Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces
In this paper we consider a class of split feasibility problem by focusing on the solution sets of two important problems in the setting of Hilbert spaces. One of them is the set of zero points of the sum of two monotone operators and the other is the set of fixed points of mappings. By using the mo...
Uloženo v:
| Vydáno v: | Journal of inequalities and applications Ročník 2018; číslo 1; s. 289 - 15 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
2018
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we consider a class of split feasibility problem by focusing on the solution sets of two important problems in the setting of Hilbert spaces. One of them is the set of zero points of the sum of two monotone operators and the other is the set of fixed points of mappings. By using the modified forward–backward splitting method, we propose a viscosity iterative algorithm. Under suitable conditions, some strong convergence theorems of the sequence generated by the algorithm to a common solution of the problem are proved. At the end of the paper, some applications and the constructed algorithm are also discussed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1029-242X 1025-5834 1029-242X |
| DOI: | 10.1186/s13660-018-1881-x |