KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition

This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 27; H. 2; S. 230 - 244
Hauptverfasser: Jian Yang, Frangi, A.F., Jing-Yu Yang, David Zhang, Zhong Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.02.2005
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
AbstractList This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
Author Frangi, A.F.
Jing-Yu Yang
David Zhang
Jian Yang
Zhong Jin
Author_xml – sequence: 1
  surname: Jian Yang
  fullname: Jian Yang
  organization: Dept. of Comput. Sci., Nanjing Univ. of Sci. & Technol., China
– sequence: 2
  givenname: A.F.
  surname: Frangi
  fullname: Frangi, A.F.
– sequence: 3
  surname: Jing-Yu Yang
  fullname: Jing-Yu Yang
– sequence: 4
  surname: David Zhang
  fullname: David Zhang
– sequence: 5
  surname: Zhong Jin
  fullname: Zhong Jin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16449199$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15688560$$D View this record in MEDLINE/PubMed
BookMark eNqFkt2LEzEUxYOsuN3VR58ECYL6NDUfky_fSnV1seKC-z6k6Y1md5rUZAb1vzdjK4UFlTyEwO-ee3PPOUMnMUVA6DElc0qJeXV9tfh4OWeEiDnn99CMGm4aLrg5QTNCJWu0ZvoUnZVyQwhtBeEP0CkVUmshyQzBh6vlAu_6seDVm8VrbLFL210PA-BbyBF6fBHKV8h4E4rLYRuijQP22W7he8q32KeMPdhhzIDhx5CtG0KK2MYNzuDSlxim90N039u-wKPDfY4-X7y9Xr5vVp_eXS4Xq8YJLoeGtUoKrz1TXBtpgVstgNP1mlq9Fl5pIVg9VivGpKduQ41XXgOlrAXKz9HLveoup28jlKHb1qGh722ENJauajImRGsq-eKfpFTcSK30f0GmyTQqqeCzO-BNGnOsn-20VFIJoqe2Tw_QuN7CptvVhdr8s_tjRwWeHwBbnO3rmqML5cjJtjXUTELNnnM5lZLBHxHSTbHofseim2LRcV55fod3YbCTM9Wx0P-16sm-KgDAsQNXrZaG_wKaFcFY
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s00521_012_0962_x
crossref_primary_10_1109_TPAMI_2021_3133351
crossref_primary_10_1016_j_neunet_2008_11_005
crossref_primary_10_1109_ACCESS_2019_2892074
crossref_primary_10_1016_j_neucom_2015_06_052
crossref_primary_10_1016_j_patcog_2008_01_016
crossref_primary_10_1016_j_ins_2012_10_016
crossref_primary_10_1016_j_neucom_2011_05_014
crossref_primary_10_1016_j_patcog_2015_08_025
crossref_primary_10_1007_s10115_020_01535_3
crossref_primary_10_1016_j_conengprac_2008_07_001
crossref_primary_10_1109_TNNLS_2014_2329240
crossref_primary_10_1007_s11063_011_9180_2
crossref_primary_10_1016_j_neucom_2016_08_058
crossref_primary_10_1016_j_neucom_2006_10_008
crossref_primary_10_1007_s00034_011_9337_2
crossref_primary_10_1016_j_neucom_2015_06_043
crossref_primary_10_1016_j_procs_2015_07_434
crossref_primary_10_1016_j_neucom_2014_12_051
crossref_primary_10_1016_j_asoc_2022_108511
crossref_primary_10_1155_2012_757828
crossref_primary_10_1016_j_neunet_2014_01_001
crossref_primary_10_1016_j_ins_2016_02_021
crossref_primary_10_1109_TNN_2008_2005293
crossref_primary_10_1109_TPAMI_2014_2359453
crossref_primary_10_1109_TPAMI_2006_90
crossref_primary_10_1016_j_eswa_2006_05_010
crossref_primary_10_3390_s20010020
crossref_primary_10_1016_j_patcog_2008_08_024
crossref_primary_10_1016_j_patcog_2019_01_014
crossref_primary_10_1007_s11277_021_09330_1
crossref_primary_10_1016_j_neucom_2006_10_032
crossref_primary_10_1109_TIP_2006_877435
crossref_primary_10_1109_TIFS_2012_2224109
crossref_primary_10_1007_s41060_025_00824_w
crossref_primary_10_1117_1_JRS_17_036506
crossref_primary_10_1186_1471_2415_14_110
crossref_primary_10_1016_j_neucom_2006_01_006
crossref_primary_10_1016_j_patcog_2009_11_016
crossref_primary_10_1049_iet_ipr_2019_1404
crossref_primary_10_1016_j_measurement_2016_09_012
crossref_primary_10_1016_j_patcog_2012_11_019
crossref_primary_10_1109_TSMC_2013_2258010
crossref_primary_10_3390_s19071643
crossref_primary_10_1016_j_jvcir_2009_08_003
crossref_primary_10_1016_j_patcog_2008_08_036
crossref_primary_10_1016_j_asoc_2015_10_051
crossref_primary_10_1016_j_neucom_2016_01_060
crossref_primary_10_1109_TPAMI_2007_70708
crossref_primary_10_1016_j_amc_2013_07_024
crossref_primary_10_1109_TNN_2010_2046423
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_4018_ijcvip_2012040104
crossref_primary_10_1016_j_sigpro_2009_03_007
crossref_primary_10_1016_j_compbiomed_2014_12_023
crossref_primary_10_1016_j_knosys_2016_11_004
crossref_primary_10_1016_j_neucom_2014_02_005
crossref_primary_10_1016_j_patcog_2006_06_030
crossref_primary_10_3390_su152215761
crossref_primary_10_1016_j_cviu_2011_08_008
crossref_primary_10_1016_j_neucom_2017_02_010
crossref_primary_10_1016_j_camwa_2013_06_033
crossref_primary_10_1109_TIP_2014_2312643
crossref_primary_10_1109_TNN_2011_2156808
crossref_primary_10_1109_TIFS_2009_2025844
crossref_primary_10_1109_TNNLS_2014_2333664
crossref_primary_10_1016_j_neucom_2009_08_014
crossref_primary_10_1186_s13640_016_0123_8
crossref_primary_10_1007_s10044_016_0531_5
crossref_primary_10_1364_AO_52_005022
crossref_primary_10_1016_j_iot_2025_101497
crossref_primary_10_1016_j_patcog_2011_10_024
crossref_primary_10_1007_s00138_015_0709_7
crossref_primary_10_1016_j_optlaseng_2012_03_007
crossref_primary_10_1109_JAS_2024_124578
crossref_primary_10_1051_itmconf_20160702004
crossref_primary_10_1109_LGRS_2015_2393438
crossref_primary_10_1016_j_neucom_2015_05_079
crossref_primary_10_1016_j_ins_2022_06_038
crossref_primary_10_1016_j_knosys_2023_110831
crossref_primary_10_1016_j_patcog_2012_01_018
crossref_primary_10_1007_s11063_011_9190_0
crossref_primary_10_1080_15325008_2019_1666178
crossref_primary_10_1016_j_procs_2025_07_115
crossref_primary_10_1093_comjnl_bxab020
crossref_primary_10_1007_s11042_014_2327_1
crossref_primary_10_1007_s00138_013_0584_z
crossref_primary_10_1155_2014_898560
crossref_primary_10_1109_TNNLS_2011_2182058
crossref_primary_10_1016_j_neucom_2007_11_036
crossref_primary_10_1002_tee_22336
crossref_primary_10_1016_j_patrec_2014_06_013
crossref_primary_10_1016_j_isatra_2025_01_044
crossref_primary_10_1007_s00521_011_0534_5
crossref_primary_10_1016_j_patcog_2008_10_014
crossref_primary_10_1016_j_patcog_2009_01_010
crossref_primary_10_1016_j_ins_2021_01_082
crossref_primary_10_4103_0256_4602_62226
crossref_primary_10_1109_JBHI_2023_3279824
crossref_primary_10_1016_j_neucom_2007_10_003
crossref_primary_10_1016_j_patcog_2011_10_008
crossref_primary_10_1002_jcu_22328
crossref_primary_10_1016_j_neucom_2013_09_007
crossref_primary_10_1016_j_patcog_2011_10_006
crossref_primary_10_1007_s00521_009_0272_0
crossref_primary_10_1109_TBDATA_2018_2797977
crossref_primary_10_1007_s10489_019_01563_9
crossref_primary_10_1007_s10489_023_04885_x
crossref_primary_10_1109_LSP_2013_2250957
crossref_primary_10_1016_j_eswa_2019_113079
crossref_primary_10_1016_j_neucom_2011_03_007
crossref_primary_10_1155_2014_186749
crossref_primary_10_1049_iet_com_2017_0212
crossref_primary_10_1016_j_ins_2007_12_001
crossref_primary_10_1109_ACCESS_2018_2875270
crossref_primary_10_1007_s11063_013_9330_9
crossref_primary_10_1109_TNN_2007_910733
crossref_primary_10_1109_TNNLS_2021_3071030
crossref_primary_10_1109_TPAMI_2006_172
crossref_primary_10_1109_TNN_2008_2004376
crossref_primary_10_1007_s10044_009_0162_1
crossref_primary_10_1016_j_physa_2023_128554
crossref_primary_10_1109_TEVC_2018_2808689
crossref_primary_10_1016_j_engstruct_2021_113039
crossref_primary_10_1016_j_neucom_2010_01_007
crossref_primary_10_1007_s40747_021_00637_x
crossref_primary_10_1016_j_patcog_2007_01_026
crossref_primary_10_1016_j_neucom_2015_04_042
crossref_primary_10_1109_TNNLS_2019_2901309
crossref_primary_10_1016_j_ins_2021_01_054
crossref_primary_10_1186_1471_2105_12_177
crossref_primary_10_1016_j_neucom_2012_10_016
crossref_primary_10_1109_TNNLS_2017_2693221
crossref_primary_10_1049_iet_cvi_2008_0039
crossref_primary_10_1109_TGRS_2022_3181417
crossref_primary_10_1049_iet_bmt_2012_0059
crossref_primary_10_1109_TKDE_2007_190720
crossref_primary_10_3390_s120505551
crossref_primary_10_1016_j_eswa_2005_12_007
crossref_primary_10_1016_j_ijleo_2015_07_144
crossref_primary_10_1016_j_neucom_2011_03_036
crossref_primary_10_1109_TIP_2013_2264676
crossref_primary_10_1007_s00138_007_0103_1
crossref_primary_10_1002_tee_21847
crossref_primary_10_1016_j_patcog_2019_03_015
crossref_primary_10_1111_2041_210X_13748
crossref_primary_10_1016_j_neucom_2011_04_007
crossref_primary_10_1016_j_neucom_2013_06_017
crossref_primary_10_1109_TNNLS_2013_2281428
crossref_primary_10_1016_j_chemolab_2011_02_004
crossref_primary_10_1109_TIFS_2007_910239
crossref_primary_10_1016_j_patcog_2016_07_025
crossref_primary_10_1109_TNNLS_2013_2288062
crossref_primary_10_1007_s00521_011_0587_5
crossref_primary_10_1049_el_2011_2969
crossref_primary_10_3390_s20154250
crossref_primary_10_1007_s00521_018_04006_7
crossref_primary_10_1155_2018_1923063
crossref_primary_10_1007_s11263_008_0161_5
crossref_primary_10_1016_j_eswa_2010_07_150
crossref_primary_10_1016_j_neucom_2011_04_019
crossref_primary_10_1016_j_chinastron_2008_01_012
crossref_primary_10_1109_TIP_2017_2705424
crossref_primary_10_1007_s11634_010_0068_1
crossref_primary_10_1109_TGRS_2017_2720584
crossref_primary_10_1109_TKDE_2010_143
crossref_primary_10_1016_j_patcog_2009_04_017
crossref_primary_10_1007_s10115_013_0613_2
crossref_primary_10_1109_TSMC_2019_2919468
crossref_primary_10_1016_j_neucom_2013_08_048
crossref_primary_10_1002_tee_21776
crossref_primary_10_1016_j_ijleo_2016_01_033
crossref_primary_10_1016_j_patcog_2016_12_030
crossref_primary_10_1016_j_patcog_2013_09_009
crossref_primary_10_1109_TCYB_2016_2565683
crossref_primary_10_1016_j_patcog_2008_01_001
crossref_primary_10_1007_s00500_009_0443_z
crossref_primary_10_1007_s10916_011_9691_4
crossref_primary_10_1007_s13042_017_0722_4
crossref_primary_10_1109_TCST_2013_2264723
crossref_primary_10_1016_j_asoc_2015_07_034
crossref_primary_10_1002_minf_202300061
crossref_primary_10_1016_j_patcog_2005_06_016
crossref_primary_10_1109_TNN_2008_2003187
crossref_primary_10_1007_s11042_017_5272_y
crossref_primary_10_1016_j_neunet_2014_03_005
crossref_primary_10_1007_s10044_015_0470_6
crossref_primary_10_1109_ACCESS_2023_3304375
crossref_primary_10_1007_s00500_012_0843_3
crossref_primary_10_1007_s00521_013_1356_4
crossref_primary_10_1016_j_neucom_2016_04_044
crossref_primary_10_1007_s00354_009_0066_z
crossref_primary_10_1109_TCSVT_2016_2596158
crossref_primary_10_1109_ACCESS_2018_2882801
crossref_primary_10_1016_j_patcog_2016_06_025
crossref_primary_10_1016_j_knosys_2012_01_016
crossref_primary_10_1080_02564602_2017_1304290
crossref_primary_10_1109_TGRS_2019_2909121
crossref_primary_10_1109_TPAMI_2007_1008
crossref_primary_10_1016_j_ymssp_2023_110756
crossref_primary_10_1587_transinf_E96_D_550
crossref_primary_10_3390_pr12040809
crossref_primary_10_1016_j_patrec_2012_11_006
crossref_primary_10_1109_TNNLS_2014_2376530
crossref_primary_10_1109_TNNLS_2013_2245340
crossref_primary_10_1016_j_asoc_2014_12_034
crossref_primary_10_1007_s11265_012_0728_9
crossref_primary_10_1016_j_patcog_2013_01_036
crossref_primary_10_1016_j_eswa_2013_08_026
crossref_primary_10_3390_electronics11203287
crossref_primary_10_3390_s18082545
crossref_primary_10_1016_j_patcog_2007_03_030
crossref_primary_10_1016_j_neucom_2016_12_043
crossref_primary_10_1016_j_patcog_2013_08_020
crossref_primary_10_1016_j_neucom_2007_07_006
crossref_primary_10_1016_j_patrec_2017_08_004
crossref_primary_10_1007_s00521_009_0311_x
crossref_primary_10_1007_s11063_011_9209_6
crossref_primary_10_1080_1206212X_2017_1398213
crossref_primary_10_1109_MIS_2008_96
crossref_primary_10_1016_j_patcog_2008_05_028
crossref_primary_10_1016_j_neucom_2015_10_049
crossref_primary_10_1016_j_asoc_2009_07_002
crossref_primary_10_1109_TMM_2017_2663324
crossref_primary_10_1016_j_neucom_2012_12_053
crossref_primary_10_1016_j_patcog_2010_10_007
crossref_primary_10_1109_TIP_2015_2479559
crossref_primary_10_1109_TETCI_2019_2932087
crossref_primary_10_1109_TMM_2018_2865834
crossref_primary_10_1049_iet_cvi_2007_0076
crossref_primary_10_1016_j_neucom_2012_11_020
crossref_primary_10_1109_TNNLS_2013_2272292
crossref_primary_10_1002_int_22776
crossref_primary_10_1007_s11277_012_0738_8
crossref_primary_10_1016_j_eswa_2017_08_013
crossref_primary_10_1109_TCSVT_2008_2005617
crossref_primary_10_1016_j_imavis_2006_02_007
crossref_primary_10_1016_j_cviu_2021_103273
crossref_primary_10_1109_TIP_2020_3005520
crossref_primary_10_1016_j_neunet_2018_12_008
crossref_primary_10_1016_j_patrec_2008_05_023
crossref_primary_10_1016_j_neucom_2012_11_025
crossref_primary_10_1016_j_sigpro_2009_06_004
crossref_primary_10_1109_TIP_2009_2038765
crossref_primary_10_1109_TMM_2007_898933
crossref_primary_10_1016_j_patrec_2013_01_016
crossref_primary_10_1016_j_neucom_2013_06_025
crossref_primary_10_1016_j_sigpro_2009_06_002
crossref_primary_10_1088_0957_0233_18_9_038
crossref_primary_10_1016_j_neucom_2012_12_075
crossref_primary_10_1080_00207160701463237
crossref_primary_10_1016_j_ins_2024_121444
crossref_primary_10_1109_TCYB_2021_3125956
crossref_primary_10_1016_j_patcog_2011_03_002
crossref_primary_10_1049_ipr2_12772
crossref_primary_10_1109_TKDE_2016_2515613
crossref_primary_10_1007_s11633_020_1257_9
crossref_primary_10_1049_iet_cvi_2015_0171
crossref_primary_10_1109_TKDE_2008_57
crossref_primary_10_1016_j_patcog_2011_11_006
crossref_primary_10_1007_s00138_012_0423_7
crossref_primary_10_1016_j_ins_2016_05_031
crossref_primary_10_1007_s10115_014_0744_0
crossref_primary_10_1109_TCSVT_2014_2317887
crossref_primary_10_1109_TIFS_2006_890308
crossref_primary_10_1109_TNNLS_2013_2249088
crossref_primary_10_1016_j_compeleceng_2012_12_011
crossref_primary_10_1088_1742_6596_1716_1_012029
crossref_primary_10_1109_TIP_2007_904408
crossref_primary_10_1371_journal_pone_0326950
crossref_primary_10_1109_TIA_2015_2468411
crossref_primary_10_1007_s10044_017_0594_y
crossref_primary_10_1049_iet_bmt_2019_0103
crossref_primary_10_1016_j_dsp_2019_04_006
crossref_primary_10_1007_s13042_016_0520_4
crossref_primary_10_1016_j_neucom_2019_09_102
crossref_primary_10_1109_TCSVT_2007_893837
crossref_primary_10_1155_2009_916382
crossref_primary_10_1007_s11042_017_5141_8
crossref_primary_10_1109_TNN_2009_2037149
crossref_primary_10_3390_pr12071382
crossref_primary_10_3390_en14227674
crossref_primary_10_1016_j_patcog_2010_02_013
crossref_primary_10_1109_ACCESS_2016_2616584
crossref_primary_10_1109_LGRS_2013_2242042
crossref_primary_10_1109_TNNLS_2017_2728818
crossref_primary_10_1109_TNN_2006_883013
crossref_primary_10_1016_j_measurement_2013_10_033
crossref_primary_10_1109_TSMCB_2012_2218234
crossref_primary_10_1016_j_knosys_2022_110088
crossref_primary_10_1007_s00500_012_0861_1
crossref_primary_10_1109_TIFS_2007_902915
crossref_primary_10_1109_TIP_2013_2277780
crossref_primary_10_1016_j_asoc_2017_08_043
crossref_primary_10_1016_j_imavis_2009_08_006
crossref_primary_10_1109_TPAMI_2012_40
crossref_primary_10_1002_ima_22265
crossref_primary_10_1016_j_neucom_2014_06_005
crossref_primary_10_1007_s11042_021_11191_6
crossref_primary_10_1016_j_patrec_2009_07_007
crossref_primary_10_1109_ACCESS_2018_2884027
crossref_primary_10_1007_s00521_011_0728_x
crossref_primary_10_1109_TIP_2018_2836312
crossref_primary_10_1016_j_ins_2022_12_036
crossref_primary_10_1109_ACCESS_2017_2765688
crossref_primary_10_1016_j_ces_2008_10_012
crossref_primary_10_1016_j_neucom_2009_10_025
crossref_primary_10_1016_j_neucom_2009_10_026
crossref_primary_10_1016_j_patcog_2021_108450
crossref_primary_10_1007_s00521_011_0600_z
crossref_primary_10_1016_j_patcog_2012_04_001
crossref_primary_10_1016_j_chemolab_2014_01_009
crossref_primary_10_1109_TGRS_2016_2642125
crossref_primary_10_1016_j_neucom_2014_10_035
crossref_primary_10_1016_j_csda_2009_08_018
crossref_primary_10_1016_j_neucom_2015_07_141
crossref_primary_10_1109_JSTARS_2020_2968930
crossref_primary_10_1109_TNN_2007_894042
crossref_primary_10_1016_j_patcog_2010_08_026
crossref_primary_10_1016_j_patcog_2006_11_015
crossref_primary_10_1109_TNNLS_2015_2504538
crossref_primary_10_1007_s11571_010_9125_x
crossref_primary_10_1109_TVCG_2021_3114777
crossref_primary_10_1016_j_patcog_2012_04_012
crossref_primary_10_1109_TNN_2006_873291
crossref_primary_10_1007_s11600_019_00250_0
crossref_primary_10_1007_s00202_019_00823_8
crossref_primary_10_1007_s00521_012_1174_0
crossref_primary_10_1016_j_jestch_2016_03_005
crossref_primary_10_1109_TNNLS_2013_2294492
crossref_primary_10_1016_j_ins_2024_120656
crossref_primary_10_1016_j_neucom_2012_09_048
crossref_primary_10_1016_j_ins_2015_06_021
crossref_primary_10_1371_journal_pone_0094137
crossref_primary_10_1007_s00500_010_0682_z
crossref_primary_10_1016_j_patcog_2010_01_018
crossref_primary_10_1016_j_patrec_2009_10_006
crossref_primary_10_1016_j_patcog_2011_09_004
crossref_primary_10_1109_LGRS_2017_2704120
crossref_primary_10_1007_s00521_016_2299_3
crossref_primary_10_1016_j_neucom_2012_02_020
crossref_primary_10_1109_MSP_2010_939041
crossref_primary_10_1177_0954406211403360
crossref_primary_10_1109_TPAMI_2010_173
crossref_primary_10_1007_s13173_011_0049_z
crossref_primary_10_1007_s11042_011_0836_8
crossref_primary_10_1155_2009_465193
crossref_primary_10_1007_s11042_023_16239_3
crossref_primary_10_3390_s120607938
crossref_primary_10_1002_cem_2866
crossref_primary_10_1007_s10115_020_01457_0
crossref_primary_10_1016_j_patrec_2013_03_001
crossref_primary_10_1109_TNNLS_2019_2906302
crossref_primary_10_1016_j_patcog_2011_03_011
crossref_primary_10_1016_j_chemolab_2008_03_006
crossref_primary_10_1016_j_neucom_2011_07_015
crossref_primary_10_1016_j_patcog_2013_10_005
crossref_primary_10_1007_s11460_011_0129_z
crossref_primary_10_1016_j_jmva_2018_09_003
crossref_primary_10_1007_s00366_021_01568_4
crossref_primary_10_1016_j_jvcir_2021_103366
crossref_primary_10_1016_j_neunet_2018_10_001
crossref_primary_10_1016_j_patcog_2013_10_007
crossref_primary_10_1016_j_patcog_2008_07_002
crossref_primary_10_3390_math12243935
crossref_primary_10_1016_j_aca_2014_01_049
crossref_primary_10_1016_j_patcog_2013_05_016
crossref_primary_10_1016_j_neucom_2005_08_009
crossref_primary_10_1109_TGRS_2016_2594848
crossref_primary_10_1109_MGRS_2018_2793873
crossref_primary_10_1109_TCDS_2018_2796940
crossref_primary_10_1111_micc_12538
crossref_primary_10_1016_j_neucom_2014_11_048
crossref_primary_10_1007_s11063_008_9073_1
crossref_primary_10_1016_j_sigpro_2009_09_025
crossref_primary_10_1016_j_patcog_2011_01_009
crossref_primary_10_1109_JSEN_2016_2606163
crossref_primary_10_1587_transinf_2017EDL8210
crossref_primary_10_1016_j_patrec_2020_10_014
crossref_primary_10_1109_TDEI_2009_4784569
crossref_primary_10_1016_j_compeleceng_2014_12_010
crossref_primary_10_1007_s00521_011_0768_2
crossref_primary_10_1109_TIFS_2012_2213813
crossref_primary_10_1016_j_asoc_2011_04_004
crossref_primary_10_1016_j_cjche_2018_06_009
crossref_primary_10_1155_2021_6629187
crossref_primary_10_1109_ACCESS_2020_2983829
crossref_primary_10_21307_ijssis_2017_920
crossref_primary_10_1007_s11063_012_9234_0
crossref_primary_10_1016_j_patcog_2006_02_001
crossref_primary_10_1016_j_asoc_2011_10_002
crossref_primary_10_1016_j_neucom_2008_03_009
crossref_primary_10_1007_s11063_012_9212_6
crossref_primary_10_1016_j_patcog_2009_08_023
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1109_TMM_2008_2007292
crossref_primary_10_1109_TPAMI_2007_70735
crossref_primary_10_1109_TIP_2010_2042645
crossref_primary_10_1080_00207160802044118
crossref_primary_10_9717_kmms_2015_18_9_1039
crossref_primary_10_1007_s11042_015_3207_z
crossref_primary_10_1080_00207540701441954
crossref_primary_10_1016_j_patcog_2011_02_011
crossref_primary_10_1007_s13042_019_01046_w
crossref_primary_10_1016_j_neucom_2013_03_039
crossref_primary_10_1109_MCI_2007_353418
crossref_primary_10_1109_TKDE_2017_2763618
crossref_primary_10_1109_TIFS_2009_2020772
crossref_primary_10_1016_j_ins_2020_11_039
crossref_primary_10_1016_j_patrec_2009_05_018
crossref_primary_10_1007_s10462_011_9225_y
crossref_primary_10_1016_j_cviu_2014_01_008
crossref_primary_10_7759_cureus_76227
crossref_primary_10_1007_s10762_008_9445_7
Cites_doi 10.1109/34.879790
10.1162/089976602753633411
10.1162/089976600300014980
10.1016/S0031-3203(03)00136-5
10.1016/S0893-6080(01)00142-3
10.1016/j.imavis.2003.07.005
10.1109/AFGR.2002.4527207
10.1007/s10044-002-0177-3
10.1016/S0031-3203(00)00162-X
10.1016/S1077-3142(03)00077-8
10.1016/S0031-3203(99)00139-9
10.1162/jocn.1991.3.1.71
10.1109/TNN.2002.806629
10.1016/S0031-3203(02)00048-1
10.1007/978-1-4612-6027-1
10.1142/S0218001492000412
10.1109/34.531802
10.1109/34.598228
10.1109/72.914517
10.1016/S0031-3203(02)00262-5
10.1109/83.913594
10.1109/34.41390
10.1109/83.817604
10.1016/S0925-2312(03)00444-2
10.1007/s100440050031
10.1109/IJCNN.2001.939584
10.1162/089976698300017467
10.1007/978-3-642-72201-1_4
10.1109/ICPR.1996.546948
10.1142/9789812777423_0003
10.1109/TPAMI.2003.1195996
10.1007/978-1-4757-2440-0
10.1109/NNSP.1999.788121
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2005.33
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE
Computer and Information Systems Abstracts

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 244
ExternalDocumentID 2352226301
15688560
16449199
10_1109_TPAMI_2005_33
1374869
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c536t-24765f8f273896ae3a85e31bb1a8b5f78552525a87226f1cd19f7f8e1124e13
IEDL.DBID RIE
ISICitedReferencesCount 646
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225689300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Sat Sep 27 23:25:44 EDT 2025
Sun Nov 09 10:44:30 EST 2025
Sun Nov 09 12:02:16 EST 2025
Mon Jun 30 04:36:56 EDT 2025
Wed Feb 19 01:43:31 EST 2025
Mon Jul 21 09:14:36 EDT 2025
Tue Nov 18 22:31:03 EST 2025
Sat Nov 29 08:08:16 EST 2025
Tue Aug 26 16:40:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fisher linear discriminant analysis (LDA or FLD)
Face recognition
feature extraction
Kernel-based methods
principal component analysis (PCA)
Subspace method
handwritten digit recognition
subspace methods
Handwritten character recognition
machine learning
Pattern extraction
Principal component analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-24765f8f273896ae3a85e31bb1a8b5f78552525a87226f1cd19f7f8e1124e13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://hdl.handle.net/10397/191
PMID 15688560
PQID 867675089
PQPubID 23500
PageCount 15
ParticipantIDs ieee_primary_1374869
proquest_miscellaneous_28038960
pubmed_primary_15688560
crossref_citationtrail_10_1109_TPAMI_2005_33
pascalfrancis_primary_16449199
proquest_miscellaneous_896225549
proquest_miscellaneous_67396878
proquest_journals_867675089
crossref_primary_10_1109_TPAMI_2005_33
PublicationCentury 2000
PublicationDate 2005-02-01
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2005
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref16
ref19
Hutson (ref49) 1980
ref51
ref50
Zhao (ref28) 1999
ref42
ref41
Schölkopf (ref46) 2002
ref44
ref43
Tikhonov (ref18) 1997
ref4
ref3
Devore (ref40) 1997
ref6
Burges (ref45) 1997
ref36
ref31
ref30
ref32
ref2
ref1
ref39
Fukunaga (ref35) 1990
ref38
Roth (ref7) 2000; 12
Lawrence (ref17)
Yang (ref25)
Mika (ref9)
Phillips (ref37) 2004
Yang (ref52) 2003; 29
ref24
ref23
Golub (ref33) 1996
Rudin (ref48) 1973
ref26
Lancaster (ref34) 1985
ref20
ref22
ref21
ref27
Mika (ref8) 2001
Mika (ref5) 1999
Kreyszig (ref47) 1978
Zhao (ref29) 1998
References_xml – ident: ref36
  doi: 10.1109/34.879790
– ident: ref15
  doi: 10.1162/089976602753633411
– ident: ref6
  doi: 10.1162/089976600300014980
– ident: ref16
  doi: 10.1016/S0031-3203(03)00136-5
– volume-title: Applications of Functional Analysis and Operator Theory
  year: 1980
  ident: ref49
– ident: ref14
  doi: 10.1016/S0893-6080(01)00142-3
– ident: ref51
  doi: 10.1016/j.imavis.2003.07.005
– ident: ref11
  doi: 10.1109/AFGR.2002.4527207
– ident: ref38
  doi: 10.1007/s10044-002-0177-3
– ident: ref23
  doi: 10.1016/S0031-3203(00)00162-X
– ident: ref41
  doi: 10.1016/S1077-3142(03)00077-8
– volume-title: Statistics: The Exploration and Analysis of Data
  year: 1997
  ident: ref40
– start-page: 591
  volume-title: Advances in Neural Information Processing Systems 13
  year: 2001
  ident: ref8
  article-title: A Mathematical Programming Approach to the Kernel Fisher Algorithm
– ident: ref22
  doi: 10.1016/S0031-3203(99)00139-9
– start-page: 375
  volume-title: Advances in Neural Information Processing Systems 9
  year: 1997
  ident: ref45
  article-title: Improving the Accuracy and Speed of Support Vector Learning Machines
– year: 1999
  ident: ref28
  article-title: Subspace Linear Discriminant Analysis for Face Recognition
– ident: ref30
  doi: 10.1162/jocn.1991.3.1.71
– start-page: 438
  volume-title: Proc. SPIE Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision
  ident: ref25
  article-title: Optimal FLD Algorithm for Facial Feature Extraction
– ident: ref12
  doi: 10.1109/TNN.2002.806629
– volume-title: Advances in Neural Information Processing Systems 12
  year: 1999
  ident: ref5
  article-title: Invariant Feature Extraction and Classification in Kernel Spaces
– ident: ref24
  doi: 10.1016/S0031-3203(02)00048-1
– ident: ref50
  doi: 10.1007/978-1-4612-6027-1
– ident: ref21
  doi: 10.1142/S0218001492000412
– ident: ref19
  doi: 10.1109/34.531802
– ident: ref20
  doi: 10.1109/34.598228
– ident: ref2
  doi: 10.1109/72.914517
– ident: ref44
  doi: 10.1016/S0031-3203(02)00262-5
– volume-title: Solution of Ill-Posed Problems
  year: 1997
  ident: ref18
– volume-title: The Theory of Matrices
  year: 1985
  ident: ref34
– ident: ref26
  doi: 10.1109/83.913594
– volume: 29
  start-page: 481
  issue: 4
  volume-title: Acta Automatica Sinica
  year: 2003
  ident: ref52
  article-title: Theory of Fisher Linear Discriminant Analysis and Its Application
– volume: 12
  start-page: 568
  volume-title: Advances in Neural Information Processing Systems
  year: 2000
  ident: ref7
  article-title: Nonlinear Discriminant Analysis Using Kernel Functions
– ident: ref31
  doi: 10.1109/34.41390
– ident: ref27
  doi: 10.1109/83.817604
– volume-title: Functional Analysis
  year: 1973
  ident: ref48
– volume-title: Learning with Kernels
  year: 2002
  ident: ref46
– start-page: 306
  volume-title: Proc. 18th Int’l Conf. Machine Learning
  ident: ref17
  article-title: Estimating a Kernel Fisher Discriminant in the Presence of Label Noise
– volume-title: Matrix Computations
  year: 1996
  ident: ref33
– ident: ref32
  doi: 10.1016/S0925-2312(03)00444-2
– ident: ref42
  doi: 10.1007/s100440050031
– volume-title: Introduction to Statistical Pattern Recognition
  year: 1990
  ident: ref35
– start-page: 98
  volume-title: Proc. Eighth Int’l Workshop Artificial Intelligence and Statistics
  ident: ref9
  article-title: An Improved Training Algorithm for Kernel Fisher Discriminants
– ident: ref13
  doi: 10.1109/IJCNN.2001.939584
– ident: ref3
  doi: 10.1162/089976698300017467
– start-page: 73
  volume-title: Face Recognition: From Theory to Applications
  year: 1998
  ident: ref29
  article-title: Discriminant Analysis of Principal Components for Face Recognition
  doi: 10.1007/978-3-642-72201-1_4
– year: 2004
  ident: ref37
  article-title: The Facial Recognition Technology (FERET) Database
– volume-title: Introductory Functional Analysis with Applications
  year: 1978
  ident: ref47
– ident: ref43
  doi: 10.1109/ICPR.1996.546948
– ident: ref39
  doi: 10.1142/9789812777423_0003
– ident: ref10
  doi: 10.1109/TPAMI.2003.1195996
– ident: ref1
  doi: 10.1007/978-1-4757-2440-0
– ident: ref4
  doi: 10.1109/NNSP.1999.788121
SSID ssj0014503
Score 2.4181666
Snippet This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Computer science; control theory; systems
Computer Simulation
Discriminant Analysis
Exact sciences and technology
Face - anatomy & histology
Face recognition
Feature extraction
Fisher linear discriminant analysis (LDA or FLD)
Handwriting
Handwriting recognition
handwritten digit recognition
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Index Terms- Kernel-based methods
Information Storage and Retrieval - methods
Intelligence
Kernel
Kernels
Linear discriminant analysis
Machine learning
Machine learning algorithms
Matrix decomposition
Models, Biological
Models, Statistical
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Principal component analysis
principal component analysis (PCA)
Recognition
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Spatial databases
subspace methods
Subtraction Technique
Title KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition
URI https://ieeexplore.ieee.org/document/1374869
https://www.ncbi.nlm.nih.gov/pubmed/15688560
https://www.proquest.com/docview/867675089
https://www.proquest.com/docview/28038960
https://www.proquest.com/docview/67396878
https://www.proquest.com/docview/896225549
Volume 27
WOSCitedRecordID wos000225689300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB21FQc4UGihTUsXHxCnhiZxHNvcVqUVCKhWooe9RU4ylhCrbLXZ5fs7trMJSOwB5RLJE8nJeOzneOY9gHfSqqLSqGPkeRbnKuOxMWkV09KYaZQac5t7sQl5d6fmcz3bg8uhFgYRffIZfnC3_iy_WdYb96vsKnVcKYXeh30pi1CrNZwY5MKrIBOCoQinbcTIp3l1P5t-_xJ-n3CvmyMKpYQnpRyXIq-t4jIjTUcfxwZVi92w0y8_t4f_1_EX8LyHmWwaxsVL2MP2CA63Eg6sj-gjePYHH-Ex4NfZ9ZQ9LDYd-_Zp-pEZ5jPOCVezX7hqccGCUjpztbxBD6xdM7vN72IEgJlFTxXKaNJfhaIJZtqGDYlKy_YV_Li9ub_-HPc6DHEteLGOs1wWwirrqnh0YZAbJZCnVZUaVQkrlRAZXUZJwnI2rZtUWxoDSFAux5S_hoN22eIpMNrbICEm2_AqyRvNTc01R21EnaQ2a_IILrcOKeueotwpZSxKv1VJdOld6aQzRcl5BO8H84fAzbHL8Nj5ZDQK7ohg8pe3x3YCiTrVZHC-dX_Zh3ZXKk9xlyhqfTu0Uky6gxbT4nLTlU7xi75UstuikFwXSqoI2A4Lep6mWtq9R3ASBt7YvX78nv37tc7hqeeX9anlb-BgvdrgBTypf69_dqsJxc5cTXzsPAIqGRRl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQcKLR8hELrA-LUtElsJza3VaFq1e1qJfbQW-QkYwmxylabXX4_YzubBYk9oFwieSI5GY_9HM-8B_CpsCqvNOoYuchioTIeG5NWMS2NmcZCo7DCi00Uk4m6v9fTPTgbamEQ0Sef4bm79Wf5zaJeu19lF6njSsn1I3gshciSUK01nBkI6XWQCcNQjNNGYsuoeTGbju5uwg8U7pVzZK6U9LSU28XIq6u43EjT0eexQddiN_D0C9DVwf91_SW86IEmG4WR8Qr2sD2Eg42IA-tj-hCe_8FIeAR4O70csYf5umPjr6MvzDCfc07Imv3EZYtzFrTSmavmDYpg7YrZTYYXIwjMLHqyUEbT_jKUTTDTNmxIVVq0r-H71bfZ5XXcKzHEteT5Ks5EkUurrKvj0blBbpREnlZValQlbaGkzOgyqiA0Z9O6SbWlUYAE5gSm_A3st4sW3wGj3Q0SZrINrxLRaG5qrjlqI-sktVkjIjjbOKSse5Jyp5UxL_1mJdGld6UTz5Ql5xF8HswfAjvHLsMj55OtUXBHBCd_eXvbTjBRp5oMjjfuL_vg7krlSe4SRa2nQytFpTtqMS0u1l3pNL_oSyW7LfKC61wVKgK2w4Kep8mW9u8RvA0Db9u9fvy-__drncLT69nduBzfTG6P4Zlnm_WJ5h9gf7Vc40d4Uv9a_eiWJz6CfgMh-BbE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KPCA+plus+LDA%3A+a+complete+kernel+Fisher+discriminant+framework+for+feature+extraction+and+recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yang%2C+Jian&rft.au=Frangi%2C+A+F&rft.au=Yang%2C+Jing-Yu&rft.au=Zhang%2C+David&rft.date=2005-02-01&rft.issn=0162-8828&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1109%2FTPAMI.2005.33&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon