Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end us...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 19; číslo 9; s. 1977
Hlavní autoři: Thamilarasu, Geethapriya, Chawla, Shiven
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 27.04.2019
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.
AbstractList Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.
Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.
Author Chawla, Shiven
Thamilarasu, Geethapriya
AuthorAffiliation School of STEM, University of Washington Bothell, Bothell, WA 98011, USA; chawls@uw.edu
AuthorAffiliation_xml – name: School of STEM, University of Washington Bothell, Bothell, WA 98011, USA; chawls@uw.edu
Author_xml – sequence: 1
  givenname: Geethapriya
  surname: Thamilarasu
  fullname: Thamilarasu, Geethapriya
– sequence: 2
  givenname: Shiven
  orcidid: 0000-0002-0583-6494
  surname: Chawla
  fullname: Chawla, Shiven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31035611$$D View this record in MEDLINE/PubMed
BookMark eNplkslu2zAQhokiQbbm0BcoBPTSHtRwF3kpUCRdjBroxT0TFDWyacikS0op-val6iTIcuKA88-Hf5ZzdBRiAITeEPyRMY2vMtFYE900r9AZ4ZTXilJ89Cg-Rec5bzGmjDF1gk4ZwUxIQs7Qj1X8Y1OXqxuAfb0Em4IP6_om-VsI1SKMaco-hpIewY1z1MdUjRuYc5ACjFXsq9WmFOXX6Li3Q4bLu_cC_fr6ZXX9vV7-_La4_rysnWBirLlgLcW9cBykdMQ53QjugLJW9qRrtdCdUm2HaQe9pdQprLgTnHVtsY9bzS7Q4sDtot2affI7m_6aaL35_xHT2tg0ejeAwQqLMhvstO45BWmbVuHCt1Ix3TNbWJ8OrP3U7qBzUDq2wxPo00zwG7OOt0YKVnzPZt7fAVL8PUEezc5nB8NgA8QpG0pJw6VWqinSd8-k2zilUEZlKMNEEi4bUVRvHzt6sHK_syK4Oghcijkn6I3zo513Uwz6wRBs5qswD1dRKj48q7iHvtT-A91atTo
CitedBy_id crossref_primary_10_3390_jsan11030032
crossref_primary_10_1007_s10922_021_09589_6
crossref_primary_10_1007_s10669_022_09859_x
crossref_primary_10_3390_sym14091916
crossref_primary_10_26599_TST_2023_9010033
crossref_primary_10_1016_j_jisa_2019_102419
crossref_primary_10_1109_ACCESS_2021_3094024
crossref_primary_10_3390_s21196346
crossref_primary_10_3390_s22218280
crossref_primary_10_1109_TCE_2024_3350231
crossref_primary_10_32604_cmc_2023_042726
crossref_primary_10_1016_j_jpdc_2023_05_001
crossref_primary_10_3390_app9132763
crossref_primary_10_1109_ACCESS_2021_3056149
crossref_primary_10_3390_s22207896
crossref_primary_10_1016_j_adhoc_2023_103120
crossref_primary_10_1093_comjnl_bxab136
crossref_primary_10_1007_s11227_022_04753_4
crossref_primary_10_3390_electronics10111241
crossref_primary_10_1155_2022_2693948
crossref_primary_10_3390_s22155621
crossref_primary_10_3390_electronics9030530
crossref_primary_10_1007_s11235_022_00927_w
crossref_primary_10_3390_s21041113
crossref_primary_10_1109_ACCESS_2021_3074887
crossref_primary_10_1109_JIOT_2021_3051414
crossref_primary_10_3390_en14196384
crossref_primary_10_32604_cmc_2021_016938
crossref_primary_10_3390_info12040154
crossref_primary_10_1007_s10922_021_09621_9
crossref_primary_10_1186_s13638_024_02348_6
crossref_primary_10_1155_2023_7690322
crossref_primary_10_3390_jsan12020021
crossref_primary_10_1002_cpe_6152
crossref_primary_10_1080_19393555_2023_2218852
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_1007_s41315_022_00234_2
crossref_primary_10_1109_ACCESS_2023_3325929
crossref_primary_10_1016_j_measen_2022_100613
crossref_primary_10_3390_app11073022
crossref_primary_10_1109_TITS_2021_3110725
crossref_primary_10_1007_s11227_020_03513_6
crossref_primary_10_1080_19393555_2025_2496327
crossref_primary_10_1007_s42979_024_03364_5
crossref_primary_10_1109_TITS_2022_3188671
crossref_primary_10_3389_fcomp_2023_997159
crossref_primary_10_1002_dac_5500
crossref_primary_10_1007_s10207_024_00935_8
crossref_primary_10_1016_j_iswa_2022_200152
crossref_primary_10_1111_exsy_13726
crossref_primary_10_1007_s10462_023_10437_z
crossref_primary_10_1016_j_compeleceng_2024_109725
crossref_primary_10_1016_j_comnet_2022_108826
crossref_primary_10_1109_ACCESS_2021_3049249
crossref_primary_10_1109_ACCESS_2023_3349287
crossref_primary_10_1007_s12065_024_00949_0
crossref_primary_10_1109_ACCESS_2021_3097247
crossref_primary_10_1007_s10586_024_04495_3
crossref_primary_10_1016_j_iot_2024_101377
crossref_primary_10_3390_s20020461
crossref_primary_10_35940_ijrte_A8226_14010525
crossref_primary_10_1049_ntw2_12128
crossref_primary_10_1016_j_comnet_2020_107784
crossref_primary_10_3390_s22093400
crossref_primary_10_1016_j_comcom_2022_07_007
crossref_primary_10_1016_j_procs_2024_11_089
crossref_primary_10_1016_j_compeleceng_2023_108626
crossref_primary_10_3390_app11188383
crossref_primary_10_1002_cpe_7380
crossref_primary_10_1016_j_adhoc_2023_103331
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_3390_s22218085
crossref_primary_10_31185_wjcms_363
crossref_primary_10_3390_w16142038
crossref_primary_10_1109_ACCESS_2022_3151248
crossref_primary_10_3390_pr13030753
crossref_primary_10_1109_JIOT_2021_3106898
crossref_primary_10_3390_electronics12234806
crossref_primary_10_3390_s21092987
crossref_primary_10_1109_ACCESS_2022_3225074
crossref_primary_10_1155_2022_9304689
crossref_primary_10_1109_ACCESS_2022_3220622
crossref_primary_10_1109_ACCESS_2023_3241588
crossref_primary_10_1016_j_eswa_2023_121751
crossref_primary_10_3390_s25113341
crossref_primary_10_1109_ACCESS_2020_3029191
crossref_primary_10_1186_s40537_023_00805_5
crossref_primary_10_1016_j_simpat_2019_102041
crossref_primary_10_1109_ACCESS_2020_3037359
crossref_primary_10_1109_ACCESS_2025_3550392
crossref_primary_10_3390_s20205800
crossref_primary_10_1109_JIOT_2020_3031162
crossref_primary_10_1186_s13677_023_00527_2
crossref_primary_10_1186_s13677_022_00338_x
crossref_primary_10_1007_s11042_024_19919_w
crossref_primary_10_1155_2020_6689134
crossref_primary_10_1109_ACCESS_2024_3375395
crossref_primary_10_1155_2022_8030510
crossref_primary_10_32604_cmc_2023_041667
crossref_primary_10_3390_s21196432
crossref_primary_10_3390_s21041034
crossref_primary_10_3390_s24020713
crossref_primary_10_1109_ACCESS_2022_3153716
crossref_primary_10_3390_electronics11091502
crossref_primary_10_3233_WEB_230109A
crossref_primary_10_1007_s10664_023_10302_1
crossref_primary_10_32604_cmc_2023_032220
crossref_primary_10_1007_s00521_022_07084_w
crossref_primary_10_3390_technologies12100203
crossref_primary_10_1016_j_measen_2024_101263
crossref_primary_10_3390_electronics11020198
crossref_primary_10_3390_math12121799
crossref_primary_10_3390_s22114167
crossref_primary_10_7717_peerj_cs_721
crossref_primary_10_1016_j_iot_2023_100750
crossref_primary_10_1145_3585520
crossref_primary_10_1016_j_jnca_2021_103111
crossref_primary_10_32604_cmc_2023_032591
crossref_primary_10_1007_s10586_022_03607_1
crossref_primary_10_1109_JIOT_2022_3167005
crossref_primary_10_1109_ACCESS_2020_3012411
crossref_primary_10_1007_s10586_022_03645_9
crossref_primary_10_3390_s23125568
crossref_primary_10_3390_info11050279
crossref_primary_10_3390_ijerph17020408
crossref_primary_10_1109_TCCN_2024_3355433
crossref_primary_10_1016_j_cose_2022_103014
crossref_primary_10_1016_j_cose_2023_103315
crossref_primary_10_1109_ACCESS_2024_3393548
crossref_primary_10_3390_app10030794
crossref_primary_10_3390_smartcities8010013
crossref_primary_10_1016_j_engappai_2023_107132
crossref_primary_10_1002_ett_4169
Cites_doi 10.1109/ICCCN.2016.7568495
10.1007/s11277-011-0385-5
10.1109/CIS.2013.145
10.1016/j.adhoc.2013.04.014
10.1145/2508859.2512494
10.1109/CNS.2014.6997468
10.1002/dac.2356
10.1109/WiMOB.2013.6673419
10.1007/978-81-322-2752-6_49
10.3390/info7020025
10.1016/j.comcom.2016.12.001
10.1145/3212687.3212872
10.1016/j.future.2013.01.010
10.13052/jcsm2245-1439.414
10.1016/j.adhoc.2012.02.016
10.1080/17434440.2018.1483235
10.1016/j.dcan.2017.04.003
10.1109/WiSPNET.2016.7566473
10.1109/ICNC.2011.6022060
10.1109/JIOT.2018.2847733
10.1109/FIT.2012.53
10.1109/ICCAD.2014.7001385
10.1186/s13638-018-1128-z
10.1016/j.comnet.2012.12.018
10.1109/ISI.2017.8004904
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19091977
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_08059090c99f42e6a7b809d8a6839f3a
PMC6539759
31035611
10_3390_s19091977
Genre Journal Article
GeographicLocations United States--US
China
India
GeographicLocations_xml – name: China
– name: United States--US
– name: India
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c535t-453b20f5c4e66c1cc9754ce23b6f1db959d88bd02defa22c8084c543db2330b93
IEDL.DBID DOA
ISICitedReferencesCount 164
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469766800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:37 EDT 2025
Tue Nov 04 01:52:42 EST 2025
Sun Nov 09 11:56:55 EST 2025
Tue Oct 07 06:48:22 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
Sat Nov 29 07:18:02 EST 2025
Tue Nov 18 21:42:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Intrusion-Detection System (IDS)
deep learning
Internet of Things (IoT)
security
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-453b20f5c4e66c1cc9754ce23b6f1db959d88bd02defa22c8084c543db2330b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0583-6494
OpenAccessLink https://doaj.org/article/08059090c99f42e6a7b809d8a6839f3a
PMID 31035611
PQID 2301614675
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_08059090c99f42e6a7b809d8a6839f3a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539759
proquest_miscellaneous_2217469887
proquest_journals_2301614675
pubmed_primary_31035611
crossref_citationtrail_10_3390_s19091977
crossref_primary_10_3390_s19091977
PublicationCentury 2000
PublicationDate 20190427
PublicationDateYYYYMMDD 2019-04-27
PublicationDate_xml – month: 4
  year: 2019
  text: 20190427
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
ref_12
ref_34
ref_33
ref_10
ref_32
Sfar (ref_19) 2018; 4
ref_30
ref_17
ref_16
ref_15
Le (ref_14) 2012; 25
Liu (ref_31) 2018; 2018
Gubbi (ref_1) 2013; 29
ref_25
ref_24
ref_23
ref_22
ref_21
Fu (ref_27) 2017; 2017
ref_20
Raza (ref_28) 2013; 11
ref_3
Miorandi (ref_2) 2012; 10
ref_29
Pycroft (ref_11) 2018; 15
Bostani (ref_26) 2017; 98
ref_9
Heer (ref_18) 2011; 61
ref_8
ref_5
Abomhara (ref_6) 2015; 4
ref_7
Roman (ref_4) 2013; 57
References_xml – ident: ref_7
– ident: ref_30
  doi: 10.1109/ICCCN.2016.7568495
– ident: ref_9
– volume: 61
  start-page: 527
  year: 2011
  ident: ref_18
  article-title: Security Challenges in the IP-based Internet of Things
  publication-title: Wirel. Person. Commun.
  doi: 10.1007/s11277-011-0385-5
– ident: ref_5
– ident: ref_32
– ident: ref_3
– ident: ref_21
  doi: 10.1109/CIS.2013.145
– ident: ref_34
– volume: 11
  start-page: 2661
  year: 2013
  ident: ref_28
  article-title: SVELTE: Real-time Intrusion Detection in the Internet of Things
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2013.04.014
– ident: ref_12
  doi: 10.1145/2508859.2512494
– ident: ref_13
  doi: 10.1109/CNS.2014.6997468
– volume: 25
  start-page: 1189
  year: 2012
  ident: ref_14
  article-title: 6LoWPAN: A study on QoS security threats and countermeasures using intrusion detection system approach
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.2356
– ident: ref_22
  doi: 10.1109/WiMOB.2013.6673419
– ident: ref_23
  doi: 10.1007/978-81-322-2752-6_49
– ident: ref_24
  doi: 10.3390/info7020025
– volume: 98
  start-page: 52
  year: 2017
  ident: ref_26
  article-title: Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.12.001
– ident: ref_15
  doi: 10.1145/3212687.3212872
– volume: 29
  start-page: 1645
  year: 2013
  ident: ref_1
  article-title: Internet of Things (IoT): A vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
– volume: 4
  start-page: 65
  year: 2015
  ident: ref_6
  article-title: Cyber Security and the Internet of Things: Vulnerabilities, Threats, Intruders and Attacks
  publication-title: J. Cyber Secur. Mobil.
  doi: 10.13052/jcsm2245-1439.414
– volume: 10
  start-page: 1497
  year: 2012
  ident: ref_2
  article-title: Internet of Things: Vision, applications and research challenges
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2012.02.016
– ident: ref_33
– volume: 15
  start-page: 403
  year: 2018
  ident: ref_11
  article-title: Security of implantable medical devices with wireless connections: The dangers of cyber-attacks
  publication-title: Expert Rev. Med. Devices
  doi: 10.1080/17434440.2018.1483235
– volume: 4
  start-page: 118
  year: 2018
  ident: ref_19
  article-title: A roadmap for security challenges in the Internet of Things
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2017.04.003
– ident: ref_10
– ident: ref_25
  doi: 10.1109/WiSPNET.2016.7566473
– volume: 2017
  start-page: 1750637
  year: 2017
  ident: ref_27
  article-title: An Automata Based Intrusion Detection Method for Internet of Things
  publication-title: Mobile Inf. Syst.
– ident: ref_29
  doi: 10.1109/ICNC.2011.6022060
– ident: ref_20
  doi: 10.1109/JIOT.2018.2847733
– ident: ref_16
  doi: 10.1109/FIT.2012.53
– ident: ref_17
  doi: 10.1109/ICCAD.2014.7001385
– volume: 2018
  start-page: 113
  year: 2018
  ident: ref_31
  article-title: An intrusion detection method for internet of things based on suppressed fuzzy clustering
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-018-1128-z
– volume: 57
  start-page: 2266
  year: 2013
  ident: ref_4
  article-title: On the features and challenges of security and privacy in distributed Internet of Things
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2012.12.018
– ident: ref_8
  doi: 10.1109/ISI.2017.8004904
SSID ssj0023338
Score 2.6498609
Snippet Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1977
SubjectTerms Algorithms
Deep learning
International conferences
Internet of Things
Internet of Things (IoT)
Intrusion detection systems
Intrusion-Detection System (IDS)
machine learning
Malware
Privacy
security
Security systems
Wireless networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM98KYECgqIAxerXj_jE6K0FQhpVaEi9RbFj7SVULJsFn4_Y8cbuqjiwjWew8QzY39jj78BeOu5py2jmsiGGSKc9cQqFYhqNAvWVZY2LjWb0ItFdX5uTvOB25DLKjdrYlqofe_iGfkBQmUEJxjW8v3yB4ldo-Ltam6hcRt2IlOZmMHO4fHi9OuUcnHMwEY-IY7J_cGA25-ZI-TZ2oUSWf9NCPPvQslrO8_J_f_V-QHcy5iz_DA6yUO4FbpHsHuNifAxfDlL5bNDeRTCkmTS1QtytIqLYfm5i08z0II4vE61W12JYLdE8FiOR4phXfZtOTYBfQLfTo7PPn4iuc8CcZLLNRGSW0Zb6URQys2dM1oKFxi3qp17a6TxVWU9ZT60DWOuopVwUnBvcX6pNfwpzLq-C8-gtK1Kr12tVkZobiyToRFWBq2cEK0o4N1m3muXSchjL4zvNSYj0UT1ZKIC3kyiy5F54yahw2i8SSCSZacP_eqizrFXIyiWKE-dMa1gAd3QVhT_qVGIDlveFLC_MV-dI3io_9iugNfTMMZevFBputD_RJmYzymD63QBe6OnTJrE_m2ITecF6C0f2lJ1e6S7ukz83pEtWEvz_N9qvYC7CN7SzRbT-zBDRwgv4Y77tb4aVq9yIPwGn4sUHA
  priority: 102
  providerName: ProQuest
Title Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
URI https://www.ncbi.nlm.nih.gov/pubmed/31035611
https://www.proquest.com/docview/2301614675
https://www.proquest.com/docview/2217469887
https://pubmed.ncbi.nlm.nih.gov/PMC6539759
https://doaj.org/article/08059090c99f42e6a7b809d8a6839f3a
Volume 19
WOSCitedRecordID wos000469766800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4UAPFW9Cy8ogDlysev2Mj31sRYW6WqEiLacoduxSCWWr7pYjv52xk412USUuXHKwR5EzY3u-icffAHxsRMMiZ4aqmlsqvWuo0zpQXRsenC8dq30uNmGm03I-t7ONUl8pJ6yjB-4Ud4iIRllmmbc2Sh7wHa5ktilrja49igyNUGYdTPWhlsDIq-MREhjUHy7R7dkxQp0t75NJ-u9Dln8nSG54nLOnsNdDRXLUDfEZPAjtc9jdIBB8AV8uc9brkpyGcEN7rtQrenqb9jBy3qYbFah47F7llKuWIEYliPlI9ycwrMgikq5250v4dja5PPlM-_II1CuhVlQq4TiLysugtR97b42SPnDhdBw3zirUUukaxpsQa859yUrplRSNQ_UwZ8Ur2GkXbXgDxEWdL6k6o600wjquQi2dCkZ7KaMs4NNabZXvucNTCYufFcYQScPVoOECPgyiNx1hxn1Cx0n3g0DiuM4NaPmqt3z1L8sXcLC2XNUvvGWFERViWNz9VQHvh25cMukcpG7D4g5lUhimLW6vBbzuDD2MJJVdQ0g5LsBsTYGtoW73tNc_Mi13Ivk1yr79H9-2D08QmeVjK24OYAenS3gHj_2v1fXydgQPzdzkZzmCR8eT6ezrKM9_fF78nmDb7Pxi9v0PMYoKNw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwPsRKGAQSFysZv2MDwgBS9XVtqs9LFI5hdhx2kpVsmwWEH-K38g4yYYuqrj1wDWegx1_Hn9jj78BeJnzPC5YrKnMmKHC2ZxapTxVmWbeusTGmWuKTejpNDk6MrMt-LV-CxPSKtc-sXHUeeXCGfkuUmUkJ7is5dvFVxqqRoXb1XUJjRYWE__zB4Zs9ZvxCOf3FWN7H-cf9mlXVYA6yeWKCsktiwvphFfKDZ0zWgrnGbeqGObWSJMnic1jlvsiY8wlcSKcFDy3DGN_G8SX0OVvCwR7MoDt2fhw9rkP8ThGfK1-Eecm3q1xuzVDpFgbu15THOAiRvt3Yua5nW7v5v_2j27BjY5Tk3ftIrgNW768A9fPKS3ehcm8SQ-uycj7Be1EZY_paBmcPRmX4ekJIhSbV01uWkmQzBMkx6Q9MvUrUhWkLXJ6Dz5dymjuw6CsSv8QiC1U85rXamWE5sYy6TNhpdfKCVGICF6v5zl1nch6qPVxlmKwFSCR9pCI4EVvumiVRS4yeh_A0hsEMfDmQ7U8TjvfkiLpl2gfO2MKwTwuM5vEOKZMIfsteBbBzhouaeeh6vQPViJ43jejbwkXRlnpq29oE-JVZXAfiuBBi8y-J6E-HXLvYQR6A7MbXd1sKU9PGv3yoIaspXn07249g6v788OD9GA8nTyGa0hUm1s8pndggKDwT-CK-746rZdPu0VI4MtlY_o3Q_9xaQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tdhGCA-9HYAGDQOJiNfUzPiAElIqqUPWwSMspGzvOshJKSlNA_DV-HeO82KIVtz1wrefgNN_MfBOPvwF4mvM8LlisqcyYocLZnFqlPFWZZt66xMaZa4ZN6MUiOTw0yx341d-FCW2VfUxsAnVeufCNfIRUGckJurUcFV1bxHIyfbn6SsMEqXDS2o_TaCEy9z9_YPlWv5hN8F0_Y2z69uDNO9pNGKBOcrmhQnLL4kI64ZVyY-eMlsJ5xq0qxrk10uRJYvOY5b7IGHNJnAgnBc8t4zy2QYgJw_8eUnKBPra3nH1YfhrKPY7VX6tlxLmJRzWmXjNGurWVAZtBAWex27-bNE9lvenV__n_ugZXOq5NXrXOcR12fHkDLp9SYLwJ84OmbbgmE-9XtBObPaaTdUgCZFaGKymIXFzeND1rJUGST5A0k_ZTqt-QqiDt8NNb8PFcnuY27JZV6e8CsYVqbvlarYzQ3FgmfSas9Fo5IQoRwfP-naeuE18PM0C-pFiEBXikAzwieDKYrlrFkbOMXgfgDAZBJLz5oVofp13MSbEYkGgfO2MKwTy6n01ifKZMISsueBbBfg-dtItcdfoHNxE8HpYx5oSDpKz01Te0CXWsMpifIrjTonTYSZhbh5x8HIHewu_WVrdXypPPja55UEnW0tz797YewUUEcvp-tpjfh0vIX5vDPab3YRcx4R_ABfd9c1KvH3b-SODovCH9G1D0eik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Deep-Learning-Driven+Intrusion+Detection+for+the+Internet+of+Things&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Geethapriya+Thamilarasu&rft.au=Shiven+Chawla&rft.date=2019-04-27&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=9&rft.spage=1977&rft_id=info:doi/10.3390%2Fs19091977&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_08059090c99f42e6a7b809d8a6839f3a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon