Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515)...
Saved in:
| Published in: | Acta orthopaedica Vol. 89; no. 4; pp. 468 - 473 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Taylor & Francis
04.07.2018
Medical Journals Sweden |
| Subjects: | |
| ISSN: | 1745-3674, 1745-3682, 1745-3682 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs.
Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated.
Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures.
Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments. |
|---|---|
| AbstractList | Background and purpose — We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods — 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results — The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65–86% top-1 accuracy, 0.90–0.98 AUC, 0.88/0.83–0.97/0.94 sensitivity/specificity, and 0.71–0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation — The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments. Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments. Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments. |
| Author | Lee, Ji Whan Kim, Youngjun Chung, Seok Won Kim, Joon Yub Kwon, Jieun Kim, Na Ra Yoon, Jong Pil Noh, Young-Min Lee, Hyo-Jin Oh, Kyung-Soo Han, Seung Seog Moon, Sung Hoon |
| Author_xml | – sequence: 1 givenname: Seok Won surname: Chung fullname: Chung, Seok Won organization: Department of Orthopaedic Surgery – sequence: 2 givenname: Seung Seog surname: Han fullname: Han, Seung Seog organization: Department of Dermatology – sequence: 3 givenname: Ji Whan surname: Lee fullname: Lee, Ji Whan organization: Department of Orthopaedic Surgery – sequence: 4 givenname: Kyung-Soo surname: Oh fullname: Oh, Kyung-Soo organization: Department of Orthopaedic Surgery – sequence: 5 givenname: Na Ra surname: Kim fullname: Kim, Na Ra organization: Department of Radiology, Konkuk University School of Medicine – sequence: 6 givenname: Jong Pil surname: Yoon fullname: Yoon, Jong Pil organization: Department of Orthopaedic Surgery, Kyungpook National University College of Medicine – sequence: 7 givenname: Joon Yub surname: Kim fullname: Kim, Joon Yub organization: Department of Orthopaedic Surgery, Myungji Hospital – sequence: 8 givenname: Sung Hoon surname: Moon fullname: Moon, Sung Hoon organization: Department of Orthopaedic Surgery, Kangwon National University College of Medicine – sequence: 9 givenname: Jieun surname: Kwon fullname: Kwon, Jieun organization: Department of Othopaedic Surgery, National Police Hospital – sequence: 10 givenname: Hyo-Jin surname: Lee fullname: Lee, Hyo-Jin organization: Department of Orthopaedic Surgery, Catholic University College of Medicine, Seoul, St Mary's Hospital – sequence: 11 givenname: Young-Min surname: Noh fullname: Noh, Young-Min organization: Department of Orthopaedic Surgery, Dong-A University College of Medicine – sequence: 12 givenname: Youngjun surname: Kim fullname: Kim, Youngjun email: junekim@kist.re.kr organization: Center for Bionics, Korea Institute of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29577791$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkkuLFDEUhQsZcR76E5Rauuk27weCOAw-Bgbc6DqkklR3hlTSJim1_73pxzSOC10l9-ac7wbOvezOYoqu615CsIRAgDeQE4oZJ0sEoFjCVnBInnQXu_4CM4HOTndOzrvLUu4BwIJI8Kw7R5JyziW86NbXc02Trs721lVnqk-x19H2JuhS_OiN3rfS2Ne16zc5_fKTDv16nlyeSz9mbeqcXT9s-7n4uGoYt-mD0znuKh1WKfu6np53T0cdintxPK-6bx8_fL35vLj78un25vpuYSgmdcEZckYLPAI5UGgNQ0xy2gpJkbWCWMSMYwRTIglGbRYmlAkoMTUcMejwVXd74Nqk79Umt9_mrUraq30j5ZXSuXoTnCLOWm6lkKNBxA1gwBxRigGWAokRkcZ6d2Bt5mFy1rhYsw6PoI9fol-rVfqhGGCMM9YAr4-AnL7PrlQ1-WJcCDq6NBe1y44xwbBo0ld_zjoNeYiqCehBYHIqJbvxJIFA7VZCPazEHquOK9F8b__yGV_3obYv-_Bf9_uD28cx5Un_TDlYVfU2pNyyj8YXhf-N-A3tWM_1 |
| CitedBy_id | crossref_primary_10_1007_s00113_020_00859_7 crossref_primary_10_1109_ACCESS_2020_3033480 crossref_primary_10_3390_diagnostics13182927 crossref_primary_10_1109_ACCESS_2021_3082952 crossref_primary_10_1016_j_crad_2024_04_009 crossref_primary_10_1186_s42836_024_00244_4 crossref_primary_10_23736_S0022_4707_24_15759_3 crossref_primary_10_1177_02841851221083519 crossref_primary_10_1515_geo_2022_0436 crossref_primary_10_1148_ryai_2019180015 crossref_primary_10_1016_j_jse_2024_02_029 crossref_primary_10_1007_s10278_021_00457_y crossref_primary_10_1007_s00068_020_01468_0 crossref_primary_10_1259_bjr_20220924 crossref_primary_10_1053_j_ro_2020_07_015 crossref_primary_10_3390_e21040338 crossref_primary_10_1007_s00330_023_10082_8 crossref_primary_10_1007_s00521_022_07510_z crossref_primary_10_1016_j_xrrt_2025_02_004 crossref_primary_10_1055_s_0045_1809059 crossref_primary_10_1007_s00256_019_03284_z crossref_primary_10_3390_jcm12124085 crossref_primary_10_1007_s00198_025_07488_z crossref_primary_10_1002_mp_15966 crossref_primary_10_32604_cmc_2022_024965 crossref_primary_10_3390_cancers15154007 crossref_primary_10_3390_app11198791 crossref_primary_10_3390_app10144703 crossref_primary_10_1016_j_jrras_2023_100558 crossref_primary_10_1016_j_jse_2023_12_009 crossref_primary_10_1038_s41598_020_72357_0 crossref_primary_10_1007_s44411_025_00170_0 crossref_primary_10_3390_medicina58080998 crossref_primary_10_1136_tsaco_2023_001300 crossref_primary_10_3390_jcm14061850 crossref_primary_10_1177_23202068211005611 crossref_primary_10_1007_s10462_025_11296_6 crossref_primary_10_1007_s00264_023_05813_x crossref_primary_10_1109_JBHI_2022_3148317 crossref_primary_10_3390_app11062723 crossref_primary_10_1097_CORR_0000000000001360 crossref_primary_10_2147_JMDH_S525183 crossref_primary_10_1016_j_bspc_2021_103119 crossref_primary_10_2196_28114 crossref_primary_10_1016_j_ejrad_2022_110366 crossref_primary_10_1007_s00167_023_07338_7 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_1097_CORR_0000000000000848 crossref_primary_10_1109_ACCESS_2025_3549839 crossref_primary_10_1007_s00330_021_07811_2 crossref_primary_10_1016_j_jestch_2024_101883 crossref_primary_10_2106_JBJS_21_01387 crossref_primary_10_1016_j_arthro_2022_06_032 crossref_primary_10_1007_s00198_025_07671_2 crossref_primary_10_1016_j_arth_2019_07_022 crossref_primary_10_1016_j_ejrad_2020_109188 crossref_primary_10_1016_j_arth_2019_04_055 crossref_primary_10_1302_0301_620X_107B6_BJJ_2024_1567_R1 crossref_primary_10_3390_math13091419 crossref_primary_10_1007_s10462_023_10638_6 crossref_primary_10_1016_j_crad_2019_10_022 crossref_primary_10_1007_s11548_025_03485_z crossref_primary_10_1186_s12937_022_00793_x crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0119_R1 crossref_primary_10_1002_jbmr_4146 crossref_primary_10_1177_15563316251345479 crossref_primary_10_1007_s00330_021_08014_5 crossref_primary_10_1007_s00256_022_04041_5 crossref_primary_10_1002_cpe_7307 crossref_primary_10_1038_s41598_022_26161_7 crossref_primary_10_1080_20479700_2022_2097765 crossref_primary_10_1016_j_rcot_2023_07_008 crossref_primary_10_1007_s00247_023_05621_w crossref_primary_10_3390_math13111858 crossref_primary_10_1002_jmrs_850 crossref_primary_10_1016_j_diii_2022_06_004 crossref_primary_10_1016_j_injury_2022_04_013 crossref_primary_10_1038_s41598_024_80826_z crossref_primary_10_3389_fpubh_2024_1412063 crossref_primary_10_1016_j_ejrad_2022_110447 crossref_primary_10_1007_s10278_024_01156_0 crossref_primary_10_1097_JSA_0000000000000371 crossref_primary_10_1177_21925682211049164 crossref_primary_10_3390_app12020681 crossref_primary_10_3390_diagnostics14060596 crossref_primary_10_2106_JBJS_23_00043 crossref_primary_10_1148_radiol_2021203886 crossref_primary_10_3390_app10041507 crossref_primary_10_3389_fpubh_2022_949366 crossref_primary_10_1002_ima_22849 crossref_primary_10_1007_s40368_025_01063_0 crossref_primary_10_1186_s12891_024_07798_z crossref_primary_10_1007_s00256_021_03709_8 crossref_primary_10_1016_j_engmed_2024_100020 crossref_primary_10_1007_s00330_022_09349_3 crossref_primary_10_1007_s00068_024_02557_0 crossref_primary_10_3233_IDA_240431 crossref_primary_10_1007_s00256_021_03740_9 crossref_primary_10_1007_s00167_020_05955_0 crossref_primary_10_1007_s11596_025_00008_4 crossref_primary_10_1016_j_crad_2020_05_021 crossref_primary_10_1007_s11042_022_13287_z crossref_primary_10_1007_s00330_022_08956_4 crossref_primary_10_1016_j_mehy_2020_109663 crossref_primary_10_2106_JBJS_RVW_22_00086 crossref_primary_10_3389_fneur_2021_687931 crossref_primary_10_1007_s11548_023_02839_9 crossref_primary_10_3390_jcm14020505 crossref_primary_10_1097_JS9_0000000000002187 crossref_primary_10_1371_journal_pdig_0000438 crossref_primary_10_3390_diagnostics13203245 crossref_primary_10_1177_00031348221101490 crossref_primary_10_1007_s00068_022_02128_1 crossref_primary_10_1097_CM9_0000000000000479 crossref_primary_10_1186_s13018_025_05830_z crossref_primary_10_1186_s42836_023_00218_y crossref_primary_10_1016_j_artd_2021_11_001 crossref_primary_10_1016_j_jor_2025_07_015 crossref_primary_10_1007_s12553_021_00543_9 crossref_primary_10_1097_CORR_0000000000002385 crossref_primary_10_1007_s00256_020_03463_3 crossref_primary_10_1016_j_spinee_2021_10_020 crossref_primary_10_1016_j_arth_2023_04_007 crossref_primary_10_1007_s10278_025_01412_x crossref_primary_10_1038_s41746_019_0105_1 crossref_primary_10_1007_s10140_020_01767_4 crossref_primary_10_1016_j_asmr_2024_100963 crossref_primary_10_1051_sicotj_2023018 crossref_primary_10_1007_s00256_021_03824_6 crossref_primary_10_1007_s00256_021_03802_y crossref_primary_10_1371_journal_pone_0248809 crossref_primary_10_3390_s22020506 crossref_primary_10_1177_21514593211050155 crossref_primary_10_12998_wjcc_v11_i7_1477 crossref_primary_10_1016_j_ijmedinf_2022_104884 crossref_primary_10_1109_JBHI_2020_3037079 crossref_primary_10_1186_s12891_024_07884_2 crossref_primary_10_1007_s00142_023_00657_4 crossref_primary_10_1038_s41746_021_00455_y crossref_primary_10_3390_jimaging7060100 crossref_primary_10_3390_jpm11060482 crossref_primary_10_4103_jfsm_jfsm_35_24 crossref_primary_10_1007_s00330_022_08950_w crossref_primary_10_1177_03635465231189201 crossref_primary_10_1038_s41598_020_70660_4 crossref_primary_10_1186_s12891_024_07244_0 crossref_primary_10_3390_jimaging9090180 crossref_primary_10_1097_CORR_0000000000001318 crossref_primary_10_1007_s10278_021_00519_1 crossref_primary_10_1053_j_sart_2022_01_003 crossref_primary_10_3389_fbioe_2025_1502669 crossref_primary_10_3390_bioengineering11040338 crossref_primary_10_3390_diagnostics14111091 crossref_primary_10_1002_jor_26109 crossref_primary_10_1016_j_fas_2022_05_005 crossref_primary_10_1016_j_agwat_2022_107820 crossref_primary_10_1148_ryai_230094 crossref_primary_10_1016_j_jsurg_2024_08_002 crossref_primary_10_3389_fendo_2023_1025749 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_1080_20479700_2022_2161146 crossref_primary_10_1097_CORR_0000000000001679 crossref_primary_10_1016_j_rhum_2023_07_018 crossref_primary_10_32604_cmc_2023_035777 crossref_primary_10_1038_s41598_023_34176_x crossref_primary_10_1371_journal_pone_0245992 crossref_primary_10_3390_diagnostics12102420 crossref_primary_10_1038_s41597_022_01328_z crossref_primary_10_1186_s12880_023_00975_x crossref_primary_10_1371_journal_pone_0246165 crossref_primary_10_1016_j_arthro_2020_11_023 crossref_primary_10_1016_j_arth_2019_08_001 crossref_primary_10_1007_s10278_025_01512_8 crossref_primary_10_3390_electronics14112258 crossref_primary_10_1371_journal_pone_0289808 crossref_primary_10_1002_jcu_23321 crossref_primary_10_1002_mp_14705 crossref_primary_10_1007_s00256_021_03739_2 crossref_primary_10_1109_ACCESS_2020_3029039 crossref_primary_10_1109_ACCESS_2021_3081915 crossref_primary_10_1007_s00521_025_11539_1 crossref_primary_10_1007_s10462_019_09799_0 crossref_primary_10_1007_s00167_022_07220_y crossref_primary_10_1109_TMI_2021_3134650 crossref_primary_10_1038_s41598_023_37560_9 crossref_primary_10_1016_j_heliyon_2022_e11266 crossref_primary_10_1016_j_injury_2020_09_010 crossref_primary_10_1016_j_patrec_2025_01_034 crossref_primary_10_52586_5027 crossref_primary_10_1016_j_ejrad_2020_108925 crossref_primary_10_3390_app11146293 crossref_primary_10_1371_journal_pone_0284111 crossref_primary_10_32604_cmc_2024_047377 crossref_primary_10_1016_j_artmed_2024_102849 crossref_primary_10_1259_bjr_20221031 crossref_primary_10_1007_s11596_021_2501_4 crossref_primary_10_21015_vtse_v12i4_1971 crossref_primary_10_1002_jor_24617 crossref_primary_10_3390_jimaging7070105 crossref_primary_10_1016_j_asmart_2025_01_001 crossref_primary_10_3390_healthcare11111524 crossref_primary_10_1038_s41598_021_85570_2 crossref_primary_10_2106_JBJS_24_00938 crossref_primary_10_1016_j_arth_2023_02_053 crossref_primary_10_1007_s00068_025_02931_6 crossref_primary_10_1002_jmri_27001 crossref_primary_10_1007_s11042_023_14811_5 crossref_primary_10_1088_1757_899X_1084_1_012001 crossref_primary_10_1155_2022_1560438 crossref_primary_10_1007_s00167_021_06838_8 crossref_primary_10_1186_s12891_025_09161_2 crossref_primary_10_1186_s12880_024_01316_2 crossref_primary_10_3389_fmedt_2022_995526 crossref_primary_10_1038_s41598_023_47460_7 crossref_primary_10_2106_JBJS_RVW_23_00232 crossref_primary_10_3390_app14010133 crossref_primary_10_1007_s00256_021_03782_z crossref_primary_10_1007_s00068_022_02136_1 crossref_primary_10_1007_s10140_024_02300_7 crossref_primary_10_3389_fbioe_2025_1613417 crossref_primary_10_7759_cureus_60318 crossref_primary_10_1038_s41746_020_00352_w crossref_primary_10_7759_cureus_73075 crossref_primary_10_1177_10711007221093574 crossref_primary_10_3390_su13179530 crossref_primary_10_1097_SCS_0000000000006069 crossref_primary_10_1302_2046_3758_1310_BJR_2023_0275_R3 crossref_primary_10_1088_1742_6596_2637_1_012033 crossref_primary_10_1016_j_ejrad_2024_111399 crossref_primary_10_1016_j_jcot_2025_103137 crossref_primary_10_1007_s12652_022_03835_8 crossref_primary_10_5397_cise_2025_00185 crossref_primary_10_1007_s00330_019_06167_y crossref_primary_10_1007_s00784_022_04427_8 crossref_primary_10_1186_s40779_025_00633_z crossref_primary_10_1038_s41598_022_16154_x crossref_primary_10_1007_s00256_021_03876_8 crossref_primary_10_1038_s41598_024_71654_2 crossref_primary_10_3389_fonc_2022_766243 crossref_primary_10_1186_s13018_025_05855_4 crossref_primary_10_7759_cureus_58364 crossref_primary_10_1097_CORR_0000000000001352 crossref_primary_10_1007_s00259_019_04372_x crossref_primary_10_1016_j_jcot_2023_102312 crossref_primary_10_1016_j_jse_2024_11_030 crossref_primary_10_1016_j_xrrt_2025_07_025 crossref_primary_10_1016_j_clinimag_2024_110356 crossref_primary_10_1111_os_70034 crossref_primary_10_3390_diagnostics11020233 crossref_primary_10_1177_02841851221122424 crossref_primary_10_1016_j_yacr_2020_05_005 crossref_primary_10_1007_s10140_023_02154_5 crossref_primary_10_1016_j_artmed_2024_102935 crossref_primary_10_1016_j_ejrad_2024_111605 crossref_primary_10_1016_j_jse_2024_01_033 crossref_primary_10_1007_s11604_025_01754_0 crossref_primary_10_1016_j_compbiomed_2023_107704 crossref_primary_10_1016_j_clinimag_2024_110207 crossref_primary_10_1007_s00104_019_01091_9 crossref_primary_10_3389_fbioe_2022_927926 crossref_primary_10_3390_jcm11206140 crossref_primary_10_1016_j_jbspin_2022_105493 crossref_primary_10_1038_s41598_021_93026_w crossref_primary_10_1038_s41467_021_21311_3 crossref_primary_10_2147_ORR_S340536 crossref_primary_10_1016_j_arth_2019_05_034 crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0264_R1 crossref_primary_10_1097_CORR_0000000000001685 crossref_primary_10_3390_diagnostics14182092 crossref_primary_10_3390_diagnostics14171879 crossref_primary_10_1016_j_jcot_2021_101573 crossref_primary_10_2519_josptmethods_2024_0086 crossref_primary_10_1186_s13244_019_0777_8 crossref_primary_10_3390_life13010133 crossref_primary_10_1109_ACCESS_2023_3324401 crossref_primary_10_1016_j_oooo_2024_07_010 crossref_primary_10_1097_RCT_0000000000001247 crossref_primary_10_1016_j_knee_2025_02_001 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1016_j_ejrad_2020_109373 crossref_primary_10_1088_1742_6596_1800_1_012006 crossref_primary_10_1177_15589447241308603 crossref_primary_10_1007_s00256_018_3016_3 crossref_primary_10_1007_s00586_022_07121_1 crossref_primary_10_1007_s00256_024_04684_6 crossref_primary_10_3389_fped_2022_1005099 crossref_primary_10_1097_WNO_0000000000001358 crossref_primary_10_1166_jmihi_2021_3899 crossref_primary_10_1016_j_matpr_2021_06_408 crossref_primary_10_1007_s10278_020_00399_x crossref_primary_10_1007_s11596_024_2928_5 crossref_primary_10_1097_WNO_0000000000000827 crossref_primary_10_1148_radiol_211785 crossref_primary_10_1109_ACCESS_2021_3101040 crossref_primary_10_1148_ryai_2019180001 crossref_primary_10_1186_s41747_024_00422_8 |
| Cites_doi | 10.1186/1749-799X-6-38 10.1109/TPAMI.2012.277 10.1001/jama.2016.17216 10.1148/radiol.2017162326 10.1038/nature21056 10.2106/00004623-197052060-00001 10.1080/17453674.2017.1344459 10.1016/j.media.2016.07.007 10.1038/nature14539 10.1109/TPAMI.2013.50 10.3121/cmr.2009.779 10.1007/s11263-015-0816-y 10.1016/j.media.2012.02.005 |
| ContentType | Journal Article |
| Copyright | 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 The Author(s). |
| Copyright_xml | – notice: 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 – notice: 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 The Author(s). |
| DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1080/17453674.2018.1453714 |
| DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1745-3682 |
| EndPage | 473 |
| ExternalDocumentID | oai_doaj_org_article_4edd7d989fc24eb0b372553039828f24 PMC6066766 29577791 10_1080_17453674_2018_1453714 1453714 |
| Genre | Article Video-Audio Media Multicenter Study Evaluation Studies Journal Article |
| GroupedDBID | --- .55 04C 0YH 23M 2QV 2WC 34G 36B 39C 4.4 5GY 5RE 5VS 6J9 6PF AAFWJ AAWTL ABDBF ABNNA ACGFO ACGFS ACUHS ADBBV ADCVX ADOJX ADRAZ ADRBQ AEGXH AENEX AFKVX AFPKN AJWEG ALMA_UNASSIGNED_HOLDINGS AOIJS AQTUD BAWUL BCNDV BMSDO CAG CS3 DXH E3Z EAP EBC EBD EBS EBX ECF ECT ECV EHN EIHBH EJD EMB EMK EMOBN ENC ENX EPL EPT ESX F5P GROUPED_DOAJ GX1 H13 HYE KQ8 M48 M4Z O9- OK1 OVT P2P Q~Q RDKPK RNS RPM SV3 TDBHL TFDNU TFW TR2 TUS W2D WQ9 X7M ~1N AAYXX CITATION .GJ 3O- 53G AALIY AFFNX AWYRJ C1A CGR COF CUY CVF ECM EIF NPM O5R O5S ZXP 7X8 5PM |
| ID | FETCH-LOGICAL-c534t-762eca83f09b51dc62697509b952dd84d26ce643549432dee345681935c7261e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 319 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439704100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-3674 1745-3682 |
| IngestDate | Fri Oct 03 12:51:08 EDT 2025 Tue Nov 04 01:58:58 EST 2025 Thu Jul 10 23:38:36 EDT 2025 Mon Jul 21 05:53:13 EDT 2025 Tue Nov 18 22:37:55 EST 2025 Sat Nov 29 06:10:29 EST 2025 Mon Oct 20 23:49:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | open-access: https://creativecommons.org/licenses/by/4.0: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (https://creativecommons.org/licenses/by/4.0) This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c534t-762eca83f09b51dc62697509b952dd84d26ce643549432dee345681935c7261e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/4edd7d989fc24eb0b372553039828f24 |
| PMID | 29577791 |
| PQID | 2018668638 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2018668638 crossref_primary_10_1080_17453674_2018_1453714 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066766 doaj_primary_oai_doaj_org_article_4edd7d989fc24eb0b372553039828f24 crossref_citationtrail_10_1080_17453674_2018_1453714 pubmed_primary_29577791 informaworld_taylorfrancis_310_1080_17453674_2018_1453714 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-04 |
| PublicationDateYYYYMMDD | 2018-07-04 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Acta orthopaedica |
| PublicationTitleAlternate | Acta Orthop |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Medical Journals Sweden |
| Publisher_xml | – name: Taylor & Francis – name: Medical Journals Sweden |
| References | CIT0010 CIT0001 CIT0012 CIT0011 Hua K L (CIT0005) 2015; 8 CIT0003 CIT0014 CIT0002 CIT0013 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 |
| References_xml | – ident: CIT0003 doi: 10.1186/1749-799X-6-38 – ident: CIT0013 doi: 10.1109/TPAMI.2012.277 – ident: CIT0004 doi: 10.1001/jama.2016.17216 – ident: CIT0007 doi: 10.1148/radiol.2017162326 – ident: CIT0002 doi: 10.1038/nature21056 – ident: CIT0010 doi: 10.2106/00004623-197052060-00001 – ident: CIT0011 doi: 10.1080/17453674.2017.1344459 – volume: 8 start-page: 2015 year: 2015 ident: CIT0005 publication-title: Onco Targets Ther – ident: CIT0006 doi: 10.1016/j.media.2016.07.007 – ident: CIT0008 doi: 10.1038/nature14539 – ident: CIT0001 doi: 10.1109/TPAMI.2013.50 – ident: CIT0009 doi: 10.3121/cmr.2009.779 – ident: CIT0012 doi: 10.1007/s11263-015-0816-y – ident: CIT0014 doi: 10.1016/j.media.2012.02.005 |
| SSID | ssj0038490 |
| Score | 2.6539497 |
| Snippet | Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus... Background and purpose — We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus... |
| SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 468 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Area Under Curve Arthrography Deep Learning Female Humans Male Middle Aged Shoulder Fractures - classification Shoulder Fractures - diagnostic imaging Young Adult |
| SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCQzy6bUFG4hrYxK_4WCqqHlDFAVA5RX5ld6U2qfJA4t8z4zirbgXqAY6bjSeOPeN8k3zzmZB3RgWlXe4hkGzIuJZlZgFmQM4TpFTaOhGr-L9_Vufn5cWF_pLYhH2iVWIOXU9CEXGtxuA2tp8ZcR8ARAsmFb4RyUsIdYGqc_fJgwJSE2R1LX-czYsxK7lONZEiwzZzEc_fzOw8nqKK_y0N0z8h0duEyhtPqNMn_-HenpLHCZ7S48mfnpF7oXlO1sfj0AKyDZ76METuVkPhCtQh9EauUZxe2tYU4CRFZszmCqyssbZz7GmNlVhjF6j9RZFnvwIz4ZqmDStW1Fyu2m4zrK9ekG-nn76enGVph4bMCcaHDFbS4EzJ6qW2IvcOsiONEMRqUXhfcl9IFwDzQBLKWQG2GUfBM82EU5C6BfaS7DVtE_YJdUoEYYzwvLDc1MbUCA09oDuXW83CgvB5YiqX5MtxF43LKk8qp_PQVTh0VRq6BXm_bXY96Xfc1eAjzvr2ZJTfjgfablWlaK548F55XeraFTzYpWWqwP2XmIYEti7AiL7pM9UQ377U01YpFbujA29nB6sg1PH7jWlCO_bxLClLWDEX5NXkcNtuFloopXS-IGrHFXfuY_efZrOOcuIy8pzlwT_0-ZA8wp-RxsyPyN7QjeE1eeh-Dpu-exMj8jeHsjIA priority: 102 providerName: Taylor & Francis |
| Title | Automated detection and classification of the proximal humerus fracture by using deep learning algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17453674.2018.1453714 https://www.ncbi.nlm.nih.gov/pubmed/29577791 https://www.proquest.com/docview/2018668638 https://pubmed.ncbi.nlm.nih.gov/PMC6066766 https://doaj.org/article/4edd7d989fc24eb0b372553039828f24 |
| Volume | 89 |
| WOSCitedRecordID | wos000439704100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1745-3682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038490 issn: 1745-3674 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1745-3682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038490 issn: 1745-3674 databaseCode: TFW dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1745-3682 dateEnd: 20211130 omitProxy: false ssIdentifier: ssj0038490 issn: 1745-3674 databaseCode: 0YH dateStart: 20091001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BxYELAvFygWqRuJrG3vexIKIeUMWhQDhZ-3ISqbWrxEbi3zOztqOkQsqFiw9re7XrmV1_Y3_zDSEfrIrK-CLAQnIx50bq3AHMgJgnSqmM8yJl8f_4qq6u9GJhvu2V-kJO2CAPPDy4cx5DUMFoU_uSRzdzTJVY6oYZiBXqMimBAuqZgqlhD2aamzEVUuRMKj7l7ujZObZhE9K6NGwUgqUUnr23UhLvvydd-i8Aep9Hufdimj8lT0ZESS-GmTwjD2LznKwu-q4FMBoDDbFLdKuG2iZQj2gZ6UHJIrStKSBAimSW9S30ssJ0zH5La0ye6jeRuj8UqfFL6Cbe0bHGxJLam2W7WXer2xfk-_zL9efLfCyqkHvBeJfD5he91ayeGSeK4CGgMYganBFlCJqHUvoIMAXiRs5K6Jtx1CgzTHgF0VZkL8lJ0zbxNaFeiSisFYGXjtva2hrRXABA5gtnWMwInx5q5UfFcSx8cVMVozDpZIsKbVGNtsjIx91td4PkxrEbPqHFdhejYnZqAD-qRj-qjvlRRsy-vasufTCph-omFTsygPeTc1SwOvGXi21i22_TVVJq2OQy8mpwlt0wSyOUUqbIiDpwo4N5HJ5p1qukAC4TNVme_o-JvyGPcZSJgszfkpNu08d35JH_3a23mzPycPbrEo5qoc_SEoPj9fznXwOTJA8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGFh4CyPI3ENdDEr_hYEKsilj0t0JsVP7K7UptU2aRS_z0zTrLarUA9wDWJJ449Y3_jzHxDyPtCBaVd6sGQbEi4lnliAWaAzxOkVNo6EbP4f87UfJ6fnurdXBgMq0QfuuyJIuJajcaNh9FjSNxHQNGCSYVHImkOti6Qdu42uSNgr8WwvsX017gas5zrISlSJNhmzOL5m5i9_SnS-F8jMf0TFL0eUbmzRU0f_o-Pe0QeDACVHvca9ZjcCtUTsjru2hqwbfDUhzZGb1UUXkEdgm-MNooTTOuSAqCkGBuzPgcpK8zu7Da0xFysrgnUXlGMtF-CmHBBh5IVS1qcLetm3a7On5If0y-LzyfJUKMhcYLxNoG1NLgiZ-WRtiL1DvwjjSDEapF5n3OfSRcA9YAbylkGshlHyjPNhFPgvAX2jBxUdRWeE-qUCKIohOeZ5UVZFCWCQw_4zqVWszAhfJwZ4wYCc6yjcWbSged0HDqDQ2eGoZuQD9tmFz2Dx00NPuG0bx9GAu54oW6WZrBnw4P3yutcly7jwR5ZpjKswMQ0uLBlBkL0rtKYNp6_lH2xFMNu6MC7UcMMGDv-wSmqUHeb-JSUOayZE3LYa9y2m5kWSimdToja08W979i_U61XkVBcxkhn-eIf-vyW3DtZfJ-Z2df5t5fkPt6KQc38FTlomy68JnfdZbveNG-ief4GOA02Kg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMSFh3gtTyNxDTSxHcfH8liBqFY9FOjNil-7K7XJajdB6r_vjOOsuhWoB7gm8cSxZ5xvkm8-E_Kull4qmzsIJOMzrsoqMwAzIOfxZSmVsSJW8f88lLNZdXKijhKbcJNolZhDh0EoIq7VGNwrF0ZG3AcA0YKVEr-I5BWEukDVuZvkVhTHApc-nv4aF2NWcZVqIkWGbcYinr-Z2Xk9RRX_Kxqmf0KiVwmVl95Q0_v_4dkekHsJntKDwZ8ekhu-eUQWB33XArL1jjrfRe5WQ-EO1CL0Rq5RnF7aBgpwkiIzZnkGVhZY29lvaMBKrH7tqTmnyLOfgxm_omnDijmtT-ftetktzh6TH9Mvx5--ZmmHhswKxrsMVlJv64qFfWVE7ixkRwohiFGicK7iriitB8wDSShnBdhmHAXPFBNWQurm2ROy17SNf0aolcKLuhaOF4bXoa4DQkMH6M7mRjE_IXycGG2TfDnuonGq86RyOg6dxqHTaegm5P222WrQ77iuwUec9e3FKL8dD7TruU7RrLl3TjpVqWAL7s2-YbLA_ZeYggQ2FGBEXfYZ3cWvL2HYKkWzazrwdnQwDaGO_2_qxrf9Jl5VlhWsmBPydHC4bTcLJaSUKp8QueOKO8-xe6ZZLqKceBl5zuXzf-jzG3Ln6PNUH36bfX9B7uKZyGjmL8let-79K3Lb_u6Wm_XrGJwXMeA0zg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+the+proximal+humerus+fracture+by+using+deep+learning+algorithm&rft.jtitle=Acta+orthopaedica&rft.au=Chung%2C+Seok+Won&rft.au=Han%2C+Seung+Seog&rft.au=Lee%2C+Ji+Whan&rft.au=Oh%2C+Kyung-Soo&rft.date=2018-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1745-3674&rft.eissn=1745-3682&rft.volume=89&rft.issue=4&rft.spage=468&rft.epage=473&rft_id=info:doi/10.1080%2F17453674.2018.1453714&rft_id=info%3Apmid%2F29577791&rft.externalDocID=PMC6066766 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-3674&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-3674&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-3674&client=summon |