High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics
•Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chrom...
Uloženo v:
| Vydáno v: | Journal of Chromatography Ročník 1498; číslo C; s. 99 - 110 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
19.05.2017
Elsevier |
| Témata: | |
| ISSN: | 0021-9673, 1873-3778, 1873-3778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chromatographing >100kDa proteoforms.•C1-C18-bonded phases had their own limits for eluting various sizes of proteoforms.
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50–110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. |
|---|---|
| AbstractList | Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. •Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving proteoforms.•Both porous and superficially porous particles were effective to separate proteins. Particles with 200–450Å pores enabled chromatographing >100kDa proteoforms.•C1-C18-bonded phases had their own limits for eluting various sizes of proteoforms. Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50–110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. |
| Author | Robinson, Errol Shukla, Anil K. Qu, Yi Piehowski, Paul D. Paša-Tolić, Ljiljana Shen, Yufeng Tolić, Nikola Zhao, Rui Kim, Sangtae Smith, Richard D. |
| Author_xml | – sequence: 1 givenname: Yufeng surname: Shen fullname: Shen, Yufeng email: Yufeng.shen@pnnl.gov organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 2 givenname: Nikola surname: Tolić fullname: Tolić, Nikola organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 3 givenname: Paul D. surname: Piehowski fullname: Piehowski, Paul D. organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 4 givenname: Anil K. surname: Shukla fullname: Shukla, Anil K. organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 5 givenname: Sangtae surname: Kim fullname: Kim, Sangtae organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 6 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 7 givenname: Yi surname: Qu fullname: Qu, Yi organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 8 givenname: Errol surname: Robinson fullname: Robinson, Errol organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 9 givenname: Richard D. surname: Smith fullname: Smith, Richard D. organization: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA – sequence: 10 givenname: Ljiljana surname: Paša-Tolić fullname: Paša-Tolić, Ljiljana email: ljiljana.pasatolic@pnnl.gov organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28077236$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1343947$$D View this record in Osti.gov |
| BookMark | eNqFkUFv1DAQhS1URLeFf4BQxIlLwjhOYpsDEqqAIlXi0rvldWY3XhI7tZ1W_fc4SuHAgZ4sPX9vNPPeBTlz3iEhbylUFGj38VSZIfhJVzVQXgGtAMQLsqOCs5JxLs7IDqCmpew4OycXMZ4gg8DrV-S8FsB5zbod-XVtj0MZMPpxSda7YhlT0MMqzlmNS8Bi9O5YmAxMrgh4jyFiX86DjvnL3i22L7ZNkj8GPQ-PxcGHIvm57P2DK-bgE_rJmviavDzoMeKbp_eS3H77ent1Xd78_P7j6stNaVrWpPJQG6mlEIzu9y3rWyNYA6bFrs163dUIRve0l5I2XSMp7hHajrYgec-E1uySvN_G-pisisYmNIPxzqFJirKGyYZn6MMG5fXuFoxJTTYaHEft0C9R1QDAOtk08lmUilZQ4I1gGX33hC77CXs1Bzvp8Kj-5J2BZgNM8DEGPPxFKKi1VnVSW5hqrVUBVbnWbPv0jy1fpde-cll2fM78eTNjzvzeYlgzQWewt2GNpPf2_wN-A0_iwTU |
| CitedBy_id | crossref_primary_10_1002_mas_21706 crossref_primary_10_1016_j_chroma_2019_460462 crossref_primary_10_1038_s41598_018_38380_y crossref_primary_10_1016_j_chroma_2020_461706 crossref_primary_10_1007_s13361_019_02290_8 crossref_primary_10_1002_jssc_201800891 crossref_primary_10_1155_2019_8934794 crossref_primary_10_1016_j_bbamcr_2017_07_002 crossref_primary_10_1080_14789450_2020_1855982 crossref_primary_10_1002_pmic_201800361 crossref_primary_10_1007_s13361_019_02206_6 crossref_primary_10_1016_j_ijms_2017_09_001 crossref_primary_10_1016_j_trac_2020_115810 crossref_primary_10_1021_jasms_0c00484 crossref_primary_10_1002_mas_21910 crossref_primary_10_1186_s12014_024_09509_1 crossref_primary_10_1002_ansa_202300016 crossref_primary_10_1007_s13361_017_1823_8 crossref_primary_10_1007_s13361_019_02167_w crossref_primary_10_1002_pmic_202200542 crossref_primary_10_1021_jasms_0c00355 crossref_primary_10_1016_j_bbapap_2021_140697 crossref_primary_10_3390_ijms24032124 crossref_primary_10_2116_analsci_20P075 crossref_primary_10_1002_mas_21595 crossref_primary_10_1016_j_trac_2019_115644 crossref_primary_10_1016_j_chroma_2020_461266 |
| Cites_doi | 10.1021/cr3003533 10.1021/ac9802426 10.1016/0021-9673(86)80066-8 10.1021/pr200052c 10.1021/ac403233d 10.1038/nature10575 10.1186/1471-2105-13-S16-S2 10.1021/ac702328x 10.1128/AEM.02720-07 10.1016/0003-2697(82)90103-8 10.1021/ja4029654 10.1371/journal.pone.0013133 10.1021/ac402394w 10.1021/ac801123p 10.1016/0003-2697(91)90261-Q 10.1021/ac400982w 10.1021/ac202339x 10.1021/ac0202280 10.1016/j.chroma.2011.05.094 10.1038/nrm2208 10.1021/pr901083m 10.1016/j.chroma.2011.06.049 10.1016/j.chroma.2004.10.092 10.1002/pmic.201000341 10.1021/ac0483062 10.1016/S0021-9673(00)88735-X 10.1016/S0021-9673(00)82081-6 |
| ContentType | Journal Article |
| Copyright | 2017 Copyright © 2017. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier B.V. |
| CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OIOZB OTOTI |
| DOI | 10.1016/j.chroma.2017.01.008 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3778 |
| EndPage | 110 |
| ExternalDocumentID | 1343947 28077236 10_1016_j_chroma_2017_01_008 S0021967317300225 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FLBIZ FNPLU FYGXN G-Q GBLVA IH2 IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP YK3 ZMT ~02 ~G- ~KM .GJ 29K 9DU AAHBH AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABXDB ACLOT ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 OHT SCB SEW UQL VH1 WUQ ZGI ZKB ZXP ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ABPIF ABPTK OIOZB OTOTI |
| ID | FETCH-LOGICAL-c534t-f2c9a98831bb53d5c8340c5e65c9a262e0cad1d99146491ebe05615097d38aa3 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401043000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9673 1873-3778 |
| IngestDate | Wed Nov 29 06:12:49 EST 2023 Thu Oct 02 06:25:38 EDT 2025 Fri Jul 11 02:50:57 EDT 2025 Thu Jan 02 22:25:44 EST 2025 Sat Nov 29 07:26:58 EST 2025 Tue Nov 18 21:50:50 EST 2025 Fri Feb 23 02:29:24 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Top-down proteomics Columns and stationary phases Intact proteins UPLC Mass spectrometry Proteoforms |
| Language | English |
| License | Copyright © 2017. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c534t-f2c9a98831bb53d5c8340c5e65c9a262e0cad1d99146491ebe05615097d38aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC05-76RL01830 PNNL-SA-107406 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1343947 |
| PMID | 28077236 |
| PQID | 1858107483 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | osti_scitechconnect_1343947 proquest_miscellaneous_2000369449 proquest_miscellaneous_1858107483 pubmed_primary_28077236 crossref_primary_10_1016_j_chroma_2017_01_008 crossref_citationtrail_10_1016_j_chroma_2017_01_008 elsevier_sciencedirect_doi_10_1016_j_chroma_2017_01_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-19 |
| PublicationDateYYYYMMDD | 2017-05-19 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: United States |
| PublicationTitle | Journal of Chromatography |
| PublicationTitleAlternate | J Chromatogr A |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Tran, Zamdborg, Ahlf, Lee, Catherman, Durbin, Tipton, Vellaichamy, Kellie, Li, Wu, Sweet, Early, Siuti, LeDuc, Compton, Thomas, Kelleher (bib0030) 2011; 480 Pearson, Hermodson, Regnier (bib0035) 1981; 207 Roth, Plymire, Chang, Kim, Maresh, Larson, Patrie (bib0065) 2011; 83 Shen, Zhang, Moore, Kim, Metz, Hixson, Zhao, Livesay, Udseth, Smith (bib0095) 2005; 77 Capriotti, Cavaliere, Foglia, Samperi, Lagana (bib0050) 2011; 1218 Shen, Tolić, Xie, Purvine, Moore, Smith (bib0020) 2011; 10 Renkin (bib0130) 1954; 38 Grace Vydac FAQs: What effect does column length have on my RP-HPLC column? Tweeten, Tweeten (bib0085) 1980; 359 Zhang, Shan, Baek, Yates (bib0005) 2013; 113 Gilar, Kele, Gebler (bib0145) 2004; 1061 Gingras, Raught, Aebersold (bib0010) 2007; 8 Shen, Tolić, Hixson, Anderson, Smith (bib0120) 2008; 80 Itoh, Kinoshita, Nomura (bib0125) 1991; 199 Mohr, Samonig, Böhm, Huber (bib0075) 2010; 10 Shen, Tolić, Hixson, Paša-Tolić, Qian, Adkins, Smith (bib0115) 2008; 80 Wu, Wei, Zhang, Wirth (bib0060) 2014; 86 Shen, Liu, Tolić, Petritis, Zhao, Moore, Purvine, Camp, Smith (bib0015) 2010; 9 . Shaw, Li, Holden, Zhang, Griep-Raming, Fellers, Early, Thomas, Kelleher, Brodbelt (bib0150) 2013; 135 Shen, Lee (bib0045) 1998; 70 Zhang, Roth, Chang, Plymire, Corbett, Greenberg (bib0070) 2013; 85 Young, Weigand (bib0090) 2002; 20 Jeong, Kim, Bandeira (bib0110) 2012; 13 Eeltink, Desmet, Blinco, Treumann (bib0080) 2011; 1218 Nice, Cooke, O'hare (bib0135) 1981; 218 Shen, Berger, Rodriguez, Smith (bib0100) 2002 O'Hare, Nice, Archer (bib0140) 1982; 126 Shen, Tolić, Liu, Zhao, Petritis, Gritsenko, Camp, Moore, Purvine, Esteva, Smith (bib0025) 2010 Romine, Norbeck, Lipton (bib0105) 2008; 74 Rogers, Wu, Wirth (bib0055) 2013; 85 Gilar (10.1016/j.chroma.2017.01.008_bib0145) 2004; 1061 Jeong (10.1016/j.chroma.2017.01.008_bib0110) 2012; 13 Young (10.1016/j.chroma.2017.01.008_bib0090) 2002; 20 Roth (10.1016/j.chroma.2017.01.008_bib0065) 2011; 83 Shen (10.1016/j.chroma.2017.01.008_bib0100) 2002 Renkin (10.1016/j.chroma.2017.01.008_bib0130) 1954; 38 Pearson (10.1016/j.chroma.2017.01.008_bib0035) 1981; 207 O'Hare (10.1016/j.chroma.2017.01.008_bib0140) 1982; 126 Rogers (10.1016/j.chroma.2017.01.008_bib0055) 2013; 85 Shen (10.1016/j.chroma.2017.01.008_bib0115) 2008; 80 Shen (10.1016/j.chroma.2017.01.008_bib0015) 2010; 9 Capriotti (10.1016/j.chroma.2017.01.008_bib0050) 2011; 1218 Mohr (10.1016/j.chroma.2017.01.008_bib0075) 2010; 10 Shen (10.1016/j.chroma.2017.01.008_bib0095) 2005; 77 Tweeten (10.1016/j.chroma.2017.01.008_bib0085) 1980; 359 Eeltink (10.1016/j.chroma.2017.01.008_bib0080) 2011; 1218 Shen (10.1016/j.chroma.2017.01.008_bib0020) 2011; 10 Itoh (10.1016/j.chroma.2017.01.008_bib0125) 1991; 199 Shaw (10.1016/j.chroma.2017.01.008_bib0150) 2013; 135 Zhang (10.1016/j.chroma.2017.01.008_bib0070) 2013; 85 10.1016/j.chroma.2017.01.008_bib0040 Gingras (10.1016/j.chroma.2017.01.008_bib0010) 2007; 8 Shen (10.1016/j.chroma.2017.01.008_bib0025) 2010 Shen (10.1016/j.chroma.2017.01.008_bib0045) 1998; 70 Shen (10.1016/j.chroma.2017.01.008_bib0120) 2008; 80 Wu (10.1016/j.chroma.2017.01.008_bib0060) 2014; 86 Nice (10.1016/j.chroma.2017.01.008_bib0135) 1981; 218 Zhang (10.1016/j.chroma.2017.01.008_bib0005) 2013; 113 Tran (10.1016/j.chroma.2017.01.008_bib0030) 2011; 480 Romine (10.1016/j.chroma.2017.01.008_bib0105) 2008; 74 |
| References_xml | – volume: 480 start-page: 254 year: 2011 end-page: 258 ident: bib0030 article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics publication-title: Nature – volume: 83 start-page: 9586 year: 2011 end-page: 9592 ident: bib0065 article-title: Sensitive and reproducible intact mass analysis of complex protein mixtures with superficially porous capillary reversed-phase liquid chromatography mass spectrometry publication-title: Anal. Chem. – volume: 10 start-page: 3598 year: 2010 end-page: 3609 ident: bib0075 article-title: High-efficiency nano- and micro-HPLC – high-resolution Orbitrap-MS platform for top-down proteomics publication-title: Proteomics – volume: 113 start-page: 2343 year: 2013 end-page: 2394 ident: bib0005 article-title: Yates Protein analysis by shotgun/bottom-up proteomics publication-title: Chem. Rev. – volume: 1218 start-page: 5504 year: 2011 end-page: 5511 ident: bib0080 article-title: High-resolution separations of protein isoforms with liquid chromatography time-of-light mass spectrometry using polymer monolithic capillary columns publication-title: J. Chromatogr. A – volume: 74 start-page: 3257 year: 2008 end-page: 3265 ident: bib0105 article-title: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome publication-title: Appl. Environ. Microbiol. – volume: 20 start-page: 464 year: 2002 end-page: 473 ident: bib0090 article-title: An efficient approach to column selection in HPLC method development publication-title: LCGC North Am. – volume: 1218 start-page: 8760 year: 2011 end-page: 8776 ident: bib0050 article-title: Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics publication-title: J. Chromatogr. A – volume: 10 start-page: 3929 year: 2011 end-page: 3943 ident: bib0020 article-title: Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods publication-title: J. Proteome Res. – volume: 85 start-page: 6820 year: 2013 end-page: 6825 ident: bib0055 article-title: RPLC of intact proteins using sub-0. 5 publication-title: Anal. Chem. – start-page: 4235 year: 2002 end-page: 4249 ident: bib0100 article-title: High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry through nanoelectrospray Ionization publication-title: Anal. Chem. – volume: 80 start-page: 1871 year: 2008 end-page: 1882 ident: bib0115 article-title: Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates publication-title: Anal. Chem. – volume: 70 start-page: 3853 year: 1998 end-page: 3856 ident: bib0045 article-title: General expression of peak capacity for column chromatography publication-title: Anal. Chem. – volume: 9 start-page: 2339 year: 2010 end-page: 2346 ident: bib0015 article-title: Strategy for degradomic-peptidomic analysis of the human blood plasma publication-title: J. Proteome Res. – volume: 359 start-page: 111 year: 1980 end-page: 119 ident: bib0085 article-title: Reversed-phase chromatography of proteins on resin-based wide-pore packings publication-title: J. Chromatogr. A – volume: 86 start-page: 1592 year: 2014 end-page: 1598 ident: bib0060 article-title: Efficient separations of intact proteins using slip-flow with nano-liquid chromatography-mass spectrometry publication-title: Anal. Chem. – volume: 1061 start-page: 183 year: 2004 end-page: 192 ident: bib0145 article-title: Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography publication-title: J. Chromatogr. A – volume: 8 start-page: 645 year: 2007 end-page: 654 ident: bib0010 article-title: Analysis of protein complexes using mass spectrometry publication-title: Nat. Rev. Mol. Cell Biol. – volume: 77 start-page: 3090 year: 2005 end-page: 3100 ident: bib0095 article-title: Automated 20 Kpsi MS and MS/MS with chromatographic peak capacity of 1000–1500 for proteomics and metabolomics publication-title: Anal. Chem. – volume: 126 start-page: 17 year: 1982 end-page: 28 ident: bib0140 article-title: Factors influencing chromatography of proteins on short alkylsilane-bonded large pore-size silicas publication-title: Anal. Biochem. – volume: 199 start-page: 7 year: 1991 end-page: 10 ident: bib0125 article-title: Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded nonporous silica gel. II. Improvement in recovery of hydrophobic proteins publication-title: Anal. Biochem. – volume: 207 start-page: 325 year: 1981 end-page: 332 ident: bib0035 article-title: Reversed-phase supports for the resolution of large denatured protein fragments publication-title: J. Chromatogr. – volume: 218 start-page: 569 year: 1981 end-page: 580 ident: bib0135 article-title: Comparison of short and ultrashort-chain alkylsilane-bonded silicas for the high-performance liquid chromatography of proteins by hydrophobic interaction methods publication-title: J. Chromatogr. – year: 2010 ident: bib0025 article-title: Blood peptidome-degradome profiles of breast cancer publication-title: PLoS One – volume: 85 start-page: 10377 year: 2013 end-page: 10384 ident: bib0070 article-title: Top-down mass spectrometry on tissue extracts and biofluids with isoelectric focusing and superficially porous silica liquid chromatography publication-title: Anal. Chem. – volume: 80 start-page: 7742 year: 2008 end-page: 7754 ident: bib0120 article-title: De novo sequencing of the unique sequence tags for discovery of posttranslational modification of proteins publication-title: Anal. Chem. – volume: 38 start-page: 225 year: 1954 end-page: 243 ident: bib0130 article-title: Filtration, diffusion, and molecular sieving through porous cellulose membranes publication-title: J. Gen. Physiol. – reference: Grace Vydac FAQs: What effect does column length have on my RP-HPLC column? – reference: . – volume: 13 start-page: S2 year: 2012 ident: bib0110 article-title: False discovery rates in spectral identification publication-title: BMC Bioinf. – volume: 135 start-page: 12646 year: 2013 end-page: 12651 ident: bib0150 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 2343 year: 2013 ident: 10.1016/j.chroma.2017.01.008_bib0005 article-title: Yates Protein analysis by shotgun/bottom-up proteomics publication-title: Chem. Rev. doi: 10.1021/cr3003533 – volume: 70 start-page: 3853 year: 1998 ident: 10.1016/j.chroma.2017.01.008_bib0045 article-title: General expression of peak capacity for column chromatography publication-title: Anal. Chem. doi: 10.1021/ac9802426 – volume: 359 start-page: 111 year: 1980 ident: 10.1016/j.chroma.2017.01.008_bib0085 article-title: Reversed-phase chromatography of proteins on resin-based wide-pore packings publication-title: J. Chromatogr. A doi: 10.1016/0021-9673(86)80066-8 – volume: 10 start-page: 3929 year: 2011 ident: 10.1016/j.chroma.2017.01.008_bib0020 article-title: Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods publication-title: J. Proteome Res. doi: 10.1021/pr200052c – volume: 86 start-page: 1592 year: 2014 ident: 10.1016/j.chroma.2017.01.008_bib0060 article-title: Efficient separations of intact proteins using slip-flow with nano-liquid chromatography-mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac403233d – volume: 480 start-page: 254 year: 2011 ident: 10.1016/j.chroma.2017.01.008_bib0030 article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics publication-title: Nature doi: 10.1038/nature10575 – volume: 13 start-page: S2 year: 2012 ident: 10.1016/j.chroma.2017.01.008_bib0110 article-title: False discovery rates in spectral identification publication-title: BMC Bioinf. doi: 10.1186/1471-2105-13-S16-S2 – volume: 80 start-page: 1871 year: 2008 ident: 10.1016/j.chroma.2017.01.008_bib0115 article-title: Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates publication-title: Anal. Chem. doi: 10.1021/ac702328x – volume: 74 start-page: 3257 year: 2008 ident: 10.1016/j.chroma.2017.01.008_bib0105 article-title: Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02720-07 – volume: 126 start-page: 17 year: 1982 ident: 10.1016/j.chroma.2017.01.008_bib0140 article-title: Factors influencing chromatography of proteins on short alkylsilane-bonded large pore-size silicas publication-title: Anal. Biochem. doi: 10.1016/0003-2697(82)90103-8 – volume: 135 start-page: 12646 year: 2013 ident: 10.1016/j.chroma.2017.01.008_bib0150 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4029654 – volume: 38 start-page: 225 year: 1954 ident: 10.1016/j.chroma.2017.01.008_bib0130 article-title: Filtration, diffusion, and molecular sieving through porous cellulose membranes publication-title: J. Gen. Physiol. – year: 2010 ident: 10.1016/j.chroma.2017.01.008_bib0025 article-title: Blood peptidome-degradome profiles of breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0013133 – volume: 85 start-page: 10377 year: 2013 ident: 10.1016/j.chroma.2017.01.008_bib0070 article-title: Top-down mass spectrometry on tissue extracts and biofluids with isoelectric focusing and superficially porous silica liquid chromatography publication-title: Anal. Chem. doi: 10.1021/ac402394w – volume: 20 start-page: 464 year: 2002 ident: 10.1016/j.chroma.2017.01.008_bib0090 article-title: An efficient approach to column selection in HPLC method development publication-title: LCGC North Am. – volume: 80 start-page: 7742 year: 2008 ident: 10.1016/j.chroma.2017.01.008_bib0120 article-title: De novo sequencing of the unique sequence tags for discovery of posttranslational modification of proteins publication-title: Anal. Chem. doi: 10.1021/ac801123p – volume: 199 start-page: 7 year: 1991 ident: 10.1016/j.chroma.2017.01.008_bib0125 article-title: Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded nonporous silica gel. II. Improvement in recovery of hydrophobic proteins publication-title: Anal. Biochem. doi: 10.1016/0003-2697(91)90261-Q – volume: 85 start-page: 6820 year: 2013 ident: 10.1016/j.chroma.2017.01.008_bib0055 article-title: RPLC of intact proteins using sub-0. 5μm particles and commercial instrumentation publication-title: Anal. Chem. doi: 10.1021/ac400982w – volume: 83 start-page: 9586 year: 2011 ident: 10.1016/j.chroma.2017.01.008_bib0065 article-title: Sensitive and reproducible intact mass analysis of complex protein mixtures with superficially porous capillary reversed-phase liquid chromatography mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac202339x – start-page: 4235 year: 2002 ident: 10.1016/j.chroma.2017.01.008_bib0100 article-title: High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry through nanoelectrospray Ionization publication-title: Anal. Chem. doi: 10.1021/ac0202280 – volume: 1218 start-page: 8760 year: 2011 ident: 10.1016/j.chroma.2017.01.008_bib0050 article-title: Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2011.05.094 – volume: 8 start-page: 645 year: 2007 ident: 10.1016/j.chroma.2017.01.008_bib0010 article-title: Analysis of protein complexes using mass spectrometry publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2208 – volume: 9 start-page: 2339 year: 2010 ident: 10.1016/j.chroma.2017.01.008_bib0015 article-title: Strategy for degradomic-peptidomic analysis of the human blood plasma publication-title: J. Proteome Res. doi: 10.1021/pr901083m – volume: 1218 start-page: 5504 year: 2011 ident: 10.1016/j.chroma.2017.01.008_bib0080 article-title: High-resolution separations of protein isoforms with liquid chromatography time-of-light mass spectrometry using polymer monolithic capillary columns publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2011.06.049 – ident: 10.1016/j.chroma.2017.01.008_bib0040 – volume: 1061 start-page: 183 year: 2004 ident: 10.1016/j.chroma.2017.01.008_bib0145 article-title: Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2004.10.092 – volume: 10 start-page: 3598 year: 2010 ident: 10.1016/j.chroma.2017.01.008_bib0075 article-title: High-efficiency nano- and micro-HPLC – high-resolution Orbitrap-MS platform for top-down proteomics publication-title: Proteomics doi: 10.1002/pmic.201000341 – volume: 77 start-page: 3090 year: 2005 ident: 10.1016/j.chroma.2017.01.008_bib0095 article-title: Automated 20 Kpsi MS and MS/MS with chromatographic peak capacity of 1000–1500 for proteomics and metabolomics publication-title: Anal. Chem. doi: 10.1021/ac0483062 – volume: 207 start-page: 325 year: 1981 ident: 10.1016/j.chroma.2017.01.008_bib0035 article-title: Reversed-phase supports for the resolution of large denatured protein fragments publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(00)88735-X – volume: 218 start-page: 569 year: 1981 ident: 10.1016/j.chroma.2017.01.008_bib0135 article-title: Comparison of short and ultrashort-chain alkylsilane-bonded silicas for the high-performance liquid chromatography of proteins by hydrophobic interaction methods publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(00)82081-6 |
| SSID | ssj0017072 ssj0029838 |
| Score | 2.451859 |
| Snippet | •Column length was found as an important factor for top-down proteomic RPLC separation.•Long (≥1m) columns can provide peak capacities of >400 for resolving... Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional... |
| SourceID | osti proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 99 |
| SubjectTerms | BASIC BIOLOGICAL SCIENCES Chromatography, High Pressure Liquid - methods Chromatography, Reverse-Phase - methods Columns and stationary phases INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intact proteins Mass spectrometry molecular weight peptides Peptides - analysis Peptides - isolation & purification Porosity Pressure proteins Proteins - analysis Proteins - isolation & purification Proteoforms proteomics Proteomics - methods reversed-phase liquid chromatography spectrometers Surface Properties Tandem Mass Spectrometry Top-down proteomics UPLC |
| Title | High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics |
| URI | https://dx.doi.org/10.1016/j.chroma.2017.01.008 https://www.ncbi.nlm.nih.gov/pubmed/28077236 https://www.proquest.com/docview/1858107483 https://www.proquest.com/docview/2000369449 https://www.osti.gov/servlets/purl/1343947 |
| Volume | 1498 |
| WOSCitedRecordID | wos000401043000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3778 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029838 issn: 0021-9673 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYhwQviM9RBlOQEC-VpyZ2YvtxmjoBGmUSRSpPVuqkatYo6doG9udzFzvpRlVtPPAStW7cNrlf7sP-3R0hH4yBEEf6IZV8GlHOphMqAx5TMJ0TzrkJmYjrZhNiOJTjsbpw1KFV3U5AFIW8vlaL_ypqGANhY-rsP4i7_VIYgNcgdDiC2OF4L8Ejc4NCEO1-pFfla1AoOFhzXnHDIC_rTFvQS5jMgsSMNKGLGRi0Xp5dVVnSM7NlCb6sq2dtuYjlgiYQs_fq0g6YzNy6499disfPapo6S1gvXOdZ7asKC7l5mbc24CJLZ-Vv1zMb2Yk3mMezap7b1d4iy90yrFuXAFuHJU3VTV2L5I_INippdS1Xsrc4Vor6js1q9aZtkuQssPtoS7nbdYbLY3sLkJYn6pKrfbkxZs0G_vCbPvtxfq5Hg_Ho4-KKYpsx3I53PVf2yH4gQiU7ZP_k82D8pd14En3Rlh8LlGTWkrsraVIva37g9r_Y5dp0StDWuyOY2pMZPSVPXAjinVjoPCMP0uI5eXTadP57QeZ_QcjbhpCHEPIshLzbEPIshLzbEPIAQl4DIW8DoZdkdDYYnX6irikHheeWr-k0MCpWUjJ_MglZEhrJeN-EaRTCeBAFad_EiZ9A2MEjrnzQERijglsqEibjmL0inaIs0tfESwT4vomMDI8k98VEBrGfhgl2IIhU4rMuYc3t1MYVrMe-KblumImX2l6KRiHovq9BCF1C21kLW7DljvNFIyntnE7rTGqA3R0zD1GwOAvrLRskpsE0n2GyueiS9428NYgPt-HiIi2rlQYPWSINWrLd5wR1oSjFueqSAwuW9mqwfpUIWPTmHrMPyePNs_mWdNbLKn1HHppf62y1PCJ7YiyP3CMA74YXX_8A6VLOHQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+ultrahigh-pressure+long+column+reversed-phase+liquid+chromatography+for+top-down+proteomics&rft.au=Shen%2C+Yufeng&rft.au=Toli%C4%87%2C+Nikola&rft.au=Piehowski%2C+Paul+D&rft.au=Shukla%2C+Anil+K&rft.date=2017-05-19&rft.issn=0021-9673&rft.volume=1498+p.99-110&rft.spage=99&rft.epage=110&rft_id=info:doi/10.1016%2Fj.chroma.2017.01.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon |