Amplifying the response of soft actuators by harnessing snap-through instabilities

Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these li...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 112; číslo 35; s. 10863
Hlavní autori: Overvelde, Johannes T B, Kloek, Tamara, D'haen, Jonas J A, Bertoldi, Katia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.09.2015
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion.
AbstractList Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion.Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion.
Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion.
Author Bertoldi, Katia
Overvelde, Johannes T B
Kloek, Tamara
D'haen, Jonas J A
Author_xml – sequence: 1
  givenname: Johannes T B
  surname: Overvelde
  fullname: Overvelde, Johannes T B
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
– sequence: 2
  givenname: Tamara
  surname: Kloek
  fullname: Kloek, Tamara
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
– sequence: 3
  givenname: Jonas J A
  surname: D'haen
  fullname: D'haen, Jonas J A
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
– sequence: 4
  givenname: Katia
  surname: Bertoldi
  fullname: Bertoldi, Katia
  email: bertoldi@seas.harvard.edu
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute, Harvard University, Cambridge, MA 02138 bertoldi@seas.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26283372$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYMozkPX7iRLNx1vkr6yHAZfMCCIrkuauZ1G2qT2pov59444gqtzFh8fh7Ng5z54ZOxGwEpAoe4Hb2glMkh1Wgghz9hcgBZJnmo4_9dnbEH0CQA6K-GSzWQuS6UKOWdv637oXHNwfs9ji3xEGoIn5KHhFJrIjY2TiWEkXh94a0aPRD8weTMksR3DtG-58xRN7ToXHdIVu2hMR3h9yiX7eHx43zwn29enl816m9hMpTGRRuZ1YYTdZXjc1WgDQpdoZQmQKSOUtYUFVarSlKixkBIwq3UjM5Wbegdyye5-vcMYviakWPWOLHad8RgmqkQBWulU5_KI3p7Qqe5xVw2j6814qP5-kN9_JmJu
CitedBy_id crossref_primary_10_1038_s44182_025_00045_0
crossref_primary_10_1089_soro_2021_0080
crossref_primary_10_20965_jrm_2022_p0202
crossref_primary_10_1016_j_compstruct_2022_115308
crossref_primary_10_1126_scirobotics_aar7986
crossref_primary_10_3389_frobt_2021_788067
crossref_primary_10_1088_1748_3190_12_1_011001
crossref_primary_10_1088_0964_1726_25_10_105020
crossref_primary_10_1002_admt_202000150
crossref_primary_10_1063_5_0026817
crossref_primary_10_1016_j_tws_2024_111757
crossref_primary_10_1038_nature18960
crossref_primary_10_1073_pnas_2423301122
crossref_primary_10_1073_pnas_2300081120
crossref_primary_10_1002_adma_201600610
crossref_primary_10_1073_pnas_1713450114
crossref_primary_10_1098_rsos_250753
crossref_primary_10_1002_rpm_20240035
crossref_primary_10_1089_soro_2016_0078
crossref_primary_10_1017_jfm_2025_10440
crossref_primary_10_1002_adma_202110384
crossref_primary_10_1002_adma_202300535
crossref_primary_10_1002_admt_202400993
crossref_primary_10_1002_smll_202502789
crossref_primary_10_1016_j_ijmecsci_2025_110610
crossref_primary_10_1038_s41467_024_51787_8
crossref_primary_10_1002_aisy_202200435
crossref_primary_10_1038_s41598_018_34971_x
crossref_primary_10_1002_adma_201906564
crossref_primary_10_1088_1361_665X_adfea9
crossref_primary_10_1109_TMECH_2023_3345529
crossref_primary_10_1002_aisy_202500157
crossref_primary_10_1007_s11071_020_05661_z
crossref_primary_10_1016_j_jmps_2021_104688
crossref_primary_10_1016_j_mattod_2023_02_005
crossref_primary_10_1016_j_compstruct_2020_113381
crossref_primary_10_3390_membranes11070516
crossref_primary_10_1002_admt_201900042
crossref_primary_10_1002_adma_201600107
crossref_primary_10_1016_j_mtcomm_2024_110934
crossref_primary_10_1073_pnas_2111436118
crossref_primary_10_1109_TMECH_2024_3402671
crossref_primary_10_1209_0295_5075_132_44001
crossref_primary_10_1016_j_cocis_2019_02_008
crossref_primary_10_1016_j_mtcomm_2024_111371
crossref_primary_10_1016_j_eml_2018_07_004
crossref_primary_10_1002_adma_202207372
crossref_primary_10_1007_s40684_023_00531_6
crossref_primary_10_1016_j_jmps_2018_10_010
crossref_primary_10_1016_j_jmps_2021_104658
crossref_primary_10_1089_soro_2019_0060
crossref_primary_10_1016_j_ijsolstr_2020_11_037
crossref_primary_10_1002_adma_201704446
crossref_primary_10_1002_admt_202000370
crossref_primary_10_1016_j_cma_2017_12_001
crossref_primary_10_1002_adrr_202500041
crossref_primary_10_1089_soro_2018_0063
crossref_primary_10_1089_soro_2021_0018
crossref_primary_10_1016_j_eml_2022_101807
crossref_primary_10_1002_advs_202102539
crossref_primary_10_1007_s11431_022_2108_y
crossref_primary_10_1016_j_matdes_2024_113334
crossref_primary_10_1038_s41586_021_04029_6
crossref_primary_10_1016_j_eml_2016_08_007
crossref_primary_10_1089_soro_2024_0115
crossref_primary_10_1088_1361_665X_ab6486
crossref_primary_10_1126_scirobotics_ado7696
crossref_primary_10_1088_1361_665X_ad97fe
crossref_primary_10_1016_j_ijmecsci_2019_105168
crossref_primary_10_1002_adma_202301487
crossref_primary_10_1016_j_ijmecsci_2024_109664
crossref_primary_10_1016_j_device_2025_100863
crossref_primary_10_1098_rspa_2025_0093
crossref_primary_10_3390_polym14163396
crossref_primary_10_1088_0964_1726_25_7_07LT02
crossref_primary_10_3390_act9010010
crossref_primary_10_1002_adma_202006939
crossref_primary_10_1002_aisy_202200332
crossref_primary_10_1073_pnas_1604838113
crossref_primary_10_1002_adfm_202514272
crossref_primary_10_1016_j_jmps_2017_06_001
crossref_primary_10_1016_j_jfluidstructs_2024_104090
crossref_primary_10_1002_adma_201807309
crossref_primary_10_1016_j_compstruct_2019_02_030
crossref_primary_10_1016_j_mattod_2024_12_013
crossref_primary_10_1007_s10409_017_0657_8
crossref_primary_10_1088_1748_3190_acaa7d
crossref_primary_10_1088_1361_665X_ab47d9
crossref_primary_10_1016_j_eml_2019_100552
crossref_primary_10_1002_adma_201603483
crossref_primary_10_1002_adma_202003375
crossref_primary_10_1002_advs_202307391
crossref_primary_10_1016_j_compositesb_2020_108501
crossref_primary_10_1016_j_compositesb_2021_108745
crossref_primary_10_1016_j_jmps_2021_104356
crossref_primary_10_1016_j_compositesa_2019_105697
crossref_primary_10_1016_j_ijmecsci_2019_02_011
crossref_primary_10_1016_j_jmps_2024_106019
crossref_primary_10_1073_pnas_2308414121
crossref_primary_10_1088_1361_665X_ac383a
crossref_primary_10_1126_scirobotics_aax7329
crossref_primary_10_1016_j_ijmecsci_2022_107523
crossref_primary_10_1016_j_jmps_2022_105052
crossref_primary_10_1002_adma_202417325
crossref_primary_10_1088_1361_665X_ace4ab
crossref_primary_10_1109_TMRB_2025_3585373
crossref_primary_10_1002_adhm_202300964
crossref_primary_10_1016_j_ijsolstr_2023_112391
crossref_primary_10_1016_j_matt_2025_102045
crossref_primary_10_1002_adma_201604977
crossref_primary_10_1063_1_5058190
crossref_primary_10_1038_srep27432
crossref_primary_10_1002_aisy_202500077
crossref_primary_10_1016_j_eml_2017_09_005
crossref_primary_10_1002_adma_201600660
crossref_primary_10_1038_s41467_024_47110_0
crossref_primary_10_1016_j_jmps_2024_105721
crossref_primary_10_3390_nano15171332
crossref_primary_10_1073_pnas_1800386115
crossref_primary_10_1103_PhysRevLett_130_128201
crossref_primary_10_1016_j_tws_2024_112879
crossref_primary_10_1016_j_compstruct_2023_117366
crossref_primary_10_1002_adem_202302216
crossref_primary_10_1016_j_eml_2019_02_002
crossref_primary_10_1038_s41563_021_01157_2
crossref_primary_10_1109_TRO_2023_3334629
crossref_primary_10_1016_j_tws_2022_109749
crossref_primary_10_1038_s41586_021_04138_2
crossref_primary_10_1002_advs_202100445
crossref_primary_10_1126_scirobotics_abb1967
crossref_primary_10_1115_1_4067920
crossref_primary_10_1038_s41551_017_0140_7
crossref_primary_10_1103_PhysRevResearch_7_013330
crossref_primary_10_1002_adma_202002541
crossref_primary_10_1017_jfm_2022_96
crossref_primary_10_1002_advs_202302080
crossref_primary_10_3390_act11080221
crossref_primary_10_1002_aisy_202200126
crossref_primary_10_1016_j_eml_2020_100865
crossref_primary_10_1080_15376494_2020_1757179
crossref_primary_10_1002_aisy_202400694
crossref_primary_10_1016_j_compstruct_2019_111276
crossref_primary_10_1073_pnas_1904984116
crossref_primary_10_1007_s10409_022_09010_x
crossref_primary_10_1002_sstr_202500057
crossref_primary_10_1016_j_compscitech_2018_03_018
crossref_primary_10_1002_admt_201600055
crossref_primary_10_1109_LRA_2024_3367280
crossref_primary_10_1109_MRA_2016_2639067
crossref_primary_10_1126_science_aao6139
crossref_primary_10_1002_adfm_202508885
crossref_primary_10_1016_j_ijnonlinmec_2025_105119
crossref_primary_10_3390_mi11070661
crossref_primary_10_1089_soro_2018_0149
crossref_primary_10_1016_j_cad_2018_11_001
crossref_primary_10_1016_j_eml_2020_100732
crossref_primary_10_1016_j_applthermaleng_2022_119850
crossref_primary_10_1016_j_eml_2024_102189
crossref_primary_10_1038_s41467_025_58731_4
crossref_primary_10_1089_soro_2017_0064
crossref_primary_10_1016_j_matt_2022_06_002
crossref_primary_10_1088_1361_665X_aa6387
crossref_primary_10_1038_s41586_020_03123_5
crossref_primary_10_1126_scirobotics_adm8484
crossref_primary_10_3390_insects10120438
crossref_primary_10_1016_j_cma_2016_02_036
crossref_primary_10_1002_adfm_202316181
crossref_primary_10_1016_j_jmps_2018_11_020
crossref_primary_10_1016_j_matdes_2022_111262
crossref_primary_10_1016_j_compositesb_2020_107898
crossref_primary_10_3389_frobt_2018_00084
crossref_primary_10_1002_adma_201804598
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1504947112
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 26283372
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c534t-2a26b7a1cd5e095f9a0198ec280053a13cc7c03838a8e9e7220e5b9f2536abd02
IEDL.DBID 7X8
ISICitedReferencesCount 225
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360383200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 19:47:43 EDT 2025
Thu Apr 03 07:00:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords amplification
snap-through instability
fluidic segment
soft actuator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-2a26b7a1cd5e095f9a0198ec280053a13cc7c03838a8e9e7220e5b9f2536abd02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/112/35/10863.full.pdf
PMID 26283372
PQID 1709394962
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1709394962
pubmed_primary_26283372
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
References 22961655 - Adv Mater. 2013 Jan 11;25(2):205-12
23582470 - Trends Biotechnol. 2013 May;31(5):287-94
25379923 - Phys Rev Lett. 2014 Oct 24;113(17):175503
21452882 - ACS Nano. 2011 May 24;5(5):3645-50
22904008 - Science. 2012 Aug 17;337(6096):828-32
19258690 - Bioinspir Biomim. 2009 Mar;4(1):015006
21328664 - Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5
15244809 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051108
20339064 - Science. 2010 Mar 26;327(5973):1603-7
24227698 - Adv Mater. 2014 Feb 26;26(8):1200-6
25032927 - Phys Rev Lett. 2014 Jul 4;113(1):014301
22451901 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5978-83
22123978 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20400-3
References_xml – reference: 25032927 - Phys Rev Lett. 2014 Jul 4;113(1):014301
– reference: 19258690 - Bioinspir Biomim. 2009 Mar;4(1):015006
– reference: 21452882 - ACS Nano. 2011 May 24;5(5):3645-50
– reference: 22451901 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5978-83
– reference: 24227698 - Adv Mater. 2014 Feb 26;26(8):1200-6
– reference: 21328664 - Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5
– reference: 25379923 - Phys Rev Lett. 2014 Oct 24;113(17):175503
– reference: 23582470 - Trends Biotechnol. 2013 May;31(5):287-94
– reference: 22904008 - Science. 2012 Aug 17;337(6096):828-32
– reference: 22961655 - Adv Mater. 2013 Jan 11;25(2):205-12
– reference: 22123978 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20400-3
– reference: 20339064 - Science. 2010 Mar 26;327(5973):1603-7
– reference: 15244809 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051108
SSID ssj0009580
Score 2.5954306
Snippet Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10863
Title Amplifying the response of soft actuators by harnessing snap-through instabilities
URI https://www.ncbi.nlm.nih.gov/pubmed/26283372
https://www.proquest.com/docview/1709394962
Volume 112
WOSCitedRecordID wos000360383200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3qevCirp_rFxE86CFum7b5OMkiLl5cFlHYW5mmCXpp63YV_PdO2i56EQQvPbVQhpmXN8nkPUIurLC5QSrKrMPeJNaRZZC5jCFgcoF0RCkbNGYTcjJRs5medhtudTdWucTEBqjz0vg98mEosffWsRb8pnpj3jXKn652FhqrpBchlfFZLWfqh-iuatUIdMhErIOltI-MhlUB9TWSoVgjOns7yt_4ZbPOjLf--4fbZLNjmHTUpkSfrNhih_S7Gq7pZSc0fbVLHkd-nLy56ESRB9J5Oy9raelojfBMwd8u8XY8NPukLzD3sOhfrguoWOfwQ189wWxGbLHp3iPP47un23vWeSwwk0TxgnHgIpMQmjyxGC-nATmfsoYrX54QRsZIE2Abq0BZbSXngU0y7XgSCcjygO-TtaIs7CGhWsfOGCG0zFzMIQcBnp0YAO1FxdyAnC_jlmIO-4MJKGz5XqffkRuQgzb4adWKbaRcIAGKJD_6w9fHZAP5TNKOgJ2QnsMKtqdk3XwsXuv5WZMc-JxMH74ALzHFMQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplifying+the+response+of+soft+actuators+by+harnessing+snap-through+instabilities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Overvelde%2C+Johannes+T+B&rft.au=Kloek%2C+Tamara&rft.au=D%27haen%2C+Jonas+J+A&rft.au=Bertoldi%2C+Katia&rft.date=2015-09-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=35&rft.spage=10863&rft_id=info:doi/10.1073%2Fpnas.1504947112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon