A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma

Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European urology Ročník 71; číslo 6; s. 858 - 862
Hlavní autori: Wang, Liqin, Šuštić, Tonći, Leite de Oliveira, Rodrigo, Lieftink, Cor, Halonen, Pasi, van de Ven, Marieke, Beijersbergen, Roderick L., van den Heuvel, Michel M., Bernards, René, van der Heijden, Michiel S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Elsevier B.V 01.06.2017
Predmet:
ISSN:0302-2838, 1873-7560, 1873-7560
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes. Fibroblast growth factor receptor (FGFR) inhibitors are tested in bladder cancer patients. A genetic screen identified the phosphoinositide 3-kinase pathway to determine drug resistance. Combined treatment with FGFR and phosphoinositide 3-kinase inhibitors may improve response rates in patients with cancers harboring activating FGFR mutations
AbstractList Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.
Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes. Fibroblast growth factor receptor (FGFR) inhibitors are tested in bladder cancer patients. A genetic screen identified the phosphoinositide 3-kinase pathway to determine drug resistance. Combined treatment with FGFR and phosphoinositide 3-kinase inhibitors may improve response rates in patients with cancers harboring activating FGFR mutations
Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.
Abstract Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 ( FGFR3 - TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.
Author Halonen, Pasi
van der Heijden, Michiel S.
Beijersbergen, Roderick L.
van den Heuvel, Michel M.
Šuštić, Tonći
Wang, Liqin
Leite de Oliveira, Rodrigo
Lieftink, Cor
van de Ven, Marieke
Bernards, René
Author_xml – sequence: 1
  givenname: Liqin
  surname: Wang
  fullname: Wang, Liqin
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 2
  givenname: Tonći
  surname: Šuštić
  fullname: Šuštić, Tonći
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 3
  givenname: Rodrigo
  surname: Leite de Oliveira
  fullname: Leite de Oliveira, Rodrigo
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 4
  givenname: Cor
  surname: Lieftink
  fullname: Lieftink, Cor
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 5
  givenname: Pasi
  surname: Halonen
  fullname: Halonen, Pasi
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 6
  givenname: Marieke
  surname: van de Ven
  fullname: van de Ven, Marieke
  organization: Mouse Clinic Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 7
  givenname: Roderick L.
  surname: Beijersbergen
  fullname: Beijersbergen, Roderick L.
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 8
  givenname: Michel M.
  surname: van den Heuvel
  fullname: van den Heuvel, Michel M.
  organization: Division of Medical Oncology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
– sequence: 9
  givenname: René
  surname: Bernards
  fullname: Bernards, René
  email: r.bernards@nki.nl
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– sequence: 10
  givenname: Michiel S.
  surname: van der Heijden
  fullname: van der Heijden, Michiel S.
  email: ms.vd.heijden@nki.nl
  organization: Division of Molecular Carcinogenesis, Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28108151$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1rFDEUDVKx29V_IJJHX2ZNJjsfFRHK6qwLFaW1zyGT3GHudjZZk4xl_19_WDNs9UGQ4ksSuOeeHM45Z-TEOguEvOZswRkv320XMPrRu0XOeLVgfMFy_ozMeF2JrCpKdkJmTLA8y2tRn5KzELaMMVGcixfkNK85q3nBZ-T-gjaj1RGdVQNdg4WIml5rD2DpxoCN2CEEGnug33sX9r1D6wJGNEBFdotWhTRRsb9TB6oCVfQTRPC7NLCRuo5eQcAQldVAo6MNtt61gwqRrr27iz1tlI7OJ5iG_fTY2B5bTK9A0dJm3VzRr2OcyG68SzIGTEJXMKRDeZ3E7NRL8rxTQ4BXj_ec3DSff6y-ZJff1pvVxWWmC1HGTHSmVXWn23JZVZUGnrdtXbamKrSpQRS80EVpRPKIc5FXRWdUvjTMaF1qfb7sxJy8PfLuvfs5Qohyh0EnKcqCG4PkdcmLuiqS5XPy5hE6tjswcu9xp_xB_nY-AZZHgPYuBA_dHwhncgpYbuUxYDkFLBmXKeC09v6vNY1RTfFFr3B4avnjcRmSSb8QvAwaISVj0IOO0jj8XwI9oEWthls4QNi60acaJSNkyCWT11MBp_7xSqTuVctE8OHfBE___wBfYPEQ
CitedBy_id crossref_primary_10_1038_nrurol_2017_179
crossref_primary_10_1158_0008_5472_CAN_23_1398
crossref_primary_10_1158_1078_0432_CCR_19_1376
crossref_primary_10_1186_s12943_024_02167_9
crossref_primary_10_1158_2159_8290_CD_21_0697
crossref_primary_10_1016_j_eururo_2024_09_012
crossref_primary_10_1080_13543784_2017_1316714
crossref_primary_10_3389_fimmu_2023_1258388
crossref_primary_10_3892_ol_2019_10973
crossref_primary_10_3892_ijo_2019_4896
crossref_primary_10_1007_s10637_020_00933_2
crossref_primary_10_3390_ijms24129945
crossref_primary_10_1016_j_lfs_2021_119592
crossref_primary_10_3389_fonc_2021_640490
crossref_primary_10_1158_0008_5472_CAN_24_3217
crossref_primary_10_1016_j_canlet_2024_217146
crossref_primary_10_1016_j_eururo_2017_01_049
crossref_primary_10_3390_medicina60040585
crossref_primary_10_3390_ijms25020849
crossref_primary_10_1016_j_ctrv_2020_102000
crossref_primary_10_1016_j_celrep_2018_02_028
crossref_primary_10_1038_s41389_017_0018_2
crossref_primary_10_3390_cancers14061555
crossref_primary_10_3389_fcell_2022_809747
crossref_primary_10_1016_j_urolonc_2021_10_003
crossref_primary_10_2147_OTT_S318332
crossref_primary_10_1038_s41571_018_0115_y
crossref_primary_10_3389_fchem_2022_860985
crossref_primary_10_1177_1758835919890285
crossref_primary_10_1186_s10020_021_00298_z
crossref_primary_10_1038_s41585_024_00951_2
crossref_primary_10_1158_2159_8290_CD_18_0229
crossref_primary_10_1016_j_ctrv_2023_102530
crossref_primary_10_1080_14656566_2020_1736036
crossref_primary_10_3390_cancers13194891
crossref_primary_10_3390_cancers14061416
crossref_primary_10_3389_fonc_2022_930731
crossref_primary_10_1111_bph_16186
crossref_primary_10_1002_cac2_12602
crossref_primary_10_3390_cancers11111682
crossref_primary_10_1002_path_6034
crossref_primary_10_3390_ijms22179526
crossref_primary_10_3389_fonc_2022_780650
crossref_primary_10_1016_j_heliyon_2024_e31112
crossref_primary_10_3389_fimmu_2025_1537808
crossref_primary_10_1002_cncr_33071
crossref_primary_10_1158_1078_0432_CCR_19_2035
crossref_primary_10_1016_j_semcancer_2019_03_006
crossref_primary_10_1186_s13045_021_01040_2
crossref_primary_10_3390_ijms22020747
crossref_primary_10_3390_app10207102
crossref_primary_10_1186_s13046_024_03224_3
crossref_primary_10_15252_emmm_201708163
crossref_primary_10_1634_theoncologist_2020_0334
Cites_doi 10.1158/1535-7163.MCT-15-0230
10.1200/JCO.2016.67.2048
10.1038/onc.2014.161
10.1038/nature12965
10.1158/2159-8290.CD-15-1246
10.1126/scitranslmed.3001451
10.1158/2159-8290.CD-13-0050
10.1158/2159-8290.CD-12-0569
10.1093/hmg/dds486
10.1158/0008-5472.CAN-15-0509
ContentType Journal Article
Copyright 2017 European Association of Urology
European Association of Urology
Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 European Association of Urology
– notice: European Association of Urology
– notice: Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.eururo.2017.01.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-7560
EndPage 862
ExternalDocumentID 28108151
10_1016_j_eururo_2017_01_021
S0302283817300374
1_s2_0_S0302283817300374
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
0~B
1B1
1P~
1~.
1~5
29G
30W
34G
39C
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
8UI
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYIC
AAYWO
ABBQC
ABBTS
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWCG
ABWVN
ABXDB
ACDAQ
ACIEU
ACLOT
ACQXL
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEYAO
AFJKZ
AFPUW
AFRHN
AFSIO
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
CYUIP
DU5
E0A
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FB.
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O1H
O9-
OAUVE
OK.
OW.
OZT
P-8
P-9
P2P
PC.
Q38
RKO
ROL
RPZ
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UDS
UJ6
UV1
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
AZPMC
LCYCR
ZA5
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c536t-3fdba8fcb64777ce12bb86bd75cd8e3515c56d3359113275fda24d0dcc6cc94f3
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400050300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0302-2838
1873-7560
IngestDate Sun Nov 09 14:01:47 EST 2025
Thu Apr 03 07:00:37 EDT 2025
Sat Nov 29 04:11:28 EST 2025
Tue Nov 18 21:45:05 EST 2025
Fri Feb 23 02:16:44 EST 2024
Tue Feb 25 20:12:30 EST 2025
Tue Oct 14 19:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Synergy
PI3K
FGFR
Bladder cancer
Language English
License Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-3fdba8fcb64777ce12bb86bd75cd8e3515c56d3359113275fda24d0dcc6cc94f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28108151
PQID 1861587528
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1861587528
pubmed_primary_28108151
crossref_primary_10_1016_j_eururo_2017_01_021
crossref_citationtrail_10_1016_j_eururo_2017_01_021
elsevier_sciencedirect_doi_10_1016_j_eururo_2017_01_021
elsevier_clinicalkeyesjournals_1_s2_0_S0302283817300374
elsevier_clinicalkey_doi_10_1016_j_eururo_2017_01_021
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle European urology
PublicationTitleAlternate Eur Urol
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (bib0055) 2014; 507
Nogova L, Sequist LV, Perez Garcia JM, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol 2017;35:57–65.
Wang, Mikse, Liao (bib0090) 2015; 34
Davies, Guan, Logie (bib0095) 2015; 14
Herrera-Abreu, Pearson, Campbell (bib0065) 2013; 3
Pearson, Smyth, Babina (bib0075) 2016; 6
Weiss, Sos, Seidel (bib0080) 2010; 2
Williams, Hurst, Knowles (bib0070) 2013; 22
Wu, Su, Kalyana-Sundaram (bib0100) 2013; 3
Singleton, Hinz, Kleczko (bib0085) 2015; 75
Williams (10.1016/j.eururo.2017.01.021_bib0070) 2013; 22
Wang (10.1016/j.eururo.2017.01.021_bib0090) 2015; 34
Davies (10.1016/j.eururo.2017.01.021_bib0095) 2015; 14
Herrera-Abreu (10.1016/j.eururo.2017.01.021_bib0065) 2013; 3
Pearson (10.1016/j.eururo.2017.01.021_bib0075) 2016; 6
Singleton (10.1016/j.eururo.2017.01.021_bib0085) 2015; 75
(10.1016/j.eururo.2017.01.021_bib0055) 2014; 507
Wu (10.1016/j.eururo.2017.01.021_bib0100) 2013; 3
Weiss (10.1016/j.eururo.2017.01.021_bib0080) 2010; 2
10.1016/j.eururo.2017.01.021_bib0060
28214032 - Eur Urol. 2017 Jun;71(6):863-865
References_xml – volume: 507
  start-page: 315
  year: 2014
  end-page: 322
  ident: bib0055
  article-title: Comprehensive molecular characterization of urothelial bladder carcinoma
  publication-title: Nature
– volume: 3
  start-page: 1058
  year: 2013
  end-page: 1071
  ident: bib0065
  article-title: Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer
  publication-title: Cancer Discov
– volume: 14
  start-page: 2441
  year: 2015
  end-page: 2451
  ident: bib0095
  article-title: Tumors with AKT1E17K mutations are rational targets for single agent or combination therapy with AKT inhibitors
  publication-title: Mol Cancer Ther
– volume: 22
  start-page: 795
  year: 2013
  end-page: 803
  ident: bib0070
  article-title: Oncogenic
  publication-title: Hum Mol Genet
– volume: 34
  start-page: 2167
  year: 2015
  end-page: 2177
  ident: bib0090
  article-title: Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells
  publication-title: Oncogene
– volume: 75
  start-page: 4398
  year: 2015
  end-page: 4406
  ident: bib0085
  article-title: Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC
  publication-title: Cancer Res
– volume: 3
  start-page: 636
  year: 2013
  end-page: 647
  ident: bib0100
  article-title: Identification of targetable
  publication-title: Cancer Discov
– reference: Nogova L, Sequist LV, Perez Garcia JM, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol 2017;35:57–65.
– volume: 6
  start-page: 838
  year: 2016
  end-page: 851
  ident: bib0075
  article-title: High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial
  publication-title: Cancer Discov
– volume: 2
  start-page: 62ra93
  year: 2010
  ident: bib0080
  article-title: Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer
  publication-title: Sci Transl Med
– volume: 14
  start-page: 2441
  year: 2015
  ident: 10.1016/j.eururo.2017.01.021_bib0095
  article-title: Tumors with AKT1E17K mutations are rational targets for single agent or combination therapy with AKT inhibitors
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0230
– ident: 10.1016/j.eururo.2017.01.021_bib0060
  doi: 10.1200/JCO.2016.67.2048
– volume: 34
  start-page: 2167
  year: 2015
  ident: 10.1016/j.eururo.2017.01.021_bib0090
  article-title: Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2014.161
– volume: 507
  start-page: 315
  year: 2014
  ident: 10.1016/j.eururo.2017.01.021_bib0055
  article-title: Comprehensive molecular characterization of urothelial bladder carcinoma
  publication-title: Nature
  doi: 10.1038/nature12965
– volume: 6
  start-page: 838
  year: 2016
  ident: 10.1016/j.eururo.2017.01.021_bib0075
  article-title: High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1246
– volume: 2
  start-page: 62ra93
  year: 2010
  ident: 10.1016/j.eururo.2017.01.021_bib0080
  article-title: Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001451
– volume: 3
  start-page: 636
  year: 2013
  ident: 10.1016/j.eururo.2017.01.021_bib0100
  article-title: Identification of targetable FGFR gene fusions in diverse cancers
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0050
– volume: 3
  start-page: 1058
  year: 2013
  ident: 10.1016/j.eururo.2017.01.021_bib0065
  article-title: Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0569
– volume: 22
  start-page: 795
  year: 2013
  ident: 10.1016/j.eururo.2017.01.021_bib0070
  article-title: Oncogenic FGFR3 gene fusions in bladder cancer
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds486
– volume: 75
  start-page: 4398
  year: 2015
  ident: 10.1016/j.eururo.2017.01.021_bib0085
  article-title: Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-0509
– reference: 28214032 - Eur Urol. 2017 Jun;71(6):863-865
SSID ssj0003593
Score 2.4759407
Snippet Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several...
Abstract Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 858
SubjectTerms Aminopyridines - pharmacology
Animals
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Benzamides - pharmacology
Bladder cancer
Carcinoma - drug therapy
Carcinoma - enzymology
Carcinoma - genetics
Carcinoma - pathology
Cell Line, Tumor
Class I Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Class I Phosphatidylinositol 3-Kinases - genetics
Class I Phosphatidylinositol 3-Kinases - metabolism
Dose-Response Relationship, Drug
Drug Resistance, Neoplasm - genetics
Drug Synergism
FGFR
Humans
Mice, Nude
Molecular Targeted Therapy
Morpholines - pharmacology
Mutation
PI3K
Piperazines - pharmacology
Protein Kinase Inhibitors - pharmacology
Pyrazoles - pharmacology
Receptors, Fibroblast Growth Factor - antagonists & inhibitors
Receptors, Fibroblast Growth Factor - genetics
Receptors, Fibroblast Growth Factor - metabolism
RNA Interference
Signal Transduction - drug effects
Synergy
Time Factors
Transfection
Tumor Burden - drug effects
Urinary Bladder Neoplasms - drug therapy
Urinary Bladder Neoplasms - enzymology
Urinary Bladder Neoplasms - genetics
Urinary Bladder Neoplasms - pathology
Urology
Urothelium - drug effects
Urothelium - enzymology
Urothelium - pathology
Xenograft Model Antitumor Assays
Title A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0302283817300374
https://www.clinicalkey.es/playcontent/1-s2.0-S0302283817300374
https://dx.doi.org/10.1016/j.eururo.2017.01.021
https://www.ncbi.nlm.nih.gov/pubmed/28108151
https://www.proquest.com/docview/1861587528
Volume 71
WOSCitedRecordID wos000400050300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003593
  issn: 0302-2838
  databaseCode: AIEXJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb5tAEF7lqKq-VL3rHtFUap4QEqcXP1pW3KZq0qhJJL-hZYF4Uwtcg5P0__WHdYblcONGSSv1BTACA57PM98MczD2njtxICzpmP3I8k0vtoQZOZLGvUTkDXi248TVsAl-eBhMJoOjjc2tphbmYsazLLi6Gsz_q6hxHwqbSmf_Qtztl-IO3Eah4xLFjss7CX5ojNFW1SE-6ipNLVmPJeXXGLosN1XU1wHxcTTNi_k0V1mVuRUnhmt-UxnaNercP70UP2gKjUCd1KbM6N4lBZFO0ghIXMfob-cRcvCS4liX5dQYVyN8iJAmc9rYz6YqUtVUH5UZ4w_jr8bBkoYXG6cLqv-aUdB-RDHEEQ02yvLaVFx_X4Dr318BaDX1WX1XLcJ3R_7u0FpWK7tUFVXmFSaR4lYfVJeChGzbwIf-MkONrxaaRefxQp3l7TEqSUv01qtwcr5YDZHYvEvl0nG7tdodXS9WFabr3jKNLdDjYGrMryr2QDeYbziCtiBr5kdHQs6pZyf-JpQ4yHVTWLszt20S5DHdAd2ATTMDXO5tsm2H-wPUzdvD_b3Jp5ZRuHXz6OaOmxLQKk9x_Vo3UaybXKiKSp08Yg9rHwiGGruP2UaSPWH3D-osj6fs5xA6CEMNYdAQhg7CgNiB6xCGBsJQQxhEAQJWIAx5Ch2EocyhgzBoCIOGMDQQhg7CoDIgCIOGMHQQBoIwtBB-xk7Heyejj2Y9bcSUvtsvTTeNIxGkMqLSbC4T1FZR0I9iTu0zEhd5v_T7sYuysG0X5ZTGwkHdFkvZl3Lgpe5ztpXlWfKSgYhE7PUT9AgFJUIMRCJdK_Y8JxYySp1Bj7mNgEJZt-KniTCzsMm5PA-1WEMSa2jZIYq1x8z2rLluRXPL8X4j-7Aps0ZiECJYbzmP_-m8pKiVXBHaYeGEVrgG4NUzawKvifkdrvmuAWeI9o1eWoosyZd4rQB9roD7TtBjLzRq26d3Ahs9Gt9-9Y9P-po96NTFG7ZVLpbJW3ZPXpSqWOywTT4Jdur_4i_9aDDz
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Functional+Genetic+Screen+Identifies+the+Phosphoinositide+3-kinase+Pathway+as+a+Determinant+of+Resistance+to+Fibroblast+Growth+Factor+Receptor+Inhibitors+in+FGFR+Mutant+Urothelial+Cell+Carcinoma&rft.jtitle=European+urology&rft.au=Wang%2C+Liqin&rft.au=%C5%A0u%C5%A1ti%C4%87%2C+Ton%C4%87i&rft.au=Leite+de+Oliveira%2C+Rodrigo&rft.au=Lieftink%2C+Cor&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0302-2838&rft.volume=71&rft.issue=6&rft.spage=858&rft.epage=862&rft_id=info:doi/10.1016%2Fj.eururo.2017.01.021&rft.externalDocID=S0302283817300374
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03022838%2FS0302283817X00031%2Fcov150h.gif