSuGC4KvFWFg2ilUDdVvJM-KACjl7xNWj1-r34AjrW8cIVNlgfjAh1NMKI6JwtHdcyZLEN21OtVmlrDCu6daD-K9R_RfqvUP9t2JnovPKJm5xKZHy9R_rNVHrQcHLcI7dOy1chliBCXE-ZQ36EckRRlLVhY7JOs8HNFunf3SXiTaLyxe63E0N4eGovH_7NOiySJHnDXGxAa3T7I76Cx_7n6Hp4uwlz-uJqMxk1fn3Y38X2JDvA9uzT-W_fDwB4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gikEPPlDiCuqQiB5My8z0Y6YPxhiQQFg2HCDhNvZrEozsruwK4U_5G62ax64Q4MbBc9dMz0xVdX3VXfMVwDvPXYgTw1nqrWUYrw3LvaVu7ikvhbZp5ip2_V7W7-dHR3p_Dv60_8JQWWW7JlYLtR862iNfJyayTCqe6S-jX4y6RtHpattCozaL3XBxjinb-PPOJup3LU23vh1sbLOmqwBzkqsJU0pKk5c2K7lTzhqjjHMu5HHJE59JYb3mKse0JGgM156GjcSk33nlcX7F8b734L4Q6A5UKhhvTE8tEFuJGrUKlupENIX2UmbrP06IfDTJP3FqjDSjcbgUDjtDdOtLUPfK6WwV9Lae_G-f6yk8buB19LX2h2cwFwaL8Ogf0sVFeFAVvbrxc1ilIhdG29vD0UVEEb7eGI0QxdeO-QIO7-Rpl6AzGA7CS4iM5alNjTfOa-HLoIUWwVqTW55JH4cufJhqsWgcf1xQToX6LlDfBem7QH134WOr48I1zOvUAOTnDdJrU-lRzThyg9wymUuBSInofh3VRbkJyhEBU9yFldYuZg83M4rrh3NE00RUjMPvW8O7_dVe3T7NW1jYPtjrFb2d_u4yPKSrKO4nYgU6k9Pf4TXMu7PJ8fj0TeVIEXy_a1P8Cz6oWX4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VABUceJQi0hYwEoUDWuJ4X94DqipKRNUq6gFEOZl9WWoFSWgCVf8av44ZPxKKaG89cN6xvfZ8szM7O_4G4HngPqZ9y1kWnGPory3Lg6Nu7hkvhXGZ9hW7_r4eDvPDQ3OwBL_af2GorLJdE6uFOow95ch7xESmpeLa9MqmLOJgZ7A1-c6ogxSdtLbtNGqI7MWzU9y-Td_s7qCuN7Ns8O7D2_es6TDAvORqxpSS0ual0yX3yjtrlfXexzwteT9oKVwwXOW4RYkGXXegYSt5KnxQAeeiON73GlzXhHu0Jf3p8_wEA-MsUUewgmWmL5qieyl17_gbEZH289ecmiQtKB3OucbOGE38XNj710lt5QAHd__nT3cP7jRhd7Jd28l9WIqjFbj9BxnjCtysimH99AE8o-IXRmnv8eQsIc9fJ0wTjO5rg12Fj1cy24fQGY1H8REk1vHMZTZYH4wIZTTCiOiczR3XMqSxCy_nGi2aBWFa0F4LdV-g7gvSfYG678KrVt-FbxjZqTHI1wukN-fSk5qJ5AK5dYJOgREU0QB7qpfyM5QjYqa0CxstRhaTWwDk38M5RtlEYIzDL1oQXv5qa5c_5iksIwKL_d3h3jrcoovq-sgN6MxOfsTHcMP_nB1NT55UNpXAl6tG4m_bkWKX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+functional+materials&rft.jtitle=Journal+of+materials+research&rft.au=Gao%2C+Michael+C.&rft.au=Miracle%2C+Daniel+B.&rft.au=Maurice%2C+David&rft.au=Yan%2C+Xuehui&rft.date=2018-10-14&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=33&rft.issue=19&rft.spage=3138&rft.epage=3155&rft_id=info:doi/10.1557%2Fjmr.2018.323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_jmr_2018_323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |