Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window
In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable ph...
Saved in:
| Published in: | Nature nanotechnology Vol. 14; no. 5; pp. 465 - 472 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Nature Publishing Group
01.05.2019
|
| Subjects: | |
| ISSN: | 1748-3387, 1748-3395, 1748-3395 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5-11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast. |
|---|---|
| AbstractList | In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5–11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast.Miniaturized gold nanorods are reliable NIR-II photoacoustic agents, showing higher photothermal stability, enhanced photoacoustic signal and more efficient agent-to-tumour delivery compared with their larger counterparts. In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5-11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast.In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5-11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast. In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5-11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast. |
| Author | Emelianov, Stanislav Chen, Yun-Sheng Yoon, Soon Joon Zhao, Yang Gambhir, Sanjiv Sam |
| Author_xml | – sequence: 1 givenname: Yun-Sheng orcidid: 0000-0001-8823-970X surname: Chen fullname: Chen, Yun-Sheng organization: Department of Radiology, School of Medicine, Canary Centre for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA – sequence: 2 givenname: Yang orcidid: 0000-0002-0154-3483 surname: Zhao fullname: Zhao, Yang organization: Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Soon Joon surname: Yoon fullname: Yoon, Soon Joon organization: Department of Bioengineering, University of Washington, Seattle, WA, USA – sequence: 4 givenname: Sanjiv Sam orcidid: 0000-0002-2711-7554 surname: Gambhir fullname: Gambhir, Sanjiv Sam email: sgambhir@stanford.edu, sgambhir@stanford.edu, sgambhir@stanford.edu organization: Department of Bioengineering, Stanford University, Stanford, CA, USA. sgambhir@stanford.edu – sequence: 5 givenname: Stanislav orcidid: 0000-0002-7098-133X surname: Emelianov fullname: Emelianov, Stanislav email: stas@gatech.edu, stas@gatech.edu organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA. stas@gatech.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30833692$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkD1PwzAQhi1UREvhB7AgSywsAX_EiT2iii-piAXm6GI7ravEDnaiin9PEIWB6W543tP73Cma-eAtQheU3FDC5W3KqShERqjKCFcs40doQctcZpwrMfvbZTlHpyntCBFMsfwEzTmRnBeKLVDz4ryDYYwWb0JrsAcfYjAJNyHifhuGADqMaXAad6G1emwhYtfBxvkNdh4PW4uT1cFPUQsxc76JEK3BoZ8y0OK98ybsz9BxA22y54e5RO8P92-rp2z9-vi8ultnWvBimLoWAsAIqEta1zWVJTRcCM0k0bQuQUBOLSsbYxUo8m1fGEOlMZKxsqglX6Lrn7t9DB-jTUPVuaRt24K3k0bFqJSMyIKTCb36h-7CGP3UrmKMUUaVZMVEXR6ose6sqfo4ycfP6veD_AtIx3WN |
| CitedBy_id | crossref_primary_10_1002_adhm_202501197 crossref_primary_10_1016_j_cej_2021_129458 crossref_primary_10_1038_s41377_025_01894_y crossref_primary_10_1002_smll_202204377 crossref_primary_10_1016_j_jconrel_2025_02_026 crossref_primary_10_1109_JSTQE_2021_3066168 crossref_primary_10_1016_j_biomaterials_2023_122211 crossref_primary_10_1039_D4NR04774E crossref_primary_10_1063_5_0135147 crossref_primary_10_1002_ppsc_202300083 crossref_primary_10_1002_smll_202106275 crossref_primary_10_1002_smll_202002748 crossref_primary_10_1002_EXP_70006 crossref_primary_10_3390_jnt4020007 crossref_primary_10_1016_j_trac_2024_117654 crossref_primary_10_1016_j_jddst_2024_105766 crossref_primary_10_3390_s22176543 crossref_primary_10_3390_ijms23137400 crossref_primary_10_1016_j_ccr_2024_216348 crossref_primary_10_1186_s40580_021_00296_1 crossref_primary_10_1177_1536012120981518 crossref_primary_10_1016_j_nano_2019_102138 crossref_primary_10_1016_j_pacs_2025_100732 crossref_primary_10_1073_pnas_1912220117 crossref_primary_10_1016_j_jcis_2020_10_070 crossref_primary_10_1016_j_bios_2021_113478 crossref_primary_10_1002_smll_202300859 crossref_primary_10_1016_j_nantod_2020_101014 crossref_primary_10_3390_pharmaceutics13101651 crossref_primary_10_1016_j_cej_2025_167185 crossref_primary_10_3390_bios13030319 crossref_primary_10_1515_ntrev_2024_0023 crossref_primary_10_1039_D3NR05003C crossref_primary_10_1002_smll_201903382 crossref_primary_10_1039_C9NH00328B crossref_primary_10_1016_j_cclet_2023_108460 crossref_primary_10_1038_s41563_023_01721_y crossref_primary_10_1016_j_biomaterials_2020_120092 crossref_primary_10_1007_s40005_025_00746_6 crossref_primary_10_3390_cancers13164206 crossref_primary_10_1002_adom_202000277 crossref_primary_10_1002_adma_202211915 crossref_primary_10_1016_j_biomaterials_2020_120400 crossref_primary_10_1007_s12274_021_3818_9 crossref_primary_10_1002_smtd_201900553 crossref_primary_10_1038_s41467_023_38792_z crossref_primary_10_1016_j_mtchem_2025_102889 crossref_primary_10_1080_05704928_2025_2495022 crossref_primary_10_1557_s43579_025_00784_z crossref_primary_10_1002_adma_202006532 crossref_primary_10_1016_j_nantod_2020_100987 crossref_primary_10_1063_5_0049855 crossref_primary_10_1039_D1NR04631D crossref_primary_10_1002_adhm_202202208 crossref_primary_10_1016_j_nantod_2020_101038 crossref_primary_10_1002_jccs_201900534 crossref_primary_10_1039_D1MH00623A crossref_primary_10_1016_j_microc_2024_112593 crossref_primary_10_1038_s41565_020_00822_y crossref_primary_10_3390_nano10091700 crossref_primary_10_1016_j_apsb_2021_03_035 crossref_primary_10_1002_adma_202302069 crossref_primary_10_1039_D2CP02811E crossref_primary_10_1016_j_addr_2022_114506 crossref_primary_10_1117_1_JBO_27_7_070901 crossref_primary_10_1016_j_cej_2023_141426 crossref_primary_10_3390_nano13030434 crossref_primary_10_1002_advs_202206979 crossref_primary_10_1002_anbr_202100029 crossref_primary_10_1039_D0BM01482F crossref_primary_10_1002_lpor_202000484 crossref_primary_10_1016_j_optlaseng_2020_106460 crossref_primary_10_1002_smll_202001215 crossref_primary_10_1016_j_cej_2024_155310 crossref_primary_10_1002_wnan_1618 crossref_primary_10_1038_s43586_023_00211_4 crossref_primary_10_1002_smll_202303937 crossref_primary_10_1063_5_0231279 crossref_primary_10_1088_1361_6528_ad1445 crossref_primary_10_1007_s12272_021_01313_x crossref_primary_10_1615_NanoSciTechnolIntJ_2024052805 crossref_primary_10_1002_adfm_202409580 crossref_primary_10_1016_j_mtchem_2020_100402 crossref_primary_10_1002_adfm_202412869 crossref_primary_10_1038_s41571_024_00892_0 crossref_primary_10_1002_bkcs_12706 crossref_primary_10_1007_s12274_022_5214_5 crossref_primary_10_1021_jacs_2c00162 crossref_primary_10_1155_2021_5799133 crossref_primary_10_1088_1361_6560_ab9159 crossref_primary_10_1002_adtp_202200350 crossref_primary_10_3390_pharmaceutics15092349 crossref_primary_10_3390_s20195595 crossref_primary_10_1038_s43247_021_00126_6 crossref_primary_10_1002_adma_202418425 crossref_primary_10_1002_smll_202300539 crossref_primary_10_3390_cancers14102456 crossref_primary_10_1002_admi_201900975 crossref_primary_10_1002_ange_202102893 crossref_primary_10_1088_2515_7647_adf167 crossref_primary_10_1007_s12274_022_4592_z crossref_primary_10_1002_smll_202305426 crossref_primary_10_1016_j_bioactmat_2024_03_022 crossref_primary_10_3390_s21062111 crossref_primary_10_1002_smll_202001101 crossref_primary_10_1002_adtp_202200248 crossref_primary_10_1007_s12668_024_01436_7 crossref_primary_10_1007_s10118_022_2793_2 crossref_primary_10_1016_j_ultsonch_2020_105229 crossref_primary_10_1002_smtd_202101359 crossref_primary_10_1002_anie_202102893 crossref_primary_10_1016_j_molliq_2025_128553 crossref_primary_10_1021_jacs_4c08990 crossref_primary_10_1002_cmdc_202300374 crossref_primary_10_1039_D3NR01594G crossref_primary_10_1002_adma_202413189 crossref_primary_10_1002_sstr_202300047 crossref_primary_10_3390_diagnostics11071196 crossref_primary_10_1039_D0QM00092B crossref_primary_10_1088_1757_899X_729_1_012086 crossref_primary_10_3390_nano12101656 crossref_primary_10_1002_advs_202202384 crossref_primary_10_1039_D4QI00620H crossref_primary_10_1002_VIW_20200154 crossref_primary_10_1038_s41467_022_35455_3 crossref_primary_10_1016_j_jlumin_2021_118235 crossref_primary_10_1016_j_cej_2021_133095 crossref_primary_10_1002_cbic_202000514 crossref_primary_10_1016_j_bios_2020_112787 crossref_primary_10_1002_VIW_20200149 crossref_primary_10_3390_ijms23094949 crossref_primary_10_1002_adma_202003458 crossref_primary_10_1007_s12274_022_4191_z crossref_primary_10_1002_ange_202406694 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121707 crossref_primary_10_1002_adfm_202305202 crossref_primary_10_1016_j_ymeth_2025_05_009 crossref_primary_10_1039_D0MH01406K crossref_primary_10_1007_s13534_025_00499_z crossref_primary_10_1088_1361_6528_abe4fd crossref_primary_10_1038_s41598_019_53621_4 crossref_primary_10_1002_smll_202412296 crossref_primary_10_1007_s40135_021_00275_z crossref_primary_10_1002_anbr_202000103 crossref_primary_10_1016_j_ccr_2021_214184 crossref_primary_10_1002_adma_202201978 crossref_primary_10_1016_j_jmps_2021_104726 crossref_primary_10_1007_s13204_022_02701_5 crossref_primary_10_1016_j_nantod_2022_101419 crossref_primary_10_1016_j_ccr_2023_215278 crossref_primary_10_1021_jacs_2c10323 crossref_primary_10_1016_j_nantod_2023_101835 crossref_primary_10_1038_s41467_020_20276_z crossref_primary_10_1016_j_jpcs_2020_109764 crossref_primary_10_1186_s12951_023_02243_0 crossref_primary_10_3390_ph16020249 crossref_primary_10_1016_j_molmed_2020_02_003 crossref_primary_10_3390_nano13061024 crossref_primary_10_1016_j_talanta_2021_122364 crossref_primary_10_3390_pharmaceutics14051110 crossref_primary_10_1038_s41578_022_00426_z crossref_primary_10_1039_D0SC06573K crossref_primary_10_1002_adma_202200179 crossref_primary_10_1016_j_cej_2024_150278 crossref_primary_10_1186_s12951_023_01882_7 crossref_primary_10_3389_fbioe_2021_647905 crossref_primary_10_1002_smll_202103252 crossref_primary_10_1002_bmm2_12009 crossref_primary_10_1016_j_apsusc_2020_147615 crossref_primary_10_1038_s41467_022_29082_1 crossref_primary_10_1186_s11671_021_03627_7 crossref_primary_10_1016_j_colsurfb_2024_114479 crossref_primary_10_1021_acsnano_4c12929 crossref_primary_10_1002_wnan_1959 crossref_primary_10_1038_s44310_024_00045_2 crossref_primary_10_1007_s12598_021_01766_5 crossref_primary_10_1002_adfm_202313963 crossref_primary_10_1039_D1NR07918B crossref_primary_10_1002_adfm_202312753 crossref_primary_10_1016_j_snb_2023_133646 crossref_primary_10_1038_s41467_023_42666_9 crossref_primary_10_1088_1361_6560_abd669 crossref_primary_10_1002_bmm2_70029 crossref_primary_10_1038_s41467_023_37680_w crossref_primary_10_1364_BOE_562325 crossref_primary_10_1063_5_0100475 crossref_primary_10_1063_5_0048915 crossref_primary_10_26599_NBE_2024_9290102 crossref_primary_10_2147_IJN_S265134 crossref_primary_10_3390_molecules30112334 crossref_primary_10_1039_D3NR06024A crossref_primary_10_1021_acs_langmuir_5c00326 crossref_primary_10_1002_adma_202211983 crossref_primary_10_1016_j_actbio_2024_11_035 crossref_primary_10_1002_adfm_202003512 crossref_primary_10_1002_smll_202206044 crossref_primary_10_1016_j_jcis_2022_01_194 crossref_primary_10_3390_bioengineering10080954 crossref_primary_10_1002_agt2_652 crossref_primary_10_1002_tcr_202200253 crossref_primary_10_2147_IJN_S299515 crossref_primary_10_1039_D0BM00498G crossref_primary_10_1364_AO_395067 crossref_primary_10_1002_adfm_202204791 crossref_primary_10_1186_s12951_021_01139_1 crossref_primary_10_1002_smll_202404904 crossref_primary_10_1002_lpor_202400672 crossref_primary_10_1016_j_ijbiomac_2021_10_142 crossref_primary_10_1016_j_trechm_2021_01_002 crossref_primary_10_3390_cancers13195005 crossref_primary_10_1002_chem_202400816 crossref_primary_10_1088_1361_6528_ab47ae crossref_primary_10_1002_admt_202101217 crossref_primary_10_1007_s11468_024_02749_9 crossref_primary_10_1002_adma_202208601 crossref_primary_10_3390_nano11010116 crossref_primary_10_1016_j_snb_2025_137263 crossref_primary_10_3390_bios12080594 crossref_primary_10_1016_j_oceaneng_2024_118546 crossref_primary_10_1002_adsr_202300192 crossref_primary_10_1088_1361_6528_adb6a4 crossref_primary_10_1002_adma_202008540 crossref_primary_10_1007_s12274_024_6644_z crossref_primary_10_1007_s40820_022_00922_5 crossref_primary_10_1016_j_aca_2021_338277 crossref_primary_10_1002_smll_202001177 crossref_primary_10_1016_j_bioactmat_2025_08_021 crossref_primary_10_1007_s00259_022_05911_9 crossref_primary_10_3389_fbioe_2023_1102651 crossref_primary_10_1002_anie_202406694 crossref_primary_10_1021_acsami_4c17502 crossref_primary_10_1021_acsnano_5c05069 crossref_primary_10_2147_IJN_S322900 crossref_primary_10_1016_j_cej_2024_154172 crossref_primary_10_1002_smll_201903895 crossref_primary_10_1007_s40242_021_1159_6 crossref_primary_10_3390_pharmaceutics13070995 crossref_primary_10_1016_j_pdpdt_2021_102402 crossref_primary_10_1016_j_cej_2022_139635 crossref_primary_10_1039_D0QM01035A crossref_primary_10_1039_C9NR07949A crossref_primary_10_1080_17435889_2025_2504330 crossref_primary_10_1016_j_cej_2025_164274 crossref_primary_10_1002_adma_201902279 crossref_primary_10_1002_advs_202501048 crossref_primary_10_1007_s12274_020_3167_0 crossref_primary_10_1002_adpr_202100162 crossref_primary_10_1016_j_addr_2022_114320 crossref_primary_10_1016_j_cej_2024_157554 crossref_primary_10_1016_j_jcis_2020_05_108 crossref_primary_10_1016_j_optcom_2023_129804 crossref_primary_10_3390_opt4010007 crossref_primary_10_1016_j_cej_2022_139888 crossref_primary_10_3389_fonc_2021_819329 crossref_primary_10_1039_D4NR03509G crossref_primary_10_3390_ijms241512001 crossref_primary_10_1002_adfm_202009924 crossref_primary_10_1016_j_cis_2021_102366 crossref_primary_10_1039_D2SC03036E crossref_primary_10_1039_D0NR03047C crossref_primary_10_1016_j_cej_2020_126432 crossref_primary_10_1186_s12951_021_01209_4 crossref_primary_10_1002_smll_202206487 crossref_primary_10_1039_D0BM01063D crossref_primary_10_1016_j_aca_2021_338929 crossref_primary_10_1039_C9RA00951E crossref_primary_10_1038_s41598_021_99430_6 crossref_primary_10_1117_1_JBO_24_4_040901 crossref_primary_10_1002_adfm_202001771 crossref_primary_10_1186_s12951_021_00941_1 crossref_primary_10_1007_s12274_022_4096_x crossref_primary_10_1039_D0BM00572J crossref_primary_10_1002_anbr_202500101 |
| ContentType | Journal Article |
| Copyright | 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
| Copyright_xml | – notice: 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
| DBID | CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
| DOI | 10.1038/s41565-019-0392-3 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1748-3395 |
| EndPage | 472 |
| ExternalDocumentID | 30833692 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA158598 – fundername: NCI NIH HHS grantid: R01 CA149740 – fundername: NCI NIH HHS grantid: P30 CA124435 – fundername: NCI NIH HHS grantid: U54 CA199075 |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 4.4 53G 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACSTC ACUHS ADBBV AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AHBCP AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DB5 DU5 EBS ECM EE. EIF EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NFIDA NNMJJ NPM O9- ODYON P2P P62 PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M 3V. 7QO 7U5 7XB 8FD 8FK AGSTI AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c536t-3365aad5ab71bbb187af355c280c1b7a5a41e27fde9a9041566dd18dd82276b83 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 423 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467053100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-3387 1748-3395 |
| IngestDate | Thu Oct 02 09:46:37 EDT 2025 Sat Nov 29 14:17:25 EST 2025 Mon Jul 21 06:02:51 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-3365aad5ab71bbb187af355c280c1b7a5a41e27fde9a9041566dd18dd82276b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7098-133X 0000-0002-0154-3483 0000-0001-8823-970X 0000-0002-2711-7554 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6506383 |
| PMID | 30833692 |
| PQID | 2221219826 |
| PQPubID | 546299 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2188208630 proquest_journals_2221219826 pubmed_primary_30833692 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Nature nanotechnology |
| PublicationTitleAlternate | Nat Nanotechnol |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| References | 31289408 - Nat Nanotechnol. 2019 Aug;14(8):810 |
| References_xml | – reference: 31289408 - Nat Nanotechnol. 2019 Aug;14(8):810 |
| SSID | ssj0052924 |
| Score | 2.6936693 |
| Snippet | In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 465 |
| SubjectTerms | Absorption Animals Aspect ratio Contrast agents Gold Gold - chemistry Gold - pharmacology I.R. radiation Infrared imaging Infrared windows Metal Nanoparticles - chemistry Mice Nanoparticles Nanorods Nanotubes - chemistry Neoplasms - diagnostic imaging Neoplasms - metabolism Numerical analysis Pharmacokinetics Pharmacology Photoacoustic Techniques Pulsed lasers Thermal stability Tumors Windows (computer programs) |
| Title | Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30833692 https://www.proquest.com/docview/2221219826 https://www.proquest.com/docview/2188208630 |
| Volume | 14 |
| WOSCitedRecordID | wos000467053100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgM9QPleaFeu1Kvp2k5s54QoaoWEuoooSCsukR3bJRJNtpuF_n3G3oRyaS9cRoqiRMl4ZvzGM5oHcMRC4NwwTllea0xQZEatrA31TmQiGM9ZZhLZhJrP9WJRlMOBWz-0VY4xMQVq19XxjPwY9zGG3oVo-P3ymkbWqFhdHSg0tmAnTkngqXWvHCNxzosNqa3KNMVUTI1VTaGP-5i4xLa1gs4QIlBxN8JMO83Zk__9xj14PGBM8mFjFE_hgW-fwe4_kwefQzhv2ibN9CSX3U9HWtN2GEp7ghiWLH906w4jZSL6IlcjgS5prhKlEWlagrCR9DGXxkfRVyja6Sq2spNumQ7HyQ3m-t3NC_h2dvr14yc6UC7QOhdyjVqSuTEuN1Yxay3TygREJDXXs5pZZXKTMc9VcL4wxSwlf84x7RziDCWtFi9hu-1a_xqIM8GbwK2V0mQqV1bITGdWGCYDgpYwgf1RidXgN311q8EJHP69jRYfyxim9fjnFYIShC1aitkEXm0WqlpuRnNUAhGlkAV_c__L38IjnpY-WsA-bK9Xv_wBPKx_r5t-NYUttVBJ6insnJzOyy949fnk3TSZV5IXKOflOcoy__4HztTYfw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58C4sFDASHE3Xj9jOASFeVau2Kw5F6i3YsQ2RaLJsFlb8KX4jY2cDXODWA-coEzn-PPONx54P4AmLkXPLOGVFbTBBUZI6VVsavJAi2sCZtFlsQs9m5vS0fLcBP8a7MOlY5egTs6P2XZ32yHcxjjFcXciGX8y_0KQalaqro4TGAIvD8H2FKVv__OANzu9Tzvfenrzep2tVAVoXQi2pEKqw1hfWaeacY0bbiEG35mZaM6dtYSULXEcfSltOc37jPTPeYyjVyhmBdi_ARSmQm6Yi8Ktno-cveDmI6Gpp8DNGj1VUYXb7ZCgdkyvpFCkJFX9ntDmy7V373_7Jdbi65tDk5QD6G7AR2ptw5Y_OircgHjdtk3uWko_dZ09a23YYKnqCHJ3MP3XLDiNBFjIjZ6NAMGnOsmQTaVqCtJj0aa8AX8UBUlyHi3RUn3TzvPlPVk3ru9VteH8uA92GzbZrw10g3sZgI3dOKSt1oZ1Q0kgnLFMRSVmcwM44adXaL_TV7xmbwONfj3FFpzKNbQOOvELShbTMKDGdwJ0BGNV8aD1SCWTMQpX83r-NP4LL-yfHR9XRwezwPmzxDLuEvh3YXC6-hgdwqf62bPrFwwxgAh_OGx0_AZB6Liw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA98FnoQgEjwdHatZ3YzgEhRFlRFVZ7AKniEuzYhkg02W62XfHX-usYOxvgArceOEdx5PiN35vMxA_gOQuBc8M4ZXmlMUGRGbWyMtQ7kYlgPGeZSWYTajbTx8fFfAsuhn9hYlvlsCemjdq1VfxGPkYeYxhdqIbHYdMWMT-Yvlqc0uggFSutg51GD5Ej_2ON6Vv38vAA1_oF59O3H9-8oxuHAVrlQq6oEDI3xuXGKmatZVqZgARccT2pmFUmNxnzXAXnC1NMUq7jHNPOIa0qabXAca_AVYU5ZmwnnOefBxbIedEb6qpM42O0GiqqQo-7OFBsmSvoBOUJFX9Xt4nlprf-5_dzG25utDV53QfDHdjyzV3Y-ePExXsQPtRNnc4yJV_b7440pmmRQjqC2p0svrWrFhkiGZyRk8E4mNQnycqJ1A1BuUy6-A0Bb8UJUozPZWzhJ-0iFQXIum5cu96FT5cy0fuw3bSN3wPiTPAmcGulNJnKlRUy05kVhsmAYi2MYH9YwHKzX3Tl79UbwbNflzHSY_nGNB5nXqIYQ7mmpZiM4EEPknLRH0lSClTSQhb84b8HfwrXERTl-8PZ0SO4wRMCIxD3YXu1PPOP4Vp1vqq75ZOEZQJfLhscPwE7Wjc4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniature+gold+nanorods+for+photoacoustic+molecular+imaging+in+the+second+near-infrared+optical+window&rft.jtitle=Nature+nanotechnology&rft.au=Yun-Sheng%2C+Chen&rft.au=Zhao%2C+Yang&rft.au=Yoon%2C+Soon+Joon&rft.au=Gambhir%2C+Sanjiv+Sam&rft.date=2019-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=5&rft.spage=465&rft.epage=472&rft_id=info:doi/10.1038%2Fs41565-019-0392-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |