Optimal power flow algorithm and analysis in distribution system considering distributed generation

This study investigates the optimal power flow (OPF) problem for distribution networks with the integration of distributed generation (DG). By considering the objectives of minimal line loss, minimal voltage deviation and maximum DG active power output, the proposed OPF formulation is a multi-object...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution Vol. 8; no. 2; pp. 261 - 272
Main Authors: Sheng, Wanxing, Liu, Ke-yan, Cheng, Sheng
Format: Journal Article
Language:English
Published: Stevenage The Institution of Engineering and Technology 01.02.2014
Institution of Engineering and Technology
The Institution of Engineering & Technology
Subjects:
ISSN:1751-8687, 1751-8695
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the optimal power flow (OPF) problem for distribution networks with the integration of distributed generation (DG). By considering the objectives of minimal line loss, minimal voltage deviation and maximum DG active power output, the proposed OPF formulation is a multi-object optimisation problem. Through normalisation of each objective function, the multi-objective optimisation is transformed to single-objective optimisation. To solve such a non-convex problem, the trust-region sequential quadratic programming (TRSQP) method is proposed, which iteratively approximates the OPF by a quadratic programming with the trust-region guidance. The TRSQP utilises the sensitivity analysis to approximate all the constraints with linear ones, which will reduce the optimisation scale. Active set method is utilised in TRSQP to solve quadratic programming sub-problem. Numerical tests on IEEE 33-, PG&E 69- and actual 292-, 588-, 1180-bus systems show the applicability of the proposed method, and comparisons with the primal–dual interior point method and sequential linear programming method are provided. The initialisation and convergence condition of the proposed method are also discussed. The computational result indicates that the proposed algorithm for DG control optimisation in distribution system is feasible and effective.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8687
1751-8695
DOI:10.1049/iet-gtd.2013.0389