High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics

•Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chrom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Chromatography Ročník 1498; číslo C; s. 99 - 110
Hlavní autoři: Shen, Yufeng, Tolić, Nikola, Piehowski, Paul D., Shukla, Anil K., Kim, Sangtae, Zhao, Rui, Qu, Yi, Robinson, Errol, Smith, Richard D., Paša-Tolić, Ljiljana
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 19.05.2017
Elsevier
Témata:
ISSN:0021-9673, 1873-3778, 1873-3778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chromatographing >100kDa proteoforms.•C1-C18-bonded phases had their own limits for eluting various sizes of proteoforms. Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50–110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.
AbstractList Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.
•Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chromatographing >100kDa proteoforms.•C1-C18-bonded phases had their own limits for eluting various sizes of proteoforms. Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50–110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.
Author Robinson, Errol
Shukla, Anil K.
Qu, Yi
Piehowski, Paul D.
Paša-Tolić, Ljiljana
Shen, Yufeng
Tolić, Nikola
Zhao, Rui
Kim, Sangtae
Smith, Richard D.
Author_xml – sequence: 1
  givenname: Yufeng
  surname: Shen
  fullname: Shen, Yufeng
  email: Yufeng.shen@pnnl.gov
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 2
  givenname: Nikola
  surname: Tolić
  fullname: Tolić, Nikola
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 3
  givenname: Paul D.
  surname: Piehowski
  fullname: Piehowski, Paul D.
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 4
  givenname: Anil K.
  surname: Shukla
  fullname: Shukla, Anil K.
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 5
  givenname: Sangtae
  surname: Kim
  fullname: Kim, Sangtae
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 6
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 7
  givenname: Yi
  surname: Qu
  fullname: Qu, Yi
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 8
  givenname: Errol
  surname: Robinson
  fullname: Robinson, Errol
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 9
  givenname: Richard D.
  surname: Smith
  fullname: Smith, Richard D.
  organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 10
  givenname: Ljiljana
  surname: Paša-Tolić
  fullname: Paša-Tolić, Ljiljana
  email: ljiljana.pasatolic@pnnl.gov
  organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28077236$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1343947$$D View this record in Osti.gov
BookMark eNqFkUFv1DAQhS1URLeFf4BQxIlLwjhOYpsDEqqAIlXi0rvldWY3XhI7tZ1W_fc4SuHAgZ4sPX9vNPPeBTlz3iEhbylUFGj38VSZIfhJVzVQXgGtAMQLsqOCs5JxLs7IDqCmpew4OycXMZ4gg8DrV-S8FsB5zbod-XVtj0MZMPpxSda7YhlT0MMqzlmNS8Bi9O5YmAxMrgh4jyFiX86DjvnL3i22L7ZNkj8GPQ-PxcGHIvm57P2DK-bgE_rJmviavDzoMeKbp_eS3H77ent1Xd78_P7j6stNaVrWpPJQG6mlEIzu9y3rWyNYA6bFrs163dUIRve0l5I2XSMp7hHajrYgec-E1uySvN_G-pisisYmNIPxzqFJirKGyYZn6MMG5fXuFoxJTTYaHEft0C9R1QDAOtk08lmUilZQ4I1gGX33hC77CXs1Bzvp8Kj-5J2BZgNM8DEGPPxFKKi1VnVSW5hqrVUBVbnWbPv0jy1fpde-cll2fM78eTNjzvzeYlgzQWewt2GNpPf2_wN-A0_iwTU
CitedBy_id crossref_primary_10_1002_mas_21706
crossref_primary_10_1016_j_chroma_2019_460462
crossref_primary_10_1038_s41598_018_38380_y
crossref_primary_10_1016_j_chroma_2020_461706
crossref_primary_10_1007_s13361_019_02290_8
crossref_primary_10_1002_jssc_201800891
crossref_primary_10_1155_2019_8934794
crossref_primary_10_1016_j_bbamcr_2017_07_002
crossref_primary_10_1080_14789450_2020_1855982
crossref_primary_10_1002_pmic_201800361
crossref_primary_10_1007_s13361_019_02206_6
crossref_primary_10_1016_j_ijms_2017_09_001
crossref_primary_10_1016_j_trac_2020_115810
crossref_primary_10_1021_jasms_0c00484
crossref_primary_10_1002_mas_21910
crossref_primary_10_1186_s12014_024_09509_1
crossref_primary_10_1002_ansa_202300016
crossref_primary_10_1007_s13361_017_1823_8
crossref_primary_10_1007_s13361_019_02167_w
crossref_primary_10_1002_pmic_202200542
crossref_primary_10_1021_jasms_0c00355
crossref_primary_10_1016_j_bbapap_2021_140697
crossref_primary_10_3390_ijms24032124
crossref_primary_10_2116_analsci_20P075
crossref_primary_10_1002_mas_21595
crossref_primary_10_1016_j_trac_2019_115644
crossref_primary_10_1016_j_chroma_2020_461266
Cites_doi 10.1021/cr3003533
10.1021/ac9802426
10.1016/0021-9673(86)80066-8
10.1021/pr200052c
10.1021/ac403233d
10.1038/nature10575
10.1186/1471-2105-13-S16-S2
10.1021/ac702328x
10.1128/AEM.02720-07
10.1016/0003-2697(82)90103-8
10.1021/ja4029654
10.1371/journal.pone.0013133
10.1021/ac402394w
10.1021/ac801123p
10.1016/0003-2697(91)90261-Q
10.1021/ac400982w
10.1021/ac202339x
10.1021/ac0202280
10.1016/j.chroma.2011.05.094
10.1038/nrm2208
10.1021/pr901083m
10.1016/j.chroma.2011.06.049
10.1016/j.chroma.2004.10.092
10.1002/pmic.201000341
10.1021/ac0483062
10.1016/S0021-9673(00)88735-X
10.1016/S0021-9673(00)82081-6
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier B.V.
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier B.V.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.chroma.2017.01.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
EndPage 110
ExternalDocumentID 1343947
28077236
10_1016_j_chroma_2017_01_008
S0021967317300225
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
YK3
ZMT
~02
~G-
~KM
.GJ
29K
9DU
AAHBH
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
OHT
SCB
SEW
UQL
VH1
WUQ
ZGI
ZKB
ZXP
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c534t-f2c9a98831bb53d5c8340c5e65c9a262e0cad1d99146491ebe05615097d38aa3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401043000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9673
1873-3778
IngestDate Wed Nov 29 06:12:49 EST 2023
Thu Oct 02 06:25:38 EDT 2025
Fri Jul 11 02:50:57 EDT 2025
Thu Jan 02 22:25:44 EST 2025
Sat Nov 29 07:26:58 EST 2025
Tue Nov 18 21:50:50 EST 2025
Fri Feb 23 02:29:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Top-down proteomics
Columns and stationary phases
Intact proteins
UPLC
Mass spectrometry
Proteoforms
Language English
License Copyright © 2017. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-f2c9a98831bb53d5c8340c5e65c9a262e0cad1d99146491ebe05615097d38aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC05-76RL01830
PNNL-SA-107406
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://www.osti.gov/servlets/purl/1343947
PMID 28077236
PQID 1858107483
PQPubID 23479
PageCount 12
ParticipantIDs osti_scitechconnect_1343947
proquest_miscellaneous_2000369449
proquest_miscellaneous_1858107483
pubmed_primary_28077236
crossref_primary_10_1016_j_chroma_2017_01_008
crossref_citationtrail_10_1016_j_chroma_2017_01_008
elsevier_sciencedirect_doi_10_1016_j_chroma_2017_01_008
PublicationCentury 2000
PublicationDate 2017-05-19
PublicationDateYYYYMMDD 2017-05-19
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-19
  day: 19
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: United States
PublicationTitle Journal of Chromatography
PublicationTitleAlternate J Chromatogr A
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tran, Zamdborg, Ahlf, Lee, Catherman, Durbin, Tipton, Vellaichamy, Kellie, Li, Wu, Sweet, Early, Siuti, LeDuc, Compton, Thomas, Kelleher (bib0030) 2011; 480
Pearson, Hermodson, Regnier (bib0035) 1981; 207
Roth, Plymire, Chang, Kim, Maresh, Larson, Patrie (bib0065) 2011; 83
Shen, Zhang, Moore, Kim, Metz, Hixson, Zhao, Livesay, Udseth, Smith (bib0095) 2005; 77
Capriotti, Cavaliere, Foglia, Samperi, Lagana (bib0050) 2011; 1218
Shen, Tolić, Xie, Purvine, Moore, Smith (bib0020) 2011; 10
Renkin (bib0130) 1954; 38
Grace Vydac FAQs: What effect does column length have on my RP-HPLC column?
Tweeten, Tweeten (bib0085) 1980; 359
Zhang, Shan, Baek, Yates (bib0005) 2013; 113
Gilar, Kele, Gebler (bib0145) 2004; 1061
Gingras, Raught, Aebersold (bib0010) 2007; 8
Shen, Tolić, Hixson, Anderson, Smith (bib0120) 2008; 80
Itoh, Kinoshita, Nomura (bib0125) 1991; 199
Mohr, Samonig, Böhm, Huber (bib0075) 2010; 10
Shen, Tolić, Hixson, Paša-Tolić, Qian, Adkins, Smith (bib0115) 2008; 80
Wu, Wei, Zhang, Wirth (bib0060) 2014; 86
Shen, Liu, Tolić, Petritis, Zhao, Moore, Purvine, Camp, Smith (bib0015) 2010; 9
.
Shaw, Li, Holden, Zhang, Griep-Raming, Fellers, Early, Thomas, Kelleher, Brodbelt (bib0150) 2013; 135
Shen, Lee (bib0045) 1998; 70
Zhang, Roth, Chang, Plymire, Corbett, Greenberg (bib0070) 2013; 85
Young, Weigand (bib0090) 2002; 20
Jeong, Kim, Bandeira (bib0110) 2012; 13
Eeltink, Desmet, Blinco, Treumann (bib0080) 2011; 1218
Nice, Cooke, O'hare (bib0135) 1981; 218
Shen, Berger, Rodriguez, Smith (bib0100) 2002
O'Hare, Nice, Archer (bib0140) 1982; 126
Shen, Tolić, Liu, Zhao, Petritis, Gritsenko, Camp, Moore, Purvine, Esteva, Smith (bib0025) 2010
Romine, Norbeck, Lipton (bib0105) 2008; 74
Rogers, Wu, Wirth (bib0055) 2013; 85
Gilar (10.1016/j.chroma.2017.01.008_bib0145) 2004; 1061
Jeong (10.1016/j.chroma.2017.01.008_bib0110) 2012; 13
Young (10.1016/j.chroma.2017.01.008_bib0090) 2002; 20
Roth (10.1016/j.chroma.2017.01.008_bib0065) 2011; 83
Shen (10.1016/j.chroma.2017.01.008_bib0100) 2002
Renkin (10.1016/j.chroma.2017.01.008_bib0130) 1954; 38
Pearson (10.1016/j.chroma.2017.01.008_bib0035) 1981; 207
O'Hare (10.1016/j.chroma.2017.01.008_bib0140) 1982; 126
Rogers (10.1016/j.chroma.2017.01.008_bib0055) 2013; 85
Shen (10.1016/j.chroma.2017.01.008_bib0115) 2008; 80
Shen (10.1016/j.chroma.2017.01.008_bib0015) 2010; 9
Capriotti (10.1016/j.chroma.2017.01.008_bib0050) 2011; 1218
Mohr (10.1016/j.chroma.2017.01.008_bib0075) 2010; 10
Shen (10.1016/j.chroma.2017.01.008_bib0095) 2005; 77
Tweeten (10.1016/j.chroma.2017.01.008_bib0085) 1980; 359
Eeltink (10.1016/j.chroma.2017.01.008_bib0080) 2011; 1218
Shen (10.1016/j.chroma.2017.01.008_bib0020) 2011; 10
Itoh (10.1016/j.chroma.2017.01.008_bib0125) 1991; 199
Shaw (10.1016/j.chroma.2017.01.008_bib0150) 2013; 135
Zhang (10.1016/j.chroma.2017.01.008_bib0070) 2013; 85
10.1016/j.chroma.2017.01.008_bib0040
Gingras (10.1016/j.chroma.2017.01.008_bib0010) 2007; 8
Shen (10.1016/j.chroma.2017.01.008_bib0025) 2010
Shen (10.1016/j.chroma.2017.01.008_bib0045) 1998; 70
Shen (10.1016/j.chroma.2017.01.008_bib0120) 2008; 80
Wu (10.1016/j.chroma.2017.01.008_bib0060) 2014; 86
Nice (10.1016/j.chroma.2017.01.008_bib0135) 1981; 218
Zhang (10.1016/j.chroma.2017.01.008_bib0005) 2013; 113
Tran (10.1016/j.chroma.2017.01.008_bib0030) 2011; 480
Romine (10.1016/j.chroma.2017.01.008_bib0105) 2008; 74
References_xml – volume: 480
  start-page: 254
  year: 2011
  end-page: 258
  ident: bib0030
  article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics
  publication-title: Nature
– volume: 83
  start-page: 9586
  year: 2011
  end-page: 9592
  ident: bib0065
  article-title: Sensitive and reproducible intact mass analysis of complex protein mixtures with superficially porous capillary reversed-phase liquid chromatography mass spectrometry
  publication-title: Anal. Chem.
– volume: 10
  start-page: 3598
  year: 2010
  end-page: 3609
  ident: bib0075
  article-title: High-efficiency nano- and micro-HPLC – high-resolution Orbitrap-MS platform for top-down proteomics
  publication-title: Proteomics
– volume: 113
  start-page: 2343
  year: 2013
  end-page: 2394
  ident: bib0005
  article-title: Yates Protein analysis by shotgun/bottom-up proteomics
  publication-title: Chem. Rev.
– volume: 1218
  start-page: 5504
  year: 2011
  end-page: 5511
  ident: bib0080
  article-title: High-resolution separations of protein isoforms with liquid chromatography time-of-light mass spectrometry using polymer monolithic capillary columns
  publication-title: J. Chromatogr. A
– volume: 74
  start-page: 3257
  year: 2008
  end-page: 3265
  ident: bib0105
  article-title: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome
  publication-title: Appl. Environ. Microbiol.
– volume: 20
  start-page: 464
  year: 2002
  end-page: 473
  ident: bib0090
  article-title: An efficient approach to column selection in HPLC method development
  publication-title: LCGC North Am.
– volume: 1218
  start-page: 8760
  year: 2011
  end-page: 8776
  ident: bib0050
  article-title: Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics
  publication-title: J. Chromatogr. A
– volume: 10
  start-page: 3929
  year: 2011
  end-page: 3943
  ident: bib0020
  article-title: Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods
  publication-title: J. Proteome Res.
– volume: 85
  start-page: 6820
  year: 2013
  end-page: 6825
  ident: bib0055
  article-title: RPLC of intact proteins using sub-0. 5
  publication-title: Anal. Chem.
– start-page: 4235
  year: 2002
  end-page: 4249
  ident: bib0100
  article-title: High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry through nanoelectrospray Ionization
  publication-title: Anal. Chem.
– volume: 80
  start-page: 1871
  year: 2008
  end-page: 1882
  ident: bib0115
  article-title: Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates
  publication-title: Anal. Chem.
– volume: 70
  start-page: 3853
  year: 1998
  end-page: 3856
  ident: bib0045
  article-title: General expression of peak capacity for column chromatography
  publication-title: Anal. Chem.
– volume: 9
  start-page: 2339
  year: 2010
  end-page: 2346
  ident: bib0015
  article-title: Strategy for degradomic-peptidomic analysis of the human blood plasma
  publication-title: J. Proteome Res.
– volume: 359
  start-page: 111
  year: 1980
  end-page: 119
  ident: bib0085
  article-title: Reversed-phase chromatography of proteins on resin-based wide-pore packings
  publication-title: J. Chromatogr. A
– volume: 86
  start-page: 1592
  year: 2014
  end-page: 1598
  ident: bib0060
  article-title: Efficient separations of intact proteins using slip-flow with nano-liquid chromatography-mass spectrometry
  publication-title: Anal. Chem.
– volume: 1061
  start-page: 183
  year: 2004
  end-page: 192
  ident: bib0145
  article-title: Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 8
  start-page: 645
  year: 2007
  end-page: 654
  ident: bib0010
  article-title: Analysis of protein complexes using mass spectrometry
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 77
  start-page: 3090
  year: 2005
  end-page: 3100
  ident: bib0095
  article-title: Automated 20 Kpsi MS and MS/MS with chromatographic peak capacity of 1000–1500 for proteomics and metabolomics
  publication-title: Anal. Chem.
– volume: 126
  start-page: 17
  year: 1982
  end-page: 28
  ident: bib0140
  article-title: Factors influencing chromatography of proteins on short alkylsilane-bonded large pore-size silicas
  publication-title: Anal. Biochem.
– volume: 199
  start-page: 7
  year: 1991
  end-page: 10
  ident: bib0125
  article-title: Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded nonporous silica gel. II. Improvement in recovery of hydrophobic proteins
  publication-title: Anal. Biochem.
– volume: 207
  start-page: 325
  year: 1981
  end-page: 332
  ident: bib0035
  article-title: Reversed-phase supports for the resolution of large denatured protein fragments
  publication-title: J. Chromatogr.
– volume: 218
  start-page: 569
  year: 1981
  end-page: 580
  ident: bib0135
  article-title: Comparison of short and ultrashort-chain alkylsilane-bonded silicas for the high-performance liquid chromatography of proteins by hydrophobic interaction methods
  publication-title: J. Chromatogr.
– year: 2010
  ident: bib0025
  article-title: Blood peptidome-degradome profiles of breast cancer
  publication-title: PLoS One
– volume: 85
  start-page: 10377
  year: 2013
  end-page: 10384
  ident: bib0070
  article-title: Top-down mass spectrometry on tissue extracts and biofluids with isoelectric focusing and superficially porous silica liquid chromatography
  publication-title: Anal. Chem.
– volume: 80
  start-page: 7742
  year: 2008
  end-page: 7754
  ident: bib0120
  article-title: De novo sequencing of the unique sequence tags for discovery of posttranslational modification of proteins
  publication-title: Anal. Chem.
– volume: 38
  start-page: 225
  year: 1954
  end-page: 243
  ident: bib0130
  article-title: Filtration, diffusion, and molecular sieving through porous cellulose membranes
  publication-title: J. Gen. Physiol.
– reference: Grace Vydac FAQs: What effect does column length have on my RP-HPLC column?
– reference: .
– volume: 13
  start-page: S2
  year: 2012
  ident: bib0110
  article-title: False discovery rates in spectral identification
  publication-title: BMC Bioinf.
– volume: 135
  start-page: 12646
  year: 2013
  end-page: 12651
  ident: bib0150
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 2343
  year: 2013
  ident: 10.1016/j.chroma.2017.01.008_bib0005
  article-title: Yates Protein analysis by shotgun/bottom-up proteomics
  publication-title: Chem. Rev.
  doi: 10.1021/cr3003533
– volume: 70
  start-page: 3853
  year: 1998
  ident: 10.1016/j.chroma.2017.01.008_bib0045
  article-title: General expression of peak capacity for column chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac9802426
– volume: 359
  start-page: 111
  year: 1980
  ident: 10.1016/j.chroma.2017.01.008_bib0085
  article-title: Reversed-phase chromatography of proteins on resin-based wide-pore packings
  publication-title: J. Chromatogr. A
  doi: 10.1016/0021-9673(86)80066-8
– volume: 10
  start-page: 3929
  year: 2011
  ident: 10.1016/j.chroma.2017.01.008_bib0020
  article-title: Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200052c
– volume: 86
  start-page: 1592
  year: 2014
  ident: 10.1016/j.chroma.2017.01.008_bib0060
  article-title: Efficient separations of intact proteins using slip-flow with nano-liquid chromatography-mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac403233d
– volume: 480
  start-page: 254
  year: 2011
  ident: 10.1016/j.chroma.2017.01.008_bib0030
  article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics
  publication-title: Nature
  doi: 10.1038/nature10575
– volume: 13
  start-page: S2
  year: 2012
  ident: 10.1016/j.chroma.2017.01.008_bib0110
  article-title: False discovery rates in spectral identification
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-13-S16-S2
– volume: 80
  start-page: 1871
  year: 2008
  ident: 10.1016/j.chroma.2017.01.008_bib0115
  article-title: Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates
  publication-title: Anal. Chem.
  doi: 10.1021/ac702328x
– volume: 74
  start-page: 3257
  year: 2008
  ident: 10.1016/j.chroma.2017.01.008_bib0105
  article-title: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02720-07
– volume: 126
  start-page: 17
  year: 1982
  ident: 10.1016/j.chroma.2017.01.008_bib0140
  article-title: Factors influencing chromatography of proteins on short alkylsilane-bonded large pore-size silicas
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(82)90103-8
– volume: 135
  start-page: 12646
  year: 2013
  ident: 10.1016/j.chroma.2017.01.008_bib0150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4029654
– volume: 38
  start-page: 225
  year: 1954
  ident: 10.1016/j.chroma.2017.01.008_bib0130
  article-title: Filtration, diffusion, and molecular sieving through porous cellulose membranes
  publication-title: J. Gen. Physiol.
– year: 2010
  ident: 10.1016/j.chroma.2017.01.008_bib0025
  article-title: Blood peptidome-degradome profiles of breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013133
– volume: 85
  start-page: 10377
  year: 2013
  ident: 10.1016/j.chroma.2017.01.008_bib0070
  article-title: Top-down mass spectrometry on tissue extracts and biofluids with isoelectric focusing and superficially porous silica liquid chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac402394w
– volume: 20
  start-page: 464
  year: 2002
  ident: 10.1016/j.chroma.2017.01.008_bib0090
  article-title: An efficient approach to column selection in HPLC method development
  publication-title: LCGC North Am.
– volume: 80
  start-page: 7742
  year: 2008
  ident: 10.1016/j.chroma.2017.01.008_bib0120
  article-title: De novo sequencing of the unique sequence tags for discovery of posttranslational modification of proteins
  publication-title: Anal. Chem.
  doi: 10.1021/ac801123p
– volume: 199
  start-page: 7
  year: 1991
  ident: 10.1016/j.chroma.2017.01.008_bib0125
  article-title: Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded nonporous silica gel. II. Improvement in recovery of hydrophobic proteins
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(91)90261-Q
– volume: 85
  start-page: 6820
  year: 2013
  ident: 10.1016/j.chroma.2017.01.008_bib0055
  article-title: RPLC of intact proteins using sub-0. 5μm particles and commercial instrumentation
  publication-title: Anal. Chem.
  doi: 10.1021/ac400982w
– volume: 83
  start-page: 9586
  year: 2011
  ident: 10.1016/j.chroma.2017.01.008_bib0065
  article-title: Sensitive and reproducible intact mass analysis of complex protein mixtures with superficially porous capillary reversed-phase liquid chromatography mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac202339x
– start-page: 4235
  year: 2002
  ident: 10.1016/j.chroma.2017.01.008_bib0100
  article-title: High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry through nanoelectrospray Ionization
  publication-title: Anal. Chem.
  doi: 10.1021/ac0202280
– volume: 1218
  start-page: 8760
  year: 2011
  ident: 10.1016/j.chroma.2017.01.008_bib0050
  article-title: Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.05.094
– volume: 8
  start-page: 645
  year: 2007
  ident: 10.1016/j.chroma.2017.01.008_bib0010
  article-title: Analysis of protein complexes using mass spectrometry
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2208
– volume: 9
  start-page: 2339
  year: 2010
  ident: 10.1016/j.chroma.2017.01.008_bib0015
  article-title: Strategy for degradomic-peptidomic analysis of the human blood plasma
  publication-title: J. Proteome Res.
  doi: 10.1021/pr901083m
– volume: 1218
  start-page: 5504
  year: 2011
  ident: 10.1016/j.chroma.2017.01.008_bib0080
  article-title: High-resolution separations of protein isoforms with liquid chromatography time-of-light mass spectrometry using polymer monolithic capillary columns
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.06.049
– ident: 10.1016/j.chroma.2017.01.008_bib0040
– volume: 1061
  start-page: 183
  year: 2004
  ident: 10.1016/j.chroma.2017.01.008_bib0145
  article-title: Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2004.10.092
– volume: 10
  start-page: 3598
  year: 2010
  ident: 10.1016/j.chroma.2017.01.008_bib0075
  article-title: High-efficiency nano- and micro-HPLC – high-resolution Orbitrap-MS platform for top-down proteomics
  publication-title: Proteomics
  doi: 10.1002/pmic.201000341
– volume: 77
  start-page: 3090
  year: 2005
  ident: 10.1016/j.chroma.2017.01.008_bib0095
  article-title: Automated 20 Kpsi MS and MS/MS with chromatographic peak capacity of 1000–1500 for proteomics and metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac0483062
– volume: 207
  start-page: 325
  year: 1981
  ident: 10.1016/j.chroma.2017.01.008_bib0035
  article-title: Reversed-phase supports for the resolution of large denatured protein fragments
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(00)88735-X
– volume: 218
  start-page: 569
  year: 1981
  ident: 10.1016/j.chroma.2017.01.008_bib0135
  article-title: Comparison of short and ultrashort-chain alkylsilane-bonded silicas for the high-performance liquid chromatography of proteins by hydrophobic interaction methods
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(00)82081-6
SSID ssj0017072
ssj0029838
Score 2.451859
Snippet •Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving...
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms BASIC BIOLOGICAL SCIENCES
Chromatography, High Pressure Liquid - methods
Chromatography, Reverse-Phase - methods
Columns and stationary phases
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intact proteins
Mass spectrometry
molecular weight
peptides
Peptides - analysis
Peptides - isolation & purification
Porosity
Pressure
proteins
Proteins - analysis
Proteins - isolation & purification
Proteoforms
proteomics
Proteomics - methods
reversed-phase liquid chromatography
spectrometers
Surface Properties
Tandem Mass Spectrometry
Top-down proteomics
UPLC
Title High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics
URI https://dx.doi.org/10.1016/j.chroma.2017.01.008
https://www.ncbi.nlm.nih.gov/pubmed/28077236
https://www.proquest.com/docview/1858107483
https://www.proquest.com/docview/2000369449
https://www.osti.gov/servlets/purl/1343947
Volume 1498
WOSCitedRecordID wos000401043000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029838
  issn: 0021-9673
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYhwQviM9RBlOQEC-VpyZ2YvtxmjoBGmUSRSpPVuqkatYo6doG9udzFzvpRlVtPPAStW7cNrlf7sP-3R0hH4yBEEf6IZV8GlHOphMqAx5TMJ0TzrkJmYjrZhNiOJTjsbpw1KFV3U5AFIW8vlaL_ypqGANhY-rsP4i7_VIYgNcgdDiC2OF4L8Ejc4NCEO1-pFfla1AoOFhzXnHDIC_rTFvQS5jMgsSMNKGLGRi0Xp5dVVnSM7NlCb6sq2dtuYjlgiYQs_fq0g6YzNy6499disfPapo6S1gvXOdZ7asKC7l5mbc24CJLZ-Vv1zMb2Yk3mMezap7b1d4iy90yrFuXAFuHJU3VTV2L5I_INippdS1Xsrc4Vor6js1q9aZtkuQssPtoS7nbdYbLY3sLkJYn6pKrfbkxZs0G_vCbPvtxfq5Hg_Ho4-KKYpsx3I53PVf2yH4gQiU7ZP_k82D8pd14En3Rlh8LlGTWkrsraVIva37g9r_Y5dp0StDWuyOY2pMZPSVPXAjinVjoPCMP0uI5eXTadP57QeZ_QcjbhpCHEPIshLzbEPIshLzbEPIAQl4DIW8DoZdkdDYYnX6irikHheeWr-k0MCpWUjJ_MglZEhrJeN-EaRTCeBAFad_EiZ9A2MEjrnzQERijglsqEibjmL0inaIs0tfESwT4vomMDI8k98VEBrGfhgl2IIhU4rMuYc3t1MYVrMe-KblumImX2l6KRiHovq9BCF1C21kLW7DljvNFIyntnE7rTGqA3R0zD1GwOAvrLRskpsE0n2GyueiS9428NYgPt-HiIi2rlQYPWSINWrLd5wR1oSjFueqSAwuW9mqwfpUIWPTmHrMPyePNs_mWdNbLKn1HHppf62y1PCJ7YiyP3CMA74YXX_8A6VLOHQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+ultrahigh-pressure+long+column+reversed-phase+liquid+chromatography+for+top-down+proteomics&rft.au=Shen%2C+Yufeng&rft.au=Toli%C4%87%2C+Nikola&rft.au=Piehowski%2C+Paul+D&rft.au=Shukla%2C+Anil+K&rft.date=2017-05-19&rft.issn=0021-9673&rft.volume=1498+p.99-110&rft.spage=99&rft.epage=110&rft_id=info:doi/10.1016%2Fj.chroma.2017.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon