Amplifying the response of soft actuators by harnessing snap-through instabilities
Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these li...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 112; číslo 35; s. 10863 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.09.2015
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion. |
|---|---|
| AbstractList | Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion.Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion. Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators achieve motion with large amplitudes, they require large amounts of supplied volume, limiting their speed and compactness. To circumvent these limitations, here we embrace instabilities and show that they can be exploited to amplify the response of the system. By combining experimental and numerical tools we design and construct fluidic actuators in which snap-through instabilities are harnessed to generate large motion, high forces, and fast actuation at constant volume. Our study opens avenues for the design of the next generation of soft actuators and robots in which small amounts of volume are sufficient to achieve significant ranges of motion. |
| Author | Bertoldi, Katia Overvelde, Johannes T B Kloek, Tamara D'haen, Jonas J A |
| Author_xml | – sequence: 1 givenname: Johannes T B surname: Overvelde fullname: Overvelde, Johannes T B organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 – sequence: 2 givenname: Tamara surname: Kloek fullname: Kloek, Tamara organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 – sequence: 3 givenname: Jonas J A surname: D'haen fullname: D'haen, Jonas J A organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 – sequence: 4 givenname: Katia surname: Bertoldi fullname: Bertoldi, Katia email: bertoldi@seas.harvard.edu organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute, Harvard University, Cambridge, MA 02138 bertoldi@seas.harvard.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26283372$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYMozkPX7iRLNx1vkr6yHAZfMCCIrkuauZ1G2qT2pov59444gqtzFh8fh7Ng5z54ZOxGwEpAoe4Hb2glMkh1Wgghz9hcgBZJnmo4_9dnbEH0CQA6K-GSzWQuS6UKOWdv637oXHNwfs9ji3xEGoIn5KHhFJrIjY2TiWEkXh94a0aPRD8weTMksR3DtG-58xRN7ToXHdIVu2hMR3h9yiX7eHx43zwn29enl816m9hMpTGRRuZ1YYTdZXjc1WgDQpdoZQmQKSOUtYUFVarSlKixkBIwq3UjM5Wbegdyye5-vcMYviakWPWOLHad8RgmqkQBWulU5_KI3p7Qqe5xVw2j6814qP5-kN9_JmJu |
| CitedBy_id | crossref_primary_10_1038_s44182_025_00045_0 crossref_primary_10_1089_soro_2021_0080 crossref_primary_10_20965_jrm_2022_p0202 crossref_primary_10_1016_j_compstruct_2022_115308 crossref_primary_10_1126_scirobotics_aar7986 crossref_primary_10_3389_frobt_2021_788067 crossref_primary_10_1088_1748_3190_12_1_011001 crossref_primary_10_1088_0964_1726_25_10_105020 crossref_primary_10_1002_admt_202000150 crossref_primary_10_1063_5_0026817 crossref_primary_10_1016_j_tws_2024_111757 crossref_primary_10_1038_nature18960 crossref_primary_10_1073_pnas_2423301122 crossref_primary_10_1073_pnas_2300081120 crossref_primary_10_1002_adma_201600610 crossref_primary_10_1073_pnas_1713450114 crossref_primary_10_1098_rsos_250753 crossref_primary_10_1002_rpm_20240035 crossref_primary_10_1089_soro_2016_0078 crossref_primary_10_1017_jfm_2025_10440 crossref_primary_10_1002_adma_202110384 crossref_primary_10_1002_adma_202300535 crossref_primary_10_1002_admt_202400993 crossref_primary_10_1002_smll_202502789 crossref_primary_10_1016_j_ijmecsci_2025_110610 crossref_primary_10_1038_s41467_024_51787_8 crossref_primary_10_1002_aisy_202200435 crossref_primary_10_1038_s41598_018_34971_x crossref_primary_10_1002_adma_201906564 crossref_primary_10_1088_1361_665X_adfea9 crossref_primary_10_1109_TMECH_2023_3345529 crossref_primary_10_1002_aisy_202500157 crossref_primary_10_1007_s11071_020_05661_z crossref_primary_10_1016_j_jmps_2021_104688 crossref_primary_10_1016_j_mattod_2023_02_005 crossref_primary_10_1016_j_compstruct_2020_113381 crossref_primary_10_3390_membranes11070516 crossref_primary_10_1002_admt_201900042 crossref_primary_10_1002_adma_201600107 crossref_primary_10_1016_j_mtcomm_2024_110934 crossref_primary_10_1073_pnas_2111436118 crossref_primary_10_1109_TMECH_2024_3402671 crossref_primary_10_1209_0295_5075_132_44001 crossref_primary_10_1016_j_cocis_2019_02_008 crossref_primary_10_1016_j_mtcomm_2024_111371 crossref_primary_10_1016_j_eml_2018_07_004 crossref_primary_10_1002_adma_202207372 crossref_primary_10_1007_s40684_023_00531_6 crossref_primary_10_1016_j_jmps_2018_10_010 crossref_primary_10_1016_j_jmps_2021_104658 crossref_primary_10_1089_soro_2019_0060 crossref_primary_10_1016_j_ijsolstr_2020_11_037 crossref_primary_10_1002_adma_201704446 crossref_primary_10_1002_admt_202000370 crossref_primary_10_1016_j_cma_2017_12_001 crossref_primary_10_1002_adrr_202500041 crossref_primary_10_1089_soro_2018_0063 crossref_primary_10_1089_soro_2021_0018 crossref_primary_10_1016_j_eml_2022_101807 crossref_primary_10_1002_advs_202102539 crossref_primary_10_1007_s11431_022_2108_y crossref_primary_10_1016_j_matdes_2024_113334 crossref_primary_10_1038_s41586_021_04029_6 crossref_primary_10_1016_j_eml_2016_08_007 crossref_primary_10_1089_soro_2024_0115 crossref_primary_10_1088_1361_665X_ab6486 crossref_primary_10_1126_scirobotics_ado7696 crossref_primary_10_1088_1361_665X_ad97fe crossref_primary_10_1016_j_ijmecsci_2019_105168 crossref_primary_10_1002_adma_202301487 crossref_primary_10_1016_j_ijmecsci_2024_109664 crossref_primary_10_1016_j_device_2025_100863 crossref_primary_10_1098_rspa_2025_0093 crossref_primary_10_3390_polym14163396 crossref_primary_10_1088_0964_1726_25_7_07LT02 crossref_primary_10_3390_act9010010 crossref_primary_10_1002_adma_202006939 crossref_primary_10_1002_aisy_202200332 crossref_primary_10_1073_pnas_1604838113 crossref_primary_10_1002_adfm_202514272 crossref_primary_10_1016_j_jmps_2017_06_001 crossref_primary_10_1016_j_jfluidstructs_2024_104090 crossref_primary_10_1002_adma_201807309 crossref_primary_10_1016_j_compstruct_2019_02_030 crossref_primary_10_1016_j_mattod_2024_12_013 crossref_primary_10_1007_s10409_017_0657_8 crossref_primary_10_1088_1748_3190_acaa7d crossref_primary_10_1088_1361_665X_ab47d9 crossref_primary_10_1016_j_eml_2019_100552 crossref_primary_10_1002_adma_201603483 crossref_primary_10_1002_adma_202003375 crossref_primary_10_1002_advs_202307391 crossref_primary_10_1016_j_compositesb_2020_108501 crossref_primary_10_1016_j_compositesb_2021_108745 crossref_primary_10_1016_j_jmps_2021_104356 crossref_primary_10_1016_j_compositesa_2019_105697 crossref_primary_10_1016_j_ijmecsci_2019_02_011 crossref_primary_10_1016_j_jmps_2024_106019 crossref_primary_10_1073_pnas_2308414121 crossref_primary_10_1088_1361_665X_ac383a crossref_primary_10_1126_scirobotics_aax7329 crossref_primary_10_1016_j_ijmecsci_2022_107523 crossref_primary_10_1016_j_jmps_2022_105052 crossref_primary_10_1002_adma_202417325 crossref_primary_10_1088_1361_665X_ace4ab crossref_primary_10_1109_TMRB_2025_3585373 crossref_primary_10_1002_adhm_202300964 crossref_primary_10_1016_j_ijsolstr_2023_112391 crossref_primary_10_1016_j_matt_2025_102045 crossref_primary_10_1002_adma_201604977 crossref_primary_10_1063_1_5058190 crossref_primary_10_1038_srep27432 crossref_primary_10_1002_aisy_202500077 crossref_primary_10_1016_j_eml_2017_09_005 crossref_primary_10_1002_adma_201600660 crossref_primary_10_1038_s41467_024_47110_0 crossref_primary_10_1016_j_jmps_2024_105721 crossref_primary_10_3390_nano15171332 crossref_primary_10_1073_pnas_1800386115 crossref_primary_10_1103_PhysRevLett_130_128201 crossref_primary_10_1016_j_tws_2024_112879 crossref_primary_10_1016_j_compstruct_2023_117366 crossref_primary_10_1002_adem_202302216 crossref_primary_10_1016_j_eml_2019_02_002 crossref_primary_10_1038_s41563_021_01157_2 crossref_primary_10_1109_TRO_2023_3334629 crossref_primary_10_1016_j_tws_2022_109749 crossref_primary_10_1038_s41586_021_04138_2 crossref_primary_10_1002_advs_202100445 crossref_primary_10_1126_scirobotics_abb1967 crossref_primary_10_1115_1_4067920 crossref_primary_10_1038_s41551_017_0140_7 crossref_primary_10_1103_PhysRevResearch_7_013330 crossref_primary_10_1002_adma_202002541 crossref_primary_10_1017_jfm_2022_96 crossref_primary_10_1002_advs_202302080 crossref_primary_10_3390_act11080221 crossref_primary_10_1002_aisy_202200126 crossref_primary_10_1016_j_eml_2020_100865 crossref_primary_10_1080_15376494_2020_1757179 crossref_primary_10_1002_aisy_202400694 crossref_primary_10_1016_j_compstruct_2019_111276 crossref_primary_10_1073_pnas_1904984116 crossref_primary_10_1007_s10409_022_09010_x crossref_primary_10_1002_sstr_202500057 crossref_primary_10_1016_j_compscitech_2018_03_018 crossref_primary_10_1002_admt_201600055 crossref_primary_10_1109_LRA_2024_3367280 crossref_primary_10_1109_MRA_2016_2639067 crossref_primary_10_1126_science_aao6139 crossref_primary_10_1002_adfm_202508885 crossref_primary_10_1016_j_ijnonlinmec_2025_105119 crossref_primary_10_3390_mi11070661 crossref_primary_10_1089_soro_2018_0149 crossref_primary_10_1016_j_cad_2018_11_001 crossref_primary_10_1016_j_eml_2020_100732 crossref_primary_10_1016_j_applthermaleng_2022_119850 crossref_primary_10_1016_j_eml_2024_102189 crossref_primary_10_1038_s41467_025_58731_4 crossref_primary_10_1089_soro_2017_0064 crossref_primary_10_1016_j_matt_2022_06_002 crossref_primary_10_1088_1361_665X_aa6387 crossref_primary_10_1038_s41586_020_03123_5 crossref_primary_10_1126_scirobotics_adm8484 crossref_primary_10_3390_insects10120438 crossref_primary_10_1016_j_cma_2016_02_036 crossref_primary_10_1002_adfm_202316181 crossref_primary_10_1016_j_jmps_2018_11_020 crossref_primary_10_1016_j_matdes_2022_111262 crossref_primary_10_1016_j_compositesb_2020_107898 crossref_primary_10_3389_frobt_2018_00084 crossref_primary_10_1002_adma_201804598 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1504947112 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 26283372 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c534t-2a26b7a1cd5e095f9a0198ec280053a13cc7c03838a8e9e7220e5b9f2536abd02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 225 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360383200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 19:47:43 EDT 2025 Thu Apr 03 07:00:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 35 |
| Keywords | amplification snap-through instability fluidic segment soft actuator |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c534t-2a26b7a1cd5e095f9a0198ec280053a13cc7c03838a8e9e7220e5b9f2536abd02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/112/35/10863.full.pdf |
| PMID | 26283372 |
| PQID | 1709394962 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1709394962 pubmed_primary_26283372 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2015 |
| References | 22961655 - Adv Mater. 2013 Jan 11;25(2):205-12 23582470 - Trends Biotechnol. 2013 May;31(5):287-94 25379923 - Phys Rev Lett. 2014 Oct 24;113(17):175503 21452882 - ACS Nano. 2011 May 24;5(5):3645-50 22904008 - Science. 2012 Aug 17;337(6096):828-32 19258690 - Bioinspir Biomim. 2009 Mar;4(1):015006 21328664 - Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5 15244809 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051108 20339064 - Science. 2010 Mar 26;327(5973):1603-7 24227698 - Adv Mater. 2014 Feb 26;26(8):1200-6 25032927 - Phys Rev Lett. 2014 Jul 4;113(1):014301 22451901 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5978-83 22123978 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20400-3 |
| References_xml | – reference: 25032927 - Phys Rev Lett. 2014 Jul 4;113(1):014301 – reference: 19258690 - Bioinspir Biomim. 2009 Mar;4(1):015006 – reference: 21452882 - ACS Nano. 2011 May 24;5(5):3645-50 – reference: 22451901 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5978-83 – reference: 24227698 - Adv Mater. 2014 Feb 26;26(8):1200-6 – reference: 21328664 - Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5 – reference: 25379923 - Phys Rev Lett. 2014 Oct 24;113(17):175503 – reference: 23582470 - Trends Biotechnol. 2013 May;31(5):287-94 – reference: 22904008 - Science. 2012 Aug 17;337(6096):828-32 – reference: 22961655 - Adv Mater. 2013 Jan 11;25(2):205-12 – reference: 22123978 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20400-3 – reference: 20339064 - Science. 2010 Mar 26;327(5973):1603-7 – reference: 15244809 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051108 |
| SSID | ssj0009580 |
| Score | 2.5954306 |
| Snippet | Soft, inflatable segments are the active elements responsible for the actuation of soft machines and robots. Although current designs of fluidic actuators... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10863 |
| Title | Amplifying the response of soft actuators by harnessing snap-through instabilities |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26283372 https://www.proquest.com/docview/1709394962 |
| Volume | 112 |
| WOSCitedRecordID | wos000360383200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3qevCirp_rFxE86CFum7b5OMkiLl5cFlHYW5mmCXpp63YV_PdO2i56EQQvPbVQhpmXN8nkPUIurLC5QSrKrMPeJNaRZZC5jCFgcoF0RCkbNGYTcjJRs5medhtudTdWucTEBqjz0vg98mEosffWsRb8pnpj3jXKn652FhqrpBchlfFZLWfqh-iuatUIdMhErIOltI-MhlUB9TWSoVgjOns7yt_4ZbPOjLf--4fbZLNjmHTUpkSfrNhih_S7Gq7pZSc0fbVLHkd-nLy56ESRB9J5Oy9raelojfBMwd8u8XY8NPukLzD3sOhfrguoWOfwQ189wWxGbLHp3iPP47un23vWeSwwk0TxgnHgIpMQmjyxGC-nATmfsoYrX54QRsZIE2Abq0BZbSXngU0y7XgSCcjygO-TtaIs7CGhWsfOGCG0zFzMIQcBnp0YAO1FxdyAnC_jlmIO-4MJKGz5XqffkRuQgzb4adWKbaRcIAGKJD_6w9fHZAP5TNKOgJ2QnsMKtqdk3XwsXuv5WZMc-JxMH74ALzHFMQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplifying+the+response+of+soft+actuators+by+harnessing+snap-through+instabilities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Overvelde%2C+Johannes+T+B&rft.au=Kloek%2C+Tamara&rft.au=D%27haen%2C+Jonas+J+A&rft.au=Bertoldi%2C+Katia&rft.date=2015-09-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=112&rft.issue=35&rft.spage=10863&rft_id=info:doi/10.1073%2Fpnas.1504947112&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |