Forecasting photovoltaic array power production subject to mismatch losses
The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module in...
Uložené v:
| Vydané v: | Solar energy Ročník 84; číslo 7; s. 1301 - 1309 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.07.2010
Elsevier Pergamon Press Inc |
| Predmet: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module interconnections of a solar array. This paper presents a novel method to forecast existing PV array production in diverse environmental conditions. In this approach, field measurement data is used to identify module parameters once and for all. The proposed method simulates PV arrays with adaptable module interconnection schemes in order to reduce mismatch losses. The model has been validated by experimental results taken on a 2.2
kW
p plant, with three different interconnection schemes, which show reliable power production forecast precision in both partially shaded and normal operating conditions. Field measurements show interest in using alternative plant configurations in PV systems for decreasing module mismatch losses. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0038-092X 1471-1257 |
| DOI: | 10.1016/j.solener.2010.04.009 |