Photosynthesis, transpiration, and primary productivity: scaling up from leaves to canopies and regions using process models and remotely sensed data

Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to h...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles Vol. 18; no. 4; pp. GB4033.1 - n/a
Main Authors: Chen, D.X, Coughenour, M.B
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 01.12.2004
American Geophysical Union
Subjects:
ISSN:0886-6236, 1944-9224
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m2/year in the northwest to 956 gC/m2/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH2O/year to 136 cmH2O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required.
AbstractList Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process-oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO sub(2) concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22 degree C and 26 degree C optimal temperature under current ambient and doubled CO sub(2) concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m super(2)/year in the northwest to 956 gC/m super(2)/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH sub(2)O/year to 136 cmH sub(2)O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large-scale analyses, although more complete analysis and validation are required..
Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m2/year in the northwest to 956 gC/m2/year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH2O/year to 136 cmH2O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required.
Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process‐oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO 2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO 2 concentration, respectively. A simple parametric NPP model and a regional transpiration model (Tr model) were developed from the relationships and parameter values obtained using the GEMTM. The NPP model reasonably simulated the seasonal and interannual variations of accumulated NPP estimated from field data. Simulated regional distribution of NPP over the Central Grassland Region of the United States was consistent with estimates obtained using other models. NPP increased from 120 gC/m 2 /year in the northwest to 956 gC/m 2 /year in the southeast. Simulated regional transpiration had a similar spatial distribution pattern as NPP, ranging from about 16 cmH 2 O/year to 136 cmH 2 O/year. The transpiration model introduced in this study provides a mechanism to explicitly couple transpiration and NPP in large‐scale analyses, although more complete analysis and validation are required.
Author Coughenour, M.B
Chen, D.X
Author_xml – sequence: 1
  fullname: Chen, D.X
– sequence: 2
  fullname: Coughenour, M.B
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16530092$$DView record in Pascal Francis
BookMark eNqFkUFvEzEUhFeoSKSFG3d8gVMW_Oxdr82NBkiQWkCCCm6W433bGjbrsM8p5Ifwf3FIqBBCcHo-fDPyzBwXR0McsCjuA38MXJgngnMxP-UcTGNuFRMwVVUaIaqjYsK1VqUSUt0pjok-ZaaqazMpvr-9iinSdkhXSIGmLI1uoHUYXQpxmDI3tGw9hpUbt_nGduNTuA5p-5SRd30YLtlmzboxrliP7hqJpci8G-I65PdOPOJlNiK2oR2cLTwSsVVssf8FrGLCfssIB8KWtS65u8XtzvWE9w73pLh4-eL9bFGevZm_mj07K30tayil10tTSe2Xy1b6SrS4bBEaIVF4DQaNMmB8h37ZadM5pVwLynSS69YDaCdPikd73_yvLxukZFeBPPa9GzBuyFZKga6l-S8ITSMNV00GHx5Atyuoy236QPZQoQVVS86NyJzYc36MRCN21of0s_M8QOgtcLub1P4-aRZN_xDd-P4dhz3-NfS4_Sdr56czAAFZU-41gRJ-u9G48bPN6Zrafng9t_r54rxanNf2Y-Yf7PnOResux5z14p3gsEuppapB_gDkqc2Z
CODEN GBCYEP
CitedBy_id crossref_primary_10_1002_2013WR014573
crossref_primary_10_1016_j_agwat_2025_109293
crossref_primary_10_1038_s41598_022_05377_7
crossref_primary_10_1007_s11104_020_04427_1
crossref_primary_10_1016_j_eja_2007_12_003
crossref_primary_10_1016_j_agee_2023_108810
crossref_primary_10_1016_j_agrformet_2008_04_011
crossref_primary_10_1051_agro_2009001
crossref_primary_10_1111_j_1365_2486_2005_01021_x
crossref_primary_10_1002_joc_2346
crossref_primary_10_1016_j_agrformet_2006_06_010
crossref_primary_10_1029_2006GB002702
crossref_primary_10_1111_oik_08827
crossref_primary_10_1109_LGRS_2018_2841429
crossref_primary_10_1016_j_agrformet_2008_02_006
crossref_primary_10_1111_j_1365_2486_2007_01502_x
Cites_doi 10.1007/978-94-017-0519-6_48
10.1016/0378-3774(83)90095-1
10.1029/WR013i003p00651
10.1086/297129
10.1029/93GB02725
10.2307/2401901
10.2307/1941760
10.1111/j.1365-3040.1994.tb02029.x
10.1007/BF00033449
10.2307/1311763
10.1016/0168-1923(89)90098-1
10.2307/2845986
10.2307/1943158
10.1016/0304-3800(94)90098-1
10.1016/0022-1694(88)90181-3
10.1111/j.1365-3040.1995.tb00620.x
10.1890/1051-0761(1997)007[0802:AOGERT]2.0.CO;2
10.1080/01431168608948953
10.2307/2937207
10.13031/2013.31155
10.2480/agrmet.40.331
10.1016/0034-4257(87)90051-4
10.1111/j.1365-3040.1992.tb00974.x
10.1016/0304-3800(94)00072-P
10.2307/1941899
10.1016/S0065-2296(08)60370-5
10.1016/B978-0-08-092483-0.50007-4
10.1016/0304-3800(94)00199-5
10.1007/BF00123181
10.1071/PP9880705
10.1016/0034-4257(85)90095-1
10.2135/cropsci1989.0011183X002900010023x
10.1016/0034-4257(94)90021-3
10.1111/j.1365-3040.1984.tb01194.x
10.2307/2845983
10.2307/1940721
10.1016/0304-3800(85)90049-3
10.1029/93JD03221
10.1016/0034-4257(94)00066-V
10.2134/agronj1984.00021962007600020029x
10.2307/1310338
10.1111/j.1365-3040.1991.tb01439.x
10.2307/1941805
10.1007/BF00378977
10.1016/0034-4257(92)90132-4
10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
10.1093/treephys/16.10.801
10.1029/92JD01348
10.1016/B978-0-12-233440-5.50008-7
10.1016/0304-3800(91)90157-V
10.1007/BF00379710
10.1016/0304-3800(84)90070-X
10.1007/978-3-642-68090-8_3
10.1080/01431168508948283
10.1080/01431169108929728
10.1038/341142a0
10.1080/01431168608948945
10.1007/978-1-4615-9667-7_5
10.1016/0168-1923(91)90002-8
10.1007/BF00386231
10.1098/rstb.1976.0035
10.1016/0034-4257(83)90053-6
10.1016/0168-1923(94)90033-7
10.1016/0168-1923(95)02268-6
10.1007/978-3-642-68156-1_9
10.1007/978-1-4612-6182-7_2
10.1007/BF00259473
10.1098/rstb.1977.0140
10.1146/annurev.es.25.110194.003213
10.1016/S0065-2504(08)60119-1
10.1111/j.1365-3040.1995.tb00371.x
ContentType Journal Article
Copyright Copyright 2004 by the American Geophysical Union.
2005 INIST-CNRS
Copyright_xml – notice: Copyright 2004 by the American Geophysical Union.
– notice: 2005 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7TG
KL.
7S9
L.6
DOI 10.1029/2002GB001979
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Biology
EISSN 1944-9224
EndPage n/a
ExternalDocumentID 16530092
10_1029_2002GB001979
GBC1121
ark_67375_WNG_8DHM4HM5_X
US201300983651
Genre article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
5GY
7X2
7XC
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAJUZ
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACPRK
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AGJLS
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
ECGQY
EJD
F5P
FBQ
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LK8
LOXES
LUTES
LYRES
M0K
M2O
M2P
M7P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
UQL
VH1
WBKPD
WXSBR
WYJ
Y6R
ZZTAW
~02
~KM
~OA
~~A
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AEUYN
AEYWJ
AFFHD
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
LH4
PHGZM
PHGZT
PQGLB
WIN
AAYXX
CITATION
IQODW
7TG
KL.
7S9
L.6
ID FETCH-LOGICAL-c5351-3c8b9438cbbd3c42debde1723e2c819e96919cfecbf89fa66ad169f308dc118a3
IEDL.DBID WIN
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226133700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-6236
IngestDate Thu Oct 02 10:39:48 EDT 2025
Fri Sep 05 10:24:58 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Sat Nov 29 02:40:34 EST 2025
Tue Nov 18 21:54:25 EST 2025
Wed Aug 20 07:25:13 EDT 2025
Tue Nov 11 03:31:58 EST 2025
Wed Dec 27 19:18:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Functional response
Water deficit
simulation
scaling up
Carbon dioxide
Environmental factor
slopes
North America
NDVI
spatial distribution
currents
Radiation use efficiency
transpiration
grasslands
photosynthesis
plants
temperature
energy
1030 Geochemistry: Geochemical cycles ; 1615 Global Change: Biogeochemical processes ; 1640 Global Change: Remote sensing; 1818 Hydrology: Evapotranspiration; net primary production
models
concentration
heterogeneity
assimilation
Interannual variation
radiation
water vapor
ecosystems
primary productivity
Canopy(vegetation)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5351-3c8b9438cbbd3c42debde1723e2c819e96919cfecbf89fa66ad169f308dc118a3
Notes istex:249A746BAC1202541981A2EE059BD16225B180FF
ark:/67375/WNG-8DHM4HM5-X
ArticleID:2002GB001979
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2002GB001979
PQID 17739067
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_46618539
proquest_miscellaneous_17739067
pascalfrancis_primary_16530092
crossref_citationtrail_10_1029_2002GB001979
crossref_primary_10_1029_2002GB001979
wiley_primary_10_1029_2002GB001979_GBC1121
istex_primary_ark_67375_WNG_8DHM4HM5_X
fao_agris_US201300983651
PublicationCentury 2000
PublicationDate December 2004
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: December 2004
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Global biogeochemical cycles
PublicationTitleAlternate Global Biogeochem. Cycles
PublicationYear 2004
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Chen, D.-X., H. W. Hunt, and J. A. Morgan (1996), Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data, Ecol. Modell., 87, 11-27.
Waring, R. H., J. D. Aber, J. M. Melillo, and B. Moore (1987), Precursors of change in terrestrial ecosystems, BioScience, 36, 433-438.
Landsberg, J. J., and F. J. Hingston (1996), Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia, Tree Physiol., 16, 801-808.
Prince, S. D., and C. J. Tucker (1986), Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation, Int. J. Remote Sens., 7, 1555-1570.
Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149-179.
Raupach, M. R., and J. J. Finnigan (1988), Single-layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless, Discuss. Aust. J. Plant Physiol., 15, 705-716.
Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton (1991), Regional analysis of the central great plains: Sensitivity to climate variability, BioScience, 41, 685-692.
Prince, S. D. (1991), A model of regional primary production for use with coarse resolution satellite data, Int. J. Remote Sens., 12, 1313-1330.
Jagtap, S. S., and J. W. Jones (1989), Evapotranspiration model for developing crops, Trans. ASAE, 32, 1342-1350.
Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Kleoster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811-841.
Jarvis, P. G. (1995), Scaling processes and problems, Plant Cell Environ., 18, 1079-1089.
Sinclair, T. R., and T. Horie (1989), Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review, Crop Sci., 29, 90-98.
Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107-136.
Goudriaan, J. (1989), Simulation of micrometeorology of crops, some methods and their problems, and a few results, Agric. For. Meteorol., 47, 239-258.
Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980), A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90.
Monteith, J. L. (1988), Does transpiration limit the growth of vegetation or vice-versa? J. Hydrol., 100, 57-68.
Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, and B. J. Peterson (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399-429.
Choudhury, B. J. (1994), Synergism of multispectral satellite observations for estimating regional land surface evaporation, Remote Sens. Environ., 49, 264-274.
Reynolds, J. F., and B. Acock (1985), Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models, Ecol. Modell., 29, 107-129.
Ojima, D. S., T. G. F. Kittel, T. Rosswall, and B. H. Walker (1991), Critical issues for understanding global change effects on terrestrial ecosystems, Ecol. Appl., 1, 316-325.
Prince, S. D., and S. N. Goward (1995), Global primary production: A remote sensing approach, J. Biogeogr., 22, 815-835.
Jackson, R. D., R. J. Reginato, and S. B. Idso (1977), Wheat canopy temperatures: A practical tool for evaluating water requirements, Water Resour. Res., 13, 651-656.
Jackson, R. D., M. S. Moran, L. W. Gay, and L. H. Raymond (1987), Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data, Irrig. Sci., 8, 81-90.
Horie, T., and T. Sakuratani (1985), Studies on crop-weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production, Jpn. J. Agric. Meteorol., 40, 331-342.
Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7(11), 1417.
Hirose, T., and M. T. A. Werger (1987), Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia, 72, 520-526.
Chen, D.-X., M. B. Coughenour, A. K. Knapp, and C. E. Owensby (1994), Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2, Ecol. Modell., 73, 63-80.
Nikolov, N. T., W. J. Massman, and A. W. Schoettle (1995), Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants, Ecol. Modell., 80, 205-235.
Coughenour, M. B., and D.-X. Chen (1997), An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models, Ecol. Appl., 7, 802-827.
Chen, D.-X., and M. B. Coughenour (1994), GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites, Agric. For. Meteorol., 68, 145-171.
Monteith, J. L. (1977), Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. London, Ser. B, 281, 277-294.
Jackson, R. D., J. L. Hatfield, R. J. Reginato, S. B. Idso, and P. J. Pinter Jr. (1983), Estimation of daily evapotranspiration from one time-of-day measurements, Agric. Water Manage., 7, 351-362.
Leuning, R. (1995), A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 6, 181-194.
McNaughton, K. G. (1994), Effective stomatal and boundary-layer resistances of heterogeneous surfaces, Plant Cell Environ., 17, 1061-1068.
Asrar, G., E. T. Kanemasu, R. D. Jackson, and P. J. Pinter (1985), Estimation of total above ground phytomass production using remotely sensed data, Remote Sens. Environ., 17, 211-220.
Norman, J. M., R. Garcia, and S. B. Verma (1992), Soil surface CO2 fluxes and carbon budget of a grassland, J. Geophys. Res., 97(D17), 18,845-18,853.
Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield (1984), Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat, Agron. J., 76, 300-306.
Knapp, A. K., E. P. Hamerlynk, and C. E. Owensby (1993), Photosynthesis and water relations responses to elevated CO2 in the C4 grass Andropogoz gerardii, Int. J. Plant Sci., 154, 459-466.
Long, S. P. (1991), Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ., 14, 729-739.
Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505-531.
Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99(D3), 5263-5283.
Tucker, C. J., C. L. Vanpraet, E. Boerwinkel, and A. Gaston (1983), Satellite remote sensing of total dry accumulation on the Senegalese Sahel, Remote Sens. Environ., 13, 461-474.
Mooney, H. A. (1991), Biological response to climate change: An agenda for research, Ecol. Appl., 1, 112-117.
Daughtry, C. S. T., K. P. Gallo, S. N. Goward, S. D. Prince, and W. P. Kustas (1992), Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies, Remote Sens. Environ., 39, 141-152.
Field, C. S., J. T. Randerson, and C. M. Malmstrom (1995), Global net primary production: Combining ecology and remote sensing, Remote Sens. Environ., 51, 74-88.
Goward, S. N., C. J. Tucker, and D. G. Dye (1985), North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer, Vegetatio, 64, 3-14.
Monteith, J. L. (1972), Solar radiation and productivity in a tropical ecosystem, J. Appl. Ecol., 9, 747-766.
McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams (1989), Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 341, 142-144.
Field, C. B. (1983), Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program, Oecologia, 56, 341-347.
Schimel, D. S., T. G. F. Kittel, A. K. Knapp, T. R. Seastedt, W. J. Parton, and V. B. Brown (1991), Physiological interactions along resource gradients in a tallgrass prairie, Ecology, 72, 672-684.
Sellers, P. J. (1987), Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence, Remote Sens. Environ., 21, 143-183.
Kim, J., and S. B. Verma (1990), Carbon dioxide exchange in a temperate grassland ecosystem, Boundary Layer Meteorol., 52, 135-149.
Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593-610.
Sala, O. E., W. J. Parton, L. A. Joyce, and W. K. Lauenroth (1988), Primary production of the central grassland region of the United States, Ecology, 69, 40-45.
Monteith, J. L. (1995), A reinterpretation of stomatal responses to humidity, Plant Cell Environ., 18, 365-372.
Woodward, F. I., and T. M. Smith (1994), Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate, Adv. Bot. Res., 20, 2-41.
Hunt, H. W., M. T. Trlica, E. F. Redente, J. C. Moore, J. K. Delting, T. G. F. Kittel, D. E. Walter, M. C. Fowler, D. A. Klein, and E. T. Elliott (1991), Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Modell., 53, 205-246.
Pearcy, R. W., and J. Ehleringer (1984), Comparative ecophysiology of C3 and C4 plants, Plant Cell Environ., 7, 1-13.
Cowan, I. R. (1977), Stomatal behaviour and environment, Adv. Bot. Res., 4, 117-228.
Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scal
1982; 12
1993; 7
1990; 52
1987; 36
1985; 29
1991; 14
1987; 8
1977; 26
1991; 12
1984; 26
1987; 72
1991; 54
1991; 53
1983; 7
1995; 76
1994; 25
1994; 68
1988; 100
1992; 15
1992; 97
1985; 64
1989; 47
1979; 32
1965; 19
1983; 13
1979
1997; 7
1996; 78
1983; 56
1977
1983; 12
1994; 20
1980; 149
1985; 17
1976; 273
1989; 32
1990
1986; 7
1986; 43
1991; 41
1995; 22
1989; 341
1987
1984; 18
1983
1981
1980
1994; 73
1989
1988
1995; 51
1991; 1
1972; 9
1988; 15
1991; 72
1986; 15
1985; 6
1992; 39
1994; 49
1985; 40
1993
1991
1995; 18
1996; 16
1958
1995; 6
1989; 29
1977; 281
1987; 21
1990; 1298
1995; 80
1984; 76
1988; 69
1984; 7
1977; 4
1994; 99
1983; 84
1977; 13
1994; 17
1996; 87
1993; 154
1981; 12
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
Norman J. M. (e_1_2_7_63_1) 1980
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
Leuning R. (e_1_2_7_48_1) 1995; 6
e_1_2_7_49_1
Woodward F. I. (e_1_2_7_90_1) 1994; 20
e_1_2_7_28_1
Cowan I. R. (e_1_2_7_16_1) 1982
Strain B. R. (e_1_2_7_85_1) 1983
e_1_2_7_73_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_1
Marshall J. K. (e_1_2_7_50_1) 1977
e_1_2_7_6_1
e_1_2_7_4_1
Kittel T. G. F. (e_1_2_7_42_1) 1988
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_29_1
Kumar M. (e_1_2_7_45_1) 1981
Wessman C. A. (e_1_2_7_89_1) 1990
Tanner C. B. (e_1_2_7_86_1) 1983
Monteith J. L. (e_1_2_7_54_1) 1965
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
Monteith J. L. (e_1_2_7_58_1) 1990
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
Norman J. M. (e_1_2_7_62_1) 1979
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Hari P. (e_1_2_7_27_1) 1984; 18
e_1_2_7_38_1
References_xml – reference: Schultze, E.-D., F. M. Kelliher, C. Korner, J. Lloyd, and R. Leuning (1994), Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen: A global ecology scaling exercise, Annu. Rev. Ecol. Syst., 25, 629-660.
– reference: Long, S. P. (1991), Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ., 14, 729-739.
– reference: Coughenour, M. B., and D.-X. Chen (1997), An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models, Ecol. Appl., 7, 802-827.
– reference: Landsberg, J. J., and F. J. Hingston (1996), Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia, Tree Physiol., 16, 801-808.
– reference: Harley, P. C., R. B. Thomas, J. F. Reynolds, and B. R. Strain (1992), Modelling photosynthesis of cotton grown in elevated CO2, Plant Cell Environ., 15, 271-282.
– reference: Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield (1984), Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat, Agron. J., 76, 300-306.
– reference: Goudriaan, J. (1989), Simulation of micrometeorology of crops, some methods and their problems, and a few results, Agric. For. Meteorol., 47, 239-258.
– reference: Monteith, J. L. (1988), Does transpiration limit the growth of vegetation or vice-versa? J. Hydrol., 100, 57-68.
– reference: Jackson, R. D., M. S. Moran, L. W. Gay, and L. H. Raymond (1987), Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data, Irrig. Sci., 8, 81-90.
– reference: Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res., 15, 1-49.
– reference: Sinclair, T. R., and T. Horie (1989), Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review, Crop Sci., 29, 90-98.
– reference: Jackson, R. D., R. J. Reginato, and S. B. Idso (1977), Wheat canopy temperatures: A practical tool for evaluating water requirements, Water Resour. Res., 13, 651-656.
– reference: Waring, R. H., J. D. Aber, J. M. Melillo, and B. Moore (1987), Precursors of change in terrestrial ecosystems, BioScience, 36, 433-438.
– reference: Coughenour, M. B. (1984), A mechanistic simulation analysis of water use, leaf angles, and grazing in east African graminoids, Ecol. Modell., 26, 203-230.
– reference: Hari, P., T. Nilson, R. Salminen, L. Kaipiainen, E. Korpilahti, and J. Ross (1984), Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed, Photosynthetica, 18, 28-33.
– reference: Jagtap, S. S., and J. W. Jones (1989), Evapotranspiration model for developing crops, Trans. ASAE, 32, 1342-1350.
– reference: Jarvis, P. G. (1995), Scaling processes and problems, Plant Cell Environ., 18, 1079-1089.
– reference: Monteith, J. L. (1995), A reinterpretation of stomatal responses to humidity, Plant Cell Environ., 18, 365-372.
– reference: Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593-610.
– reference: Field, C. S., J. T. Randerson, and C. M. Malmstrom (1995), Global net primary production: Combining ecology and remote sensing, Remote Sens. Environ., 51, 74-88.
– reference: Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton (1991), Regional analysis of the central great plains: Sensitivity to climate variability, BioScience, 41, 685-692.
– reference: Chen, D.-X., H. W. Hunt, and J. A. Morgan (1996), Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data, Ecol. Modell., 87, 11-27.
– reference: Hunt, H. W., M. T. Trlica, E. F. Redente, J. C. Moore, J. K. Delting, T. G. F. Kittel, D. E. Walter, M. C. Fowler, D. A. Klein, and E. T. Elliott (1991), Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Modell., 53, 205-246.
– reference: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, and VEMAP Modeling Participants (1995), The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change, J. Biogeogr., 22, 857-862.
– reference: Monteith, J. L. (1972), Solar radiation and productivity in a tropical ecosystem, J. Appl. Ecol., 9, 747-766.
– reference: Norman, J. M., R. Garcia, and S. B. Verma (1992), Soil surface CO2 fluxes and carbon budget of a grassland, J. Geophys. Res., 97(D17), 18,845-18,853.
– reference: Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107-136.
– reference: Paruelo, J. M., and W. K. Lauenroth (1995), Regional patterns of normalized difference vegetation index in North American shrublands and grasslands, Ecology, 76, 1888-1898.
– reference: Prince, S. D. (1991), A model of regional primary production for use with coarse resolution satellite data, Int. J. Remote Sens., 12, 1313-1330.
– reference: Sellers, P. J. (1987), Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence, Remote Sens. Environ., 21, 143-183.
– reference: McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams (1989), Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 341, 142-144.
– reference: Raupach, M. R., and J. J. Finnigan (1988), Single-layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless, Discuss. Aust. J. Plant Physiol., 15, 705-716.
– reference: Hirose, T., and M. T. A. Werger (1987), Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia, 72, 520-526.
– reference: Goward, S. N., C. J. Tucker, and D. G. Dye (1985), North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer, Vegetatio, 64, 3-14.
– reference: Daughtry, C. S. T., K. P. Gallo, S. N. Goward, S. D. Prince, and W. P. Kustas (1992), Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies, Remote Sens. Environ., 39, 141-152.
– reference: Reynolds, J. F., and B. Acock (1985), Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models, Ecol. Modell., 29, 107-129.
– reference: Jackson, R. D., J. L. Hatfield, R. J. Reginato, S. B. Idso, and P. J. Pinter Jr. (1983), Estimation of daily evapotranspiration from one time-of-day measurements, Agric. Water Manage., 7, 351-362.
– reference: Schimel, D. S., T. G. F. Kittel, A. K. Knapp, T. R. Seastedt, W. J. Parton, and V. B. Brown (1991), Physiological interactions along resource gradients in a tallgrass prairie, Ecology, 72, 672-684.
– reference: Woodward, F. I., and T. M. Smith (1994), Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate, Adv. Bot. Res., 20, 2-41.
– reference: Leuning, R. (1995), A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 6, 181-194.
– reference: Pearcy, R. W., and J. Ehleringer (1984), Comparative ecophysiology of C3 and C4 plants, Plant Cell Environ., 7, 1-13.
– reference: Asrar, G., E. T. Kanemasu, R. D. Jackson, and P. J. Pinter (1985), Estimation of total above ground phytomass production using remotely sensed data, Remote Sens. Environ., 17, 211-220.
– reference: Tucker, C. J., C. L. Vanpraet, E. Boerwinkel, and A. Gaston (1983), Satellite remote sensing of total dry accumulation on the Senegalese Sahel, Remote Sens. Environ., 13, 461-474.
– reference: Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980), A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90.
– reference: Field, C. B. (1983), Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program, Oecologia, 56, 341-347.
– reference: Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7(11), 1417.
– reference: McNaughton, K. G. (1994), Effective stomatal and boundary-layer resistances of heterogeneous surfaces, Plant Cell Environ., 17, 1061-1068.
– reference: Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, and B. J. Peterson (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399-429.
– reference: Sellers, P. J. (1985), Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 6, 1335-1372.
– reference: Chen, D.-X., M. B. Coughenour, A. K. Knapp, and C. E. Owensby (1994), Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2, Ecol. Modell., 73, 63-80.
– reference: Monteith, J. L. (1977), Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. London, Ser. B, 281, 277-294.
– reference: Cowan, I. R. (1977), Stomatal behaviour and environment, Adv. Bot. Res., 4, 117-228.
– reference: Kim, J., and S. B. Verma (1990), Carbon dioxide exchange in a temperate grassland ecosystem, Boundary Layer Meteorol., 52, 135-149.
– reference: Prince, S. D., and S. N. Goward (1995), Global primary production: A remote sensing approach, J. Biogeogr., 22, 815-835.
– reference: Mooney, H. A. (1991), Biological response to climate change: An agenda for research, Ecol. Appl., 1, 112-117.
– reference: Prince, S. D., and C. J. Tucker (1986), Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation, Int. J. Remote Sens., 7, 1555-1570.
– reference: Knapp, A. K., E. P. Hamerlynk, and C. E. Owensby (1993), Photosynthesis and water relations responses to elevated CO2 in the C4 grass Andropogoz gerardii, Int. J. Plant Sci., 154, 459-466.
– reference: Chen, D.-X., and M. B. Coughenour (1994), GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites, Agric. For. Meteorol., 68, 145-171.
– reference: Sala, O. E., W. J. Parton, L. A. Joyce, and W. K. Lauenroth (1988), Primary production of the central grassland region of the United States, Ecology, 69, 40-45.
– reference: Choudhury, B. J. (1994), Synergism of multispectral satellite observations for estimating regional land surface evaporation, Remote Sens. Environ., 49, 264-274.
– reference: Horie, T., and T. Sakuratani (1985), Studies on crop-weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production, Jpn. J. Agric. Meteorol., 40, 331-342.
– reference: Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149-179.
– reference: Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Kleoster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811-841.
– reference: Ojima, D. S., T. G. F. Kittel, T. Rosswall, and B. H. Walker (1991), Critical issues for understanding global change effects on terrestrial ecosystems, Ecol. Appl., 1, 316-325.
– reference: Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99(D3), 5263-5283.
– reference: Nikolov, N. T., W. J. Massman, and A. W. Schoettle (1995), Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants, Ecol. Modell., 80, 205-235.
– reference: Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505-531.
– volume: 39
  start-page: 141
  year: 1992
  end-page: 152
  article-title: Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 90
  year: 1989
  end-page: 98
  article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review
  publication-title: Crop Sci.
– volume: 53
  start-page: 205
  year: 1991
  end-page: 246
  article-title: Simulation model for the effects of climate change on temperate grassland ecosystems
  publication-title: Ecol. Modell.
– volume: 6
  start-page: 181
  year: 1995
  end-page: 194
  article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants
  publication-title: Plant Cell Environ.
– start-page: 1
  year: 1983
  end-page: 27
– start-page: 173
  year: 1988
  end-page: 193
– start-page: 49
  year: 1980
  end-page: 68
– volume: 1
  start-page: 316
  year: 1991
  end-page: 325
  article-title: Critical issues for understanding global change effects on terrestrial ecosystems
  publication-title: Ecol. Appl.
– volume: 32
  start-page: 3
  year: 1979
  end-page: 24
– volume: 97
  start-page: 18,845
  issue: D17
  year: 1992
  end-page: 18,853
  article-title: Soil surface CO fluxes and carbon budget of a grassland
  publication-title: J. Geophys. Res.
– volume: 154
  start-page: 459
  year: 1993
  end-page: 466
  article-title: Photosynthesis and water relations responses to elevated CO in the C4 grass
  publication-title: Int. J. Plant Sci.
– volume: 7
  start-page: 802
  year: 1997
  end-page: 827
  article-title: An assessment of grassland ecosystem responses to atmospheric change using linked ecophysiological and soil process process models
  publication-title: Ecol. Appl.
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species
  publication-title: Planta
– volume: 1
  start-page: 112
  year: 1991
  end-page: 117
  article-title: Biological response to climate change: An agenda for research
  publication-title: Ecol. Appl.
– volume: 22
  start-page: 857
  year: 1995
  end-page: 862
  article-title: The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change
  publication-title: J. Biogeogr.
– volume: 7
  start-page: 1
  year: 1984
  end-page: 13
  article-title: Comparative ecophysiology of C3 and C4 plants
  publication-title: Plant Cell Environ.
– volume: 18
  start-page: 365
  year: 1995
  end-page: 372
  article-title: A reinterpretation of stomatal responses to humidity
  publication-title: Plant Cell Environ.
– year: 1990
– volume: 4
  start-page: 117
  year: 1977
  end-page: 228
  article-title: Stomatal behaviour and environment
  publication-title: Adv. Bot. Res.
– volume: 6
  start-page: 1335
  year: 1985
  end-page: 1372
  article-title: Canopy reflectance, photosynthesis and transpiration
  publication-title: Int. J. Remote Sens.
– volume: 8
  start-page: 81
  year: 1987
  end-page: 90
  article-title: Evaluating evaporation from field crops using airborne radiometry and ground‐based meteorological data
  publication-title: Irrig. Sci.
– volume: 80
  start-page: 205
  year: 1995
  end-page: 235
  article-title: Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants
  publication-title: Ecol. Modell.
– start-page: 221
  year: 1987
  end-page: 224
– volume: 51
  start-page: 74
  year: 1995
  end-page: 88
  article-title: Global net primary production: Combining ecology and remote sensing
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 651
  year: 1977
  end-page: 656
  article-title: Wheat canopy temperatures: A practical tool for evaluating water requirements
  publication-title: Water Resour. Res.
– volume: 40
  start-page: 331
  year: 1985
  end-page: 342
  article-title: Studies on crop‐weather relationship model in rice: 1. Relation between absorbed solar radiation by the crop and the dry matter production
  publication-title: Jpn. J. Agric. Meteorol.
– volume: 21
  start-page: 143
  year: 1987
  end-page: 183
  article-title: Canopy reflectance, photosynthesis and transpiration: II. The role of biophysics in the linearity of their interdependence
  publication-title: Remote Sens. Environ.
– volume: 43
  start-page: 505
  year: 1986
  end-page: 531
  article-title: A simple biosphere model (SiB) for use within general circulation models
  publication-title: J. Atmos. Sci.
– volume: 72
  start-page: 520
  year: 1987
  end-page: 526
  article-title: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy
  publication-title: Oecologia
– volume: 12
  start-page: 233
  year: 1983
  end-page: 280
– volume: 7
  start-page: 351
  year: 1983
  end-page: 362
  article-title: Estimation of daily evapotranspiration from one time‐of‐day measurements
  publication-title: Agric. Water Manage.
– volume: 64
  start-page: 3
  year: 1985
  end-page: 14
  article-title: North American vegetation patterns observed with the NOAA‐7 advanced very high resolution radiometer
  publication-title: Vegetatio
– volume: 72
  start-page: 672
  year: 1991
  end-page: 684
  article-title: Physiological interactions along resource gradients in a tallgrass prairie
  publication-title: Ecology
– volume: 68
  start-page: 145
  year: 1994
  end-page: 171
  article-title: GEMTM: A general model for energy and mass transfer of land surfaces and its application at the FIFE sites
  publication-title: Agric. For. Meteorol.
– volume: 22
  start-page: 815
  year: 1995
  end-page: 835
  article-title: Global primary production: A remote sensing approach
  publication-title: J. Biogeogr.
– volume: 15
  start-page: 705
  year: 1988
  end-page: 716
  article-title: Single‐layer models of evaporation from plant canopies are incorrect but useful, whereas, multilayer models are correct but useless
  publication-title: Discuss. Aust. J. Plant Physiol.
– volume: 19
  start-page: 205
  year: 1965
  end-page: 234
– start-page: 133
  year: 1981
  end-page: 144
– volume: 56
  start-page: 341
  year: 1983
  end-page: 347
  article-title: Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program
  publication-title: Oecologia
– volume: 12
  start-page: 41
  year: 1981
  end-page: 55
– start-page: 69
  year: 1989
  end-page: 104
– volume: 41
  start-page: 685
  year: 1991
  end-page: 692
  article-title: Regional analysis of the central great plains: Sensitivity to climate variability
  publication-title: BioScience
– start-page: 249
  year: 1979
  end-page: 277
– volume: 25
  start-page: 629
  year: 1994
  end-page: 660
  article-title: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen: A global ecology scaling exercise
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 17
  start-page: 1061
  year: 1994
  end-page: 1068
  article-title: Effective stomatal and boundary‐layer resistances of heterogeneous surfaces
  publication-title: Plant Cell Environ.
– volume: 16
  start-page: 801
  year: 1996
  end-page: 808
  article-title: Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in Western Australia
  publication-title: Tree Physiol.
– year: 1958
– volume: 78
  start-page: 149
  year: 1996
  end-page: 179
  article-title: Remote sensing of net primary production in boreal forest stands
  publication-title: Agric. For. Meteorol.
– volume: 26
  start-page: 123
  year: 1977
  end-page: 132
– volume: 84
  start-page: 177
  year: 1983
  end-page: 222
– volume: 32
  start-page: 1342
  year: 1989
  end-page: 1350
  article-title: Evapotranspiration model for developing crops
  publication-title: Trans. ASAE
– volume: 47
  start-page: 239
  year: 1989
  end-page: 258
  article-title: Simulation of micrometeorology of crops, some methods and their problems, and a few results
  publication-title: Agric. For. Meteorol.
– volume: 18
  start-page: 28
  year: 1984
  end-page: 33
  article-title: Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed
  publication-title: Photosynthetica
– year: 1987
– volume: 36
  start-page: 433
  year: 1987
  end-page: 438
  article-title: Precursors of change in terrestrial ecosystems
  publication-title: BioScience
– volume: 1
  start-page: 399
  year: 1991
  end-page: 429
  article-title: Potential net primary productivity in South America: Application of a global model
  publication-title: Ecol. Appl.
– start-page: 1
  year: 1990
  end-page: 16
– volume: 29
  start-page: 107
  year: 1985
  end-page: 129
  article-title: Predicting the response of plants to increasing carbon dioxide: A critique of plant growth models
  publication-title: Ecol. Modell.
– volume: 52
  start-page: 135
  year: 1990
  end-page: 149
  article-title: Carbon dioxide exchange in a temperate grassland ecosystem
  publication-title: Boundary Layer Meteorol.
– volume: 13
  start-page: 461
  year: 1983
  end-page: 474
  article-title: Satellite remote sensing of total dry accumulation on the Senegalese Sahel
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 211
  year: 1985
  end-page: 220
  article-title: Estimation of total above ground phytomass production using remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 747
  year: 1972
  end-page: 766
  article-title: Solar radiation and productivity in a tropical ecosystem
  publication-title: J. Appl. Ecol.
– year: 1977
– volume: 7
  start-page: 1417
  issue: 11
  year: 1986
  article-title: Characteristics of maximum‐value composite images from temporal AVHRR data
  publication-title: Int. J. Remote Sens.
– volume: 87
  start-page: 11
  year: 1996
  end-page: 27
  article-title: Responses of a C3 and C4 perennial grass to CO enrichment and climate change: Comparison between model predictions and experimental data
  publication-title: Ecol. Modell.
– volume: 54
  start-page: 107
  year: 1991
  end-page: 136
  article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer
  publication-title: Agric. For. Meteorol.
– volume: 15
  start-page: 271
  year: 1992
  end-page: 282
  article-title: Modelling photosynthesis of cotton grown in elevated CO
  publication-title: Plant Cell Environ.
– volume: 12
  start-page: 589
  year: 1982
  end-page: 613
– volume: 273
  start-page: 593
  year: 1976
  end-page: 610
  article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
  publication-title: Philos. Trans. R. Soc. London, Ser. B
– volume: 49
  start-page: 264
  year: 1994
  end-page: 274
  article-title: Synergism of multispectral satellite observations for estimating regional land surface evaporation
  publication-title: Remote Sens. Environ.
– volume: 76
  start-page: 1888
  year: 1995
  end-page: 1898
  article-title: Regional patterns of normalized difference vegetation index in North American shrublands and grasslands
  publication-title: Ecology
– volume: 12
  start-page: 1313
  year: 1991
  end-page: 1330
  article-title: A model of regional primary production for use with coarse resolution satellite data
  publication-title: Int. J. Remote Sens.
– volume: 15
  start-page: 1
  year: 1986
  end-page: 49
  article-title: Stomatal control of transpiration: Scaling up from leaf to region
  publication-title: Adv. Ecol. Res.
– volume: 69
  start-page: 40
  year: 1988
  end-page: 45
  article-title: Primary production of the central grassland region of the United States
  publication-title: Ecology
– volume: 73
  start-page: 63
  year: 1994
  end-page: 80
  article-title: Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO
  publication-title: Ecol. Modell.
– volume: 76
  start-page: 300
  year: 1984
  end-page: 306
  article-title: Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat
  publication-title: Agron. J.
– volume: 26
  start-page: 203
  year: 1984
  end-page: 230
  article-title: A mechanistic simulation analysis of water use, leaf angles, and grazing in east African graminoids
  publication-title: Ecol. Modell.
– volume: 18
  start-page: 1079
  year: 1995
  end-page: 1089
  article-title: Scaling processes and problems
  publication-title: Plant Cell Environ.
– volume: 14
  start-page: 729
  year: 1991
  end-page: 739
  article-title: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO concentrations: Has its importance been underestimated?
  publication-title: Plant Cell Environ.
– volume: 99
  start-page: 5263
  issue: D3
  year: 1994
  end-page: 5283
  article-title: Methodology for the estimation of terrestrial net primary production from remotely sensed data
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 811
  year: 1993
  end-page: 841
  article-title: Terrestrial ecosystem production: A process model based on global satellite and surface data
  publication-title: Global Biogeochem. Cycles
– volume: 341
  start-page: 142
  year: 1989
  end-page: 144
  article-title: Ecosystem‐level patterns of primary productivity and herbivory in terrestrial habitats
  publication-title: Nature
– volume: 7
  start-page: 1555
  year: 1986
  end-page: 1570
  article-title: Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation
  publication-title: Int. J. Remote Sens.
– volume: 20
  start-page: 2
  year: 1994
  end-page: 41
  article-title: Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate
  publication-title: Adv. Bot. Res.
– volume: 1298
  start-page: 164
  year: 1990
  end-page: 170
– volume: 100
  start-page: 57
  year: 1988
  end-page: 68
  article-title: Does transpiration limit the growth of vegetation or vice‐versa?
  publication-title: J. Hydrol.
– start-page: 21
  year: 1993
  end-page: 36
– start-page: 35
  year: 1991
  end-page: 65
– volume: 281
  start-page: 277
  year: 1977
  end-page: 294
  article-title: Climate and the efficiency of crop production in Britain
  publication-title: Philos. Trans. R. Soc. London, Ser. B
– ident: e_1_2_7_6_1
  doi: 10.1007/978-94-017-0519-6_48
– ident: e_1_2_7_34_1
  doi: 10.1016/0378-3774(83)90095-1
– ident: e_1_2_7_33_1
  doi: 10.1029/WR013i003p00651
– ident: e_1_2_7_44_1
  doi: 10.1086/297129
– ident: e_1_2_7_68_1
  doi: 10.1029/93GB02725
– volume: 18
  start-page: 28
  year: 1984
  ident: e_1_2_7_27_1
  article-title: Nonlinear dependence of photosynthetic rate on irradiance and its consequences for estimates of the amount of saccharide formed
  publication-title: Photosynthetica
– start-page: 123
  volume-title: The Belowground Ecosystem: A Synthesis of Plant‐Associated Processes
  year: 1977
  ident: e_1_2_7_50_1
– ident: e_1_2_7_55_1
  doi: 10.2307/2401901
– ident: e_1_2_7_65_1
  doi: 10.2307/1941760
– start-page: 249
  volume-title: Modification of the Aerial Environment of Crops
  year: 1979
  ident: e_1_2_7_62_1
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-3040.1994.tb02029.x
– ident: e_1_2_7_26_1
  doi: 10.1007/BF00033449
– ident: e_1_2_7_7_1
  doi: 10.2307/1311763
– ident: e_1_2_7_25_1
  doi: 10.1016/0168-1923(89)90098-1
– ident: e_1_2_7_43_1
  doi: 10.2307/2845986
– ident: e_1_2_7_76_1
  doi: 10.2307/1943158
– ident: e_1_2_7_9_1
  doi: 10.1016/0304-3800(94)90098-1
– ident: e_1_2_7_57_1
  doi: 10.1016/0022-1694(88)90181-3
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-3040.1995.tb00620.x
– ident: e_1_2_7_14_1
  doi: 10.1890/1051-0761(1997)007[0802:AOGERT]2.0.CO;2
– start-page: 1
  volume-title: Theoretical Production Ecology: Reflections and Prospects
  year: 1990
  ident: e_1_2_7_58_1
– ident: e_1_2_7_71_1
  doi: 10.1080/01431168608948953
– start-page: 164
  volume-title: SPIE Technical Symposium on Optics, Electro‐Optics, and Sensors
  year: 1990
  ident: e_1_2_7_89_1
– ident: e_1_2_7_78_1
  doi: 10.2307/2937207
– ident: e_1_2_7_2_1
– ident: e_1_2_7_36_1
  doi: 10.13031/2013.31155
– ident: e_1_2_7_31_1
  doi: 10.2480/agrmet.40.331
– ident: e_1_2_7_24_1
– ident: e_1_2_7_82_1
  doi: 10.1016/0034-4257(87)90051-4
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-3040.1992.tb00974.x
– ident: e_1_2_7_61_1
  doi: 10.1016/0304-3800(94)00072-P
– ident: e_1_2_7_72_1
  doi: 10.2307/1941899
– ident: e_1_2_7_15_1
  doi: 10.1016/S0065-2296(08)60370-5
– ident: e_1_2_7_21_1
  doi: 10.1016/B978-0-08-092483-0.50007-4
– ident: e_1_2_7_10_1
  doi: 10.1016/0304-3800(94)00199-5
– start-page: 133
  volume-title: Plants and the Daylight Spectrum
  year: 1981
  ident: e_1_2_7_45_1
– ident: e_1_2_7_41_1
  doi: 10.1007/BF00123181
– ident: e_1_2_7_73_1
  doi: 10.1071/PP9880705
– ident: e_1_2_7_5_1
  doi: 10.1016/0034-4257(85)90095-1
– ident: e_1_2_7_84_1
  doi: 10.2135/cropsci1989.0011183X002900010023x
– ident: e_1_2_7_11_1
  doi: 10.1016/0034-4257(94)90021-3
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1365-3040.1984.tb01194.x
– ident: e_1_2_7_70_1
  doi: 10.2307/2845983
– ident: e_1_2_7_66_1
  doi: 10.2307/1940721
– ident: e_1_2_7_74_1
  doi: 10.1016/0304-3800(85)90049-3
– ident: e_1_2_7_75_1
  doi: 10.1029/93JD03221
– ident: e_1_2_7_22_1
  doi: 10.1016/0034-4257(94)00066-V
– ident: e_1_2_7_4_1
  doi: 10.2134/agronj1984.00021962007600020029x
– ident: e_1_2_7_88_1
  doi: 10.2307/1310338
– start-page: 173
  volume-title: Monitoring Climate for the Effects of Increasing Greenhouse Gas Concentrations
  year: 1988
  ident: e_1_2_7_42_1
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-3040.1991.tb01439.x
– ident: e_1_2_7_60_1
  doi: 10.2307/1941805
– ident: e_1_2_7_29_1
  doi: 10.1007/BF00378977
– ident: e_1_2_7_17_1
  doi: 10.1016/0034-4257(92)90132-4
– start-page: 205
  volume-title: The State and Movement of Water in Living Organisms
  year: 1965
  ident: e_1_2_7_54_1
– ident: e_1_2_7_83_1
  doi: 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
– ident: e_1_2_7_46_1
  doi: 10.1093/treephys/16.10.801
– ident: e_1_2_7_64_1
  doi: 10.1029/92JD01348
– ident: e_1_2_7_79_1
  doi: 10.1016/B978-0-12-233440-5.50008-7
– ident: e_1_2_7_32_1
  doi: 10.1016/0304-3800(91)90157-V
– ident: e_1_2_7_20_1
  doi: 10.1007/BF00379710
– ident: e_1_2_7_13_1
  doi: 10.1016/0304-3800(84)90070-X
– ident: e_1_2_7_51_1
  doi: 10.1007/978-3-642-68090-8_3
– start-page: 177
  volume-title: CO2and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide
  year: 1983
  ident: e_1_2_7_85_1
– start-page: 1
  volume-title: Limitations to Efficient Water Use in Crop Production
  year: 1983
  ident: e_1_2_7_86_1
– start-page: 49
  volume-title: Predicting Photosynthesis for Ecosystem Models
  year: 1980
  ident: e_1_2_7_63_1
– ident: e_1_2_7_81_1
  doi: 10.1080/01431168508948283
– ident: e_1_2_7_69_1
  doi: 10.1080/01431169108929728
– ident: e_1_2_7_53_1
  doi: 10.1038/341142a0
– start-page: 589
  volume-title: Encyclopedia of Plant Ecophysiology
  year: 1982
  ident: e_1_2_7_16_1
– ident: e_1_2_7_30_1
  doi: 10.1080/01431168608948945
– volume: 20
  start-page: 2
  year: 1994
  ident: e_1_2_7_90_1
  article-title: Global photosynthesis and stomatal conductance: Modelling the controls by soil and climate
  publication-title: Adv. Bot. Res.
– ident: e_1_2_7_3_1
  doi: 10.1007/978-1-4615-9667-7_5
– volume: 6
  start-page: 181
  year: 1995
  ident: e_1_2_7_48_1
  article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants
  publication-title: Plant Cell Environ.
– ident: e_1_2_7_77_1
– ident: e_1_2_7_12_1
  doi: 10.1016/0168-1923(91)90002-8
– ident: e_1_2_7_19_1
  doi: 10.1007/BF00386231
– ident: e_1_2_7_37_1
  doi: 10.1098/rstb.1976.0035
– ident: e_1_2_7_87_1
  doi: 10.1016/0034-4257(83)90053-6
– ident: e_1_2_7_8_1
  doi: 10.1016/0168-1923(94)90033-7
– ident: e_1_2_7_18_1
– ident: e_1_2_7_23_1
  doi: 10.1016/0168-1923(95)02268-6
– ident: e_1_2_7_39_1
  doi: 10.1007/978-3-642-68156-1_9
– ident: e_1_2_7_47_1
  doi: 10.1007/978-1-4612-6182-7_2
– ident: e_1_2_7_35_1
  doi: 10.1007/BF00259473
– ident: e_1_2_7_56_1
  doi: 10.1098/rstb.1977.0140
– ident: e_1_2_7_80_1
  doi: 10.1146/annurev.es.25.110194.003213
– ident: e_1_2_7_40_1
  doi: 10.1016/S0065-2504(08)60119-1
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1365-3040.1995.tb00371.x
SSID ssj0014559
Score 1.9091169
Snippet Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage GB4033.1
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Earth sciences
Earth, ocean, space
evapotranspiration
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
General Energy Mass Transfer Model
Geochemistry
grasslands
leaf area index
leaves
mathematical models
NDVI
net primary production
nitrogen content
photosynthesis
primary productivity
radiation use efficiency
remote sensing
scaling up
simulation models
spatial variation
stomatal conductance
Synecology
temporal variation
transpiration
United States
Title Photosynthesis, transpiration, and primary productivity: scaling up from leaves to canopies and regions using process models and remotely sensed data
URI https://api.istex.fr/ark:/67375/WNG-8DHM4HM5-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2002GB001979
https://www.proquest.com/docview/17739067
https://www.proquest.com/docview/46618539
Volume 18
WOSCitedRecordID wos000226133700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-9224
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014559
  issn: 0886-6236
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-9224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014559
  issn: 0886-6236
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVggDQegBXQykfxAyA-Fq1JbCfmjW20RWLVxKjWN8t27FFRJVHTTvSH8H-5dtLSPgwJ8X7txPa99rF9fQ5CL3XCNSU2C5S0UUAUUUFqSBI4-GBJpDTR2otNJMNhOh7zs-bAzb2Fqfkh1gduLjL8fO0CXKqqIRtwHJkuu6B_5CBK4t7vhSR0AgYXn4frSwRCvVYaxBELYJVnTd47FD_cLLy1It20sgCc6rr4p8uTlBV0la01LrZA6CaU9WtR7_7_tuIButegUPyxdps9dMPkLXSn1qVcttDdDZbCFtpr4r_CbxqS6rcP0a-z78W8qJY5AMhqUh3guWdJn9QOdYBlnuGyZrLAZc0q62UqPuBzaCrUixcldm9b8NTIK6h7XmAY5aKEnbsv7BQjICKwS8y_xGX9ngF74Z6VAXiZmS5xBTtxk2GX6_oIjXqfvh0PgkbiIdA0pmEQ61RxEqdaqSzWJMqMygxgqthEGrCK4YyHXFujlU25lYzJLGTcxt0007A1kvFjtJMXudlH2MQktQw2-5YyIplVMpGUwPpMI2soSdro_WqYhW74z50Mx1T4e_iIi82xaKNXa-umt66x2wePEfISpmQxOo_cRXCXpzGjYRu99m60Li9nP1waXULFxbAv0pPBKRmcUjFuo86Wn_35IKOutqiNXqwcT0D0uysdmZtiUYkwSWIOgON6CwIADCAZ_Og774d_bY3oHx0DAA-f_IvxU7S7Yr_shs_Qzny2MM_RbX01n1SzDrp18rU3-tLxofkbaJs2XA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXYAAEPwApo4WPzAyAGi2gS24l5Y4O1E2s1aZvWN8tx7FFRJVGTTvSH8H-5dtLSPgwJ8X7txPa99rF9fQ5Cr1XMFSUm81NpQp-kJPUTTWLfwgdDwlQRpZzYRDwcJqMRP211Tu1bmIYfYnngZiPDzdc2wO2BdMs2YEkybXpB78BilJhvoNsEsIbVbrg8Hi6vEQh1amkQScyHdZ61me9Q_uNq6bU1acPIApCq7eSfNlNSVtBZplG5WIOhq2DWrUZHj_67HY_RwxaI4s-N52yhWzrvoLuNNOW8gx6sEBV20FY7BVT4XctTvfcE_Tr9XtRFNc8BQ1bjah_Xjih93PjUPpZ5hsuGzAKXDbGsU6r4hM-grVAvnpXYPm_BEy2voe66wDDQRQmbd1fYikZAUGCbm3-Fy-ZJA3baPQsDcDQ9meMKNuM6wzbd9Sm6OPp6ftj3W5UHX9GIBn6kkpSTKFFpmkWKhJlOMw2wKtKhAriiOeMBV0ar1CTcSMZkFjBuom6SKdgdyegZ2syLXG8jrCOSGAb7fUMZkcykMpaUwBJNQ6MpiT30YTHOQrUU6FaJYyLcVXzIxepYeOjN0rrtrRvstsFlhLyCWVlcnIX2LrjLk4jRwENvnR8ty8vpD5tJF1NxOeyJ5Et_QPoDKkYe2llztD8fZNTWFnpod-F5AiYAe6sjc13MKhHEccQBc9xsQQCDASqDH33vHPGvrRG9g0PA4MHzfzHeRff654MTcXI8_PYC3V-QYXaDl2izns70K3RHXdfjarrj4vM3-4842g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVYBwgegBXQysfmB0B8LKJJbCfmja20RWxVxVbRN8tx7FFRJVHTTvSH8H-5dtLSPgwJ8X7t1Pa99nHv9TkIvVARV5SY1EukCTySkMSLNYk8Cx8MCRJFlHJiE9FgEI_HfFjrnNq3MBU_xPoPNxsZbr-2Aa6L1NRsA5Yk05YX9I4tRon4DtolVkemgXY7X7uj03UigVCnlwaxxDw46Vld-w49vN9sv3Uq7RiZA1a10_zT1krKEqbLVDoXW0B0E86686h7_79H8gDdq6Eo_lj5zh66obMmulWJUy6b6O4GVWET7dWbQIlf10zVbx6iX8Pv-TwvlxmgyHJSHuG5o0qfVF51hGWW4qKis8BFRS3rtCo-4HMYK_SLFwW2D1zwVMsr6HueY1jqvIDru2tsZSMgLLCtzr_ERfWoATv1npUBuJqeLnEJ13GdYlvw-giNup8uTvperfPgKRpS3wtVnHASxipJ0lCRINVJqgFYhTpQAFg0Z9znymiVmJgbyZhMfcZN2I5TBfcjGT5GjSzP9D7COiSxYXDjN5QRyUwiI0kJHNI0MJqSqIXerdZZqJoE3WpxTIVLxgdcbK5FC71cW9ezdY3dPriMkJewL4vReWCzwW0eh4z6LfTK-dG6vZz9sLV0ERXfBj0Rd_pnpH9GxbiFDrYc7c8HGbW9BS10uPI8AVuAzevITOeLUvhRFHJAHddbEEBhgMvgh751jvjX0Yje8QmgcP_JvxgfotvDTlecfh58eYrurNgw2_4z1JjPFvo5uqmu5pNydlAH6G8lfDmD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosynthesis%2C+transpiration%2C+and+primary+productivity+%3A+Scaling+up+from+leaves+to+canopies+and+regions+using+process+models+and+remotely+sensed+data&rft.jtitle=Global+biogeochemical+cycles&rft.au=CHEN%2C+D.-X&rft.au=COUGHENOUR%2C+M.+B&rft.date=2004-12-01&rft.pub=American+Geophysical+Union&rft.issn=0886-6236&rft.volume=18&rft.issue=4&rft.spage=GB4033.1&rft.epage=GB4033.15&rft_id=info:doi/10.1029%2F2002GB001979&rft.externalDBID=n%2Fa&rft.externalDocID=16530092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon