Photosynthesis, transpiration, and primary productivity: scaling up from leaves to canopies and regions using process models and remotely sensed data
Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to h...
Saved in:
| Published in: | Global biogeochemical cycles Vol. 18; no. 4; pp. GB4033.1 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington, DC
Blackwell Publishing Ltd
01.12.2004
American Geophysical Union |
| Subjects: | |
| ISSN: | 0886-6236, 1944-9224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m2/year in the northwest to 956 gC/m2/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH2O/year to 136 cmH2O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required. |
|---|---|
| AbstractList | Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process-oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO sub(2) concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22 degree C and 26 degree C optimal temperature under current ambient and doubled CO sub(2) concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m super(2)/year in the northwest to 956 gC/m super(2)/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH sub(2)O/year to 136 cmH sub(2)O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large-scale analyses, although more complete analysis and validation are required.. Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m2/year in the northwest to 956 gC/m2/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH2O/year to 136 cmH2O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required. Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO 2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO 2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m 2 /year in the northwest to 956 gC/m 2 /year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH 2 O/year to 136 cmH 2 O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required. |
| Author | Coughenour, M.B Chen, D.X |
| Author_xml | – sequence: 1 fullname: Chen, D.X – sequence: 2 fullname: Coughenour, M.B |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16530092$$DView record in Pascal Francis |
| BookMark | eNqFkUFvEzEUhFeoSKSFG3d8gVMW_Oxdr82NBkiQWkCCCm6W433bGjbrsM8p5Ifwf3FIqBBCcHo-fDPyzBwXR0McsCjuA38MXJgngnMxP-UcTGNuFRMwVVUaIaqjYsK1VqUSUt0pjok-ZaaqazMpvr-9iinSdkhXSIGmLI1uoHUYXQpxmDI3tGw9hpUbt_nGduNTuA5p-5SRd30YLtlmzboxrliP7hqJpci8G-I65PdOPOJlNiK2oR2cLTwSsVVssf8FrGLCfssIB8KWtS65u8XtzvWE9w73pLh4-eL9bFGevZm_mj07K30tayil10tTSe2Xy1b6SrS4bBEaIVF4DQaNMmB8h37ZadM5pVwLynSS69YDaCdPikd73_yvLxukZFeBPPa9GzBuyFZKga6l-S8ITSMNV00GHx5Atyuoy236QPZQoQVVS86NyJzYc36MRCN21of0s_M8QOgtcLub1P4-aRZN_xDd-P4dhz3-NfS4_Sdr56czAAFZU-41gRJ-u9G48bPN6Zrafng9t_r54rxanNf2Y-Yf7PnOResux5z14p3gsEuppapB_gDkqc2Z |
| CODEN | GBCYEP |
| CitedBy_id | crossref_primary_10_1002_2013WR014573 crossref_primary_10_1016_j_agwat_2025_109293 crossref_primary_10_1038_s41598_022_05377_7 crossref_primary_10_1007_s11104_020_04427_1 crossref_primary_10_1016_j_eja_2007_12_003 crossref_primary_10_1016_j_agee_2023_108810 crossref_primary_10_1016_j_agrformet_2008_04_011 crossref_primary_10_1051_agro_2009001 crossref_primary_10_1111_j_1365_2486_2005_01021_x crossref_primary_10_1002_joc_2346 crossref_primary_10_1016_j_agrformet_2006_06_010 crossref_primary_10_1029_2006GB002702 crossref_primary_10_1111_oik_08827 crossref_primary_10_1109_LGRS_2018_2841429 crossref_primary_10_1016_j_agrformet_2008_02_006 crossref_primary_10_1111_j_1365_2486_2007_01502_x |
| Cites_doi | 10.1007/978-94-017-0519-6_48 10.1016/0378-3774(83)90095-1 10.1029/WR013i003p00651 10.1086/297129 10.1029/93GB02725 10.2307/2401901 10.2307/1941760 10.1111/j.1365-3040.1994.tb02029.x 10.1007/BF00033449 10.2307/1311763 10.1016/0168-1923(89)90098-1 10.2307/2845986 10.2307/1943158 10.1016/0304-3800(94)90098-1 10.1016/0022-1694(88)90181-3 10.1111/j.1365-3040.1995.tb00620.x 10.1890/1051-0761(1997)007[0802:AOGERT]2.0.CO;2 10.1080/01431168608948953 10.2307/2937207 10.13031/2013.31155 10.2480/agrmet.40.331 10.1016/0034-4257(87)90051-4 10.1111/j.1365-3040.1992.tb00974.x 10.1016/0304-3800(94)00072-P 10.2307/1941899 10.1016/S0065-2296(08)60370-5 10.1016/B978-0-08-092483-0.50007-4 10.1016/0304-3800(94)00199-5 10.1007/BF00123181 10.1071/PP9880705 10.1016/0034-4257(85)90095-1 10.2135/cropsci1989.0011183X002900010023x 10.1016/0034-4257(94)90021-3 10.1111/j.1365-3040.1984.tb01194.x 10.2307/2845983 10.2307/1940721 10.1016/0304-3800(85)90049-3 10.1029/93JD03221 10.1016/0034-4257(94)00066-V 10.2134/agronj1984.00021962007600020029x 10.2307/1310338 10.1111/j.1365-3040.1991.tb01439.x 10.2307/1941805 10.1007/BF00378977 10.1016/0034-4257(92)90132-4 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2 10.1093/treephys/16.10.801 10.1029/92JD01348 10.1016/B978-0-12-233440-5.50008-7 10.1016/0304-3800(91)90157-V 10.1007/BF00379710 10.1016/0304-3800(84)90070-X 10.1007/978-3-642-68090-8_3 10.1080/01431168508948283 10.1080/01431169108929728 10.1038/341142a0 10.1080/01431168608948945 10.1007/978-1-4615-9667-7_5 10.1016/0168-1923(91)90002-8 10.1007/BF00386231 10.1098/rstb.1976.0035 10.1016/0034-4257(83)90053-6 10.1016/0168-1923(94)90033-7 10.1016/0168-1923(95)02268-6 10.1007/978-3-642-68156-1_9 10.1007/978-1-4612-6182-7_2 10.1007/BF00259473 10.1098/rstb.1977.0140 10.1146/annurev.es.25.110194.003213 10.1016/S0065-2504(08)60119-1 10.1111/j.1365-3040.1995.tb00371.x |
| ContentType | Journal Article |
| Copyright | Copyright 2004 by the American Geophysical Union. 2005 INIST-CNRS |
| Copyright_xml | – notice: Copyright 2004 by the American Geophysical Union. – notice: 2005 INIST-CNRS |
| DBID | FBQ BSCLL AAYXX CITATION IQODW 7TG KL. 7S9 L.6 |
| DOI | 10.1029/2002GB001979 |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Biology |
| EISSN | 1944-9224 |
| EndPage | n/a |
| ExternalDocumentID | 16530092 10_1029_2002GB001979 GBC1121 ark_67375_WNG_8DHM4HM5_X US201300983651 |
| Genre | article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 5GY 7X2 7XC 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAJUZ AANLZ AASGY AAXRX AAZKR ABCUV ABCVL ABHUG ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACPOU ACPRK ACXBN ACXQS ADAWD ADBBV ADDAD ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFVGU AGJLS AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F5P FBQ FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LK8 LOXES LUTES LYRES M0K M2O M2P M7P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ UQL VH1 WBKPD WXSBR WYJ Y6R ZZTAW ~02 ~KM ~OA ~~A AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO ADXHL AEFGJ AEUYN AEYWJ AFFHD AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW LH4 PHGZM PHGZT PQGLB WIN AAYXX CITATION IQODW 7TG KL. 7S9 L.6 |
| ID | FETCH-LOGICAL-c5351-3c8b9438cbbd3c42debde1723e2c819e96919cfecbf89fa66ad169f308dc118a3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226133700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-6236 |
| IngestDate | Thu Oct 02 10:39:48 EDT 2025 Fri Sep 05 10:24:58 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Sat Nov 29 02:40:34 EST 2025 Tue Nov 18 21:54:25 EST 2025 Wed Aug 20 07:25:13 EDT 2025 Tue Nov 11 03:31:58 EST 2025 Wed Dec 27 19:18:55 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Functional response Water deficit simulation scaling up Carbon dioxide Environmental factor slopes North America NDVI spatial distribution currents Radiation use efficiency transpiration grasslands photosynthesis plants temperature energy 1030 Geochemistry: Geochemical cycles ; 1615 Global Change: Biogeochemical processes ; 1640 Global Change: Remote sensing; 1818 Hydrology: Evapotranspiration; net primary production models concentration heterogeneity assimilation Interannual variation radiation water vapor ecosystems primary productivity Canopy(vegetation) |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5351-3c8b9438cbbd3c42debde1723e2c819e96919cfecbf89fa66ad169f308dc118a3 |
| Notes | istex:249A746BAC1202541981A2EE059BD16225B180FF ark:/67375/WNG-8DHM4HM5-X ArticleID:2002GB001979 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2002GB001979 |
| PQID | 17739067 |
| PQPubID | 23462 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_46618539 proquest_miscellaneous_17739067 pascalfrancis_primary_16530092 crossref_citationtrail_10_1029_2002GB001979 crossref_primary_10_1029_2002GB001979 wiley_primary_10_1029_2002GB001979_GBC1121 istex_primary_ark_67375_WNG_8DHM4HM5_X fao_agris_US201300983651 |
| PublicationCentury | 2000 |
| PublicationDate | December 2004 |
| PublicationDateYYYYMMDD | 2004-12-01 |
| PublicationDate_xml | – month: 12 year: 2004 text: December 2004 |
| PublicationDecade | 2000 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC |
| PublicationTitle | Global biogeochemical cycles |
| PublicationTitleAlternate | Global Biogeochem. Cycles |
| PublicationYear | 2004 |
| Publisher | Blackwell Publishing Ltd American Geophysical Union |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
| References | Chen, D.-X., H. W. Hunt, and J. A. Morgan (1996), Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data, Ecol. Modell., 87, 11-27. Waring, R. H., J. D. Aber, J. M. Melillo, and B. Moore (1987), Precursors of change in terrestrial ecosystems, BioScience, 36, 433-438. Landsberg, J. J., and F. J. Hingston (1996), Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia, Tree Physiol., 16, 801-808. Prince, S. D., and C. J. Tucker (1986), Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation, Int. J. Remote Sens., 7, 1555-1570. Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149-179. Raupach, M. R., and J. J. Finnigan (1988), Single-layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless, Discuss. Aust. J. Plant Physiol., 15, 705-716. Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton (1991), Regional analysis of the central great plains: Sensitivity to climate variability, BioScience, 41, 685-692. Prince, S. D. (1991), A model of regional primary production for use with coarse resolution satellite data, Int. J. Remote Sens., 12, 1313-1330. Jagtap, S. S., and J. W. Jones (1989), Evapotranspiration model for developing crops, Trans. ASAE, 32, 1342-1350. Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Kleoster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811-841. Jarvis, P. G. (1995), Scaling processes and problems, Plant Cell Environ., 18, 1079-1089. Sinclair, T. R., and T. Horie (1989), Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review, Crop Sci., 29, 90-98. Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107-136. Goudriaan, J. (1989), Simulation of micrometeorology of crops, some methods and their problems, and a few results, Agric. For. Meteorol., 47, 239-258. Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980), A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90. Monteith, J. L. (1988), Does transpiration limit the growth of vegetation or vice-versa? J. Hydrol., 100, 57-68. Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, and B. J. Peterson (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399-429. Choudhury, B. J. (1994), Synergism of multispectral satellite observations for estimating regional land surface evaporation, Remote Sens. Environ., 49, 264-274. Reynolds, J. F., and B. Acock (1985), Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models, Ecol. Modell., 29, 107-129. Ojima, D. S., T. G. F. Kittel, T. Rosswall, and B. H. Walker (1991), Critical issues for understanding global change effects on terrestrial ecosystems, Ecol. Appl., 1, 316-325. Prince, S. D., and S. N. Goward (1995), Global primary production: A remote sensing approach, J. Biogeogr., 22, 815-835. Jackson, R. D., R. J. Reginato, and S. B. Idso (1977), Wheat canopy temperatures: A practical tool for evaluating water requirements, Water Resour. Res., 13, 651-656. Jackson, R. D., M. S. Moran, L. W. Gay, and L. H. Raymond (1987), Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data, Irrig. Sci., 8, 81-90. Horie, T., and T. Sakuratani (1985), Studies on crop-weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production, Jpn. J. Agric. Meteorol., 40, 331-342. Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7(11), 1417. Hirose, T., and M. T. A. Werger (1987), Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia, 72, 520-526. Chen, D.-X., M. B. Coughenour, A. K. Knapp, and C. E. Owensby (1994), Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2, Ecol. Modell., 73, 63-80. Nikolov, N. T., W. J. Massman, and A. W. Schoettle (1995), Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants, Ecol. Modell., 80, 205-235. Coughenour, M. B., and D.-X. Chen (1997), An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models, Ecol. Appl., 7, 802-827. Chen, D.-X., and M. B. Coughenour (1994), GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites, Agric. For. Meteorol., 68, 145-171. Monteith, J. L. (1977), Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. London, Ser. B, 281, 277-294. Jackson, R. D., J. L. Hatfield, R. J. Reginato, S. B. Idso, and P. J. Pinter Jr. (1983), Estimation of daily evapotranspiration from one time-of-day measurements, Agric. Water Manage., 7, 351-362. Leuning, R. (1995), A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 6, 181-194. McNaughton, K. G. (1994), Effective stomatal and boundary-layer resistances of heterogeneous surfaces, Plant Cell Environ., 17, 1061-1068. Asrar, G., E. T. Kanemasu, R. D. Jackson, and P. J. Pinter (1985), Estimation of total above ground phytomass production using remotely sensed data, Remote Sens. Environ., 17, 211-220. Norman, J. M., R. Garcia, and S. B. Verma (1992), Soil surface CO2 fluxes and carbon budget of a grassland, J. Geophys. Res., 97(D17), 18,845-18,853. Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield (1984), Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat, Agron. J., 76, 300-306. Knapp, A. K., E. P. Hamerlynk, and C. E. Owensby (1993), Photosynthesis and water relations responses to elevated CO2 in the C4 grass Andropogoz gerardii, Int. J. Plant Sci., 154, 459-466. Long, S. P. (1991), Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ., 14, 729-739. Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505-531. Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99(D3), 5263-5283. Tucker, C. J., C. L. Vanpraet, E. Boerwinkel, and A. Gaston (1983), Satellite remote sensing of total dry accumulation on the Senegalese Sahel, Remote Sens. Environ., 13, 461-474. Mooney, H. A. (1991), Biological response to climate change: An agenda for research, Ecol. Appl., 1, 112-117. Daughtry, C. S. T., K. P. Gallo, S. N. Goward, S. D. Prince, and W. P. Kustas (1992), Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies, Remote Sens. Environ., 39, 141-152. Field, C. S., J. T. Randerson, and C. M. Malmstrom (1995), Global net primary production: Combining ecology and remote sensing, Remote Sens. Environ., 51, 74-88. Goward, S. N., C. J. Tucker, and D. G. Dye (1985), North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer, Vegetatio, 64, 3-14. Monteith, J. L. (1972), Solar radiation and productivity in a tropical ecosystem, J. Appl. Ecol., 9, 747-766. McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams (1989), Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 341, 142-144. Field, C. B. (1983), Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program, Oecologia, 56, 341-347. Schimel, D. S., T. G. F. Kittel, A. K. Knapp, T. R. Seastedt, W. J. Parton, and V. B. Brown (1991), Physiological interactions along resource gradients in a tallgrass prairie, Ecology, 72, 672-684. Sellers, P. J. (1987), Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence, Remote Sens. Environ., 21, 143-183. Kim, J., and S. B. Verma (1990), Carbon dioxide exchange in a temperate grassland ecosystem, Boundary Layer Meteorol., 52, 135-149. Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593-610. Sala, O. E., W. J. Parton, L. A. Joyce, and W. K. Lauenroth (1988), Primary production of the central grassland region of the United States, Ecology, 69, 40-45. Monteith, J. L. (1995), A reinterpretation of stomatal responses to humidity, Plant Cell Environ., 18, 365-372. Woodward, F. I., and T. M. Smith (1994), Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate, Adv. Bot. Res., 20, 2-41. Hunt, H. W., M. T. Trlica, E. F. Redente, J. C. Moore, J. K. Delting, T. G. F. Kittel, D. E. Walter, M. C. Fowler, D. A. Klein, and E. T. Elliott (1991), Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Modell., 53, 205-246. Pearcy, R. W., and J. Ehleringer (1984), Comparative ecophysiology of C3 and C4 plants, Plant Cell Environ., 7, 1-13. Cowan, I. R. (1977), Stomatal behaviour and environment, Adv. Bot. Res., 4, 117-228. Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scal 1982; 12 1993; 7 1990; 52 1987; 36 1985; 29 1991; 14 1987; 8 1977; 26 1991; 12 1984; 26 1987; 72 1991; 54 1991; 53 1983; 7 1995; 76 1994; 25 1994; 68 1988; 100 1992; 15 1992; 97 1985; 64 1989; 47 1979; 32 1965; 19 1983; 13 1979 1997; 7 1996; 78 1983; 56 1977 1983; 12 1994; 20 1980; 149 1985; 17 1976; 273 1989; 32 1990 1986; 7 1986; 43 1991; 41 1995; 22 1989; 341 1987 1984; 18 1983 1981 1980 1994; 73 1989 1988 1995; 51 1991; 1 1972; 9 1988; 15 1991; 72 1986; 15 1985; 6 1992; 39 1994; 49 1985; 40 1993 1991 1995; 18 1996; 16 1958 1995; 6 1989; 29 1977; 281 1987; 21 1990; 1298 1995; 80 1984; 76 1988; 69 1984; 7 1977; 4 1994; 99 1983; 84 1977; 13 1994; 17 1996; 87 1993; 154 1981; 12 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 Norman J. M. (e_1_2_7_63_1) 1980 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 Leuning R. (e_1_2_7_48_1) 1995; 6 e_1_2_7_49_1 Woodward F. I. (e_1_2_7_90_1) 1994; 20 e_1_2_7_28_1 Cowan I. R. (e_1_2_7_16_1) 1982 Strain B. R. (e_1_2_7_85_1) 1983 e_1_2_7_73_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 Marshall J. K. (e_1_2_7_50_1) 1977 e_1_2_7_6_1 e_1_2_7_4_1 Kittel T. G. F. (e_1_2_7_42_1) 1988 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_29_1 Kumar M. (e_1_2_7_45_1) 1981 Wessman C. A. (e_1_2_7_89_1) 1990 Tanner C. B. (e_1_2_7_86_1) 1983 Monteith J. L. (e_1_2_7_54_1) 1965 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 Monteith J. L. (e_1_2_7_58_1) 1990 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 Norman J. M. (e_1_2_7_62_1) 1979 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Hari P. (e_1_2_7_27_1) 1984; 18 e_1_2_7_38_1 |
| References_xml | – reference: Schultze, E.-D., F. M. Kelliher, C. Korner, J. Lloyd, and R. Leuning (1994), Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen: A global ecology scaling exercise, Annu. Rev. Ecol. Syst., 25, 629-660. – reference: Long, S. P. (1991), Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ., 14, 729-739. – reference: Coughenour, M. B., and D.-X. Chen (1997), An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models, Ecol. Appl., 7, 802-827. – reference: Landsberg, J. J., and F. J. Hingston (1996), Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia, Tree Physiol., 16, 801-808. – reference: Harley, P. C., R. B. Thomas, J. F. Reynolds, and B. R. Strain (1992), Modelling photosynthesis of cotton grown in elevated CO2, Plant Cell Environ., 15, 271-282. – reference: Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield (1984), Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat, Agron. J., 76, 300-306. – reference: Goudriaan, J. (1989), Simulation of micrometeorology of crops, some methods and their problems, and a few results, Agric. For. Meteorol., 47, 239-258. – reference: Monteith, J. L. (1988), Does transpiration limit the growth of vegetation or vice-versa? J. Hydrol., 100, 57-68. – reference: Jackson, R. D., M. S. Moran, L. W. Gay, and L. H. Raymond (1987), Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data, Irrig. Sci., 8, 81-90. – reference: Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res., 15, 1-49. – reference: Sinclair, T. R., and T. Horie (1989), Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review, Crop Sci., 29, 90-98. – reference: Jackson, R. D., R. J. Reginato, and S. B. Idso (1977), Wheat canopy temperatures: A practical tool for evaluating water requirements, Water Resour. Res., 13, 651-656. – reference: Waring, R. H., J. D. Aber, J. M. Melillo, and B. Moore (1987), Precursors of change in terrestrial ecosystems, BioScience, 36, 433-438. – reference: Coughenour, M. B. (1984), A mechanistic simulation analysis of water use, leaf angles, and grazing in east African graminoids, Ecol. Modell., 26, 203-230. – reference: Hari, P., T. Nilson, R. Salminen, L. Kaipiainen, E. Korpilahti, and J. Ross (1984), Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed, Photosynthetica, 18, 28-33. – reference: Jagtap, S. S., and J. W. Jones (1989), Evapotranspiration model for developing crops, Trans. ASAE, 32, 1342-1350. – reference: Jarvis, P. G. (1995), Scaling processes and problems, Plant Cell Environ., 18, 1079-1089. – reference: Monteith, J. L. (1995), A reinterpretation of stomatal responses to humidity, Plant Cell Environ., 18, 365-372. – reference: Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593-610. – reference: Field, C. S., J. T. Randerson, and C. M. Malmstrom (1995), Global net primary production: Combining ecology and remote sensing, Remote Sens. Environ., 51, 74-88. – reference: Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton (1991), Regional analysis of the central great plains: Sensitivity to climate variability, BioScience, 41, 685-692. – reference: Chen, D.-X., H. W. Hunt, and J. A. Morgan (1996), Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data, Ecol. Modell., 87, 11-27. – reference: Hunt, H. W., M. T. Trlica, E. F. Redente, J. C. Moore, J. K. Delting, T. G. F. Kittel, D. E. Walter, M. C. Fowler, D. A. Klein, and E. T. Elliott (1991), Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Modell., 53, 205-246. – reference: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, and VEMAP Modeling Participants (1995), The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change, J. Biogeogr., 22, 857-862. – reference: Monteith, J. L. (1972), Solar radiation and productivity in a tropical ecosystem, J. Appl. Ecol., 9, 747-766. – reference: Norman, J. M., R. Garcia, and S. B. Verma (1992), Soil surface CO2 fluxes and carbon budget of a grassland, J. Geophys. Res., 97(D17), 18,845-18,853. – reference: Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107-136. – reference: Paruelo, J. M., and W. K. Lauenroth (1995), Regional patterns of normalized difference vegetation index in North American shrublands and grasslands, Ecology, 76, 1888-1898. – reference: Prince, S. D. (1991), A model of regional primary production for use with coarse resolution satellite data, Int. J. Remote Sens., 12, 1313-1330. – reference: Sellers, P. J. (1987), Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence, Remote Sens. Environ., 21, 143-183. – reference: McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams (1989), Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 341, 142-144. – reference: Raupach, M. R., and J. J. Finnigan (1988), Single-layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless, Discuss. Aust. J. Plant Physiol., 15, 705-716. – reference: Hirose, T., and M. T. A. Werger (1987), Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia, 72, 520-526. – reference: Goward, S. N., C. J. Tucker, and D. G. Dye (1985), North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer, Vegetatio, 64, 3-14. – reference: Daughtry, C. S. T., K. P. Gallo, S. N. Goward, S. D. Prince, and W. P. Kustas (1992), Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies, Remote Sens. Environ., 39, 141-152. – reference: Reynolds, J. F., and B. Acock (1985), Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models, Ecol. Modell., 29, 107-129. – reference: Jackson, R. D., J. L. Hatfield, R. J. Reginato, S. B. Idso, and P. J. Pinter Jr. (1983), Estimation of daily evapotranspiration from one time-of-day measurements, Agric. Water Manage., 7, 351-362. – reference: Schimel, D. S., T. G. F. Kittel, A. K. Knapp, T. R. Seastedt, W. J. Parton, and V. B. Brown (1991), Physiological interactions along resource gradients in a tallgrass prairie, Ecology, 72, 672-684. – reference: Woodward, F. I., and T. M. Smith (1994), Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate, Adv. Bot. Res., 20, 2-41. – reference: Leuning, R. (1995), A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 6, 181-194. – reference: Pearcy, R. W., and J. Ehleringer (1984), Comparative ecophysiology of C3 and C4 plants, Plant Cell Environ., 7, 1-13. – reference: Asrar, G., E. T. Kanemasu, R. D. Jackson, and P. J. Pinter (1985), Estimation of total above ground phytomass production using remotely sensed data, Remote Sens. Environ., 17, 211-220. – reference: Tucker, C. J., C. L. Vanpraet, E. Boerwinkel, and A. Gaston (1983), Satellite remote sensing of total dry accumulation on the Senegalese Sahel, Remote Sens. Environ., 13, 461-474. – reference: Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980), A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90. – reference: Field, C. B. (1983), Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program, Oecologia, 56, 341-347. – reference: Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7(11), 1417. – reference: McNaughton, K. G. (1994), Effective stomatal and boundary-layer resistances of heterogeneous surfaces, Plant Cell Environ., 17, 1061-1068. – reference: Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, and B. J. Peterson (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399-429. – reference: Sellers, P. J. (1985), Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 6, 1335-1372. – reference: Chen, D.-X., M. B. Coughenour, A. K. Knapp, and C. E. Owensby (1994), Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2, Ecol. Modell., 73, 63-80. – reference: Monteith, J. L. (1977), Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. London, Ser. B, 281, 277-294. – reference: Cowan, I. R. (1977), Stomatal behaviour and environment, Adv. Bot. Res., 4, 117-228. – reference: Kim, J., and S. B. Verma (1990), Carbon dioxide exchange in a temperate grassland ecosystem, Boundary Layer Meteorol., 52, 135-149. – reference: Prince, S. D., and S. N. Goward (1995), Global primary production: A remote sensing approach, J. Biogeogr., 22, 815-835. – reference: Mooney, H. A. (1991), Biological response to climate change: An agenda for research, Ecol. Appl., 1, 112-117. – reference: Prince, S. D., and C. J. Tucker (1986), Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation, Int. J. Remote Sens., 7, 1555-1570. – reference: Knapp, A. K., E. P. Hamerlynk, and C. E. Owensby (1993), Photosynthesis and water relations responses to elevated CO2 in the C4 grass Andropogoz gerardii, Int. J. Plant Sci., 154, 459-466. – reference: Chen, D.-X., and M. B. Coughenour (1994), GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites, Agric. For. Meteorol., 68, 145-171. – reference: Sala, O. E., W. J. Parton, L. A. Joyce, and W. K. Lauenroth (1988), Primary production of the central grassland region of the United States, Ecology, 69, 40-45. – reference: Choudhury, B. J. (1994), Synergism of multispectral satellite observations for estimating regional land surface evaporation, Remote Sens. Environ., 49, 264-274. – reference: Horie, T., and T. Sakuratani (1985), Studies on crop-weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production, Jpn. J. Agric. Meteorol., 40, 331-342. – reference: Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149-179. – reference: Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Kleoster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811-841. – reference: Ojima, D. S., T. G. F. Kittel, T. Rosswall, and B. H. Walker (1991), Critical issues for understanding global change effects on terrestrial ecosystems, Ecol. Appl., 1, 316-325. – reference: Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99(D3), 5263-5283. – reference: Nikolov, N. T., W. J. Massman, and A. W. Schoettle (1995), Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants, Ecol. Modell., 80, 205-235. – reference: Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505-531. – volume: 39 start-page: 141 year: 1992 end-page: 152 article-title: Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies publication-title: Remote Sens. Environ. – volume: 29 start-page: 90 year: 1989 end-page: 98 article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review publication-title: Crop Sci. – volume: 53 start-page: 205 year: 1991 end-page: 246 article-title: Simulation model for the effects of climate change on temperate grassland ecosystems publication-title: Ecol. Modell. – volume: 6 start-page: 181 year: 1995 end-page: 194 article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants publication-title: Plant Cell Environ. – start-page: 1 year: 1983 end-page: 27 – start-page: 173 year: 1988 end-page: 193 – start-page: 49 year: 1980 end-page: 68 – volume: 1 start-page: 316 year: 1991 end-page: 325 article-title: Critical issues for understanding global change effects on terrestrial ecosystems publication-title: Ecol. Appl. – volume: 32 start-page: 3 year: 1979 end-page: 24 – volume: 97 start-page: 18,845 issue: D17 year: 1992 end-page: 18,853 article-title: Soil surface CO fluxes and carbon budget of a grassland publication-title: J. Geophys. Res. – volume: 154 start-page: 459 year: 1993 end-page: 466 article-title: Photosynthesis and water relations responses to elevated CO in the C4 grass publication-title: Int. J. Plant Sci. – volume: 7 start-page: 802 year: 1997 end-page: 827 article-title: An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models publication-title: Ecol. Appl. – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species publication-title: Planta – volume: 1 start-page: 112 year: 1991 end-page: 117 article-title: Biological response to climate change: An agenda for research publication-title: Ecol. Appl. – volume: 22 start-page: 857 year: 1995 end-page: 862 article-title: The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change publication-title: J. Biogeogr. – volume: 7 start-page: 1 year: 1984 end-page: 13 article-title: Comparative ecophysiology of C3 and C4 plants publication-title: Plant Cell Environ. – volume: 18 start-page: 365 year: 1995 end-page: 372 article-title: A reinterpretation of stomatal responses to humidity publication-title: Plant Cell Environ. – year: 1990 – volume: 4 start-page: 117 year: 1977 end-page: 228 article-title: Stomatal behaviour and environment publication-title: Adv. Bot. Res. – volume: 6 start-page: 1335 year: 1985 end-page: 1372 article-title: Canopy reflectance, photosynthesis and transpiration publication-title: Int. J. Remote Sens. – volume: 8 start-page: 81 year: 1987 end-page: 90 article-title: Evaluating evaporation from field crops using airborne radiometry and ground‐based meteorological data publication-title: Irrig. Sci. – volume: 80 start-page: 205 year: 1995 end-page: 235 article-title: Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants publication-title: Ecol. Modell. – start-page: 221 year: 1987 end-page: 224 – volume: 51 start-page: 74 year: 1995 end-page: 88 article-title: Global net primary production: Combining ecology and remote sensing publication-title: Remote Sens. Environ. – volume: 13 start-page: 651 year: 1977 end-page: 656 article-title: Wheat canopy temperatures: A practical tool for evaluating water requirements publication-title: Water Resour. Res. – volume: 40 start-page: 331 year: 1985 end-page: 342 article-title: Studies on crop‐weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production publication-title: Jpn. J. Agric. Meteorol. – volume: 21 start-page: 143 year: 1987 end-page: 183 article-title: Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence publication-title: Remote Sens. Environ. – volume: 43 start-page: 505 year: 1986 end-page: 531 article-title: A simple biosphere model (SiB) for use within general circulation models publication-title: J. Atmos. Sci. – volume: 72 start-page: 520 year: 1987 end-page: 526 article-title: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy publication-title: Oecologia – volume: 12 start-page: 233 year: 1983 end-page: 280 – volume: 7 start-page: 351 year: 1983 end-page: 362 article-title: Estimation of daily evapotranspiration from one time‐of‐day measurements publication-title: Agric. Water Manage. – volume: 64 start-page: 3 year: 1985 end-page: 14 article-title: North American vegetation patterns observed with the NOAA‐7 advanced very high resolution radiometer publication-title: Vegetatio – volume: 72 start-page: 672 year: 1991 end-page: 684 article-title: Physiological interactions along resource gradients in a tallgrass prairie publication-title: Ecology – volume: 68 start-page: 145 year: 1994 end-page: 171 article-title: GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites publication-title: Agric. For. Meteorol. – volume: 22 start-page: 815 year: 1995 end-page: 835 article-title: Global primary production: A remote sensing approach publication-title: J. Biogeogr. – volume: 15 start-page: 705 year: 1988 end-page: 716 article-title: Single‐layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless publication-title: Discuss. Aust. J. Plant Physiol. – volume: 19 start-page: 205 year: 1965 end-page: 234 – start-page: 133 year: 1981 end-page: 144 – volume: 56 start-page: 341 year: 1983 end-page: 347 article-title: Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program publication-title: Oecologia – volume: 12 start-page: 41 year: 1981 end-page: 55 – start-page: 69 year: 1989 end-page: 104 – volume: 41 start-page: 685 year: 1991 end-page: 692 article-title: Regional analysis of the central great plains: Sensitivity to climate variability publication-title: BioScience – start-page: 249 year: 1979 end-page: 277 – volume: 25 start-page: 629 year: 1994 end-page: 660 article-title: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen: A global ecology scaling exercise publication-title: Annu. Rev. Ecol. Syst. – volume: 17 start-page: 1061 year: 1994 end-page: 1068 article-title: Effective stomatal and boundary‐layer resistances of heterogeneous surfaces publication-title: Plant Cell Environ. – volume: 16 start-page: 801 year: 1996 end-page: 808 article-title: Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia publication-title: Tree Physiol. – year: 1958 – volume: 78 start-page: 149 year: 1996 end-page: 179 article-title: Remote sensing of net primary production in boreal forest stands publication-title: Agric. For. Meteorol. – volume: 26 start-page: 123 year: 1977 end-page: 132 – volume: 84 start-page: 177 year: 1983 end-page: 222 – volume: 32 start-page: 1342 year: 1989 end-page: 1350 article-title: Evapotranspiration model for developing crops publication-title: Trans. ASAE – volume: 47 start-page: 239 year: 1989 end-page: 258 article-title: Simulation of micrometeorology of crops, some methods and their problems, and a few results publication-title: Agric. For. Meteorol. – volume: 18 start-page: 28 year: 1984 end-page: 33 article-title: Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed publication-title: Photosynthetica – year: 1987 – volume: 36 start-page: 433 year: 1987 end-page: 438 article-title: Precursors of change in terrestrial ecosystems publication-title: BioScience – volume: 1 start-page: 399 year: 1991 end-page: 429 article-title: Potential net primary productivity in South America: Application of a global model publication-title: Ecol. Appl. – start-page: 1 year: 1990 end-page: 16 – volume: 29 start-page: 107 year: 1985 end-page: 129 article-title: Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models publication-title: Ecol. Modell. – volume: 52 start-page: 135 year: 1990 end-page: 149 article-title: Carbon dioxide exchange in a temperate grassland ecosystem publication-title: Boundary Layer Meteorol. – volume: 13 start-page: 461 year: 1983 end-page: 474 article-title: Satellite remote sensing of total dry accumulation on the Senegalese Sahel publication-title: Remote Sens. Environ. – volume: 17 start-page: 211 year: 1985 end-page: 220 article-title: Estimation of total above ground phytomass production using remotely sensed data publication-title: Remote Sens. Environ. – volume: 9 start-page: 747 year: 1972 end-page: 766 article-title: Solar radiation and productivity in a tropical ecosystem publication-title: J. Appl. Ecol. – year: 1977 – volume: 7 start-page: 1417 issue: 11 year: 1986 article-title: Characteristics of maximum‐value composite images from temporal AVHRR data publication-title: Int. J. Remote Sens. – volume: 87 start-page: 11 year: 1996 end-page: 27 article-title: Responses of a C3 and C4 perennial grass to CO enrichment and climate change: Comparison between model predictions and experimental data publication-title: Ecol. Modell. – volume: 54 start-page: 107 year: 1991 end-page: 136 article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer publication-title: Agric. For. Meteorol. – volume: 15 start-page: 271 year: 1992 end-page: 282 article-title: Modelling photosynthesis of cotton grown in elevated CO publication-title: Plant Cell Environ. – volume: 12 start-page: 589 year: 1982 end-page: 613 – volume: 273 start-page: 593 year: 1976 end-page: 610 article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field publication-title: Philos. Trans. R. Soc. London, Ser. B – volume: 49 start-page: 264 year: 1994 end-page: 274 article-title: Synergism of multispectral satellite observations for estimating regional land surface evaporation publication-title: Remote Sens. Environ. – volume: 76 start-page: 1888 year: 1995 end-page: 1898 article-title: Regional patterns of normalized difference vegetation index in North American shrublands and grasslands publication-title: Ecology – volume: 12 start-page: 1313 year: 1991 end-page: 1330 article-title: A model of regional primary production for use with coarse resolution satellite data publication-title: Int. J. Remote Sens. – volume: 15 start-page: 1 year: 1986 end-page: 49 article-title: Stomatal control of transpiration: Scaling up from leaf to region publication-title: Adv. Ecol. Res. – volume: 69 start-page: 40 year: 1988 end-page: 45 article-title: Primary production of the central grassland region of the United States publication-title: Ecology – volume: 73 start-page: 63 year: 1994 end-page: 80 article-title: Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO publication-title: Ecol. Modell. – volume: 76 start-page: 300 year: 1984 end-page: 306 article-title: Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat publication-title: Agron. J. – volume: 26 start-page: 203 year: 1984 end-page: 230 article-title: A mechanistic simulation analysis of water use, leaf angles, and grazing in east African graminoids publication-title: Ecol. Modell. – volume: 18 start-page: 1079 year: 1995 end-page: 1089 article-title: Scaling processes and problems publication-title: Plant Cell Environ. – volume: 14 start-page: 729 year: 1991 end-page: 739 article-title: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO concentrations: Has its importance been underestimated? publication-title: Plant Cell Environ. – volume: 99 start-page: 5263 issue: D3 year: 1994 end-page: 5283 article-title: Methodology for the estimation of terrestrial net primary production from remotely sensed data publication-title: J. Geophys. Res. – volume: 7 start-page: 811 year: 1993 end-page: 841 article-title: Terrestrial ecosystem production: A process model based on global satellite and surface data publication-title: Global Biogeochem. Cycles – volume: 341 start-page: 142 year: 1989 end-page: 144 article-title: Ecosystem‐level patterns of primary productivity and herbivory in terrestrial habitats publication-title: Nature – volume: 7 start-page: 1555 year: 1986 end-page: 1570 article-title: Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation publication-title: Int. J. Remote Sens. – volume: 20 start-page: 2 year: 1994 end-page: 41 article-title: Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate publication-title: Adv. Bot. Res. – volume: 1298 start-page: 164 year: 1990 end-page: 170 – volume: 100 start-page: 57 year: 1988 end-page: 68 article-title: Does transpiration limit the growth of vegetation or vice‐versa? publication-title: J. Hydrol. – start-page: 21 year: 1993 end-page: 36 – start-page: 35 year: 1991 end-page: 65 – volume: 281 start-page: 277 year: 1977 end-page: 294 article-title: Climate and the efficiency of crop production in Britain publication-title: Philos. Trans. R. Soc. London, Ser. B – ident: e_1_2_7_6_1 doi: 10.1007/978-94-017-0519-6_48 – ident: e_1_2_7_34_1 doi: 10.1016/0378-3774(83)90095-1 – ident: e_1_2_7_33_1 doi: 10.1029/WR013i003p00651 – ident: e_1_2_7_44_1 doi: 10.1086/297129 – ident: e_1_2_7_68_1 doi: 10.1029/93GB02725 – volume: 18 start-page: 28 year: 1984 ident: e_1_2_7_27_1 article-title: Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed publication-title: Photosynthetica – start-page: 123 volume-title: The Belowground Ecosystem: A Synthesis of Plant‐Associated Processes year: 1977 ident: e_1_2_7_50_1 – ident: e_1_2_7_55_1 doi: 10.2307/2401901 – ident: e_1_2_7_65_1 doi: 10.2307/1941760 – start-page: 249 volume-title: Modification of the Aerial Environment of Crops year: 1979 ident: e_1_2_7_62_1 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-3040.1994.tb02029.x – ident: e_1_2_7_26_1 doi: 10.1007/BF00033449 – ident: e_1_2_7_7_1 doi: 10.2307/1311763 – ident: e_1_2_7_25_1 doi: 10.1016/0168-1923(89)90098-1 – ident: e_1_2_7_43_1 doi: 10.2307/2845986 – ident: e_1_2_7_76_1 doi: 10.2307/1943158 – ident: e_1_2_7_9_1 doi: 10.1016/0304-3800(94)90098-1 – ident: e_1_2_7_57_1 doi: 10.1016/0022-1694(88)90181-3 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-3040.1995.tb00620.x – ident: e_1_2_7_14_1 doi: 10.1890/1051-0761(1997)007[0802:AOGERT]2.0.CO;2 – start-page: 1 volume-title: Theoretical Production Ecology: Reflections and Prospects year: 1990 ident: e_1_2_7_58_1 – ident: e_1_2_7_71_1 doi: 10.1080/01431168608948953 – start-page: 164 volume-title: SPIE Technical Symposium on Optics, Electro‐Optics, and Sensors year: 1990 ident: e_1_2_7_89_1 – ident: e_1_2_7_78_1 doi: 10.2307/2937207 – ident: e_1_2_7_2_1 – ident: e_1_2_7_36_1 doi: 10.13031/2013.31155 – ident: e_1_2_7_31_1 doi: 10.2480/agrmet.40.331 – ident: e_1_2_7_24_1 – ident: e_1_2_7_82_1 doi: 10.1016/0034-4257(87)90051-4 – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-3040.1992.tb00974.x – ident: e_1_2_7_61_1 doi: 10.1016/0304-3800(94)00072-P – ident: e_1_2_7_72_1 doi: 10.2307/1941899 – ident: e_1_2_7_15_1 doi: 10.1016/S0065-2296(08)60370-5 – ident: e_1_2_7_21_1 doi: 10.1016/B978-0-08-092483-0.50007-4 – ident: e_1_2_7_10_1 doi: 10.1016/0304-3800(94)00199-5 – start-page: 133 volume-title: Plants and the Daylight Spectrum year: 1981 ident: e_1_2_7_45_1 – ident: e_1_2_7_41_1 doi: 10.1007/BF00123181 – ident: e_1_2_7_73_1 doi: 10.1071/PP9880705 – ident: e_1_2_7_5_1 doi: 10.1016/0034-4257(85)90095-1 – ident: e_1_2_7_84_1 doi: 10.2135/cropsci1989.0011183X002900010023x – ident: e_1_2_7_11_1 doi: 10.1016/0034-4257(94)90021-3 – ident: e_1_2_7_67_1 doi: 10.1111/j.1365-3040.1984.tb01194.x – ident: e_1_2_7_70_1 doi: 10.2307/2845983 – ident: e_1_2_7_66_1 doi: 10.2307/1940721 – ident: e_1_2_7_74_1 doi: 10.1016/0304-3800(85)90049-3 – ident: e_1_2_7_75_1 doi: 10.1029/93JD03221 – ident: e_1_2_7_22_1 doi: 10.1016/0034-4257(94)00066-V – ident: e_1_2_7_4_1 doi: 10.2134/agronj1984.00021962007600020029x – ident: e_1_2_7_88_1 doi: 10.2307/1310338 – start-page: 173 volume-title: Monitoring Climate for the Effects of Increasing Greenhouse Gas Concentrations year: 1988 ident: e_1_2_7_42_1 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-3040.1991.tb01439.x – ident: e_1_2_7_60_1 doi: 10.2307/1941805 – ident: e_1_2_7_29_1 doi: 10.1007/BF00378977 – ident: e_1_2_7_17_1 doi: 10.1016/0034-4257(92)90132-4 – start-page: 205 volume-title: The State and Movement of Water in Living Organisms year: 1965 ident: e_1_2_7_54_1 – ident: e_1_2_7_83_1 doi: 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2 – ident: e_1_2_7_46_1 doi: 10.1093/treephys/16.10.801 – ident: e_1_2_7_64_1 doi: 10.1029/92JD01348 – ident: e_1_2_7_79_1 doi: 10.1016/B978-0-12-233440-5.50008-7 – ident: e_1_2_7_32_1 doi: 10.1016/0304-3800(91)90157-V – ident: e_1_2_7_20_1 doi: 10.1007/BF00379710 – ident: e_1_2_7_13_1 doi: 10.1016/0304-3800(84)90070-X – ident: e_1_2_7_51_1 doi: 10.1007/978-3-642-68090-8_3 – start-page: 177 volume-title: CO2and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide year: 1983 ident: e_1_2_7_85_1 – start-page: 1 volume-title: Limitations to Efficient Water Use in Crop Production year: 1983 ident: e_1_2_7_86_1 – start-page: 49 volume-title: Predicting Photosynthesis for Ecosystem Models year: 1980 ident: e_1_2_7_63_1 – ident: e_1_2_7_81_1 doi: 10.1080/01431168508948283 – ident: e_1_2_7_69_1 doi: 10.1080/01431169108929728 – ident: e_1_2_7_53_1 doi: 10.1038/341142a0 – start-page: 589 volume-title: Encyclopedia of Plant Ecophysiology year: 1982 ident: e_1_2_7_16_1 – ident: e_1_2_7_30_1 doi: 10.1080/01431168608948945 – volume: 20 start-page: 2 year: 1994 ident: e_1_2_7_90_1 article-title: Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate publication-title: Adv. Bot. Res. – ident: e_1_2_7_3_1 doi: 10.1007/978-1-4615-9667-7_5 – volume: 6 start-page: 181 year: 1995 ident: e_1_2_7_48_1 article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants publication-title: Plant Cell Environ. – ident: e_1_2_7_77_1 – ident: e_1_2_7_12_1 doi: 10.1016/0168-1923(91)90002-8 – ident: e_1_2_7_19_1 doi: 10.1007/BF00386231 – ident: e_1_2_7_37_1 doi: 10.1098/rstb.1976.0035 – ident: e_1_2_7_87_1 doi: 10.1016/0034-4257(83)90053-6 – ident: e_1_2_7_8_1 doi: 10.1016/0168-1923(94)90033-7 – ident: e_1_2_7_18_1 – ident: e_1_2_7_23_1 doi: 10.1016/0168-1923(95)02268-6 – ident: e_1_2_7_39_1 doi: 10.1007/978-3-642-68156-1_9 – ident: e_1_2_7_47_1 doi: 10.1007/978-1-4612-6182-7_2 – ident: e_1_2_7_35_1 doi: 10.1007/BF00259473 – ident: e_1_2_7_56_1 doi: 10.1098/rstb.1977.0140 – ident: e_1_2_7_80_1 doi: 10.1146/annurev.es.25.110194.003213 – ident: e_1_2_7_40_1 doi: 10.1016/S0065-2504(08)60119-1 – ident: e_1_2_7_59_1 doi: 10.1111/j.1365-3040.1995.tb00371.x |
| SSID | ssj0014559 |
| Score | 1.9091169 |
| Snippet | Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these... |
| SourceID | proquest pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | GB4033.1 |
| SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Earth sciences Earth, ocean, space evapotranspiration Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects General Energy Mass Transfer Model Geochemistry grasslands leaf area index leaves mathematical models NDVI net primary production nitrogen content photosynthesis primary productivity radiation use efficiency remote sensing scaling up simulation models spatial variation stomatal conductance Synecology temporal variation transpiration United States |
| Title | Photosynthesis, transpiration, and primary productivity: scaling up from leaves to canopies and regions using process models and remotely sensed data |
| URI | https://api.istex.fr/ark:/67375/WNG-8DHM4HM5-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2002GB001979 https://www.proquest.com/docview/17739067 https://www.proquest.com/docview/46618539 |
| Volume | 18 |
| WOSCitedRecordID | wos000226133700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-9224 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014559 issn: 0886-6236 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-9224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014559 issn: 0886-6236 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVggDQegBXQykfxAyA-Fq1JbCfmjW20RWLVxKjWN8t27FFRJVHTTvSH8H-5dtLSPgwJ8X7txPa99rF9fQ5CL3XCNSU2C5S0UUAUUUFqSBI4-GBJpDTR2otNJMNhOh7zs-bAzb2Fqfkh1gduLjL8fO0CXKqqIRtwHJkuu6B_5CBK4t7vhSR0AgYXn4frSwRCvVYaxBELYJVnTd47FD_cLLy1It20sgCc6rr4p8uTlBV0la01LrZA6CaU9WtR7_7_tuIButegUPyxdps9dMPkLXSn1qVcttDdDZbCFtpr4r_CbxqS6rcP0a-z78W8qJY5AMhqUh3guWdJn9QOdYBlnuGyZrLAZc0q62UqPuBzaCrUixcldm9b8NTIK6h7XmAY5aKEnbsv7BQjICKwS8y_xGX9ngF74Z6VAXiZmS5xBTtxk2GX6_oIjXqfvh0PgkbiIdA0pmEQ61RxEqdaqSzWJMqMygxgqthEGrCK4YyHXFujlU25lYzJLGTcxt0007A1kvFjtJMXudlH2MQktQw2-5YyIplVMpGUwPpMI2soSdro_WqYhW74z50Mx1T4e_iIi82xaKNXa-umt66x2wePEfISpmQxOo_cRXCXpzGjYRu99m60Li9nP1waXULFxbAv0pPBKRmcUjFuo86Wn_35IKOutqiNXqwcT0D0uysdmZtiUYkwSWIOgON6CwIADCAZ_Og774d_bY3oHx0DAA-f_IvxU7S7Yr_shs_Qzny2MM_RbX01n1SzDrp18rU3-tLxofkbaJs2XA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXYAAEPwApo4WPzAyAGi2gS24l5Y4O1E2s1aZvWN8tx7FFRJVGTTvSH8H-5dtLSPgwJ8X7txPa99rF9fQ5Cr1XMFSUm81NpQp-kJPUTTWLfwgdDwlQRpZzYRDwcJqMRP211Tu1bmIYfYnngZiPDzdc2wO2BdMs2YEkybXpB78BilJhvoNsEsIbVbrg8Hi6vEQh1amkQScyHdZ61me9Q_uNq6bU1acPIApCq7eSfNlNSVtBZplG5WIOhq2DWrUZHj_67HY_RwxaI4s-N52yhWzrvoLuNNOW8gx6sEBV20FY7BVT4XctTvfcE_Tr9XtRFNc8BQ1bjah_Xjih93PjUPpZ5hsuGzAKXDbGsU6r4hM-grVAvnpXYPm_BEy2voe66wDDQRQmbd1fYikZAUGCbm3-Fy-ZJA3baPQsDcDQ9meMKNuM6wzbd9Sm6OPp6ftj3W5UHX9GIBn6kkpSTKFFpmkWKhJlOMw2wKtKhAriiOeMBV0ar1CTcSMZkFjBuom6SKdgdyegZ2syLXG8jrCOSGAb7fUMZkcykMpaUwBJNQ6MpiT30YTHOQrUU6FaJYyLcVXzIxepYeOjN0rrtrRvstsFlhLyCWVlcnIX2LrjLk4jRwENvnR8ty8vpD5tJF1NxOeyJ5Et_QPoDKkYe2llztD8fZNTWFnpod-F5AiYAe6sjc13MKhHEccQBc9xsQQCDASqDH33vHPGvrRG9g0PA4MHzfzHeRff654MTcXI8_PYC3V-QYXaDl2izns70K3RHXdfjarrj4vM3-4842g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVYBwgegBXQysfmB0B8LKJJbCfmja20RWxVxVbRN8tx7FFRJVHTTvSH8H-5dtLSPgwJ8X7t1Pa99nHv9TkIvVARV5SY1EukCTySkMSLNYk8Cx8MCRJFlHJiE9FgEI_HfFjrnNq3MBU_xPoPNxsZbr-2Aa6L1NRsA5Yk05YX9I4tRon4DtolVkemgXY7X7uj03UigVCnlwaxxDw46Vld-w49vN9sv3Uq7RiZA1a10_zT1krKEqbLVDoXW0B0E86686h7_79H8gDdq6Eo_lj5zh66obMmulWJUy6b6O4GVWET7dWbQIlf10zVbx6iX8Pv-TwvlxmgyHJSHuG5o0qfVF51hGWW4qKis8BFRS3rtCo-4HMYK_SLFwW2D1zwVMsr6HueY1jqvIDru2tsZSMgLLCtzr_ERfWoATv1npUBuJqeLnEJ13GdYlvw-giNup8uTvperfPgKRpS3wtVnHASxipJ0lCRINVJqgFYhTpQAFg0Z9znymiVmJgbyZhMfcZN2I5TBfcjGT5GjSzP9D7COiSxYXDjN5QRyUwiI0kJHNI0MJqSqIXerdZZqJoE3WpxTIVLxgdcbK5FC71cW9ezdY3dPriMkJewL4vReWCzwW0eh4z6LfTK-dG6vZz9sLV0ERXfBj0Rd_pnpH9GxbiFDrYc7c8HGbW9BS10uPI8AVuAzevITOeLUvhRFHJAHddbEEBhgMvgh751jvjX0Yje8QmgcP_JvxgfotvDTlecfh58eYrurNgw2_4z1JjPFvo5uqmu5pNydlAH6G8lfDmD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosynthesis%2C+transpiration%2C+and+primary+productivity+%3A+Scaling+up+from+leaves+to+canopies+and+regions+using+process+models+and+remotely+sensed+data&rft.jtitle=Global+biogeochemical+cycles&rft.au=CHEN%2C+D.-X&rft.au=COUGHENOUR%2C+M.+B&rft.date=2004-12-01&rft.pub=American+Geophysical+Union&rft.issn=0886-6236&rft.volume=18&rft.issue=4&rft.spage=GB4033.1&rft.epage=GB4033.15&rft_id=info:doi/10.1029%2F2002GB001979&rft.externalDBID=n%2Fa&rft.externalDocID=16530092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon |