A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing
Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-b...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 18; H. 7; S. 2183 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
06.07.2018
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future. |
|---|---|
| AbstractList | Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future. Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future. Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users' vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning⁻based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user's sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future. |
| Author | Ijaz, Muhammad Fazal Syaekhoni, M. Alex Syafrudin, Muhammad Alfian, Ganjar Rhee, Jongtae Fitriyani, Norma Latif |
| AuthorAffiliation | 1 U-SCM Research Center, Nano Information Technology Academy, Dongguk University, Seoul 100-715, Korea 2 Department of Industrial and Systems Engineering, Dongguk University, Seoul 100-715, Korea; udin@dongguk.edu (M.S.); fazal@dongguk.edu (M.F.I.); alexs@dongguk.edu (M.A.S.); norma@dongguk.edu (N.L.F.) |
| AuthorAffiliation_xml | – name: 2 Department of Industrial and Systems Engineering, Dongguk University, Seoul 100-715, Korea; udin@dongguk.edu (M.S.); fazal@dongguk.edu (M.F.I.); alexs@dongguk.edu (M.A.S.); norma@dongguk.edu (N.L.F.) – name: 1 U-SCM Research Center, Nano Information Technology Academy, Dongguk University, Seoul 100-715, Korea |
| Author_xml | – sequence: 1 givenname: Ganjar orcidid: 0000-0002-3273-1452 surname: Alfian fullname: Alfian, Ganjar – sequence: 2 givenname: Muhammad orcidid: 0000-0002-5640-4413 surname: Syafrudin fullname: Syafrudin, Muhammad – sequence: 3 givenname: Muhammad Fazal orcidid: 0000-0001-5206-272X surname: Ijaz fullname: Ijaz, Muhammad Fazal – sequence: 4 givenname: M. Alex orcidid: 0000-0001-9152-1108 surname: Syaekhoni fullname: Syaekhoni, M. Alex – sequence: 5 givenname: Norma Latif orcidid: 0000-0002-1133-3965 surname: Fitriyani fullname: Fitriyani, Norma Latif – sequence: 6 givenname: Jongtae surname: Rhee fullname: Rhee, Jongtae |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29986473$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkktv1DAQgCNURB9w4A8gS1zgEOpXYueC1Be00iJWtD1bE2e89SqJi51FWg78drxsW7Xl5JH9zacZz-wXO2MYsSjeMvpJiIYeJqap4kyLF8Uek1yWmnO68yjeLfZTWlLKhRD6VbHLm0bXUom94s8RmWNMYYTe_8aOnCP0042FiORbGP0Uoh8X5HKdJhyIC5Gcemhx8pbMYfI4Tom0a3I9-Zy-IY9nZ-UxpGy6xDGFmAiMHfmRreWVH5CcwgRkHoPFlDL_unjpoE_45u48KK6_nF2dnJez718vTo5mpa1ENZUMrKhV45A5RR1aLhsnRQ6ogNZWUrcWm4Y5hK6yuq6ldBkG1ymFLbpOHBQXW28XYGluox8grk0Ab_5dhLgwEHNXPRqrWsYrQBSSSkDQUtGaCdkhb4VqXXZ93rpuV-2Anc2fEKF_In36Mvobswi_TE1rXVGdBR_uBDH8XGGazOCTxb6HEcMqGU5rpRvOOcvo-2foMqxiHlamGNWq4lRvhO8eV_RQyv2YM3C4BWwMKUV0xvopzy9sCvS9YdRsFsk8LFLO-Pgs4176P_sXlK_JyQ |
| CitedBy_id | crossref_primary_10_3390_app10124381 crossref_primary_10_1016_j_compbiomed_2024_108382 crossref_primary_10_1109_ACCESS_2020_3012143 crossref_primary_10_1016_j_procir_2024_08_353 crossref_primary_10_1109_JSEN_2024_3452554 crossref_primary_10_3390_s21041467 crossref_primary_10_3390_computers11090136 crossref_primary_10_3390_s21082852 crossref_primary_10_1155_2021_5533161 crossref_primary_10_1007_s11042_022_12203_9 crossref_primary_10_3390_pr7050289 crossref_primary_10_1002_int_22564 crossref_primary_10_1109_JIOT_2025_3541129 crossref_primary_10_1155_2022_8100697 crossref_primary_10_2196_36010 crossref_primary_10_3390_electronics12030756 crossref_primary_10_1007_s42979_025_03802_y crossref_primary_10_1007_s10278_022_00613_y crossref_primary_10_1016_j_jnca_2021_103244 crossref_primary_10_3390_math10214027 crossref_primary_10_3390_math11102266 crossref_primary_10_1109_ACCESS_2024_3389986 crossref_primary_10_3390_app14188283 crossref_primary_10_1002_int_22557 crossref_primary_10_3390_s22239496 crossref_primary_10_3390_s24206531 crossref_primary_10_1371_journal_pone_0282824 crossref_primary_10_1002_adhm_202100734 crossref_primary_10_1177_20552076251330577 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_1007_s11227_021_03878_2 crossref_primary_10_2478_picbe_2021_0005 crossref_primary_10_1109_TCSS_2021_3122807 crossref_primary_10_1016_j_future_2020_07_047 crossref_primary_10_1155_2021_2485934 crossref_primary_10_3390_s19204539 crossref_primary_10_3390_brainsci10070427 crossref_primary_10_1016_j_nlp_2024_100057 crossref_primary_10_1109_ACCESS_2020_2995790 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_1109_ACCESS_2022_3203061 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_3390_s19173746 crossref_primary_10_3390_app10030921 crossref_primary_10_3390_app11052006 crossref_primary_10_1007_s11042_022_12766_7 crossref_primary_10_1109_TCSS_2024_3488694 crossref_primary_10_1016_j_dajour_2023_100298 crossref_primary_10_1109_ACCESS_2019_2927958 crossref_primary_10_3390_s24196218 crossref_primary_10_3390_app9061154 crossref_primary_10_1177_20552076221083119 crossref_primary_10_1111_exsy_12753 crossref_primary_10_1109_ACCESS_2021_3137364 crossref_primary_10_62777_aeit_v2i1_59 crossref_primary_10_1007_s11042_022_13427_5 crossref_primary_10_3390_s20247150 crossref_primary_10_1371_journal_pone_0284588 crossref_primary_10_1109_JFLEX_2025_3538808 crossref_primary_10_1016_j_cmpbup_2023_100094 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1016_j_iot_2023_100945 crossref_primary_10_1016_j_measurement_2020_107757 crossref_primary_10_3390_computation8020045 crossref_primary_10_1109_ACCESS_2019_2945129 crossref_primary_10_3390_s20071951 crossref_primary_10_1016_j_bios_2022_114825 crossref_primary_10_3390_s18092946 crossref_primary_10_3390_rs12050869 crossref_primary_10_32604_cmc_2023_034078 crossref_primary_10_1007_s11042_020_10242_8 crossref_primary_10_1007_s44163_023_00049_5 crossref_primary_10_3390_s21093261 crossref_primary_10_1109_ACCESS_2021_3058016 crossref_primary_10_33003_fjs_2025_0903_3206 crossref_primary_10_1002_int_22643 crossref_primary_10_3390_biomedicines10071469 crossref_primary_10_3390_s22041492 crossref_primary_10_3390_s24206601 crossref_primary_10_3390_s23239558 crossref_primary_10_3390_app13053326 crossref_primary_10_1007_s40042_025_01378_7 crossref_primary_10_1371_journal_pone_0272825 crossref_primary_10_1016_j_cmpb_2021_106541 crossref_primary_10_1108_IJPPM_11_2021_0664 crossref_primary_10_3390_s20174954 crossref_primary_10_1109_MCOM_001_1900349 crossref_primary_10_3390_diagnostics11040607 crossref_primary_10_1109_JIOT_2020_2974678 crossref_primary_10_3390_info11120565 crossref_primary_10_1016_j_eswa_2024_125058 crossref_primary_10_1016_j_measurement_2024_114123 crossref_primary_10_1016_j_semcancer_2023_01_005 crossref_primary_10_1155_2021_9930985 crossref_primary_10_1109_ACCESS_2022_3142100 crossref_primary_10_1109_ACCESS_2020_3046655 crossref_primary_10_1007_s00187_025_00387_8 crossref_primary_10_1371_journal_pone_0281323 crossref_primary_10_1016_j_accinf_2024_100680 crossref_primary_10_1016_j_ijmedinf_2021_104420 crossref_primary_10_1002_aisy_202000063 crossref_primary_10_1016_j_smhl_2019_100100 crossref_primary_10_26634_jfet_19_3_20549 crossref_primary_10_2217_pme_2019_0113 crossref_primary_10_1016_j_foodcont_2019_107016 crossref_primary_10_3390_s20010107 crossref_primary_10_1109_ACCESS_2022_3211264 crossref_primary_10_1109_ACCESS_2023_3236002 crossref_primary_10_1007_s11227_021_04029_3 crossref_primary_10_1007_s12652_021_03612_z crossref_primary_10_1016_j_icte_2021_07_001 crossref_primary_10_1186_s13643_022_02033_z crossref_primary_10_3390_app10249112 crossref_primary_10_1002_ett_3635 crossref_primary_10_1080_10447318_2022_2089085 crossref_primary_10_1109_ACCESS_2020_3010511 crossref_primary_10_1287_ijds_2024_0029 crossref_primary_10_2196_40259 |
| Cites_doi | 10.1109/TBCAS.2016.2519523 10.1016/j.imu.2017.12.006 10.1016/j.nurpra.2016.12.025 10.3390/bios8010024 10.3390/sym9120293 10.3390/s121013753 10.1016/j.procs.2016.04.016 10.1016/j.kjms.2012.08.016 10.2337/diacare.27.5.1047 10.3390/su9112139 10.3390/s18030908 10.2337/dc08-s271 10.3390/s17081866 10.1021/cr068069y 10.1109/MWC.2010.5416354 10.1016/j.bbe.2018.02.005 10.1109/TBME.2006.889774 10.4239/wjd.v8.i6.235 10.1016/j.procs.2015.10.014 10.3390/s120911734 10.1016/j.jbi.2016.10.015 10.1016/j.procs.2016.09.037 10.1162/neco.1997.9.8.1735 10.3390/healthcare3020310 10.1111/j.1742-1241.2009.02272.x 10.1016/j.adhoc.2012.02.016 10.1080/17445760.2017.1307367 10.1109/HIC.2014.7038922 10.1016/j.chemosphere.2018.04.154 10.1109/ITNG.2010.104 10.1109/CLOUD.2012.18 10.2337/diacare.29.s1.06.s4 10.2337/diacare.27.8.2067 10.2337/dc18-Sint01 10.1016/j.jada.2008.01.016 10.3390/electronics6030065 10.3390/app8040511 10.3390/electronics3040609 10.1016/j.is.2017.09.002 10.1016/j.cmpb.2017.09.004 10.1089/dia.2006.8.318 10.1038/323533a0 10.1016/j.cmpb.2016.04.016 10.3390/s140100575 10.1177/1932296814567708 10.1016/j.procs.2016.09.058 10.2337/dc16-1728 10.3390/s100807404 10.3390/sym10040093 10.3390/s17061230 10.3390/s17102302 10.1016/j.ijpe.2015.02.014 10.1109/MNET.2014.6963809 10.3390/s100403934 10.1016/j.comcom.2016.03.004 10.3390/s18051442 10.1109/LCOMM.2012.073112.120877 10.3390/ijgi7040144 10.1177/193229681000400227 10.3390/s100504558 10.3390/s140509313 10.1111/j.1749-6632.1962.tb13623.x 10.1016/j.compbiomed.2016.12.009 10.1016/S0140-6736(14)60613-9 10.1016/j.future.2013.07.014 10.1016/j.procs.2016.09.452 10.1016/j.diabres.2005.05.013 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s18072183 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c7b125aee3404aea84706134de2b37bf PMC6068508 29986473 10_3390_s18072183 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c535t-1ac3679fe1f70fec249f43fec03abc548bce991fead5c86644f9feafd77ebefd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441334300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:28 EST 2025 Tue Nov 04 02:00:42 EST 2025 Thu Sep 04 14:54:57 EDT 2025 Sat Nov 29 15:07:07 EST 2025 Wed Feb 19 02:35:14 EST 2025 Sat Nov 29 07:13:56 EST 2025 Tue Nov 18 21:26:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | BLE classification diabetes forecasting real-time data processing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c535t-1ac3679fe1f70fec249f43fec03abc548bce991fead5c86644f9feafd77ebefd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5640-4413 0000-0001-5206-272X 0000-0002-1133-3965 0000-0002-3273-1452 0000-0001-9152-1108 |
| OpenAccessLink | https://doaj.org/article/c7b125aee3404aea84706134de2b37bf |
| PMID | 29986473 |
| PQID | 2108752088 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7b125aee3404aea84706134de2b37bf pubmedcentral_primary_oai_pubmedcentral_nih_gov_6068508 proquest_miscellaneous_2067892221 proquest_journals_2108752088 pubmed_primary_29986473 crossref_citationtrail_10_3390_s18072183 crossref_primary_10_3390_s18072183 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-06 |
| PublicationDateYYYYMMDD | 2018-07-06 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Miorandi (ref_47) 2012; 10 ref_50 Koutny (ref_48) 2016; 98 Meng (ref_34) 2013; 29 Gentili (ref_52) 2016; 89–90 Schulz (ref_26) 2016; 64 ref_14 Bode (ref_15) 2010; 64 ref_57 ref_54 ref_51 Omre (ref_55) 2010; 4 Hamdi (ref_40) 2018; 38 Borgen (ref_63) 2015; 3 Torres (ref_16) 2010; 10 ref_17 Ahmed (ref_39) 2016; 102 ref_59 Cheruku (ref_32) 2017; 81 Dobre (ref_64) 2014; 37 Ley (ref_11) 2014; 383 Arsand (ref_58) 2015; 9 Patel (ref_19) 2010; 17 Pereira (ref_27) 2018; 33 Sparacino (ref_37) 2007; 54 ref_25 Sparacino (ref_42) 2012; 12 ref_24 ref_68 ref_23 ref_67 Tun (ref_8) 2017; 8 ref_66 Nieminen (ref_18) 2014; 28 Wild (ref_7) 2004; 27 ref_20 Zhong (ref_65) 2015; 165 Buckingham (ref_44) 2006; 8 Gomez (ref_21) 2012; 12 Nkenyereye (ref_30) 2016; 98 ref_28 Luque (ref_60) 2014; 14 Arroyo (ref_53) 2018; 205 Rubino (ref_4) 2008; 31 Moungmai (ref_36) 2015; 69 ref_72 Rachim (ref_56) 2016; 10 ref_71 Mize (ref_62) 2014; 3 ref_70 ref_77 ref_76 ref_75 ref_73 Wu (ref_33) 2018; 10 ref_38 Fahim (ref_22) 2014; 14 Hochreiter (ref_78) 1997; 9 Marvicsin (ref_45) 2017; 13 Colberg (ref_79) 2016; 39 Clark (ref_12) 1962; 102 Hayes (ref_10) 2008; 108 Heller (ref_13) 2008; 108 ref_46 Fisteus (ref_69) 2017; 72 Rumelhart (ref_74) 1986; 323 Lee (ref_61) 2010; 10 Perveen (ref_35) 2016; 82 ref_1 Yoo (ref_41) 2010; 10 ref_3 ref_2 Akbari (ref_29) 2016; 132 ref_49 ref_9 Maniruzzaman (ref_31) 2017; 152 Klein (ref_80) 2004; 27 ref_5 ref_6 Cohen (ref_43) 2006; 71 |
| References_xml | – volume: 10 start-page: 1112 year: 2016 ident: ref_56 article-title: Wearable Noncontact Armband for Mobile ECG Monitoring System publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2016.2519523 – volume: 10 start-page: 100 year: 2018 ident: ref_33 article-title: Type 2 diabetes mellitus prediction model based on data mining publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2017.12.006 – volume: 13 start-page: 205 year: 2017 ident: ref_45 article-title: What is new in diabetes technology? publication-title: J. Nurse Pract. doi: 10.1016/j.nurpra.2016.12.025 – ident: ref_3 doi: 10.3390/bios8010024 – ident: ref_23 doi: 10.3390/sym9120293 – ident: ref_5 – ident: ref_68 – volume: 12 start-page: 13753 year: 2012 ident: ref_42 article-title: Italian contributions to the development of continuous glucose monitoring sensors for diabetes management publication-title: Sensors doi: 10.3390/s121013753 – volume: 82 start-page: 115 year: 2016 ident: ref_35 article-title: Performance analysis of data mining classification techniques to predict diabetes publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.04.016 – volume: 29 start-page: 93 year: 2013 ident: ref_34 article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors publication-title: Kaohsiung J. Med. Sci. doi: 10.1016/j.kjms.2012.08.016 – volume: 27 start-page: 1047 year: 2004 ident: ref_7 article-title: Global prevalence of diabetes: Estimates for the Year 2000 and projections for 2030 publication-title: Diabetes Care doi: 10.2337/diacare.27.5.1047 – ident: ref_70 doi: 10.3390/su9112139 – ident: ref_50 doi: 10.3390/s18030908 – ident: ref_1 – ident: ref_71 – volume: 31 start-page: S290 year: 2008 ident: ref_4 article-title: Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis publication-title: Diabetes Care doi: 10.2337/dc08-s271 – ident: ref_14 doi: 10.3390/s17081866 – volume: 108 start-page: 2482 year: 2008 ident: ref_13 article-title: Electrochemical glucose sensors and their applications in diabetes management publication-title: Chem. Rev. doi: 10.1021/cr068069y – volume: 17 start-page: 80 year: 2010 ident: ref_19 article-title: Applications, challenges, and prospective in emerging body area networking technologies publication-title: IEEE Wirel Commun. doi: 10.1109/MWC.2010.5416354 – ident: ref_77 – volume: 38 start-page: 362 year: 2018 ident: ref_40 article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.02.005 – volume: 54 start-page: 931 year: 2007 ident: ref_37 article-title: Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889774 – volume: 8 start-page: 235 year: 2017 ident: ref_8 article-title: Diabetes mellitus and stroke: A clinical update publication-title: World J. Diabetes doi: 10.4239/wjd.v8.i6.235 – volume: 69 start-page: 132 year: 2015 ident: ref_36 article-title: Comparison of classifiers for the risk of diabetes prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.014 – volume: 12 start-page: 11734 year: 2012 ident: ref_21 article-title: Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology publication-title: Sensors doi: 10.3390/s120911734 – volume: 64 start-page: 288 year: 2016 ident: ref_26 article-title: Evaluation of relational and NoSQL database architectures to manage genomic annotations publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.10.015 – volume: 98 start-page: 228 year: 2016 ident: ref_48 article-title: On-line blood glucose level calculation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.037 – volume: 9 start-page: 1735 year: 1997 ident: ref_78 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_66 – volume: 3 start-page: 310 year: 2015 ident: ref_63 article-title: Designing and developing a mobile smartphone application for women with gestational diabetes mellitus Followed-up at diabetes outpatient clinics in Norway publication-title: Healthcare doi: 10.3390/healthcare3020310 – ident: ref_38 – volume: 64 start-page: 11 year: 2010 ident: ref_15 article-title: Continuous glucose monitoring publication-title: Int. J. Clin. Pract. Suppl. doi: 10.1111/j.1742-1241.2009.02272.x – volume: 10 start-page: 1497 year: 2012 ident: ref_47 article-title: Internet of Things: Vision, applications and research challenges publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2012.02.016 – volume: 33 start-page: 144 year: 2018 ident: ref_27 article-title: NoSQL real-time database performance comparison publication-title: Int. J. Parallel Emerg. Distrib. Syst. doi: 10.1080/17445760.2017.1307367 – ident: ref_54 doi: 10.1109/HIC.2014.7038922 – ident: ref_72 – volume: 205 start-page: 618 year: 2018 ident: ref_53 article-title: Bluetooth gas sensing module combined with smartphones for air quality monitoring publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.154 – ident: ref_46 doi: 10.1109/ITNG.2010.104 – ident: ref_25 doi: 10.1109/CLOUD.2012.18 – ident: ref_76 – ident: ref_2 doi: 10.2337/diacare.29.s1.06.s4 – volume: 27 start-page: 2067 year: 2004 ident: ref_80 article-title: Weight management through lifestyle modification for the prevention and management of type 2 diabetes: Rationale and strategies publication-title: Diabetes Care doi: 10.2337/diacare.27.8.2067 – ident: ref_9 doi: 10.2337/dc18-Sint01 – volume: 108 start-page: S19 year: 2008 ident: ref_10 article-title: Role of physical activity in diabetes management and prevention publication-title: J. Am. Diet. Assoc. doi: 10.1016/j.jada.2008.01.016 – ident: ref_59 doi: 10.3390/electronics6030065 – ident: ref_17 doi: 10.3390/app8040511 – volume: 3 start-page: 609 year: 2014 ident: ref_62 article-title: The diabetes assistant: A smartphone-based system for real-time control of blood glucose publication-title: Electronics doi: 10.3390/electronics3040609 – volume: 72 start-page: 62 year: 2017 ident: ref_69 article-title: Benchmarking real-time vehicle data streaming models for a Smart City publication-title: Inf. Syst. doi: 10.1016/j.is.2017.09.002 – volume: 152 start-page: 23 year: 2017 ident: ref_31 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.004 – volume: 8 start-page: 318 year: 2006 ident: ref_44 article-title: Evaluation of factors affecting CGMS calibration publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2006.8.318 – volume: 323 start-page: 533 year: 1986 ident: ref_74 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 132 start-page: 75 year: 2016 ident: ref_29 article-title: An effective model for store and retrieve big health data in cloud computing publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.04.016 – ident: ref_67 – volume: 14 start-page: 575 year: 2014 ident: ref_60 article-title: On the capability of smartphones to perform as communication gateways in medical wireless personal area networks publication-title: Sensors doi: 10.3390/s140100575 – volume: 9 start-page: 556 year: 2015 ident: ref_58 article-title: Performance of the first combined smartwatch and smartphone diabetes diary application study publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296814567708 – volume: 98 start-page: 382 year: 2016 ident: ref_30 article-title: Performance evaluation of server-side javascript for healthcare hub server in remote healthcare monitoring system publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.058 – volume: 39 start-page: 2065 year: 2016 ident: ref_79 article-title: Physical Activity/exercise and diabetes: A position statement of the American Diabetes Association publication-title: Diabetes Care doi: 10.2337/dc16-1728 – ident: ref_73 – volume: 10 start-page: 7404 year: 2010 ident: ref_16 article-title: Use of sensors in the treatment and follow-up of patients with diabetes mellitus publication-title: Sensors doi: 10.3390/s100807404 – ident: ref_24 doi: 10.3390/sym10040093 – ident: ref_49 doi: 10.3390/s17061230 – ident: ref_57 doi: 10.3390/s17102302 – volume: 165 start-page: 260 year: 2015 ident: ref_65 article-title: A big data approach for logistics trajectory discovery from RFID-enabled production data publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2015.02.014 – ident: ref_6 – ident: ref_75 – volume: 28 start-page: 83 year: 2014 ident: ref_18 article-title: Networking solutions for connecting Bluetooth low energy enabled machines to the Internet of Things publication-title: IEEE Netw. doi: 10.1109/MNET.2014.6963809 – volume: 10 start-page: 3934 year: 2010 ident: ref_61 article-title: A monitoring and advisory system for diabetes patient management using a rule-based method and KNN publication-title: Sensors doi: 10.3390/s100403934 – volume: 89–90 start-page: 51 year: 2016 ident: ref_52 article-title: BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario publication-title: Comput. Commun. doi: 10.1016/j.comcom.2016.03.004 – ident: ref_51 doi: 10.3390/s18051442 – ident: ref_20 doi: 10.1109/LCOMM.2012.073112.120877 – ident: ref_28 doi: 10.3390/ijgi7040144 – volume: 4 start-page: 457 year: 2010 ident: ref_55 article-title: Bluetooth low energy: Wireless connectivity for medical monitoring publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681000400227 – volume: 10 start-page: 4558 year: 2010 ident: ref_41 article-title: Glucose biosensors: An overview of use in clinical practice publication-title: Sensors doi: 10.3390/s100504558 – volume: 14 start-page: 9313 year: 2014 ident: ref_22 article-title: ATHENA: A personalized platform to promote an active lifestyle and wellbeing based on physical, mental and social health primitives publication-title: Sensors doi: 10.3390/s140509313 – volume: 102 start-page: 29 year: 1962 ident: ref_12 article-title: Electrode systems for continuous monitoring in cardiovascular surgery publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1962.tb13623.x – volume: 81 start-page: 79 year: 2017 ident: ref_32 article-title: SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.12.009 – volume: 383 start-page: 1999 year: 2014 ident: ref_11 article-title: Prevention and management of type 2 diabetes: Dietary components and nutritional strategies publication-title: Lancet doi: 10.1016/S0140-6736(14)60613-9 – volume: 37 start-page: 267 year: 2014 ident: ref_64 article-title: Intelligent services for big data science publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.07.014 – volume: 102 start-page: 623 year: 2016 ident: ref_39 article-title: Effects of external factors in CGM sensor glucose concentration prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.452 – volume: 71 start-page: 113 year: 2006 ident: ref_43 article-title: A comparison of blood glucose meters in Australia publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2005.05.013 |
| SSID | ssj0023338 |
| Score | 2.6203518 |
| Snippet | Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2183 |
| SubjectTerms | Adult Artificial intelligence BLE Blood Glucose - analysis Blood Glucose Self-Monitoring classification Data processing Diabetes Diabetes Mellitus - diagnosis Diabetes Mellitus - physiopathology Female forecasting Humans Male Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods real-time data processing Sensors Smartphone Vital signs Wireless Technology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1ByoEeyje4FLQgDlxWjbNr7_qEGkjVQxVFhUq9WftZIiG7jV0kOPS3d9bemAZVXLhF8SQaeWY879njNwAfVMa0sqmkytmMcmUY1SwrqAvqVKmbeKa7rSXHYj6XZ2fFIt5wa-JY5fqa2F2obW3CPfJ9pCYIrSdYFJ8uLmnYGhWersYVGvdhKyiV8RFsTWfzxclAuRgysF5PiCG5329SGfTAJNvoQp1Y_10I8-9ByVud5_DR__r8GHYi5iQHfZI8gXuuegrbt5QIn8H1AVmsYflvZ8nRMBZG-qoPZqSXNyeIc0k_SbM0ZNELszZE_yKn7RJ_HiynxzM6xQZpyVfkyfWqIaqy5AT_lYaXTsgX1SoSX1JA--dwejj79vmIxtUM1GQsa2mKQc1F4V3qxdg7gyTOc4YfxkxpgyxIG4fI02OeZkbmCLo8GitvhcCs8Za9gFFVV-4VEMWwIxYZMjc_4dIpLQ03Ki-MyzNuuUrg4zpUpYm65WF9xo8S-UuIajlENYH3g-lFL9Zxl9E0xHswCPra3Rf16ryM5VoaoRH5KecYH3PlFPbwAHy4dRPNhPYJ7K0jXsaib8o_4U7g3XAYyzU8g1GVq6_QJqCDAkFZmsDLPrkGT_A8yJwL9FBspN2Gq5tHquX3ThIcaahEqL37b7dew0PEe7KbNs73YNSurtwbeGB-tstm9TbWzg1MPCig priority: 102 providerName: ProQuest |
| Title | A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29986473 https://www.proquest.com/docview/2108752088 https://www.proquest.com/docview/2067892221 https://pubmed.ncbi.nlm.nih.gov/PMC6068508 https://doaj.org/article/c7b125aee3404aea84706134de2b37bf |
| Volume | 18 |
| WOSCitedRecordID | wos000441334300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4QCHim8CZWUQBy5WN2sndo5d2KpI7SoqVFpOkT_FSlW22qRIcOhv7zjORruoEhcuURRPIsczzrynjJ8BPqqMaWVTSZWzGeXKMKpZVlAX1KlSN_FMd7uWnIr5XC4WRbm11VeoCYvywHHgDo3QmIOVc4yPuXIKv6YhBXHrJpoJ7cPXF1HPhkz1VIsh84o6QgxJ_WGTyqADJtlO9ulE-u9Cln8XSG5lnOMnsN9DRXIUu_gU7rn6GTzeEhB8DjdHpNyg6T_OkpOhmovEyRrMSFQlJwhPSSyAWRpSRj3Vhujf5KJd4u3Bcno6o1PMa5Z8Q3q7WjdE1Zac41NpWCtCvqhWkX5tAdq_gIvj2ffPJ7TfUYGajGUtTdEXuSi8S70Ye2eQe3nO8GTMlDZIXrRxCBg9hldmZI5YyaOx8lYIdLa37CXs1avavQaiGCayIkPC5SdcOqWl4UblhXF5xi1XCXzajHRlernxsOvFZYW0IzilGpySwIfB9CpqbNxlNA3uGgyCLHZ3AYOl6oOl-lewJHCwcXbVz9WmQtKLpA2DSCbwfmjGWRZ-najara7RJiT1ArFUmsCrGBtDT3AcZM4F9lDsRM1OV3db6uXPTskb2aNEhPzmf7zbW3iEYE52pcT5Aey162v3Dh6aX-2yWY_gvliI7ihH8GA6m5fno27K4PHsZobXyq9n5Y9bGrEf3Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwwPdHYYBBIPFirYmdxHlAaGWbWq2rItik8RRsx4ZKKBlNBhoP_CR-I9f5YkUTb3vgrWpuI9c9vj6nuT4X4IUMmJKZJ6g0WUC51IwqFsTUOHcqz_iWqbprySyaz8XRUZyswa_uLIwrq-xyYp2os0K7_8g3UZogtfZxUbw5_kpd1yj3dLVrodHAYs-cfkfJVr6ebuPv-9L3d3cO3k5o21WA6oAFFfVwPGEUW-PZaGSNRv1hOcMXIyaVRgKvtEHSZHGKAy1C5AsWg6XNogi_sM0Y3vcSrHMEuxjAejLdTz70Eo-h4mv8ixiLR5ulJ5z_mGAru17dHOA8Rvt3YeaZnW73xv82RzfhesupyVazCG7Bmslvw7UzTot34OcWSTrZ8cNkZNKXvZEmq7kw0ti3E-TxpKkUWmiSNMazJVGn5LBa4Mdd5Hi2Q8dIADLy3uRlsSyJzDPyDu9K3aEasi0rSdpDGBh_Fw4vZALuwSAvcvMAiGS448cBKlPrc2GkEpprGcbahAHPuBzCqw4aqW592V17kC8p6jOHorRH0RCe96HHjRnJeUFjh68-wPmH128Uy09pm45SHSlkttIYxkdcGokcxRE7nhlfsUjZIWx0CEvbpFamf-A1hGf9ZUxH7hmTzE1xgjGO_cRIOr0h3G_A3I8E50GEPMIRRiswXxnq6pV88bm2PEeZLVBKPPz3sJ7ClcnB_iydTed7j-AqcltRV1aHGzColifmMVzW36pFuXzSrlsCHy96GfwGBHKLbA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4ECiwIJC5WYu_aXh8QakijRg2RBVQqJ7NPiITsErugcuCH8euY9YsGVdx64BbFY2uynhl_Xzz7DcAzEVIptM89YXToMaGoJ2mYeMapU_kmsFTWU0vm8WLBDw-TdAN-dXthXFtlVxPrQq0L5f4jHyI1QWgdYFIMbdsWkU6mr46-em6ClHvT2o3TaEJk35x8R_pWvpxN8F4_D4Lp7vvXe147YcBTIQ0rz0ffojixxrfxyBqFXMQyih9GVEiFYF4qgwDK4nKHikeIHSwaC6vjGH-81RSvewG2EJIzzLGtdPYm_dDTPYrsr9EyojQZDUufOy0yTteegPWggLPQ7d9NmqeeetNr__N6XYerLdYmO01y3IANk9-EK6cUGG_Bzx2SdnTkh9Fkr2-HI021c2akkXUniO9J00G0VCRtBGlLIk_IQbXE053leL7rjREYaPLO5GWxKonINXmLV_XcZhsyEZUg7eYMtL8NB-eyAHdgMy9ycw-IoIgEkhAZqw0YN0JyxZSIEmWikGkmBvCiC5NMtXrtbmzIlwx5m4uorI-oATztTY8akZKzjMYu1noDpytef1GsPmVtmcpULBHxCmMoGzFhBGIXB_iYNoGksbQD2O6iLWuLXZn9CbUBPOkPY5ly755EbopjtHGoKEEw6g_gbhPYvSe4DjxiMXoYr4X8mqvrR_Ll51oKHek3R4px_99uPYZLGPvZfLbYfwCXEfLyuuE62obNanVsHsJF9a1alqtHbQoT-HjeWfAb1suULA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Personalized+Healthcare+Monitoring+System+for+Diabetic+Patients+by+Utilizing+BLE-Based+Sensors+and+Real-Time+Data+Processing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alfian%2C+Ganjar&rft.au=Syafrudin%2C+Muhammad&rft.au=Ijaz%2C+Muhammad+Fazal&rft.au=Syaekhoni%2C+M.+Alex&rft.date=2018-07-06&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=7&rft_id=info:doi/10.3390%2Fs18072183&rft_id=info%3Apmid%2F29986473&rft.externalDocID=PMC6068508 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |