Automated detection and classification of the proximal humerus fracture by using deep learning algorithm

Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515)...

Full description

Saved in:
Bibliographic Details
Published in:Acta orthopaedica Vol. 89; no. 4; pp. 468 - 473
Main Authors: Chung, Seok Won, Han, Seung Seog, Lee, Ji Whan, Oh, Kyung-Soo, Kim, Na Ra, Yoon, Jong Pil, Kim, Joon Yub, Moon, Sung Hoon, Kwon, Jieun, Lee, Hyo-Jin, Noh, Young-Min, Kim, Youngjun
Format: Journal Article
Language:English
Published: England Taylor & Francis 04.07.2018
Medical Journals Sweden
Subjects:
ISSN:1745-3674, 1745-3682, 1745-3682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
AbstractList Background and purpose — We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods — 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results — The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65–86% top-1 accuracy, 0.90–0.98 AUC, 0.88/0.83–0.97/0.94 sensitivity/specificity, and 0.71–0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation — The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
Author Lee, Ji Whan
Kim, Youngjun
Chung, Seok Won
Kim, Joon Yub
Kwon, Jieun
Kim, Na Ra
Yoon, Jong Pil
Noh, Young-Min
Lee, Hyo-Jin
Oh, Kyung-Soo
Han, Seung Seog
Moon, Sung Hoon
Author_xml – sequence: 1
  givenname: Seok Won
  surname: Chung
  fullname: Chung, Seok Won
  organization: Department of Orthopaedic Surgery
– sequence: 2
  givenname: Seung Seog
  surname: Han
  fullname: Han, Seung Seog
  organization: Department of Dermatology
– sequence: 3
  givenname: Ji Whan
  surname: Lee
  fullname: Lee, Ji Whan
  organization: Department of Orthopaedic Surgery
– sequence: 4
  givenname: Kyung-Soo
  surname: Oh
  fullname: Oh, Kyung-Soo
  organization: Department of Orthopaedic Surgery
– sequence: 5
  givenname: Na Ra
  surname: Kim
  fullname: Kim, Na Ra
  organization: Department of Radiology, Konkuk University School of Medicine
– sequence: 6
  givenname: Jong Pil
  surname: Yoon
  fullname: Yoon, Jong Pil
  organization: Department of Orthopaedic Surgery, Kyungpook National University College of Medicine
– sequence: 7
  givenname: Joon Yub
  surname: Kim
  fullname: Kim, Joon Yub
  organization: Department of Orthopaedic Surgery, Myungji Hospital
– sequence: 8
  givenname: Sung Hoon
  surname: Moon
  fullname: Moon, Sung Hoon
  organization: Department of Orthopaedic Surgery, Kangwon National University College of Medicine
– sequence: 9
  givenname: Jieun
  surname: Kwon
  fullname: Kwon, Jieun
  organization: Department of Othopaedic Surgery, National Police Hospital
– sequence: 10
  givenname: Hyo-Jin
  surname: Lee
  fullname: Lee, Hyo-Jin
  organization: Department of Orthopaedic Surgery, Catholic University College of Medicine, Seoul, St Mary's Hospital
– sequence: 11
  givenname: Young-Min
  surname: Noh
  fullname: Noh, Young-Min
  organization: Department of Orthopaedic Surgery, Dong-A University College of Medicine
– sequence: 12
  givenname: Youngjun
  surname: Kim
  fullname: Kim, Youngjun
  email: junekim@kist.re.kr
  organization: Center for Bionics, Korea Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29577791$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuLFDEUhQsZcR76E5Rauuk27weCOAw-Bgbc6DqkklR3hlTSJim1_73pxzSOC10l9-ac7wbOvezOYoqu615CsIRAgDeQE4oZJ0sEoFjCVnBInnQXu_4CM4HOTndOzrvLUu4BwIJI8Kw7R5JyziW86NbXc02Trs721lVnqk-x19H2JuhS_OiN3rfS2Ne16zc5_fKTDv16nlyeSz9mbeqcXT9s-7n4uGoYt-mD0znuKh1WKfu6np53T0cdintxPK-6bx8_fL35vLj78un25vpuYSgmdcEZckYLPAI5UGgNQ0xy2gpJkbWCWMSMYwRTIglGbRYmlAkoMTUcMejwVXd74Nqk79Umt9_mrUraq30j5ZXSuXoTnCLOWm6lkKNBxA1gwBxRigGWAokRkcZ6d2Bt5mFy1rhYsw6PoI9fol-rVfqhGGCMM9YAr4-AnL7PrlQ1-WJcCDq6NBe1y44xwbBo0ld_zjoNeYiqCehBYHIqJbvxJIFA7VZCPazEHquOK9F8b__yGV_3obYv-_Bf9_uD28cx5Un_TDlYVfU2pNyyj8YXhf-N-A3tWM_1
CitedBy_id crossref_primary_10_1007_s00113_020_00859_7
crossref_primary_10_1109_ACCESS_2020_3033480
crossref_primary_10_3390_diagnostics13182927
crossref_primary_10_1109_ACCESS_2021_3082952
crossref_primary_10_1016_j_crad_2024_04_009
crossref_primary_10_1186_s42836_024_00244_4
crossref_primary_10_23736_S0022_4707_24_15759_3
crossref_primary_10_1177_02841851221083519
crossref_primary_10_1515_geo_2022_0436
crossref_primary_10_1148_ryai_2019180015
crossref_primary_10_1016_j_jse_2024_02_029
crossref_primary_10_1007_s10278_021_00457_y
crossref_primary_10_1007_s00068_020_01468_0
crossref_primary_10_1259_bjr_20220924
crossref_primary_10_1053_j_ro_2020_07_015
crossref_primary_10_3390_e21040338
crossref_primary_10_1007_s00330_023_10082_8
crossref_primary_10_1007_s00521_022_07510_z
crossref_primary_10_1016_j_xrrt_2025_02_004
crossref_primary_10_1055_s_0045_1809059
crossref_primary_10_1007_s00256_019_03284_z
crossref_primary_10_3390_jcm12124085
crossref_primary_10_1007_s00198_025_07488_z
crossref_primary_10_1002_mp_15966
crossref_primary_10_32604_cmc_2022_024965
crossref_primary_10_3390_cancers15154007
crossref_primary_10_3390_app11198791
crossref_primary_10_3390_app10144703
crossref_primary_10_1016_j_jrras_2023_100558
crossref_primary_10_1016_j_jse_2023_12_009
crossref_primary_10_1038_s41598_020_72357_0
crossref_primary_10_1007_s44411_025_00170_0
crossref_primary_10_3390_medicina58080998
crossref_primary_10_1136_tsaco_2023_001300
crossref_primary_10_3390_jcm14061850
crossref_primary_10_1177_23202068211005611
crossref_primary_10_1007_s10462_025_11296_6
crossref_primary_10_1007_s00264_023_05813_x
crossref_primary_10_1109_JBHI_2022_3148317
crossref_primary_10_3390_app11062723
crossref_primary_10_1097_CORR_0000000000001360
crossref_primary_10_2147_JMDH_S525183
crossref_primary_10_1016_j_bspc_2021_103119
crossref_primary_10_2196_28114
crossref_primary_10_1016_j_ejrad_2022_110366
crossref_primary_10_1007_s00167_023_07338_7
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1097_CORR_0000000000000848
crossref_primary_10_1109_ACCESS_2025_3549839
crossref_primary_10_1007_s00330_021_07811_2
crossref_primary_10_1016_j_jestch_2024_101883
crossref_primary_10_2106_JBJS_21_01387
crossref_primary_10_1016_j_arthro_2022_06_032
crossref_primary_10_1007_s00198_025_07671_2
crossref_primary_10_1016_j_arth_2019_07_022
crossref_primary_10_1016_j_ejrad_2020_109188
crossref_primary_10_1016_j_arth_2019_04_055
crossref_primary_10_1302_0301_620X_107B6_BJJ_2024_1567_R1
crossref_primary_10_3390_math13091419
crossref_primary_10_1007_s10462_023_10638_6
crossref_primary_10_1016_j_crad_2019_10_022
crossref_primary_10_1007_s11548_025_03485_z
crossref_primary_10_1186_s12937_022_00793_x
crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0119_R1
crossref_primary_10_1002_jbmr_4146
crossref_primary_10_1177_15563316251345479
crossref_primary_10_1007_s00330_021_08014_5
crossref_primary_10_1007_s00256_022_04041_5
crossref_primary_10_1002_cpe_7307
crossref_primary_10_1038_s41598_022_26161_7
crossref_primary_10_1080_20479700_2022_2097765
crossref_primary_10_1016_j_rcot_2023_07_008
crossref_primary_10_1007_s00247_023_05621_w
crossref_primary_10_3390_math13111858
crossref_primary_10_1002_jmrs_850
crossref_primary_10_1016_j_diii_2022_06_004
crossref_primary_10_1016_j_injury_2022_04_013
crossref_primary_10_1038_s41598_024_80826_z
crossref_primary_10_3389_fpubh_2024_1412063
crossref_primary_10_1016_j_ejrad_2022_110447
crossref_primary_10_1007_s10278_024_01156_0
crossref_primary_10_1097_JSA_0000000000000371
crossref_primary_10_1177_21925682211049164
crossref_primary_10_3390_app12020681
crossref_primary_10_3390_diagnostics14060596
crossref_primary_10_2106_JBJS_23_00043
crossref_primary_10_1148_radiol_2021203886
crossref_primary_10_3390_app10041507
crossref_primary_10_3389_fpubh_2022_949366
crossref_primary_10_1002_ima_22849
crossref_primary_10_1007_s40368_025_01063_0
crossref_primary_10_1186_s12891_024_07798_z
crossref_primary_10_1007_s00256_021_03709_8
crossref_primary_10_1016_j_engmed_2024_100020
crossref_primary_10_1007_s00330_022_09349_3
crossref_primary_10_1007_s00068_024_02557_0
crossref_primary_10_3233_IDA_240431
crossref_primary_10_1007_s00256_021_03740_9
crossref_primary_10_1007_s00167_020_05955_0
crossref_primary_10_1007_s11596_025_00008_4
crossref_primary_10_1016_j_crad_2020_05_021
crossref_primary_10_1007_s11042_022_13287_z
crossref_primary_10_1007_s00330_022_08956_4
crossref_primary_10_1016_j_mehy_2020_109663
crossref_primary_10_2106_JBJS_RVW_22_00086
crossref_primary_10_3389_fneur_2021_687931
crossref_primary_10_1007_s11548_023_02839_9
crossref_primary_10_3390_jcm14020505
crossref_primary_10_1097_JS9_0000000000002187
crossref_primary_10_1371_journal_pdig_0000438
crossref_primary_10_3390_diagnostics13203245
crossref_primary_10_1177_00031348221101490
crossref_primary_10_1007_s00068_022_02128_1
crossref_primary_10_1097_CM9_0000000000000479
crossref_primary_10_1186_s13018_025_05830_z
crossref_primary_10_1186_s42836_023_00218_y
crossref_primary_10_1016_j_artd_2021_11_001
crossref_primary_10_1016_j_jor_2025_07_015
crossref_primary_10_1007_s12553_021_00543_9
crossref_primary_10_1097_CORR_0000000000002385
crossref_primary_10_1007_s00256_020_03463_3
crossref_primary_10_1016_j_spinee_2021_10_020
crossref_primary_10_1016_j_arth_2023_04_007
crossref_primary_10_1007_s10278_025_01412_x
crossref_primary_10_1038_s41746_019_0105_1
crossref_primary_10_1007_s10140_020_01767_4
crossref_primary_10_1016_j_asmr_2024_100963
crossref_primary_10_1051_sicotj_2023018
crossref_primary_10_1007_s00256_021_03824_6
crossref_primary_10_1007_s00256_021_03802_y
crossref_primary_10_1371_journal_pone_0248809
crossref_primary_10_3390_s22020506
crossref_primary_10_1177_21514593211050155
crossref_primary_10_12998_wjcc_v11_i7_1477
crossref_primary_10_1016_j_ijmedinf_2022_104884
crossref_primary_10_1109_JBHI_2020_3037079
crossref_primary_10_1186_s12891_024_07884_2
crossref_primary_10_1007_s00142_023_00657_4
crossref_primary_10_1038_s41746_021_00455_y
crossref_primary_10_3390_jimaging7060100
crossref_primary_10_3390_jpm11060482
crossref_primary_10_4103_jfsm_jfsm_35_24
crossref_primary_10_1007_s00330_022_08950_w
crossref_primary_10_1177_03635465231189201
crossref_primary_10_1038_s41598_020_70660_4
crossref_primary_10_1186_s12891_024_07244_0
crossref_primary_10_3390_jimaging9090180
crossref_primary_10_1097_CORR_0000000000001318
crossref_primary_10_1007_s10278_021_00519_1
crossref_primary_10_1053_j_sart_2022_01_003
crossref_primary_10_3389_fbioe_2025_1502669
crossref_primary_10_3390_bioengineering11040338
crossref_primary_10_3390_diagnostics14111091
crossref_primary_10_1002_jor_26109
crossref_primary_10_1016_j_fas_2022_05_005
crossref_primary_10_1016_j_agwat_2022_107820
crossref_primary_10_1148_ryai_230094
crossref_primary_10_1016_j_jsurg_2024_08_002
crossref_primary_10_3389_fendo_2023_1025749
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1080_20479700_2022_2161146
crossref_primary_10_1097_CORR_0000000000001679
crossref_primary_10_1016_j_rhum_2023_07_018
crossref_primary_10_32604_cmc_2023_035777
crossref_primary_10_1038_s41598_023_34176_x
crossref_primary_10_1371_journal_pone_0245992
crossref_primary_10_3390_diagnostics12102420
crossref_primary_10_1038_s41597_022_01328_z
crossref_primary_10_1186_s12880_023_00975_x
crossref_primary_10_1371_journal_pone_0246165
crossref_primary_10_1016_j_arthro_2020_11_023
crossref_primary_10_1016_j_arth_2019_08_001
crossref_primary_10_1007_s10278_025_01512_8
crossref_primary_10_3390_electronics14112258
crossref_primary_10_1371_journal_pone_0289808
crossref_primary_10_1002_jcu_23321
crossref_primary_10_1002_mp_14705
crossref_primary_10_1007_s00256_021_03739_2
crossref_primary_10_1109_ACCESS_2020_3029039
crossref_primary_10_1109_ACCESS_2021_3081915
crossref_primary_10_1007_s00521_025_11539_1
crossref_primary_10_1007_s10462_019_09799_0
crossref_primary_10_1007_s00167_022_07220_y
crossref_primary_10_1109_TMI_2021_3134650
crossref_primary_10_1038_s41598_023_37560_9
crossref_primary_10_1016_j_heliyon_2022_e11266
crossref_primary_10_1016_j_injury_2020_09_010
crossref_primary_10_1016_j_patrec_2025_01_034
crossref_primary_10_52586_5027
crossref_primary_10_1016_j_ejrad_2020_108925
crossref_primary_10_3390_app11146293
crossref_primary_10_1371_journal_pone_0284111
crossref_primary_10_32604_cmc_2024_047377
crossref_primary_10_1016_j_artmed_2024_102849
crossref_primary_10_1259_bjr_20221031
crossref_primary_10_1007_s11596_021_2501_4
crossref_primary_10_21015_vtse_v12i4_1971
crossref_primary_10_1002_jor_24617
crossref_primary_10_3390_jimaging7070105
crossref_primary_10_1016_j_asmart_2025_01_001
crossref_primary_10_3390_healthcare11111524
crossref_primary_10_1038_s41598_021_85570_2
crossref_primary_10_2106_JBJS_24_00938
crossref_primary_10_1016_j_arth_2023_02_053
crossref_primary_10_1007_s00068_025_02931_6
crossref_primary_10_1002_jmri_27001
crossref_primary_10_1007_s11042_023_14811_5
crossref_primary_10_1088_1757_899X_1084_1_012001
crossref_primary_10_1155_2022_1560438
crossref_primary_10_1007_s00167_021_06838_8
crossref_primary_10_1186_s12891_025_09161_2
crossref_primary_10_1186_s12880_024_01316_2
crossref_primary_10_3389_fmedt_2022_995526
crossref_primary_10_1038_s41598_023_47460_7
crossref_primary_10_2106_JBJS_RVW_23_00232
crossref_primary_10_3390_app14010133
crossref_primary_10_1007_s00256_021_03782_z
crossref_primary_10_1007_s00068_022_02136_1
crossref_primary_10_1007_s10140_024_02300_7
crossref_primary_10_3389_fbioe_2025_1613417
crossref_primary_10_7759_cureus_60318
crossref_primary_10_1038_s41746_020_00352_w
crossref_primary_10_7759_cureus_73075
crossref_primary_10_1177_10711007221093574
crossref_primary_10_3390_su13179530
crossref_primary_10_1097_SCS_0000000000006069
crossref_primary_10_1302_2046_3758_1310_BJR_2023_0275_R3
crossref_primary_10_1088_1742_6596_2637_1_012033
crossref_primary_10_1016_j_ejrad_2024_111399
crossref_primary_10_1016_j_jcot_2025_103137
crossref_primary_10_1007_s12652_022_03835_8
crossref_primary_10_5397_cise_2025_00185
crossref_primary_10_1007_s00330_019_06167_y
crossref_primary_10_1007_s00784_022_04427_8
crossref_primary_10_1186_s40779_025_00633_z
crossref_primary_10_1038_s41598_022_16154_x
crossref_primary_10_1007_s00256_021_03876_8
crossref_primary_10_1038_s41598_024_71654_2
crossref_primary_10_3389_fonc_2022_766243
crossref_primary_10_1186_s13018_025_05855_4
crossref_primary_10_7759_cureus_58364
crossref_primary_10_1097_CORR_0000000000001352
crossref_primary_10_1007_s00259_019_04372_x
crossref_primary_10_1016_j_jcot_2023_102312
crossref_primary_10_1016_j_jse_2024_11_030
crossref_primary_10_1016_j_xrrt_2025_07_025
crossref_primary_10_1016_j_clinimag_2024_110356
crossref_primary_10_1111_os_70034
crossref_primary_10_3390_diagnostics11020233
crossref_primary_10_1177_02841851221122424
crossref_primary_10_1016_j_yacr_2020_05_005
crossref_primary_10_1007_s10140_023_02154_5
crossref_primary_10_1016_j_artmed_2024_102935
crossref_primary_10_1016_j_ejrad_2024_111605
crossref_primary_10_1016_j_jse_2024_01_033
crossref_primary_10_1007_s11604_025_01754_0
crossref_primary_10_1016_j_compbiomed_2023_107704
crossref_primary_10_1016_j_clinimag_2024_110207
crossref_primary_10_1007_s00104_019_01091_9
crossref_primary_10_3389_fbioe_2022_927926
crossref_primary_10_3390_jcm11206140
crossref_primary_10_1016_j_jbspin_2022_105493
crossref_primary_10_1038_s41598_021_93026_w
crossref_primary_10_1038_s41467_021_21311_3
crossref_primary_10_2147_ORR_S340536
crossref_primary_10_1016_j_arth_2019_05_034
crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0264_R1
crossref_primary_10_1097_CORR_0000000000001685
crossref_primary_10_3390_diagnostics14182092
crossref_primary_10_3390_diagnostics14171879
crossref_primary_10_1016_j_jcot_2021_101573
crossref_primary_10_2519_josptmethods_2024_0086
crossref_primary_10_1186_s13244_019_0777_8
crossref_primary_10_3390_life13010133
crossref_primary_10_1109_ACCESS_2023_3324401
crossref_primary_10_1016_j_oooo_2024_07_010
crossref_primary_10_1097_RCT_0000000000001247
crossref_primary_10_1016_j_knee_2025_02_001
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1016_j_ejrad_2020_109373
crossref_primary_10_1088_1742_6596_1800_1_012006
crossref_primary_10_1177_15589447241308603
crossref_primary_10_1007_s00256_018_3016_3
crossref_primary_10_1007_s00586_022_07121_1
crossref_primary_10_1007_s00256_024_04684_6
crossref_primary_10_3389_fped_2022_1005099
crossref_primary_10_1097_WNO_0000000000001358
crossref_primary_10_1166_jmihi_2021_3899
crossref_primary_10_1016_j_matpr_2021_06_408
crossref_primary_10_1007_s10278_020_00399_x
crossref_primary_10_1007_s11596_024_2928_5
crossref_primary_10_1097_WNO_0000000000000827
crossref_primary_10_1148_radiol_211785
crossref_primary_10_1109_ACCESS_2021_3101040
crossref_primary_10_1148_ryai_2019180001
crossref_primary_10_1186_s41747_024_00422_8
Cites_doi 10.1186/1749-799X-6-38
10.1109/TPAMI.2012.277
10.1001/jama.2016.17216
10.1148/radiol.2017162326
10.1038/nature21056
10.2106/00004623-197052060-00001
10.1080/17453674.2017.1344459
10.1016/j.media.2016.07.007
10.1038/nature14539
10.1109/TPAMI.2013.50
10.3121/cmr.2009.779
10.1007/s11263-015-0816-y
10.1016/j.media.2012.02.005
ContentType Journal Article
Copyright 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018
2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 The Author(s).
Copyright_xml – notice: 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018
– notice: 2018 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2018 The Author(s).
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1080/17453674.2018.1453714
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1745-3682
EndPage 473
ExternalDocumentID oai_doaj_org_article_4edd7d989fc24eb0b372553039828f24
PMC6066766
29577791
10_1080_17453674_2018_1453714
1453714
Genre Article
Video-Audio Media
Multicenter Study
Evaluation Studies
Journal Article
GroupedDBID ---
.55
04C
0YH
23M
2QV
2WC
34G
36B
39C
4.4
5GY
5RE
5VS
6J9
6PF
AAFWJ
AAWTL
ABDBF
ABNNA
ACGFO
ACGFS
ACUHS
ADBBV
ADCVX
ADOJX
ADRAZ
ADRBQ
AEGXH
AENEX
AFKVX
AFPKN
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQTUD
BAWUL
BCNDV
BMSDO
CAG
CS3
DXH
E3Z
EAP
EBC
EBD
EBS
EBX
ECF
ECT
ECV
EHN
EIHBH
EJD
EMB
EMK
EMOBN
ENC
ENX
EPL
EPT
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
KQ8
M48
M4Z
O9-
OK1
OVT
P2P
Q~Q
RDKPK
RNS
RPM
SV3
TDBHL
TFDNU
TFW
TR2
TUS
W2D
WQ9
X7M
~1N
AAYXX
CITATION
.GJ
3O-
53G
AALIY
AFFNX
AWYRJ
C1A
CGR
COF
CUY
CVF
ECM
EIF
NPM
O5R
O5S
ZXP
7X8
5PM
ID FETCH-LOGICAL-c534t-762eca83f09b51dc62697509b952dd84d26ce643549432dee345681935c7261e3
IEDL.DBID DOA
ISICitedReferencesCount 319
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439704100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-3674
1745-3682
IngestDate Fri Oct 03 12:51:08 EDT 2025
Tue Nov 04 01:58:58 EST 2025
Thu Jul 10 23:38:36 EDT 2025
Mon Jul 21 05:53:13 EDT 2025
Tue Nov 18 22:37:55 EST 2025
Sat Nov 29 06:10:29 EST 2025
Mon Oct 20 23:49:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: https://creativecommons.org/licenses/by/4.0: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (https://creativecommons.org/licenses/by/4.0)
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-762eca83f09b51dc62697509b952dd84d26ce643549432dee345681935c7261e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://doaj.org/article/4edd7d989fc24eb0b372553039828f24
PMID 29577791
PQID 2018668638
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2018668638
crossref_primary_10_1080_17453674_2018_1453714
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066766
doaj_primary_oai_doaj_org_article_4edd7d989fc24eb0b372553039828f24
crossref_citationtrail_10_1080_17453674_2018_1453714
pubmed_primary_29577791
informaworld_taylorfrancis_310_1080_17453674_2018_1453714
PublicationCentury 2000
PublicationDate 2018-07-04
PublicationDateYYYYMMDD 2018-07-04
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta orthopaedica
PublicationTitleAlternate Acta Orthop
PublicationYear 2018
Publisher Taylor & Francis
Medical Journals Sweden
Publisher_xml – name: Taylor & Francis
– name: Medical Journals Sweden
References CIT0010
CIT0001
CIT0012
CIT0011
Hua K L (CIT0005) 2015; 8
CIT0003
CIT0014
CIT0002
CIT0013
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0003
  doi: 10.1186/1749-799X-6-38
– ident: CIT0013
  doi: 10.1109/TPAMI.2012.277
– ident: CIT0004
  doi: 10.1001/jama.2016.17216
– ident: CIT0007
  doi: 10.1148/radiol.2017162326
– ident: CIT0002
  doi: 10.1038/nature21056
– ident: CIT0010
  doi: 10.2106/00004623-197052060-00001
– ident: CIT0011
  doi: 10.1080/17453674.2017.1344459
– volume: 8
  start-page: 2015
  year: 2015
  ident: CIT0005
  publication-title: Onco Targets Ther
– ident: CIT0006
  doi: 10.1016/j.media.2016.07.007
– ident: CIT0008
  doi: 10.1038/nature14539
– ident: CIT0001
  doi: 10.1109/TPAMI.2013.50
– ident: CIT0009
  doi: 10.3121/cmr.2009.779
– ident: CIT0012
  doi: 10.1007/s11263-015-0816-y
– ident: CIT0014
  doi: 10.1016/j.media.2012.02.005
SSID ssj0038490
Score 2.6539497
Snippet Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus...
Background and purpose — We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 468
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Area Under Curve
Arthrography
Deep Learning
Female
Humans
Male
Middle Aged
Shoulder Fractures - classification
Shoulder Fractures - diagnostic imaging
Young Adult
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCQzy6bUFG4hrY-O1jqah6QBUHQOUUxY6zu1KbVHkg8e-ZcZxVtwL1AMfN2hPHnrFnkm--IeSdV_h1J7jMCucyOPFVZplnmXMCj6vcm5gh9_2zPj83Fxf2S0IT9glWiTF0PRFFxL0ajbt0_YyI-wBOtORK4xuR3ICpS2Sdu08eMAhNENW1_HE2b8bcCJtyImWGfeYknr-J2TmeIov_LQ7TP3mitwGVN06o0yf_4dmeksfJPaXHkz49I_dC85ysj8ehBc82VLQKQ8RuNRTuQD263og1istL25qCO0kRGbO5AilrzO0ce1pjJtbYBep-UcTZr0BMuKapYMWKlperttsM66sX5Nvpp68nZ1mq0JB5ycWQwU4afGl4vbRO5pWH6MiiC-KsZFVlRMWUD-DzQBAqOAPZXCDhmeXSawjdAn9J9pq2CfuEhmXteRmgIYR41nijSuWtgjg5t0HyekHEvDCFT_TlWEXjssgTy-k8dQVOXZGmbkHeb7tdT_wdd3X4iKu-bYz02_FC262KZM2FCFWlK2ts7Rko-tJxzbD-ErcQwNYMhNibOlMM8e1LPZVKKfgdA3g7K1gBpo7fb8omtGMfWyllYMdckFeTwm2HyazUWtt8QfSOKu48x-4_zWYd6cRVxDmrg38Y8yF5hD8jjFkckb2hG8Nr8tD_HDZ99yZa5G_7mDDv
  priority: 102
  providerName: Taylor & Francis
Title Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/17453674.2018.1453714
https://www.ncbi.nlm.nih.gov/pubmed/29577791
https://www.proquest.com/docview/2018668638
https://pubmed.ncbi.nlm.nih.gov/PMC6066766
https://doaj.org/article/4edd7d989fc24eb0b372553039828f24
Volume 89
WOSCitedRecordID wos000439704100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: TFW
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 20211130
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: 0YH
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFgcojBSojcQ1NbMePY1ux6gFVPRRYTlH8yO5KbVLtJkj8e2acZLVbIe2FSw6ObdmeiT0Tf_MNIZ-dxNudYFMjrE3hxJepYY6l1go8rnKnY4Tcj2_q-lrP5-ZmJ9UXYsIGeuBh4c5E8F55o03tGPSZWa4YprrhBnyFmkUmULB6Jmdq2IO5FmYMhSxSLpWYYnd0doZlWISwLg0bRcFjCM_OqRTJ-x9Rl_7LAH2Mo9w5mGYvyYvRoqTnw0xekSehOSbL875rwRgNnvrQRbhVQ6vGU4fWMsKDokRoW1OwACmCWVb30MsSwzH7Da0xeKpfB2r_UITGL6Cb8EDHHBMLWt0t2vWqW96_Jt9nX28vr9IxqULqCi66FDa_4CrN68zYIvcOHBqDVoM1BfNeC8-kC2CmgN8oOIO-uUCOMsMLp8DbCvwNOWraJrwjNGS141WAiuCVGe20rKQzElzb3ISC1wkR06KWbmQcx8QXd2U-EpNOsihRFuUoi4R82TZ7GCg3DjW4QIltKyNjdiwAPSpHPSoP6VFCzK68yy7-MKmH7CYlPzCAT5NylPB14pVL1YS238RaUmrY5BLydlCW7TCZKZRSJk-I2lOjvXnsv2lWy8gALiM0WZ78j4m_J89xlBGCLD6Qo27dh4_kmfvdrTbrU_I0-3UFTzXXp_ETg-ft7OdfcAki_g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgQYILDwFLeRqJa6CJH7GPC6JaROmpwN6s-JG20m6yShMk_j0zTlK1K9Ae4NrYU8eesWecb74h5K2T-HUn2ERzaxM48WWiM5cl1nI8rlKnYobc93m-WKizM72fC4OwSoyhy54oIu7VaNx4GT1C4t6DFy2YzPFKJFVg6wJp526SWwLOWoT1LWc_xt2YKa6HpEiRYJ8xi-dvYg7Op0jjf4XE9E-u6FVE5d4RNbv_P17uAbk3OKj0pNeoh-RGqB6R9UnX1uDbBk99aCN6q6LwF9Sh841oo7jAtC4pOJQUsTGbC5CyxuzObktLzMXqmkDtL4pI-xWICZd0KFmxosX5qm427friMfk2-7T8eJoMNRoSJxhvE9hLgysUK6faitQ7iI80OiFWi8x7xX0mXQCvB8JQzjKQzThSnmkmXA7BW2BPyFFVV-EpoWFaOlYEaAhBnlZOyUI6LSFSTnUQrJwQPq6McQOBOdbRODfpwHM6Tp3BqTPD1E3Iu123y57B47oOH3DZd42RgDv-UDcrM9iz4cH73GulS5eBqk8tyzOswMQ0hLBlBkL0vtKYNt6_lH2xFMOuGcCbUcMMGDt-wSmqUHfb2EpKBXvmhBz3GrcbZqZFnuc6nZD8QBcP3uPwSbVZR0JxGZHO8tk_jPk1uXO6_Do388-LL8_JXXwUQc38BTlqmy68JLfdz3azbV5F8_wNnpk1GQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINRLAfHa8jIS18Amdhz7WB4rENWqhwK9WYkfuyu1ySqbVOLfM-M4q24F6gGuiT1x7Bl7JvnmG0LeGoF_d1yVKF5VCZz4IlGZyZKq4nhcpUaGDLkfx8V8Ls_O1ElEE24irBJjaD8QRYS9Go17bf2IiHsPTnTORIFfRFIJpp4j69xtcieQY4FKn85-jpsxk1zFnMg8wT5jEs_fxOwcT4HF_xqH6Z880euAyisn1Oz-f3i3B-Qguqf0aNCnh-SWqx-R5VHfNeDZOkut6wJ2q6bwBGrQ9UasUVhe2ngK7iRFZMzqAqQsMbez31CPmVh962j1iyLOfgFi3JrGghULWp4vmnbVLS8ek--zz6cfvySxQkNicsa7BHZSZ0rJ_FRVeWoNREcKXZBK5Zm1kttMGAc-DwShnGUgm3EkPFMsNwWEbo49IXt1U7tnhLqpN6x00BBCPCWNFKUwSkCcnCqXMz8hfFwYbSJ9OVbRONdpZDkdp07j1Ok4dRPybtttPfB33NThA676tjHSb4cLTbvQ0Zo1d9YWVknlTQaKPq1YkWH9JaYggPUZCFFXdUZ34euLH0qlaHbDAN6MCqbB1PH_TVm7pt-EVkJI2DEn5OmgcNthZiovikKlE1LsqOLOe-zeqVfLQCcuAs5ZHP7DmF-TeyefZvr46_zbc7KPdwKimb8ge13bu5fkrrnsVpv2VTDO35oLM70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+the+proximal+humerus+fracture+by+using+deep+learning+algorithm&rft.jtitle=Acta+orthopaedica&rft.au=Chung%2C+Seok+Won&rft.au=Han%2C+Seung+Seog&rft.au=Lee%2C+Ji+Whan&rft.au=Oh%2C+Kyung-Soo&rft.date=2018-07-04&rft.issn=1745-3674&rft.eissn=1745-3682&rft.volume=89&rft.issue=4&rft.spage=468&rft.epage=473&rft_id=info:doi/10.1080%2F17453674.2018.1453714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17453674_2018_1453714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-3674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-3674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-3674&client=summon