Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography
Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address the...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 24; s. 9934 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.12.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80–50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT. |
|---|---|
| AbstractList | Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80–50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT. Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT. |
| Audience | Academic |
| Author | Zhang, Weirui Liu, Xuechao Ye, Jian’an Yang, Bin Xu, Canhua Dai, Meng Tian, Xiang Zhang, Tao Fu, Feng |
| AuthorAffiliation | 1 Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China 3 Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China 2 Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China |
| AuthorAffiliation_xml | – name: 2 Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China – name: 3 Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China – name: 1 Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China |
| Author_xml | – sequence: 1 givenname: Xuechao orcidid: 0000-0002-0358-0683 surname: Liu fullname: Liu, Xuechao – sequence: 2 givenname: Tao orcidid: 0000-0002-1535-4309 surname: Zhang fullname: Zhang, Tao – sequence: 3 givenname: Jian’an orcidid: 0000-0003-1968-7669 surname: Ye fullname: Ye, Jian’an – sequence: 4 givenname: Xiang surname: Tian fullname: Tian, Xiang – sequence: 5 givenname: Weirui surname: Zhang fullname: Zhang, Weirui – sequence: 6 givenname: Bin surname: Yang fullname: Yang, Bin – sequence: 7 givenname: Meng surname: Dai fullname: Dai, Meng – sequence: 8 givenname: Canhua surname: Xu fullname: Xu, Canhua – sequence: 9 givenname: Feng surname: Fu fullname: Fu, Feng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36560297$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1uEzEUhUeoiLaBBS-ARmJTFmn9N38bpDRqIVIRC8LauvbYE4cZO9ieorwEz4zTtKUpyLKvZX_nWNc6p9mRdVZl2VuMzilt0EUghLCmoexFdoIZYdOaEHT0ZH-cnYawRohQSutX2TEtixKRpjrJfl9DiPkiKg_R3Kr828ob-wM6NV2uvAor17fGdvms75w3cTXkv9Kaz52Nxo5J4myunc8vPRibL-x69Nv8i7MmJjzpFgN0u3oJQbV5gq96JaM3Evp0t1EtWKnypRtc52Gz2r7OXmrog3pzXyfZ9-ur5fzz9Obrp8V8djOVBS3jFNclrSkutUZECKIb0IAkQyC0xLqEllLSsKLSQteStFUtEK4BcFsooZEAOskWe9_WwZpvvBnAb7kDw-8OnO84-Ghkr3jBWkEY0bgQDQNRNwLrotCkFelnWdUkr497r80oBtVKZaOH_sD08MaaFe_cLW-qmlZpTrKzewPvfo4qRD6YIFXfg1VuDJxURY0RIxVN6Ptn6NqN3qav2lFlVWOCyV-qg9SAsdqld-XOlM8qVha0SLFJ1Pl_qDRaNRiZEqZNOj8QvHva6GOHD2lKwMUekN6F4JXm0sS7kCRn03OM-C6v_DGvSfHhmeLB9F_2DxoC604 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3382939 crossref_primary_10_1016_j_enganabound_2025_106237 crossref_primary_10_1016_j_measurement_2025_118797 crossref_primary_10_1109_TIM_2024_3440389 crossref_primary_10_3390_nano15110811 crossref_primary_10_1109_JBHI_2023_3265385 crossref_primary_10_3390_s23042233 crossref_primary_10_3390_s24185985 crossref_primary_10_1088_1742_6596_3012_1_012079 crossref_primary_10_3390_s23218974 |
| Cites_doi | 10.1137/080725891 10.1117/1.JMI.8.1.014501 10.1109/TIM.2014.2329738 10.1088/1361-6579/aa691b 10.1088/0967-3334/30/6/S14 10.1007/s00415-014-7291-1 10.1088/1361-6579/ab69ba 10.1088/0967-3334/37/6/765 10.1109/TBME.2013.2288133 10.1088/1361-6579/ac08e5 10.1109/TMI.2018.2816739 10.1088/1361-6579/ab9871 10.1109/ACCESS.2021.3119565 10.1109/TMI.2020.2983055 10.1016/j.nicl.2019.101909 10.1109/TBME.2020.3006175 10.1109/TMI.2017.2762741 10.1109/TMI.2020.3030024 10.1109/TBME.2008.923919 10.1186/s12938-019-0703-9 10.1155/2018/1321862 10.1007/s11517-019-02003-z 10.1016/j.sigpro.2012.05.027 10.1109/TMI.2013.2284966 10.1371/journal.pone.0170563 10.1109/ACCESS.2019.2947439 10.1109/ACCESS.2019.2944209 10.1109/TMI.2019.2961938 10.1109/TBME.2021.3120929 10.1088/1361-6579/abffbf 10.1109/JSEN.2018.2836336 10.1145/3364836.3364899 10.1007/s11042-021-10701-w 10.1109/TBME.2017.2728323 10.1109/TIT.2006.871582 10.1109/ICBBE.2008.704 10.1088/1361-6579/ac0e84 10.1088/1361-6579/ac05d4 10.1088/0967-3334/30/6/S03 10.1088/1361-6579/abd679 10.1186/s12890-021-01411-y 10.1109/ACCESS.2018.2825323 10.1088/0967-3334/27/11/002 10.1088/1361-6579/ac1c63 10.1371/journal.pone.0113202 10.1088/1361-6579/ab9e54 10.1053/j.jvca.2018.05.002 10.1109/TMI.2017.2756078 10.1109/JSEN.2020.2965176 10.1137/080716542 10.1088/0967-3334/32/5/007 10.1177/0142331218799841 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22249934 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_54db242f15b94ab89b1f55f2db822479 PMC9783778 A746535339 36560297 10_3390_s22249934 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2022JQ-872 – fundername: The National Nature Science Foundation of China grantid: 51837011 – fundername: the Key Research and Development Program of Shaanxi grantid: 2022ZDLSF04-07 – fundername: The National Nature Science Foundation of China grantid: 31900978 – fundername: Technology Field Foundation on Basic Strengthen Project grantid: 2019-JCJQ-JJ-096 – fundername: Key Research and Development Program of Shaanxi grantid: 2022ZDLSF04-07 – fundername: The National Nature Science Foundation of China grantid: 51837011; 31900978 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c536t-18638316ff02bb2f9afa0c40abfc1f6ad3329457fbf8c2d78b018aa1d5ebf0ba3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903121900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:06:22 EDT 2025 Tue Nov 04 02:07:16 EST 2025 Fri Sep 05 10:45:57 EDT 2025 Tue Oct 07 07:20:46 EDT 2025 Tue Nov 11 10:46:33 EST 2025 Tue Nov 04 18:15:22 EST 2025 Wed Feb 19 02:25:00 EST 2025 Sat Nov 29 07:14:53 EST 2025 Tue Nov 18 21:51:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | reconstruction algorithm least absolute shrinkage and selection operator model fast iterative shrinkage-thresholding algorithm electrical impedance tomography brain injury monitoring imaging |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-18638316ff02bb2f9afa0c40abfc1f6ad3329457fbf8c2d78b018aa1d5ebf0ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-1535-4309 0000-0003-1968-7669 0000-0002-0358-0683 |
| OpenAccessLink | https://www.proquest.com/docview/2756781212?pq-origsite=%requestingapplication% |
| PMID | 36560297 |
| PQID | 2756781212 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_54db242f15b94ab89b1f55f2db822479 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783778 proquest_miscellaneous_2758104273 proquest_journals_2756781212 gale_infotracmisc_A746535339 gale_infotracacademiconefile_A746535339 pubmed_primary_36560297 crossref_citationtrail_10_3390_s22249934 crossref_primary_10_3390_s22249934 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Liu (ref_30) 2020; 39 Capps (ref_34) 2021; 68 Malone (ref_45) 2014; 33 Murphy (ref_10) 2017; 38 Gilad (ref_48) 2009; 30 Hsu (ref_4) 2021; 42 Li (ref_52) 2014; 61 Hu (ref_9) 2020; 4 ref_19 Ye (ref_27) 2015; 64 Menden (ref_3) 2021; 42 ref_15 Wang (ref_40) 2012; 92 Yang (ref_16) 2019; 23 Chen (ref_1) 2014; 261 Wang (ref_25) 2019; 7 Lee (ref_54) 2018; 37 Cao (ref_12) 2020; 41 Liu (ref_28) 2018; 37 Liu (ref_29) 2020; 39 Haris (ref_6) 2021; 42 Jiang (ref_7) 2021; 42 Liu (ref_31) 2021; 40 ref_21 Dowrick (ref_13) 2016; 37 Zhang (ref_53) 2021; 9 Liu (ref_22) 2019; 57 Lu (ref_38) 2019; 41 Goldstein (ref_36) 2009; 2 Donoho (ref_35) 2006; 52 Shi (ref_49) 2006; 27 ref_33 Zhang (ref_37) 2021; 42 Dai (ref_11) 2018; 2018 McDermott (ref_2) 2020; 41 Adler (ref_41) 2017; 64 Babapour (ref_43) 2021; 80 Hentze (ref_5) 2021; 42 Beck (ref_42) 2009; 2 Shi (ref_51) 2018; 18 Li (ref_18) 2018; 32 Shi (ref_46) 2021; 8 Xu (ref_20) 2011; 32 Li (ref_17) 2020; 20 Adler (ref_44) 2009; 30 Cao (ref_24) 2019; 18 Liu (ref_26) 2018; 37 Ke (ref_14) 2022; 9 Lin (ref_32) 2020; 41 ref_8 Zou (ref_39) 2018; 6 Paldanius (ref_55) 2022; 69 Li (ref_23) 2019; 7 Tang (ref_47) 2008; 55 |
| References_xml | – volume: 2 start-page: 323 year: 2009 ident: ref_36 article-title: The split Bregman method for L1-regularized problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080725891 – volume: 8 start-page: 014501 year: 2021 ident: ref_46 article-title: Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography publication-title: J. Med. Imaging doi: 10.1117/1.JMI.8.1.014501 – volume: 9 start-page: 10 year: 2022 ident: ref_14 article-title: Advances in electrical impedance tomography-based brain imaging publication-title: Mil. Med. Res. – volume: 64 start-page: 89 year: 2015 ident: ref_27 article-title: Image reconstruction for electrical capacitance tomography based on sparse representation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2014.2329738 – volume: 38 start-page: 1262 year: 2017 ident: ref_10 article-title: Phantom experiments using soft-prior regularization EIT for breast cancer imaging publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa691b – volume: 30 start-page: S201 year: 2009 ident: ref_48 article-title: A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/6/S14 – volume: 4 start-page: 1 year: 2020 ident: ref_9 article-title: Combining multiple boundary shapes in deformable EIT a potential use in breast imaging publication-title: IEEE Sens. Lett. – volume: 261 start-page: 2061 year: 2014 ident: ref_1 article-title: Progressing haemorrhagic stroke: Categories, causes, mechanisms and managements publication-title: J. Neurol. doi: 10.1007/s00415-014-7291-1 – volume: 41 start-page: 015004 year: 2020 ident: ref_12 article-title: Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab69ba – volume: 37 start-page: 765 year: 2016 ident: ref_13 article-title: In Vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: Towards 3D stroke imaging using electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/6/765 – volume: 61 start-page: 254 year: 2014 ident: ref_52 article-title: A new head phantom with realistic shape and spatially varying skull resistivity distribution publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2288133 – volume: 42 start-page: 064003 year: 2021 ident: ref_6 article-title: Identification and analysis of stable breathing periods in electrical impedance tomography recordings publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac08e5 – volume: 37 start-page: 2090 year: 2018 ident: ref_26 article-title: Image reconstruction in electrical impedance tomography based on structure-aware sparse bayesian learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2816739 – volume: 41 start-page: 074003 year: 2020 ident: ref_32 article-title: Neural network-based supervised descent method for 2D electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab9871 – volume: 9 start-page: 141999 year: 2021 ident: ref_53 article-title: Target adaptive differential iterative reconstruction (TADI): A robust algorithm for real-time electrical impedance tomography publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3119565 – volume: 39 start-page: 2954 year: 2020 ident: ref_30 article-title: Shape reconstruction using Boolean operations in electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2983055 – volume: 23 start-page: 101909 year: 2019 ident: ref_16 article-title: Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101909 – volume: 68 start-page: 826 year: 2021 ident: ref_34 article-title: Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3006175 – volume: 37 start-page: 1970 year: 2018 ident: ref_54 article-title: A fidelity-embedded regularization method for robust electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2762741 – volume: 40 start-page: 481 year: 2021 ident: ref_31 article-title: Shape-driven EIT reconstruction using Fourier representations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3030024 – volume: 55 start-page: 2286 year: 2008 ident: ref_47 article-title: Correlation between structure and resistivity variations of the live human skull publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.923919 – volume: 18 start-page: 84 year: 2019 ident: ref_24 article-title: A novel time-difference electrical impedance tomography algorithm using multi-frequency information publication-title: Biomed. Eng. OnLine doi: 10.1186/s12938-019-0703-9 – volume: 2018 start-page: 1321862 year: 2018 ident: ref_11 article-title: EIT imaging of intracranial hemorrhage in rabbit models is influenced by the intactness of cranium publication-title: BioMed Res. Int. doi: 10.1155/2018/1321862 – volume: 57 start-page: 1917 year: 2019 ident: ref_22 article-title: An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-02003-z – volume: 92 start-page: 2952 year: 2012 ident: ref_40 article-title: Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.05.027 – volume: 33 start-page: 340 year: 2014 ident: ref_45 article-title: Multifrequency electrical impedance tomography using spectral constraints publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2284966 – ident: ref_21 doi: 10.1371/journal.pone.0170563 – volume: 7 start-page: 156054 year: 2019 ident: ref_25 article-title: Towards a combination of low rank and sparsity in EIT imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947439 – volume: 7 start-page: 140734 year: 2019 ident: ref_23 article-title: Optimized method for electrical impedance tomography to image large area conductive perturbation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944209 – volume: 39 start-page: 1917 year: 2020 ident: ref_29 article-title: B-spline level set method for shape reconstruction in electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2961938 – volume: 69 start-page: 1491 year: 2022 ident: ref_55 article-title: Sensitivity analysis highlights the importance of accurate head models for electrical impedance tomography monitoring of intracerebral hemorrhagic stroke publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3120929 – volume: 42 start-page: 104001 year: 2021 ident: ref_7 article-title: Ventilation improvement after pneumonia treatment evaluated with electrical impedance tomography: An observational study publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abffbf – volume: 18 start-page: 5974 year: 2018 ident: ref_51 article-title: High-precision electrical impedance tomography data acquisition system for brain imaging publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2836336 – ident: ref_19 doi: 10.1145/3364836.3364899 – volume: 80 start-page: 20707 year: 2021 ident: ref_43 article-title: AFISTA: Accelerated FISTA for sparse signal recovery and compressive sensing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10701-w – volume: 64 start-page: 2494 year: 2017 ident: ref_41 article-title: Electrical impedance tomography: Tissue properties to image measures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2728323 – volume: 52 start-page: 1289 year: 2006 ident: ref_35 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – ident: ref_50 doi: 10.1109/ICBBE.2008.704 – volume: 42 start-page: 084001 year: 2021 ident: ref_5 article-title: A model-based source separation algorithm for lung perfusion imaging using electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac0e84 – volume: 42 start-page: 065004 year: 2021 ident: ref_37 article-title: Adaptive threshold split Bregman algorithm based on magnetic induction tomography for brain injury monitoring imaging publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac05d4 – volume: 30 start-page: S35 year: 2009 ident: ref_44 article-title: GREIT: A unified approach to 2D linear EIT reconstruction of lung images publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/6/S03 – ident: ref_33 – volume: 42 start-page: 014002 year: 2021 ident: ref_4 article-title: Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: A randomized trial in moderate to severe ARDS publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abd679 – ident: ref_8 doi: 10.1186/s12890-021-01411-y – volume: 6 start-page: 21560 year: 2018 ident: ref_39 article-title: Split Bregman algorithm for structured sparse reconstruction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825323 – volume: 27 start-page: 1071 year: 2006 ident: ref_49 article-title: Pseudo-polar drive patterns for brain electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/11/002 – volume: 42 start-page: 094001 year: 2021 ident: ref_3 article-title: Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac1c63 – ident: ref_15 doi: 10.1371/journal.pone.0113202 – volume: 41 start-page: 075010 year: 2020 ident: ref_2 article-title: Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab9e54 – volume: 32 start-page: 2469 year: 2018 ident: ref_18 article-title: Noninvasive cerebral imaging and monitoring using electrical impedance tomography during total aortic arch replacement publication-title: J. Cardiothorac. Vasc. Anesth. doi: 10.1053/j.jvca.2018.05.002 – volume: 37 start-page: 451 year: 2018 ident: ref_28 article-title: A parametric level set method for electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2756078 – volume: 20 start-page: 4832 year: 2020 ident: ref_17 article-title: Automatic evaluation of mannitol dehydration treatments on controlling intracranial pressure using electrical impedance tomography publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2965176 – volume: 2 start-page: 183 year: 2009 ident: ref_42 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 32 start-page: 585 year: 2011 ident: ref_20 article-title: An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/5/007 – volume: 41 start-page: 2389 year: 2019 ident: ref_38 article-title: Split Bregman iteration based reconstruction algorithm for electrical capacitance tomography publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331218799841 |
| SSID | ssj0023338 |
| Score | 2.4308488 |
| Snippet | Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9934 |
| SubjectTerms | Algorithms Brain Brain Injuries - diagnostic imaging brain injury monitoring imaging Comparative analysis Electric Impedance electrical impedance tomography fast iterative shrinkage-thresholding algorithm Humans Image Processing, Computer-Assisted - methods Injuries Inverse problems Ischemia least absolute shrinkage and selection operator model Methods Numerical analysis Patient monitoring equipment Phantoms, Imaging reconstruction algorithm Simulation methods Tomography Tomography - methods Tomography, X-Ray Computed Traumatic brain injury |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMcEG8CCzIICS7RxnYS28cWbUUvKySKtLfIdmxadpuumiw_g9_MjJNGjUDiwtWeRLHn7Yy_IeS9L60Hk2dSp0Od5qXlqWHWQpaShTLXlluvYrMJeXGhLi_1l6NWX1gT1sMD9xt3VuS1BTcSWGF1bqzSloWiCLy2WP8o49W9TOpDMjWkWgIyrx5HSEBSf9aCF4TQXuQT7xNB-v80xUe-aFoneeR4Fg_JgyFipLP-Sx-RO755TO4f4Qg-Ib8Wpu3oMgIkg_WiX9cwfgWWIl0Bq9rhDxOdXX_f7Tfdekvx9JUiMNWm6aG-KcSudI7tIuiy-QH7THtlx_fT5Ta2MqJz8Hg1BeLz2DsH2QtzN75GyaGr3XaAv35Kvi3OV58-p0OjhdQVouxSpkALBStDyLi1PGgTTObyzNjgWChNLQTXeSGDDcrxWiqbAXsNqwtvQ2aNeEZOml3jXxBaSAcBpeJeBwW5kLUIZ--lMSqEQmqWkI8HBlRuQCHHZhjXFWQjyKtq5FVC3o2kNz30xt-I5sjFkQDRsuMAyFA1yFD1LxlKyAeUgQp1Gj7GmeFqAiwJ0bGqmUQUOgiMgfJ0Qgm66KbTBymqBlvQVgiwLyGOYjwhb8dpfBLr2xq_u400imHbE5GQ573QjUsSiI_EtUyInIjjZM3TmWazjkjheK4npXr5PzbpFbnH8epHLOU5JSfd_ta_Jnfdz27T7t9E9fsNmpQ4oQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36560297 https://www.proquest.com/docview/2756781212 https://www.proquest.com/docview/2758104273 https://pubmed.ncbi.nlm.nih.gov/PMC9783778 https://doaj.org/article/54db242f15b94ab89b1f55f2db822479 |
| Volume | 22 |
| WOSCitedRecordID | wos000903121900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceC8ElsogJLhEm7ftE2pRK3rYqoIilVNkO_G2sE1K0-XIT-A3M-O43UYgLlxysCeRLX-el51vCHldZqoElSd9LUzhJ5mKfBkqBVFKYLJEqEiV3BabYJMJn8_F1CXcGnetcqcTraIuao058jOkKWdgjcLo3fq7j1Wj8HTVldC4SY6xbDbinM2vA64Y4q-WTSiG0P6sAVsIDn6cdGyQper_UyEfWKTubckD8zO6978Dv0_uOseT9lukPCA3yuohuXNAR_iI_BrJZkvHlmcZlCD9tID2b6Bw_BmseOMOqmj_8gK-v12sKCZxKfJbLauWMZyCC0wHWHWCjquvsFy01Rn4fTpe2YpIdACGs6AgPLQleBAl0LcuCwQgndUrx6L9mHweDWfvP_iuXoOv0zjb-iGHzRyHmTFBpFRkhDQy0EkgldGhyWQRx5FIUmaU4ToqGFcBoESGRVoqEygZn5Cjqq7Kp4SmTINfyqNSGA4hlVLIil8yKbkxKROhR97uVjDXjswca2pc5hDU4GLn-8X2yKu96Lpl8Pib0ABhsBdA0m3bUG8ucreH8zQpFHg0JkyVSKTiQoUmTU1UKLyKy4RH3iCIclQNMBgt3R8OMCUk2cr7DMnswL8GydOOJGxp3e3eQSl3KqXJr3HkkZf7bnwTr8lVZX1lZXiI1VNijzxpUbufUow0S5FgHmEdPHfm3O2plgtLOI7pQcb4s38P6zm5HeG_Ifauzyk52m6uyhfklv6xXTabnt2Z9sl75HgwnEw_9mwCBJ7nP4fQNh2fT7_8BsloTTM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWBQk48P0RWMAg0HKJNrGT2D4g1MJWW-1SIVGk3oKd2NvCNi1NF8Sf4KfwG5lJ0m4jELc9cI2nUZy-eTPj2G8IeW4TY4HytJ8pl_tRYpivQ2OgSglcEinDjJVVswkxGMjRSL3fIr9WZ2FwW-WKEyuizmcZrpHvoUy5gGgUstfzrz52jcKvq6sWGjUsDu2P71Cyla_6b-H_fcFYb3_45sBvugr4WcyTpR9KgBwPE-cCZgxzSjsdZFGgjctCl-icc6aiWDjjZMZyIU0Ac9FhHlvjAqM53PcCuQg8LrDYE6OzAo9DvVerF3Gugr0SYi8UFDxqxbyqNcCfAWAjArZ3Z26Eu971_-1F3SDXmsSadmpPuEm2bHGLXN2QW7xNfvZ0uaT9SkcaSJ5-GMP1L0Co_hAQXTYf4mjn5BjmsxxPKS5SU9TvmhS1IjqFFJ92sasG7RefAY605kS8P-1Pq45PtAuJQU7BeL9qMYReAGNzm6OD0eFs2qiE3yEfz-WF3CXbxayw9wmNRQZ5t2RWOQklozGo-m-F1tK5WKjQIy9XiEmzRqwde4acpFC0IbjSNbg88mxtOq8VSv5m1EXYrQ1QVLy6MFscpw1HpXGUG8jYXBgbFWkjlQldHDuWG9xqLJRHdhG0KVIfPEymmxMcMCUUEUs7AsX6oH4Ay52WJVBW1h5eQTdtKLNMz3DrkafrYfwlbgMs7Oy0spEhdofhHrlXe8l6ShxlpMApPSJa_tOac3ukmIwrQXVc_hRCPvj3Yz0hlw-G747So_7g8CG5wvAcTLWvaYdsLxen9hG5lH1bTsrF44oVKPl03t71G87YppA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLkJw4P0ILGAQCC5RE-fh-IBQy25FtFBVokjLKdiJvS1sk9J0QfwJfhC_jpkkDY1A3PbANZ5GmfSblzP-hpAnOlQaXJ60U2Ey2w8Vs6WrFFQpjgl9oZjSUTVsgo_H0dGRmOyQn5uzMNhWufGJlaPOihT3yPtIU84hGrmsb5q2iMn-6OXyi40TpPBL62acRg2RQ_39G5Rv5Yt4H_7rp4yNDqavXtvNhAE7DbxwbbsRwM9zQ2McphQzQhrppL4jlUldE8rM85jwA26UiVKW8Ug5oJd0s0Ar4yjpwX3PkV1IyX3WI7uT-O3kQ1vueVD91VxGniecfgmRGMoLz-9EwGpQwJ_hYCsedns1t4Lf6Mr__NqukstNyk0HtY1cIzs6v04ubREx3iA_RrJc07himAb3T9_N4PpncLX2FLBeNp_o6ODkGPRZzxYUt68pMnvN85ornULyT4c4b4PG-ScAKq29Jd6fxotqFhQdQsqQURA-qIYPoX3A2lJnaHp0Wiwa_vCb5P2ZvJBbpJcXub5DaMBTyMgjpoWJoJhUCucBaC5lZEzAhWuR5xv0JGlD447TRE4SKOcQaEkLNIs8bkWXNXfJ34SGCMFWAOnGqwvF6jhpvFcS-JmCXM64gRK-VJFQrgkCwzKFTchcWOQZAjhBpwgPk8rmbAeohPRiyYAjjR9UFiC515EEZ5Z2lzcwThpnWia_MWyRR-0y_hIbBHNdnFYykYtzYzyL3K4tplXJQ4IpJrhFeMeWOjp3V_L5rKJax41RzqO7_36sh-QCGFXyJh4f3iMXGR6QqRqe9khvvTrV98n59Ot6Xq4eNC6Cko9nbV6_AEDbsN8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Iterative+Shrinkage-Thresholding+Algorithm+with+Continuation+for+Brain+Injury+Monitoring+Imaging+Based+on+Electrical+Impedance+Tomography&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xuechao&rft.au=Zhang%2C+Tao&rft.au=Ye%2C+Jian%E2%80%99an&rft.au=Tian%2C+Xiang&rft.date=2022-12-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft_id=info:doi/10.3390%2Fs22249934&rft_id=info%3Apmid%2F36560297&rft.externalDocID=PMC9783778 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |