Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography

Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 24; s. 9934
Hlavní autori: Liu, Xuechao, Zhang, Tao, Ye, Jian’an, Tian, Xiang, Zhang, Weirui, Yang, Bin, Dai, Meng, Xu, Canhua, Fu, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 01.12.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80–50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
AbstractList Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80–50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
Audience Academic
Author Zhang, Weirui
Liu, Xuechao
Ye, Jian’an
Yang, Bin
Xu, Canhua
Dai, Meng
Tian, Xiang
Zhang, Tao
Fu, Feng
AuthorAffiliation 1 Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
3 Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
2 Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
AuthorAffiliation_xml – name: 2 Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
– name: 3 Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
– name: 1 Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
Author_xml – sequence: 1
  givenname: Xuechao
  orcidid: 0000-0002-0358-0683
  surname: Liu
  fullname: Liu, Xuechao
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-1535-4309
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 3
  givenname: Jian’an
  orcidid: 0000-0003-1968-7669
  surname: Ye
  fullname: Ye, Jian’an
– sequence: 4
  givenname: Xiang
  surname: Tian
  fullname: Tian, Xiang
– sequence: 5
  givenname: Weirui
  surname: Zhang
  fullname: Zhang, Weirui
– sequence: 6
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
– sequence: 7
  givenname: Meng
  surname: Dai
  fullname: Dai, Meng
– sequence: 8
  givenname: Canhua
  surname: Xu
  fullname: Xu, Canhua
– sequence: 9
  givenname: Feng
  surname: Fu
  fullname: Fu, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36560297$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEUhUeoiLaBBS-ARmJTFmn9N38bpDRqIVIRC8LauvbYE4cZO9ieorwEz4zTtKUpyLKvZX_nWNc6p9mRdVZl2VuMzilt0EUghLCmoexFdoIZYdOaEHT0ZH-cnYawRohQSutX2TEtixKRpjrJfl9DiPkiKg_R3Kr828ob-wM6NV2uvAor17fGdvms75w3cTXkv9Kaz52Nxo5J4myunc8vPRibL-x69Nv8i7MmJjzpFgN0u3oJQbV5gq96JaM3Evp0t1EtWKnypRtc52Gz2r7OXmrog3pzXyfZ9-ur5fzz9Obrp8V8djOVBS3jFNclrSkutUZECKIb0IAkQyC0xLqEllLSsKLSQteStFUtEK4BcFsooZEAOskWe9_WwZpvvBnAb7kDw-8OnO84-Ghkr3jBWkEY0bgQDQNRNwLrotCkFelnWdUkr497r80oBtVKZaOH_sD08MaaFe_cLW-qmlZpTrKzewPvfo4qRD6YIFXfg1VuDJxURY0RIxVN6Ptn6NqN3qav2lFlVWOCyV-qg9SAsdqld-XOlM8qVha0SLFJ1Pl_qDRaNRiZEqZNOj8QvHva6GOHD2lKwMUekN6F4JXm0sS7kCRn03OM-C6v_DGvSfHhmeLB9F_2DxoC604
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3382939
crossref_primary_10_1016_j_enganabound_2025_106237
crossref_primary_10_1016_j_measurement_2025_118797
crossref_primary_10_1109_TIM_2024_3440389
crossref_primary_10_3390_nano15110811
crossref_primary_10_1109_JBHI_2023_3265385
crossref_primary_10_3390_s23042233
crossref_primary_10_3390_s24185985
crossref_primary_10_1088_1742_6596_3012_1_012079
crossref_primary_10_3390_s23218974
Cites_doi 10.1137/080725891
10.1117/1.JMI.8.1.014501
10.1109/TIM.2014.2329738
10.1088/1361-6579/aa691b
10.1088/0967-3334/30/6/S14
10.1007/s00415-014-7291-1
10.1088/1361-6579/ab69ba
10.1088/0967-3334/37/6/765
10.1109/TBME.2013.2288133
10.1088/1361-6579/ac08e5
10.1109/TMI.2018.2816739
10.1088/1361-6579/ab9871
10.1109/ACCESS.2021.3119565
10.1109/TMI.2020.2983055
10.1016/j.nicl.2019.101909
10.1109/TBME.2020.3006175
10.1109/TMI.2017.2762741
10.1109/TMI.2020.3030024
10.1109/TBME.2008.923919
10.1186/s12938-019-0703-9
10.1155/2018/1321862
10.1007/s11517-019-02003-z
10.1016/j.sigpro.2012.05.027
10.1109/TMI.2013.2284966
10.1371/journal.pone.0170563
10.1109/ACCESS.2019.2947439
10.1109/ACCESS.2019.2944209
10.1109/TMI.2019.2961938
10.1109/TBME.2021.3120929
10.1088/1361-6579/abffbf
10.1109/JSEN.2018.2836336
10.1145/3364836.3364899
10.1007/s11042-021-10701-w
10.1109/TBME.2017.2728323
10.1109/TIT.2006.871582
10.1109/ICBBE.2008.704
10.1088/1361-6579/ac0e84
10.1088/1361-6579/ac05d4
10.1088/0967-3334/30/6/S03
10.1088/1361-6579/abd679
10.1186/s12890-021-01411-y
10.1109/ACCESS.2018.2825323
10.1088/0967-3334/27/11/002
10.1088/1361-6579/ac1c63
10.1371/journal.pone.0113202
10.1088/1361-6579/ab9e54
10.1053/j.jvca.2018.05.002
10.1109/TMI.2017.2756078
10.1109/JSEN.2020.2965176
10.1137/080716542
10.1088/0967-3334/32/5/007
10.1177/0142331218799841
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22249934
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_54db242f15b94ab89b1f55f2db822479
PMC9783778
A746535339
36560297
10_3390_s22249934
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2022JQ-872
– fundername: The National Nature Science Foundation of China
  grantid: 51837011
– fundername: the Key Research and Development Program of Shaanxi
  grantid: 2022ZDLSF04-07
– fundername: The National Nature Science Foundation of China
  grantid: 31900978
– fundername: Technology Field Foundation on Basic Strengthen Project
  grantid: 2019-JCJQ-JJ-096
– fundername: Key Research and Development Program of Shaanxi
  grantid: 2022ZDLSF04-07
– fundername: The National Nature Science Foundation of China
  grantid: 51837011; 31900978
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-18638316ff02bb2f9afa0c40abfc1f6ad3329457fbf8c2d78b018aa1d5ebf0ba3
IEDL.DBID 7X7
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903121900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:06:22 EDT 2025
Tue Nov 04 02:07:16 EST 2025
Fri Sep 05 10:45:57 EDT 2025
Tue Oct 07 07:20:46 EDT 2025
Tue Nov 11 10:46:33 EST 2025
Tue Nov 04 18:15:22 EST 2025
Wed Feb 19 02:25:00 EST 2025
Sat Nov 29 07:14:53 EST 2025
Tue Nov 18 21:51:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords reconstruction algorithm
least absolute shrinkage and selection operator model
fast iterative shrinkage-thresholding algorithm
electrical impedance tomography
brain injury monitoring imaging
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-18638316ff02bb2f9afa0c40abfc1f6ad3329457fbf8c2d78b018aa1d5ebf0ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-1535-4309
0000-0003-1968-7669
0000-0002-0358-0683
OpenAccessLink https://www.proquest.com/docview/2756781212?pq-origsite=%requestingapplication%
PMID 36560297
PQID 2756781212
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_54db242f15b94ab89b1f55f2db822479
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783778
proquest_miscellaneous_2758104273
proquest_journals_2756781212
gale_infotracmisc_A746535339
gale_infotracacademiconefile_A746535339
pubmed_primary_36560297
crossref_citationtrail_10_3390_s22249934
crossref_primary_10_3390_s22249934
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Liu (ref_30) 2020; 39
Capps (ref_34) 2021; 68
Malone (ref_45) 2014; 33
Murphy (ref_10) 2017; 38
Gilad (ref_48) 2009; 30
Hsu (ref_4) 2021; 42
Li (ref_52) 2014; 61
Hu (ref_9) 2020; 4
ref_19
Ye (ref_27) 2015; 64
Menden (ref_3) 2021; 42
ref_15
Wang (ref_40) 2012; 92
Yang (ref_16) 2019; 23
Chen (ref_1) 2014; 261
Wang (ref_25) 2019; 7
Lee (ref_54) 2018; 37
Cao (ref_12) 2020; 41
Liu (ref_28) 2018; 37
Liu (ref_29) 2020; 39
Haris (ref_6) 2021; 42
Jiang (ref_7) 2021; 42
Liu (ref_31) 2021; 40
ref_21
Dowrick (ref_13) 2016; 37
Zhang (ref_53) 2021; 9
Liu (ref_22) 2019; 57
Lu (ref_38) 2019; 41
Goldstein (ref_36) 2009; 2
Donoho (ref_35) 2006; 52
Shi (ref_49) 2006; 27
ref_33
Zhang (ref_37) 2021; 42
Dai (ref_11) 2018; 2018
McDermott (ref_2) 2020; 41
Adler (ref_41) 2017; 64
Babapour (ref_43) 2021; 80
Hentze (ref_5) 2021; 42
Beck (ref_42) 2009; 2
Shi (ref_51) 2018; 18
Li (ref_18) 2018; 32
Shi (ref_46) 2021; 8
Xu (ref_20) 2011; 32
Li (ref_17) 2020; 20
Adler (ref_44) 2009; 30
Cao (ref_24) 2019; 18
Liu (ref_26) 2018; 37
Ke (ref_14) 2022; 9
Lin (ref_32) 2020; 41
ref_8
Zou (ref_39) 2018; 6
Paldanius (ref_55) 2022; 69
Li (ref_23) 2019; 7
Tang (ref_47) 2008; 55
References_xml – volume: 2
  start-page: 323
  year: 2009
  ident: ref_36
  article-title: The split Bregman method for L1-regularized problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080725891
– volume: 8
  start-page: 014501
  year: 2021
  ident: ref_46
  article-title: Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.8.1.014501
– volume: 9
  start-page: 10
  year: 2022
  ident: ref_14
  article-title: Advances in electrical impedance tomography-based brain imaging
  publication-title: Mil. Med. Res.
– volume: 64
  start-page: 89
  year: 2015
  ident: ref_27
  article-title: Image reconstruction for electrical capacitance tomography based on sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2329738
– volume: 38
  start-page: 1262
  year: 2017
  ident: ref_10
  article-title: Phantom experiments using soft-prior regularization EIT for breast cancer imaging
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa691b
– volume: 30
  start-page: S201
  year: 2009
  ident: ref_48
  article-title: A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/6/S14
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Combining multiple boundary shapes in deformable EIT a potential use in breast imaging
  publication-title: IEEE Sens. Lett.
– volume: 261
  start-page: 2061
  year: 2014
  ident: ref_1
  article-title: Progressing haemorrhagic stroke: Categories, causes, mechanisms and managements
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7291-1
– volume: 41
  start-page: 015004
  year: 2020
  ident: ref_12
  article-title: Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab69ba
– volume: 37
  start-page: 765
  year: 2016
  ident: ref_13
  article-title: In Vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: Towards 3D stroke imaging using electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/6/765
– volume: 61
  start-page: 254
  year: 2014
  ident: ref_52
  article-title: A new head phantom with realistic shape and spatially varying skull resistivity distribution
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2288133
– volume: 42
  start-page: 064003
  year: 2021
  ident: ref_6
  article-title: Identification and analysis of stable breathing periods in electrical impedance tomography recordings
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac08e5
– volume: 37
  start-page: 2090
  year: 2018
  ident: ref_26
  article-title: Image reconstruction in electrical impedance tomography based on structure-aware sparse bayesian learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2816739
– volume: 41
  start-page: 074003
  year: 2020
  ident: ref_32
  article-title: Neural network-based supervised descent method for 2D electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab9871
– volume: 9
  start-page: 141999
  year: 2021
  ident: ref_53
  article-title: Target adaptive differential iterative reconstruction (TADI): A robust algorithm for real-time electrical impedance tomography
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3119565
– volume: 39
  start-page: 2954
  year: 2020
  ident: ref_30
  article-title: Shape reconstruction using Boolean operations in electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2983055
– volume: 23
  start-page: 101909
  year: 2019
  ident: ref_16
  article-title: Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101909
– volume: 68
  start-page: 826
  year: 2021
  ident: ref_34
  article-title: Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3006175
– volume: 37
  start-page: 1970
  year: 2018
  ident: ref_54
  article-title: A fidelity-embedded regularization method for robust electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2762741
– volume: 40
  start-page: 481
  year: 2021
  ident: ref_31
  article-title: Shape-driven EIT reconstruction using Fourier representations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3030024
– volume: 55
  start-page: 2286
  year: 2008
  ident: ref_47
  article-title: Correlation between structure and resistivity variations of the live human skull
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.923919
– volume: 18
  start-page: 84
  year: 2019
  ident: ref_24
  article-title: A novel time-difference electrical impedance tomography algorithm using multi-frequency information
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/s12938-019-0703-9
– volume: 2018
  start-page: 1321862
  year: 2018
  ident: ref_11
  article-title: EIT imaging of intracranial hemorrhage in rabbit models is influenced by the intactness of cranium
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/1321862
– volume: 57
  start-page: 1917
  year: 2019
  ident: ref_22
  article-title: An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02003-z
– volume: 92
  start-page: 2952
  year: 2012
  ident: ref_40
  article-title: Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.05.027
– volume: 33
  start-page: 340
  year: 2014
  ident: ref_45
  article-title: Multifrequency electrical impedance tomography using spectral constraints
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2284966
– ident: ref_21
  doi: 10.1371/journal.pone.0170563
– volume: 7
  start-page: 156054
  year: 2019
  ident: ref_25
  article-title: Towards a combination of low rank and sparsity in EIT imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947439
– volume: 7
  start-page: 140734
  year: 2019
  ident: ref_23
  article-title: Optimized method for electrical impedance tomography to image large area conductive perturbation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944209
– volume: 39
  start-page: 1917
  year: 2020
  ident: ref_29
  article-title: B-spline level set method for shape reconstruction in electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2961938
– volume: 69
  start-page: 1491
  year: 2022
  ident: ref_55
  article-title: Sensitivity analysis highlights the importance of accurate head models for electrical impedance tomography monitoring of intracerebral hemorrhagic stroke
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3120929
– volume: 42
  start-page: 104001
  year: 2021
  ident: ref_7
  article-title: Ventilation improvement after pneumonia treatment evaluated with electrical impedance tomography: An observational study
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abffbf
– volume: 18
  start-page: 5974
  year: 2018
  ident: ref_51
  article-title: High-precision electrical impedance tomography data acquisition system for brain imaging
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2836336
– ident: ref_19
  doi: 10.1145/3364836.3364899
– volume: 80
  start-page: 20707
  year: 2021
  ident: ref_43
  article-title: AFISTA: Accelerated FISTA for sparse signal recovery and compressive sensing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10701-w
– volume: 64
  start-page: 2494
  year: 2017
  ident: ref_41
  article-title: Electrical impedance tomography: Tissue properties to image measures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2728323
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_35
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref_50
  doi: 10.1109/ICBBE.2008.704
– volume: 42
  start-page: 084001
  year: 2021
  ident: ref_5
  article-title: A model-based source separation algorithm for lung perfusion imaging using electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac0e84
– volume: 42
  start-page: 065004
  year: 2021
  ident: ref_37
  article-title: Adaptive threshold split Bregman algorithm based on magnetic induction tomography for brain injury monitoring imaging
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac05d4
– volume: 30
  start-page: S35
  year: 2009
  ident: ref_44
  article-title: GREIT: A unified approach to 2D linear EIT reconstruction of lung images
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/6/S03
– ident: ref_33
– volume: 42
  start-page: 014002
  year: 2021
  ident: ref_4
  article-title: Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: A randomized trial in moderate to severe ARDS
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abd679
– ident: ref_8
  doi: 10.1186/s12890-021-01411-y
– volume: 6
  start-page: 21560
  year: 2018
  ident: ref_39
  article-title: Split Bregman algorithm for structured sparse reconstruction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825323
– volume: 27
  start-page: 1071
  year: 2006
  ident: ref_49
  article-title: Pseudo-polar drive patterns for brain electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/11/002
– volume: 42
  start-page: 094001
  year: 2021
  ident: ref_3
  article-title: Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac1c63
– ident: ref_15
  doi: 10.1371/journal.pone.0113202
– volume: 41
  start-page: 075010
  year: 2020
  ident: ref_2
  article-title: Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab9e54
– volume: 32
  start-page: 2469
  year: 2018
  ident: ref_18
  article-title: Noninvasive cerebral imaging and monitoring using electrical impedance tomography during total aortic arch replacement
  publication-title: J. Cardiothorac. Vasc. Anesth.
  doi: 10.1053/j.jvca.2018.05.002
– volume: 37
  start-page: 451
  year: 2018
  ident: ref_28
  article-title: A parametric level set method for electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2756078
– volume: 20
  start-page: 4832
  year: 2020
  ident: ref_17
  article-title: Automatic evaluation of mannitol dehydration treatments on controlling intracranial pressure using electrical impedance tomography
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2965176
– volume: 2
  start-page: 183
  year: 2009
  ident: ref_42
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 32
  start-page: 585
  year: 2011
  ident: ref_20
  article-title: An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/5/007
– volume: 41
  start-page: 2389
  year: 2019
  ident: ref_38
  article-title: Split Bregman iteration based reconstruction algorithm for electrical capacitance tomography
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331218799841
SSID ssj0023338
Score 2.4308488
Snippet Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9934
SubjectTerms Algorithms
Brain
Brain Injuries - diagnostic imaging
brain injury monitoring imaging
Comparative analysis
Electric Impedance
electrical impedance tomography
fast iterative shrinkage-thresholding algorithm
Humans
Image Processing, Computer-Assisted - methods
Injuries
Inverse problems
Ischemia
least absolute shrinkage and selection operator model
Methods
Numerical analysis
Patient monitoring equipment
Phantoms, Imaging
reconstruction algorithm
Simulation methods
Tomography
Tomography - methods
Tomography, X-Ray Computed
Traumatic brain injury
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQigMcEG8CCzIICS7RxnYS28cWbUUvKySKtLfIdmxadpuumiw_g9_MjJNGjUDiwtWeRLHn7Yy_IeS9L60Hk2dSp0Od5qXlqWHWQpaShTLXlluvYrMJeXGhLi_1l6NWX1gT1sMD9xt3VuS1BTcSWGF1bqzSloWiCLy2WP8o49W9TOpDMjWkWgIyrx5HSEBSf9aCF4TQXuQT7xNB-v80xUe-aFoneeR4Fg_JgyFipLP-Sx-RO755TO4f4Qg-Ib8Wpu3oMgIkg_WiX9cwfgWWIl0Bq9rhDxOdXX_f7Tfdekvx9JUiMNWm6aG-KcSudI7tIuiy-QH7THtlx_fT5Ta2MqJz8Hg1BeLz2DsH2QtzN75GyaGr3XaAv35Kvi3OV58-p0OjhdQVouxSpkALBStDyLi1PGgTTObyzNjgWChNLQTXeSGDDcrxWiqbAXsNqwtvQ2aNeEZOml3jXxBaSAcBpeJeBwW5kLUIZ--lMSqEQmqWkI8HBlRuQCHHZhjXFWQjyKtq5FVC3o2kNz30xt-I5sjFkQDRsuMAyFA1yFD1LxlKyAeUgQp1Gj7GmeFqAiwJ0bGqmUQUOgiMgfJ0Qgm66KbTBymqBlvQVgiwLyGOYjwhb8dpfBLr2xq_u400imHbE5GQ573QjUsSiI_EtUyInIjjZM3TmWazjkjheK4npXr5PzbpFbnH8epHLOU5JSfd_ta_Jnfdz27T7t9E9fsNmpQ4oQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/36560297
https://www.proquest.com/docview/2756781212
https://www.proquest.com/docview/2758104273
https://pubmed.ncbi.nlm.nih.gov/PMC9783778
https://doaj.org/article/54db242f15b94ab89b1f55f2db822479
Volume 22
WOSCitedRecordID wos000903121900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceC8ElsogJLhEm7ftE2pRK3rYqoIilVNkO_G2sE1K0-XIT-A3M-O43UYgLlxysCeRLX-el51vCHldZqoElSd9LUzhJ5mKfBkqBVFKYLJEqEiV3BabYJMJn8_F1CXcGnetcqcTraIuao058jOkKWdgjcLo3fq7j1Wj8HTVldC4SY6xbDbinM2vA64Y4q-WTSiG0P6sAVsIDn6cdGyQper_UyEfWKTubckD8zO6978Dv0_uOseT9lukPCA3yuohuXNAR_iI_BrJZkvHlmcZlCD9tID2b6Bw_BmseOMOqmj_8gK-v12sKCZxKfJbLauWMZyCC0wHWHWCjquvsFy01Rn4fTpe2YpIdACGs6AgPLQleBAl0LcuCwQgndUrx6L9mHweDWfvP_iuXoOv0zjb-iGHzRyHmTFBpFRkhDQy0EkgldGhyWQRx5FIUmaU4ToqGFcBoESGRVoqEygZn5Cjqq7Kp4SmTINfyqNSGA4hlVLIil8yKbkxKROhR97uVjDXjswca2pc5hDU4GLn-8X2yKu96Lpl8Pib0ABhsBdA0m3bUG8ucreH8zQpFHg0JkyVSKTiQoUmTU1UKLyKy4RH3iCIclQNMBgt3R8OMCUk2cr7DMnswL8GydOOJGxp3e3eQSl3KqXJr3HkkZf7bnwTr8lVZX1lZXiI1VNijzxpUbufUow0S5FgHmEdPHfm3O2plgtLOI7pQcb4s38P6zm5HeG_Ifauzyk52m6uyhfklv6xXTabnt2Z9sl75HgwnEw_9mwCBJ7nP4fQNh2fT7_8BsloTTM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWBQk48P0RWMAg0HKJNrGT2D4g1MJWW-1SIVGk3oKd2NvCNi1NF8Sf4KfwG5lJ0m4jELc9cI2nUZy-eTPj2G8IeW4TY4HytJ8pl_tRYpivQ2OgSglcEinDjJVVswkxGMjRSL3fIr9WZ2FwW-WKEyuizmcZrpHvoUy5gGgUstfzrz52jcKvq6sWGjUsDu2P71Cyla_6b-H_fcFYb3_45sBvugr4WcyTpR9KgBwPE-cCZgxzSjsdZFGgjctCl-icc6aiWDjjZMZyIU0Ac9FhHlvjAqM53PcCuQg8LrDYE6OzAo9DvVerF3Gugr0SYi8UFDxqxbyqNcCfAWAjArZ3Z26Eu971_-1F3SDXmsSadmpPuEm2bHGLXN2QW7xNfvZ0uaT9SkcaSJ5-GMP1L0Co_hAQXTYf4mjn5BjmsxxPKS5SU9TvmhS1IjqFFJ92sasG7RefAY605kS8P-1Pq45PtAuJQU7BeL9qMYReAGNzm6OD0eFs2qiE3yEfz-WF3CXbxayw9wmNRQZ5t2RWOQklozGo-m-F1tK5WKjQIy9XiEmzRqwde4acpFC0IbjSNbg88mxtOq8VSv5m1EXYrQ1QVLy6MFscpw1HpXGUG8jYXBgbFWkjlQldHDuWG9xqLJRHdhG0KVIfPEymmxMcMCUUEUs7AsX6oH4Ay52WJVBW1h5eQTdtKLNMz3DrkafrYfwlbgMs7Oy0spEhdofhHrlXe8l6ShxlpMApPSJa_tOac3ukmIwrQXVc_hRCPvj3Yz0hlw-G747So_7g8CG5wvAcTLWvaYdsLxen9hG5lH1bTsrF44oVKPl03t71G87YppA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLkJw4P0ILGAQCC5RE-fh-IBQy25FtFBVokjLKdiJvS1sk9J0QfwJfhC_jpkkDY1A3PbANZ5GmfSblzP-hpAnOlQaXJ60U2Ey2w8Vs6WrFFQpjgl9oZjSUTVsgo_H0dGRmOyQn5uzMNhWufGJlaPOihT3yPtIU84hGrmsb5q2iMn-6OXyi40TpPBL62acRg2RQ_39G5Rv5Yt4H_7rp4yNDqavXtvNhAE7DbxwbbsRwM9zQ2McphQzQhrppL4jlUldE8rM85jwA26UiVKW8Ug5oJd0s0Ar4yjpwX3PkV1IyX3WI7uT-O3kQ1vueVD91VxGniecfgmRGMoLz-9EwGpQwJ_hYCsedns1t4Lf6Mr__NqukstNyk0HtY1cIzs6v04ubREx3iA_RrJc07himAb3T9_N4PpncLX2FLBeNp_o6ODkGPRZzxYUt68pMnvN85ornULyT4c4b4PG-ScAKq29Jd6fxotqFhQdQsqQURA-qIYPoX3A2lJnaHp0Wiwa_vCb5P2ZvJBbpJcXub5DaMBTyMgjpoWJoJhUCucBaC5lZEzAhWuR5xv0JGlD447TRE4SKOcQaEkLNIs8bkWXNXfJ34SGCMFWAOnGqwvF6jhpvFcS-JmCXM64gRK-VJFQrgkCwzKFTchcWOQZAjhBpwgPk8rmbAeohPRiyYAjjR9UFiC515EEZ5Z2lzcwThpnWia_MWyRR-0y_hIbBHNdnFYykYtzYzyL3K4tplXJQ4IpJrhFeMeWOjp3V_L5rKJax41RzqO7_36sh-QCGFXyJh4f3iMXGR6QqRqe9khvvTrV98n59Ot6Xq4eNC6Cko9nbV6_AEDbsN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Iterative+Shrinkage-Thresholding+Algorithm+with+Continuation+for+Brain+Injury+Monitoring+Imaging+Based+on+Electrical+Impedance+Tomography&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xuechao&rft.au=Zhang%2C+Tao&rft.au=Ye%2C+Jian%E2%80%99an&rft.au=Tian%2C+Xiang&rft.date=2022-12-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft_id=info:doi/10.3390%2Fs22249934&rft_id=info%3Apmid%2F36560297&rft.externalDocID=PMC9783778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon