A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing

Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 18; H. 7; S. 2183
Hauptverfasser: Alfian, Ganjar, Syafrudin, Muhammad, Ijaz, Muhammad Fazal, Syaekhoni, M. Alex, Fitriyani, Norma Latif, Rhee, Jongtae
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 06.07.2018
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
AbstractList Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
Author Ijaz, Muhammad Fazal
Syaekhoni, M. Alex
Syafrudin, Muhammad
Alfian, Ganjar
Rhee, Jongtae
Fitriyani, Norma Latif
AuthorAffiliation 1 U-SCM Research Center, Nano Information Technology Academy, Dongguk University, Seoul 100-715, Korea
2 Department of Industrial and Systems Engineering, Dongguk University, Seoul 100-715, Korea; udin@dongguk.edu (M.S.); fazal@dongguk.edu (M.F.I.); alexs@dongguk.edu (M.A.S.); norma@dongguk.edu (N.L.F.)
AuthorAffiliation_xml – name: 2 Department of Industrial and Systems Engineering, Dongguk University, Seoul 100-715, Korea; udin@dongguk.edu (M.S.); fazal@dongguk.edu (M.F.I.); alexs@dongguk.edu (M.A.S.); norma@dongguk.edu (N.L.F.)
– name: 1 U-SCM Research Center, Nano Information Technology Academy, Dongguk University, Seoul 100-715, Korea
Author_xml – sequence: 1
  givenname: Ganjar
  orcidid: 0000-0002-3273-1452
  surname: Alfian
  fullname: Alfian, Ganjar
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-5640-4413
  surname: Syafrudin
  fullname: Syafrudin, Muhammad
– sequence: 3
  givenname: Muhammad Fazal
  orcidid: 0000-0001-5206-272X
  surname: Ijaz
  fullname: Ijaz, Muhammad Fazal
– sequence: 4
  givenname: M. Alex
  orcidid: 0000-0001-9152-1108
  surname: Syaekhoni
  fullname: Syaekhoni, M. Alex
– sequence: 5
  givenname: Norma Latif
  orcidid: 0000-0002-1133-3965
  surname: Fitriyani
  fullname: Fitriyani, Norma Latif
– sequence: 6
  givenname: Jongtae
  surname: Rhee
  fullname: Rhee, Jongtae
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29986473$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAQgCNURB9w4A8gS1zgEOpXYueC1Be00iJWtD1bE2e89SqJi51FWg78drxsW7Xl5JH9zacZz-wXO2MYsSjeMvpJiIYeJqap4kyLF8Uek1yWmnO68yjeLfZTWlLKhRD6VbHLm0bXUom94s8RmWNMYYTe_8aOnCP0042FiORbGP0Uoh8X5HKdJhyIC5Gcemhx8pbMYfI4Tom0a3I9-Zy-IY9nZ-UxpGy6xDGFmAiMHfmRreWVH5CcwgRkHoPFlDL_unjpoE_45u48KK6_nF2dnJez718vTo5mpa1ENZUMrKhV45A5RR1aLhsnRQ6ogNZWUrcWm4Y5hK6yuq6ldBkG1ymFLbpOHBQXW28XYGluox8grk0Ab_5dhLgwEHNXPRqrWsYrQBSSSkDQUtGaCdkhb4VqXXZ93rpuV-2Anc2fEKF_In36Mvobswi_TE1rXVGdBR_uBDH8XGGazOCTxb6HEcMqGU5rpRvOOcvo-2foMqxiHlamGNWq4lRvhO8eV_RQyv2YM3C4BWwMKUV0xvopzy9sCvS9YdRsFsk8LFLO-Pgs4176P_sXlK_JyQ
CitedBy_id crossref_primary_10_3390_app10124381
crossref_primary_10_1016_j_compbiomed_2024_108382
crossref_primary_10_1109_ACCESS_2020_3012143
crossref_primary_10_1016_j_procir_2024_08_353
crossref_primary_10_1109_JSEN_2024_3452554
crossref_primary_10_3390_s21041467
crossref_primary_10_3390_computers11090136
crossref_primary_10_3390_s21082852
crossref_primary_10_1155_2021_5533161
crossref_primary_10_1007_s11042_022_12203_9
crossref_primary_10_3390_pr7050289
crossref_primary_10_1002_int_22564
crossref_primary_10_1109_JIOT_2025_3541129
crossref_primary_10_1155_2022_8100697
crossref_primary_10_2196_36010
crossref_primary_10_3390_electronics12030756
crossref_primary_10_1007_s42979_025_03802_y
crossref_primary_10_1007_s10278_022_00613_y
crossref_primary_10_1016_j_jnca_2021_103244
crossref_primary_10_3390_math10214027
crossref_primary_10_3390_math11102266
crossref_primary_10_1109_ACCESS_2024_3389986
crossref_primary_10_3390_app14188283
crossref_primary_10_1002_int_22557
crossref_primary_10_3390_s22239496
crossref_primary_10_3390_s24206531
crossref_primary_10_1371_journal_pone_0282824
crossref_primary_10_1002_adhm_202100734
crossref_primary_10_1177_20552076251330577
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_1007_s11227_021_03878_2
crossref_primary_10_2478_picbe_2021_0005
crossref_primary_10_1109_TCSS_2021_3122807
crossref_primary_10_1016_j_future_2020_07_047
crossref_primary_10_1155_2021_2485934
crossref_primary_10_3390_s19204539
crossref_primary_10_3390_brainsci10070427
crossref_primary_10_1016_j_nlp_2024_100057
crossref_primary_10_1109_ACCESS_2020_2995790
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_1109_ACCESS_2022_3203061
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_3390_s19173746
crossref_primary_10_3390_app10030921
crossref_primary_10_3390_app11052006
crossref_primary_10_1007_s11042_022_12766_7
crossref_primary_10_1109_TCSS_2024_3488694
crossref_primary_10_1016_j_dajour_2023_100298
crossref_primary_10_1109_ACCESS_2019_2927958
crossref_primary_10_3390_s24196218
crossref_primary_10_3390_app9061154
crossref_primary_10_1177_20552076221083119
crossref_primary_10_1111_exsy_12753
crossref_primary_10_1109_ACCESS_2021_3137364
crossref_primary_10_62777_aeit_v2i1_59
crossref_primary_10_1007_s11042_022_13427_5
crossref_primary_10_3390_s20247150
crossref_primary_10_1371_journal_pone_0284588
crossref_primary_10_1109_JFLEX_2025_3538808
crossref_primary_10_1016_j_cmpbup_2023_100094
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1016_j_iot_2023_100945
crossref_primary_10_1016_j_measurement_2020_107757
crossref_primary_10_3390_computation8020045
crossref_primary_10_1109_ACCESS_2019_2945129
crossref_primary_10_3390_s20071951
crossref_primary_10_1016_j_bios_2022_114825
crossref_primary_10_3390_s18092946
crossref_primary_10_3390_rs12050869
crossref_primary_10_32604_cmc_2023_034078
crossref_primary_10_1007_s11042_020_10242_8
crossref_primary_10_1007_s44163_023_00049_5
crossref_primary_10_3390_s21093261
crossref_primary_10_1109_ACCESS_2021_3058016
crossref_primary_10_33003_fjs_2025_0903_3206
crossref_primary_10_1002_int_22643
crossref_primary_10_3390_biomedicines10071469
crossref_primary_10_3390_s22041492
crossref_primary_10_3390_s24206601
crossref_primary_10_3390_s23239558
crossref_primary_10_3390_app13053326
crossref_primary_10_1007_s40042_025_01378_7
crossref_primary_10_1371_journal_pone_0272825
crossref_primary_10_1016_j_cmpb_2021_106541
crossref_primary_10_1108_IJPPM_11_2021_0664
crossref_primary_10_3390_s20174954
crossref_primary_10_1109_MCOM_001_1900349
crossref_primary_10_3390_diagnostics11040607
crossref_primary_10_1109_JIOT_2020_2974678
crossref_primary_10_3390_info11120565
crossref_primary_10_1016_j_eswa_2024_125058
crossref_primary_10_1016_j_measurement_2024_114123
crossref_primary_10_1016_j_semcancer_2023_01_005
crossref_primary_10_1155_2021_9930985
crossref_primary_10_1109_ACCESS_2022_3142100
crossref_primary_10_1109_ACCESS_2020_3046655
crossref_primary_10_1007_s00187_025_00387_8
crossref_primary_10_1371_journal_pone_0281323
crossref_primary_10_1016_j_accinf_2024_100680
crossref_primary_10_1016_j_ijmedinf_2021_104420
crossref_primary_10_1002_aisy_202000063
crossref_primary_10_1016_j_smhl_2019_100100
crossref_primary_10_26634_jfet_19_3_20549
crossref_primary_10_2217_pme_2019_0113
crossref_primary_10_1016_j_foodcont_2019_107016
crossref_primary_10_3390_s20010107
crossref_primary_10_1109_ACCESS_2022_3211264
crossref_primary_10_1109_ACCESS_2023_3236002
crossref_primary_10_1007_s11227_021_04029_3
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1016_j_icte_2021_07_001
crossref_primary_10_1186_s13643_022_02033_z
crossref_primary_10_3390_app10249112
crossref_primary_10_1002_ett_3635
crossref_primary_10_1080_10447318_2022_2089085
crossref_primary_10_1109_ACCESS_2020_3010511
crossref_primary_10_1287_ijds_2024_0029
crossref_primary_10_2196_40259
Cites_doi 10.1109/TBCAS.2016.2519523
10.1016/j.imu.2017.12.006
10.1016/j.nurpra.2016.12.025
10.3390/bios8010024
10.3390/sym9120293
10.3390/s121013753
10.1016/j.procs.2016.04.016
10.1016/j.kjms.2012.08.016
10.2337/diacare.27.5.1047
10.3390/su9112139
10.3390/s18030908
10.2337/dc08-s271
10.3390/s17081866
10.1021/cr068069y
10.1109/MWC.2010.5416354
10.1016/j.bbe.2018.02.005
10.1109/TBME.2006.889774
10.4239/wjd.v8.i6.235
10.1016/j.procs.2015.10.014
10.3390/s120911734
10.1016/j.jbi.2016.10.015
10.1016/j.procs.2016.09.037
10.1162/neco.1997.9.8.1735
10.3390/healthcare3020310
10.1111/j.1742-1241.2009.02272.x
10.1016/j.adhoc.2012.02.016
10.1080/17445760.2017.1307367
10.1109/HIC.2014.7038922
10.1016/j.chemosphere.2018.04.154
10.1109/ITNG.2010.104
10.1109/CLOUD.2012.18
10.2337/diacare.29.s1.06.s4
10.2337/diacare.27.8.2067
10.2337/dc18-Sint01
10.1016/j.jada.2008.01.016
10.3390/electronics6030065
10.3390/app8040511
10.3390/electronics3040609
10.1016/j.is.2017.09.002
10.1016/j.cmpb.2017.09.004
10.1089/dia.2006.8.318
10.1038/323533a0
10.1016/j.cmpb.2016.04.016
10.3390/s140100575
10.1177/1932296814567708
10.1016/j.procs.2016.09.058
10.2337/dc16-1728
10.3390/s100807404
10.3390/sym10040093
10.3390/s17061230
10.3390/s17102302
10.1016/j.ijpe.2015.02.014
10.1109/MNET.2014.6963809
10.3390/s100403934
10.1016/j.comcom.2016.03.004
10.3390/s18051442
10.1109/LCOMM.2012.073112.120877
10.3390/ijgi7040144
10.1177/193229681000400227
10.3390/s100504558
10.3390/s140509313
10.1111/j.1749-6632.1962.tb13623.x
10.1016/j.compbiomed.2016.12.009
10.1016/S0140-6736(14)60613-9
10.1016/j.future.2013.07.014
10.1016/j.procs.2016.09.452
10.1016/j.diabres.2005.05.013
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18072183
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c7b125aee3404aea84706134de2b37bf
PMC6068508
29986473
10_3390_s18072183
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c535t-1ac3679fe1f70fec249f43fec03abc548bce991fead5c86644f9feafd77ebefd3
IEDL.DBID DOA
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441334300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:28 EST 2025
Tue Nov 04 02:00:42 EST 2025
Thu Sep 04 14:54:57 EDT 2025
Sat Nov 29 15:07:07 EST 2025
Wed Feb 19 02:35:14 EST 2025
Sat Nov 29 07:13:56 EST 2025
Tue Nov 18 21:26:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords BLE
classification
diabetes
forecasting
real-time data processing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c535t-1ac3679fe1f70fec249f43fec03abc548bce991fead5c86644f9feafd77ebefd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5640-4413
0000-0001-5206-272X
0000-0002-1133-3965
0000-0002-3273-1452
0000-0001-9152-1108
OpenAccessLink https://doaj.org/article/c7b125aee3404aea84706134de2b37bf
PMID 29986473
PQID 2108752088
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c7b125aee3404aea84706134de2b37bf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6068508
proquest_miscellaneous_2067892221
proquest_journals_2108752088
pubmed_primary_29986473
crossref_citationtrail_10_3390_s18072183
crossref_primary_10_3390_s18072183
PublicationCentury 2000
PublicationDate 2018-07-06
PublicationDateYYYYMMDD 2018-07-06
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-06
  day: 06
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Miorandi (ref_47) 2012; 10
ref_50
Koutny (ref_48) 2016; 98
Meng (ref_34) 2013; 29
Gentili (ref_52) 2016; 89–90
Schulz (ref_26) 2016; 64
ref_14
Bode (ref_15) 2010; 64
ref_57
ref_54
ref_51
Omre (ref_55) 2010; 4
Hamdi (ref_40) 2018; 38
Borgen (ref_63) 2015; 3
Torres (ref_16) 2010; 10
ref_17
Ahmed (ref_39) 2016; 102
ref_59
Cheruku (ref_32) 2017; 81
Dobre (ref_64) 2014; 37
Ley (ref_11) 2014; 383
Arsand (ref_58) 2015; 9
Patel (ref_19) 2010; 17
Pereira (ref_27) 2018; 33
Sparacino (ref_37) 2007; 54
ref_25
Sparacino (ref_42) 2012; 12
ref_24
ref_68
ref_23
ref_67
Tun (ref_8) 2017; 8
ref_66
Nieminen (ref_18) 2014; 28
Wild (ref_7) 2004; 27
ref_20
Zhong (ref_65) 2015; 165
Buckingham (ref_44) 2006; 8
Gomez (ref_21) 2012; 12
Nkenyereye (ref_30) 2016; 98
ref_28
Luque (ref_60) 2014; 14
Arroyo (ref_53) 2018; 205
Rubino (ref_4) 2008; 31
Moungmai (ref_36) 2015; 69
ref_72
Rachim (ref_56) 2016; 10
ref_71
Mize (ref_62) 2014; 3
ref_70
ref_77
ref_76
ref_75
ref_73
Wu (ref_33) 2018; 10
ref_38
Fahim (ref_22) 2014; 14
Hochreiter (ref_78) 1997; 9
Marvicsin (ref_45) 2017; 13
Colberg (ref_79) 2016; 39
Clark (ref_12) 1962; 102
Hayes (ref_10) 2008; 108
Heller (ref_13) 2008; 108
ref_46
Fisteus (ref_69) 2017; 72
Rumelhart (ref_74) 1986; 323
Lee (ref_61) 2010; 10
Perveen (ref_35) 2016; 82
ref_1
Yoo (ref_41) 2010; 10
ref_3
ref_2
Akbari (ref_29) 2016; 132
ref_49
ref_9
Maniruzzaman (ref_31) 2017; 152
Klein (ref_80) 2004; 27
ref_5
ref_6
Cohen (ref_43) 2006; 71
References_xml – volume: 10
  start-page: 1112
  year: 2016
  ident: ref_56
  article-title: Wearable Noncontact Armband for Mobile ECG Monitoring System
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2016.2519523
– volume: 10
  start-page: 100
  year: 2018
  ident: ref_33
  article-title: Type 2 diabetes mellitus prediction model based on data mining
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2017.12.006
– volume: 13
  start-page: 205
  year: 2017
  ident: ref_45
  article-title: What is new in diabetes technology?
  publication-title: J. Nurse Pract.
  doi: 10.1016/j.nurpra.2016.12.025
– ident: ref_3
  doi: 10.3390/bios8010024
– ident: ref_23
  doi: 10.3390/sym9120293
– ident: ref_5
– ident: ref_68
– volume: 12
  start-page: 13753
  year: 2012
  ident: ref_42
  article-title: Italian contributions to the development of continuous glucose monitoring sensors for diabetes management
  publication-title: Sensors
  doi: 10.3390/s121013753
– volume: 82
  start-page: 115
  year: 2016
  ident: ref_35
  article-title: Performance analysis of data mining classification techniques to predict diabetes
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.04.016
– volume: 29
  start-page: 93
  year: 2013
  ident: ref_34
  article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
  publication-title: Kaohsiung J. Med. Sci.
  doi: 10.1016/j.kjms.2012.08.016
– volume: 27
  start-page: 1047
  year: 2004
  ident: ref_7
  article-title: Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.5.1047
– ident: ref_70
  doi: 10.3390/su9112139
– ident: ref_50
  doi: 10.3390/s18030908
– ident: ref_1
– ident: ref_71
– volume: 31
  start-page: S290
  year: 2008
  ident: ref_4
  article-title: Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis
  publication-title: Diabetes Care
  doi: 10.2337/dc08-s271
– ident: ref_14
  doi: 10.3390/s17081866
– volume: 108
  start-page: 2482
  year: 2008
  ident: ref_13
  article-title: Electrochemical glucose sensors and their applications in diabetes management
  publication-title: Chem. Rev.
  doi: 10.1021/cr068069y
– volume: 17
  start-page: 80
  year: 2010
  ident: ref_19
  article-title: Applications, challenges, and prospective in emerging body area networking technologies
  publication-title: IEEE Wirel Commun.
  doi: 10.1109/MWC.2010.5416354
– ident: ref_77
– volume: 38
  start-page: 362
  year: 2018
  ident: ref_40
  article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.02.005
– volume: 54
  start-page: 931
  year: 2007
  ident: ref_37
  article-title: Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889774
– volume: 8
  start-page: 235
  year: 2017
  ident: ref_8
  article-title: Diabetes mellitus and stroke: A clinical update
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v8.i6.235
– volume: 69
  start-page: 132
  year: 2015
  ident: ref_36
  article-title: Comparison of classifiers for the risk of diabetes prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.014
– volume: 12
  start-page: 11734
  year: 2012
  ident: ref_21
  article-title: Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology
  publication-title: Sensors
  doi: 10.3390/s120911734
– volume: 64
  start-page: 288
  year: 2016
  ident: ref_26
  article-title: Evaluation of relational and NoSQL database architectures to manage genomic annotations
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.10.015
– volume: 98
  start-page: 228
  year: 2016
  ident: ref_48
  article-title: On-line blood glucose level calculation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.037
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_78
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_66
– volume: 3
  start-page: 310
  year: 2015
  ident: ref_63
  article-title: Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway
  publication-title: Healthcare
  doi: 10.3390/healthcare3020310
– ident: ref_38
– volume: 64
  start-page: 11
  year: 2010
  ident: ref_15
  article-title: Continuous glucose monitoring
  publication-title: Int. J. Clin. Pract. Suppl.
  doi: 10.1111/j.1742-1241.2009.02272.x
– volume: 10
  start-page: 1497
  year: 2012
  ident: ref_47
  article-title: Internet of Things: Vision, applications and research challenges
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2012.02.016
– volume: 33
  start-page: 144
  year: 2018
  ident: ref_27
  article-title: NoSQL real-time database performance comparison
  publication-title: Int. J. Parallel Emerg. Distrib. Syst.
  doi: 10.1080/17445760.2017.1307367
– ident: ref_54
  doi: 10.1109/HIC.2014.7038922
– ident: ref_72
– volume: 205
  start-page: 618
  year: 2018
  ident: ref_53
  article-title: Bluetooth gas sensing module combined with smartphones for air quality monitoring
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.04.154
– ident: ref_46
  doi: 10.1109/ITNG.2010.104
– ident: ref_25
  doi: 10.1109/CLOUD.2012.18
– ident: ref_76
– ident: ref_2
  doi: 10.2337/diacare.29.s1.06.s4
– volume: 27
  start-page: 2067
  year: 2004
  ident: ref_80
  article-title: Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.8.2067
– ident: ref_9
  doi: 10.2337/dc18-Sint01
– volume: 108
  start-page: S19
  year: 2008
  ident: ref_10
  article-title: Role of physical activity in diabetes management and prevention
  publication-title: J. Am. Diet. Assoc.
  doi: 10.1016/j.jada.2008.01.016
– ident: ref_59
  doi: 10.3390/electronics6030065
– ident: ref_17
  doi: 10.3390/app8040511
– volume: 3
  start-page: 609
  year: 2014
  ident: ref_62
  article-title: The diabetes assistant: A smartphone-based system for real-time control of blood glucose
  publication-title: Electronics
  doi: 10.3390/electronics3040609
– volume: 72
  start-page: 62
  year: 2017
  ident: ref_69
  article-title: Benchmarking real-time vehicle data streaming models for a Smart City
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2017.09.002
– volume: 152
  start-page: 23
  year: 2017
  ident: ref_31
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.004
– volume: 8
  start-page: 318
  year: 2006
  ident: ref_44
  article-title: Evaluation of factors affecting CGMS calibration
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2006.8.318
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_74
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 132
  start-page: 75
  year: 2016
  ident: ref_29
  article-title: An effective model for store and retrieve big health data in cloud computing
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.04.016
– ident: ref_67
– volume: 14
  start-page: 575
  year: 2014
  ident: ref_60
  article-title: On the capability of smartphones to perform as communication gateways in medical wireless personal area networks
  publication-title: Sensors
  doi: 10.3390/s140100575
– volume: 9
  start-page: 556
  year: 2015
  ident: ref_58
  article-title: Performance of the first combined smartwatch and smartphone diabetes diary application study
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296814567708
– volume: 98
  start-page: 382
  year: 2016
  ident: ref_30
  article-title: Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.058
– volume: 39
  start-page: 2065
  year: 2016
  ident: ref_79
  article-title: Physical Activity/exercise and diabetes: A position statement of the American Diabetes Association
  publication-title: Diabetes Care
  doi: 10.2337/dc16-1728
– ident: ref_73
– volume: 10
  start-page: 7404
  year: 2010
  ident: ref_16
  article-title: Use of sensors in the treatment and follow-up of patients with diabetes mellitus
  publication-title: Sensors
  doi: 10.3390/s100807404
– ident: ref_24
  doi: 10.3390/sym10040093
– ident: ref_49
  doi: 10.3390/s17061230
– ident: ref_57
  doi: 10.3390/s17102302
– volume: 165
  start-page: 260
  year: 2015
  ident: ref_65
  article-title: A big data approach for logistics trajectory discovery from RFID-enabled production data
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2015.02.014
– ident: ref_6
– ident: ref_75
– volume: 28
  start-page: 83
  year: 2014
  ident: ref_18
  article-title: Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2014.6963809
– volume: 10
  start-page: 3934
  year: 2010
  ident: ref_61
  article-title: A monitoring and advisory system for diabetes patient management using a rule-based method and KNN
  publication-title: Sensors
  doi: 10.3390/s100403934
– volume: 89–90
  start-page: 51
  year: 2016
  ident: ref_52
  article-title: BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.03.004
– ident: ref_51
  doi: 10.3390/s18051442
– ident: ref_20
  doi: 10.1109/LCOMM.2012.073112.120877
– ident: ref_28
  doi: 10.3390/ijgi7040144
– volume: 4
  start-page: 457
  year: 2010
  ident: ref_55
  article-title: Bluetooth low energy: Wireless connectivity for medical monitoring
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681000400227
– volume: 10
  start-page: 4558
  year: 2010
  ident: ref_41
  article-title: Glucose biosensors: An overview of use in clinical practice
  publication-title: Sensors
  doi: 10.3390/s100504558
– volume: 14
  start-page: 9313
  year: 2014
  ident: ref_22
  article-title: ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives
  publication-title: Sensors
  doi: 10.3390/s140509313
– volume: 102
  start-page: 29
  year: 1962
  ident: ref_12
  article-title: Electrode systems for continuous monitoring in cardiovascular surgery
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1962.tb13623.x
– volume: 81
  start-page: 79
  year: 2017
  ident: ref_32
  article-title: SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.12.009
– volume: 383
  start-page: 1999
  year: 2014
  ident: ref_11
  article-title: Prevention and management of type 2 diabetes: Dietary components and nutritional strategies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60613-9
– volume: 37
  start-page: 267
  year: 2014
  ident: ref_64
  article-title: Intelligent services for big data science
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.07.014
– volume: 102
  start-page: 623
  year: 2016
  ident: ref_39
  article-title: Effects of external factors in CGM sensor glucose concentration prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.452
– volume: 71
  start-page: 113
  year: 2006
  ident: ref_43
  article-title: A comparison of blood glucose meters in Australia
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2005.05.013
SSID ssj0023338
Score 2.6203518
Snippet Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2183
SubjectTerms Adult
Artificial intelligence
BLE
Blood Glucose - analysis
Blood Glucose Self-Monitoring
classification
Data processing
Diabetes
Diabetes Mellitus - diagnosis
Diabetes Mellitus - physiopathology
Female
forecasting
Humans
Male
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
real-time data processing
Sensors
Smartphone
Vital signs
Wireless Technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1ByoEeyje4FLQgDlxWjbNr7_qEGkjVQxVFhUq9WftZIiG7jV0kOPS3d9bemAZVXLhF8SQaeWY879njNwAfVMa0sqmkytmMcmUY1SwrqAvqVKmbeKa7rSXHYj6XZ2fFIt5wa-JY5fqa2F2obW3CPfJ9pCYIrSdYFJ8uLmnYGhWersYVGvdhKyiV8RFsTWfzxclAuRgysF5PiCG5329SGfTAJNvoQp1Y_10I8-9ByVud5_DR__r8GHYi5iQHfZI8gXuuegrbt5QIn8H1AVmsYflvZ8nRMBZG-qoPZqSXNyeIc0k_SbM0ZNELszZE_yKn7RJ_HiynxzM6xQZpyVfkyfWqIaqy5AT_lYaXTsgX1SoSX1JA--dwejj79vmIxtUM1GQsa2mKQc1F4V3qxdg7gyTOc4YfxkxpgyxIG4fI02OeZkbmCLo8GitvhcCs8Za9gFFVV-4VEMWwIxYZMjc_4dIpLQ03Ki-MyzNuuUrg4zpUpYm65WF9xo8S-UuIajlENYH3g-lFL9Zxl9E0xHswCPra3Rf16ryM5VoaoRH5KecYH3PlFPbwAHy4dRPNhPYJ7K0jXsaib8o_4U7g3XAYyzU8g1GVq6_QJqCDAkFZmsDLPrkGT_A8yJwL9FBspN2Gq5tHquX3ThIcaahEqL37b7dew0PEe7KbNs73YNSurtwbeGB-tstm9TbWzg1MPCig
  priority: 102
  providerName: ProQuest
Title A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing
URI https://www.ncbi.nlm.nih.gov/pubmed/29986473
https://www.proquest.com/docview/2108752088
https://www.proquest.com/docview/2067892221
https://pubmed.ncbi.nlm.nih.gov/PMC6068508
https://doaj.org/article/c7b125aee3404aea84706134de2b37bf
Volume 18
WOSCitedRecordID wos000441334300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4QCHim8CZWUQBy5WN2sndo5d2KpI7SoqVFpOkT_FSlW22qRIcOhv7zjORruoEhcuURRPIsczzrynjJ8BPqqMaWVTSZWzGeXKMKpZVlAX1KlSN_FMd7uWnIr5XC4WRbm11VeoCYvywHHgDo3QmIOVc4yPuXIKv6YhBXHrJpoJ7cPXF1HPhkz1VIsh84o6QgxJ_WGTyqADJtlO9ulE-u9Cln8XSG5lnOMnsN9DRXIUu_gU7rn6GTzeEhB8DjdHpNyg6T_OkpOhmovEyRrMSFQlJwhPSSyAWRpSRj3Vhujf5KJd4u3Bcno6o1PMa5Z8Q3q7WjdE1Zac41NpWCtCvqhWkX5tAdq_gIvj2ffPJ7TfUYGajGUtTdEXuSi8S70Ye2eQe3nO8GTMlDZIXrRxCBg9hldmZI5YyaOx8lYIdLa37CXs1avavQaiGCayIkPC5SdcOqWl4UblhXF5xi1XCXzajHRlernxsOvFZYW0IzilGpySwIfB9CpqbNxlNA3uGgyCLHZ3AYOl6oOl-lewJHCwcXbVz9WmQtKLpA2DSCbwfmjGWRZ-najara7RJiT1ArFUmsCrGBtDT3AcZM4F9lDsRM1OV3db6uXPTskb2aNEhPzmf7zbW3iEYE52pcT5Aey162v3Dh6aX-2yWY_gvliI7ihH8GA6m5fno27K4PHsZobXyq9n5Y9bGrEf3Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwwPdHYYBBIPFirYmdxHlAaGWbWq2rItik8RRsx4ZKKBlNBhoP_CR-I9f5YkUTb3vgrWpuI9c9vj6nuT4X4IUMmJKZJ6g0WUC51IwqFsTUOHcqz_iWqbprySyaz8XRUZyswa_uLIwrq-xyYp2os0K7_8g3UZogtfZxUbw5_kpd1yj3dLVrodHAYs-cfkfJVr6ebuPv-9L3d3cO3k5o21WA6oAFFfVwPGEUW-PZaGSNRv1hOcMXIyaVRgKvtEHSZHGKAy1C5AsWg6XNogi_sM0Y3vcSrHMEuxjAejLdTz70Eo-h4mv8ixiLR5ulJ5z_mGAru17dHOA8Rvt3YeaZnW73xv82RzfhesupyVazCG7Bmslvw7UzTot34OcWSTrZ8cNkZNKXvZEmq7kw0ti3E-TxpKkUWmiSNMazJVGn5LBa4Mdd5Hi2Q8dIADLy3uRlsSyJzDPyDu9K3aEasi0rSdpDGBh_Fw4vZALuwSAvcvMAiGS448cBKlPrc2GkEpprGcbahAHPuBzCqw4aqW592V17kC8p6jOHorRH0RCe96HHjRnJeUFjh68-wPmH128Uy09pm45SHSlkttIYxkdcGokcxRE7nhlfsUjZIWx0CEvbpFamf-A1hGf9ZUxH7hmTzE1xgjGO_cRIOr0h3G_A3I8E50GEPMIRRiswXxnq6pV88bm2PEeZLVBKPPz3sJ7ClcnB_iydTed7j-AqcltRV1aHGzColifmMVzW36pFuXzSrlsCHy96GfwGBHKLbA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4ECiwIJC5WYu_aXh8QakijRg2RBVQqJ7NPiITsErugcuCH8euY9YsGVdx64BbFY2uynhl_Xzz7DcAzEVIptM89YXToMaGoJ2mYeMapU_kmsFTWU0vm8WLBDw-TdAN-dXthXFtlVxPrQq0L5f4jHyI1QWgdYFIMbdsWkU6mr46-em6ClHvT2o3TaEJk35x8R_pWvpxN8F4_D4Lp7vvXe147YcBTIQ0rz0ffojixxrfxyBqFXMQyih9GVEiFYF4qgwDK4nKHikeIHSwaC6vjGH-81RSvewG2EJIzzLGtdPYm_dDTPYrsr9EyojQZDUufOy0yTteegPWggLPQ7d9NmqeeetNr__N6XYerLdYmO01y3IANk9-EK6cUGG_Bzx2SdnTkh9Fkr2-HI021c2akkXUniO9J00G0VCRtBGlLIk_IQbXE053leL7rjREYaPLO5GWxKonINXmLV_XcZhsyEZUg7eYMtL8NB-eyAHdgMy9ycw-IoIgEkhAZqw0YN0JyxZSIEmWikGkmBvCiC5NMtXrtbmzIlwx5m4uorI-oATztTY8akZKzjMYu1noDpytef1GsPmVtmcpULBHxCmMoGzFhBGIXB_iYNoGksbQD2O6iLWuLXZn9CbUBPOkPY5ly755EbopjtHGoKEEw6g_gbhPYvSe4DjxiMXoYr4X8mqvrR_Ll51oKHek3R4px_99uPYZLGPvZfLbYfwCXEfLyuuE62obNanVsHsJF9a1alqtHbQoT-HjeWfAb1suULA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Personalized+Healthcare+Monitoring+System+for+Diabetic+Patients+by+Utilizing+BLE-Based+Sensors+and+Real-Time+Data+Processing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alfian%2C+Ganjar&rft.au=Syafrudin%2C+Muhammad&rft.au=Ijaz%2C+Muhammad+Fazal&rft.au=Syaekhoni%2C+M.+Alex&rft.date=2018-07-06&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=7&rft_id=info:doi/10.3390%2Fs18072183&rft_id=info%3Apmid%2F29986473&rft.externalDocID=PMC6068508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon