Novel insights of dietary polyphenols and obesity
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyph...
Uložené v:
| Vydané v: | The Journal of nutritional biochemistry Ročník 25; číslo 1; s. 1 - 18 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.01.2014
|
| Predmet: | |
| ISSN: | 0955-2863, 1873-4847, 1873-4847 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. |
|---|---|
| AbstractList | The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid I2-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor I3, CCAAT/enhancer binding protein I-, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-IoB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. |
| Author | Moustaid-Moussa, Naima Mo, Huanbiao Shen, Chwan-Li Kwun, InSook Su, Rui Wang, Shu Shastri, Anuradha Chen, Lixia Bapat, Priyanka |
| AuthorAffiliation | 2 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA 4 Department of Nutrition and Food Sciences, College of Human Ecology, Andong National Univeristy, Andong, South Korea 1 Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA 5 Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA 3 Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA 6 Laura W. Bush Institute for Women’s Health, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA |
| AuthorAffiliation_xml | – name: 2 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA – name: 6 Laura W. Bush Institute for Women’s Health, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA – name: 4 Department of Nutrition and Food Sciences, College of Human Ecology, Andong National Univeristy, Andong, South Korea – name: 5 Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA – name: 1 Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – name: 3 Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA |
| Author_xml | – sequence: 1 givenname: Shu surname: Wang fullname: Wang, Shu organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – sequence: 2 givenname: Naima surname: Moustaid-Moussa fullname: Moustaid-Moussa, Naima organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – sequence: 3 givenname: Lixia surname: Chen fullname: Chen, Lixia organization: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA – sequence: 4 givenname: Huanbiao surname: Mo fullname: Mo, Huanbiao organization: Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA – sequence: 5 givenname: Anuradha surname: Shastri fullname: Shastri, Anuradha organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – sequence: 6 givenname: Rui surname: Su fullname: Su, Rui organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – sequence: 7 givenname: Priyanka surname: Bapat fullname: Bapat, Priyanka organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA – sequence: 8 givenname: InSook surname: Kwun fullname: Kwun, InSook organization: Department of Nutrition and Food Sciences, College of Human Ecology. Andong National Univeristy, Andong, South Korea – sequence: 9 givenname: Chwan-Li surname: Shen fullname: Shen, Chwan-Li email: leslie.shen@ttuhsc.edu organization: Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24314860$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvEzEUhS1URNPHTwDNks0Mfo8tJBCqWkCqYANry2PfaRxN7DB2IuXf4ygpAjZZeXG_c3zuPVfoIqYICL0muCOYyHerbhW3ZQipo5iwDusOY_ICLYjqWcsV7y_QAmshWqoku0RXOa8wxpQL-QpdUs4IVxIvEPmWdjA1IebwtCy5SWPjAxQ775tNmvabJcQ05cZG36QBcij7G_RytFOG29N7jX4-3P-4-9I-fv_89e7TY-sEY6X1o7fEeyaw8nYYeiWFolySEbR31Pe9BsWkFFI5LEYpnXVq1I5jyjxzwNk1-nD03WyHNXgHscx2Mps5rGs6k2ww_05iWJqntDNMU9kLXA3engzm9GsLuZh1yA6myUZI22xovQdRWkh5Fq1Yz6Rmsj-P8urXCy10Rd_8vcGf6M_Xr8D7I-DmlPMMo3Gh2BLSYaEwGYLNoWuzMqeuzaFrg7Wpyata_Kd-_uCc7uNRB7W9XYDZZBcgOvBhBleMT-GMw29mE8a4 |
| CitedBy_id | crossref_primary_10_1016_j_jnutbio_2015_07_016 crossref_primary_10_1016_j_anifeedsci_2021_114832 crossref_primary_10_1016_j_bbrc_2019_04_179 crossref_primary_10_1039_D3FO04348G crossref_primary_10_3390_antiox8030074 crossref_primary_10_1016_j_aca_2016_10_043 crossref_primary_10_1016_j_scitotenv_2018_04_291 crossref_primary_10_3390_antiox9100910 crossref_primary_10_1016_j_jnutbio_2017_11_006 crossref_primary_10_1002_fsn3_2580 crossref_primary_10_3390_nu12092572 crossref_primary_10_1039_D0FO02485F crossref_primary_10_3390_antiox12061232 crossref_primary_10_1080_09168451_2018_1514247 crossref_primary_10_1039_D3FO02048G crossref_primary_10_1016_j_foodres_2022_111202 crossref_primary_10_3390_molecules24010119 crossref_primary_10_1186_s12944_018_0738_0 crossref_primary_10_3390_nu9090959 crossref_primary_10_1108_NFS_03_2018_0091 crossref_primary_10_1371_journal_pone_0172900 crossref_primary_10_3945_an_116_012575 crossref_primary_10_1080_19768354_2016_1254110 crossref_primary_10_1094_CCHEM_04_16_0112_R crossref_primary_10_1007_s11103_020_01022_x crossref_primary_10_1016_j_numecd_2019_11_015 crossref_primary_10_1007_s00394_015_0854_9 crossref_primary_10_1016_j_bbalip_2016_07_003 crossref_primary_10_1016_j_jnutbio_2016_01_002 crossref_primary_10_1186_s12944_022_01627_9 crossref_primary_10_3390_molecules21101305 crossref_primary_10_3390_nu14235171 crossref_primary_10_3390_ijms16036124 crossref_primary_10_3390_nu16172837 crossref_primary_10_1002_fsn3_1363 crossref_primary_10_3945_cdn_117_001115 crossref_primary_10_3390_ijms252212005 crossref_primary_10_1016_j_jff_2019_05_030 crossref_primary_10_1089_jmf_2017_3962 crossref_primary_10_3390_molecules27082477 crossref_primary_10_1002_mco2_70226 crossref_primary_10_3390_molecules26020453 crossref_primary_10_1016_j_foodres_2021_110182 crossref_primary_10_1016_j_fitote_2020_104490 crossref_primary_10_1016_j_cej_2024_152755 crossref_primary_10_3390_nu9080907 crossref_primary_10_3389_fpls_2024_1423323 crossref_primary_10_1016_j_jff_2021_104570 crossref_primary_10_1016_j_phrs_2022_106175 crossref_primary_10_1080_10408398_2025_2556470 crossref_primary_10_3389_fphar_2017_00387 crossref_primary_10_3390_nu9121328 crossref_primary_10_1080_16070658_2018_1465652 crossref_primary_10_1186_s12889_016_2739_0 crossref_primary_10_1016_j_arr_2016_08_001 crossref_primary_10_1016_j_jff_2014_12_045 crossref_primary_10_1371_journal_pone_0180865 crossref_primary_10_3390_pharmaceutics14071445 crossref_primary_10_1002_mnfr_201700606 crossref_primary_10_1007_s12079_014_0257_3 crossref_primary_10_1016_j_jff_2024_106479 crossref_primary_10_1016_j_biopha_2017_01_028 crossref_primary_10_1039_D4FO02545H crossref_primary_10_1016_j_tifs_2021_01_072 crossref_primary_10_1089_met_2023_0248 crossref_primary_10_1111_1750_3841_14746 crossref_primary_10_3945_jn_114_199158 crossref_primary_10_1002_iub_2720 crossref_primary_10_1016_j_fbio_2022_102075 crossref_primary_10_1016_j_jff_2019_103558 crossref_primary_10_1016_j_jff_2019_103679 crossref_primary_10_1080_10408398_2020_1765736 crossref_primary_10_1155_2020_8013189 crossref_primary_10_3390_molecules21101404 crossref_primary_10_1097_MD_0000000000034665 crossref_primary_10_1186_s12937_016_0179_4 crossref_primary_10_1016_j_foodres_2017_09_001 crossref_primary_10_1016_j_jff_2018_03_042 crossref_primary_10_1016_j_omto_2021_08_015 crossref_primary_10_3389_fnut_2021_781622 crossref_primary_10_3390_nu8010017 crossref_primary_10_3390_ijms20030532 crossref_primary_10_1016_j_jnutbio_2019_108335 crossref_primary_10_3390_nu16234150 crossref_primary_10_1007_s00394_021_02678_x crossref_primary_10_1016_j_bbadis_2014_06_027 crossref_primary_10_1016_j_biocel_2017_01_012 crossref_primary_10_3390_ph17050590 crossref_primary_10_1016_j_foodres_2015_06_044 crossref_primary_10_1186_s12906_019_2756_5 crossref_primary_10_3389_fendo_2019_00413 crossref_primary_10_1186_s12967_015_0436_x crossref_primary_10_2174_0929867328666210902131021 crossref_primary_10_1002_mnfr_202000034 crossref_primary_10_1002_ptr_8182 crossref_primary_10_1134_S0006297916040015 crossref_primary_10_1007_s00394_024_03335_9 crossref_primary_10_3389_fnut_2021_667514 crossref_primary_10_3390_molecules30132827 crossref_primary_10_1002_mnfr_201501064 crossref_primary_10_1002_mnfr_201400521 crossref_primary_10_3390_nu9050452 crossref_primary_10_1007_s10068_015_0042_y crossref_primary_10_52711_0974_360X_2023_00776 crossref_primary_10_1194_jlr_D065664 crossref_primary_10_5487_TR_2018_34_1_013 crossref_primary_10_3390_ijms23126703 crossref_primary_10_1016_j_fbio_2021_101500 crossref_primary_10_1016_j_jff_2014_10_014 crossref_primary_10_3389_fpls_2019_01028 crossref_primary_10_1016_j_jff_2017_10_019 crossref_primary_10_1016_j_jff_2022_104953 crossref_primary_10_1186_s12916_022_02525_8 crossref_primary_10_3390_molecules28031476 crossref_primary_10_3389_fphar_2021_729745 crossref_primary_10_3390_ijms21082860 crossref_primary_10_1016_j_jsbmb_2014_07_007 crossref_primary_10_3389_fendo_2023_1148934 crossref_primary_10_3390_endocrines5020016 crossref_primary_10_1371_journal_pone_0173074 crossref_primary_10_1016_j_colsurfb_2017_12_044 crossref_primary_10_1016_j_foodres_2017_10_011 crossref_primary_10_1016_j_jdermsci_2017_10_004 crossref_primary_10_1186_s41043_023_00376_4 crossref_primary_10_3109_13880209_2015_1113995 crossref_primary_10_3892_etm_2017_5076 crossref_primary_10_1186_s12964_024_02025_7 crossref_primary_10_1002_mnfr_201400631 crossref_primary_10_1002_fsn3_3586 crossref_primary_10_1007_s11010_021_04106_4 crossref_primary_10_1371_journal_pone_0141227 crossref_primary_10_3389_fphar_2016_00529 crossref_primary_10_1016_j_nut_2016_09_008 crossref_primary_10_3390_ijms241612641 crossref_primary_10_1186_s12933_018_0744_6 crossref_primary_10_1186_s12986_017_0228_9 crossref_primary_10_1186_s41043_025_00991_3 crossref_primary_10_3390_molecules29245955 crossref_primary_10_1139_apnm_2016_0374 crossref_primary_10_1016_j_foodchem_2024_139584 crossref_primary_10_1016_j_phrs_2021_105604 crossref_primary_10_1080_01635581_2018_1446093 crossref_primary_10_1039_D4FO03844D crossref_primary_10_1016_j_jff_2020_104132 crossref_primary_10_1155_2014_908539 crossref_primary_10_3390_nu14235080 crossref_primary_10_1007_s13668_019_00281_5 crossref_primary_10_3390_nu14194009 crossref_primary_10_1016_j_ijcard_2016_08_158 crossref_primary_10_3389_fsufs_2021_699147 crossref_primary_10_3390_ijms17060843 crossref_primary_10_3390_molecules26102959 crossref_primary_10_1007_s11033_024_09334_7 crossref_primary_10_1016_j_etap_2016_06_015 crossref_primary_10_1016_j_nutres_2016_01_011 crossref_primary_10_2478_fhort_2020_0030 crossref_primary_10_1186_s12950_015_0055_6 crossref_primary_10_3390_foods11091232 crossref_primary_10_1016_j_jff_2015_06_047 crossref_primary_10_1016_j_cofs_2014_11_008 crossref_primary_10_3390_nu10081102 crossref_primary_10_1016_j_cofs_2014_11_002 crossref_primary_10_1016_j_phrs_2020_104681 crossref_primary_10_3389_fimmu_2019_00729 crossref_primary_10_1016_j_ahj_2019_03_014 crossref_primary_10_1016_j_jfca_2019_103233 crossref_primary_10_3390_molecules26092627 crossref_primary_10_1002_biof_1921 crossref_primary_10_1016_j_fbio_2021_100988 crossref_primary_10_1039_D5FO02327K crossref_primary_10_1016_j_nano_2015_05_001 crossref_primary_10_1016_j_procbio_2014_06_002 crossref_primary_10_1371_journal_pone_0122925 crossref_primary_10_1002_slct_202000176 crossref_primary_10_3390_ijms21165642 crossref_primary_10_1016_j_phrs_2017_02_008 crossref_primary_10_1016_j_ecoenv_2020_110650 crossref_primary_10_3389_fnut_2025_1614947 crossref_primary_10_3892_mmr_2017_6604 crossref_primary_10_4239_wjd_v11_i2_26 crossref_primary_10_1016_j_jnutbio_2015_05_006 crossref_primary_10_1016_j_jff_2020_104111 crossref_primary_10_4162_nrp_2025_19_2_186 crossref_primary_10_3389_fphar_2018_00537 crossref_primary_10_15407_biotech13_03_052 crossref_primary_10_1089_jmf_2019_4649 crossref_primary_10_3390_ijms20082034 crossref_primary_10_1080_1745039X_2017_1355129 crossref_primary_10_1016_j_cbi_2023_110612 crossref_primary_10_3390_pr2030596 crossref_primary_10_1515_acve_2017_0010 crossref_primary_10_1016_j_jep_2015_12_047 crossref_primary_10_3390_molecules26144307 crossref_primary_10_3390_molecules26185537 crossref_primary_10_1016_j_numecd_2022_04_015 crossref_primary_10_1016_j_ctim_2020_102478 crossref_primary_10_3390_nu14132688 crossref_primary_10_3390_nu17071249 crossref_primary_10_1016_j_phrs_2021_106029 crossref_primary_10_1186_s40168_024_01774_4 crossref_primary_10_17116_profmed202528051117 crossref_primary_10_1002_ejlt_201800311 crossref_primary_10_1016_j_cca_2021_08_005 crossref_primary_10_1016_j_foodres_2014_03_050 crossref_primary_10_1016_j_jinorgbio_2019_01_008 crossref_primary_10_1080_10408398_2018_1529654 crossref_primary_10_3389_fnut_2024_1410811 crossref_primary_10_3390_molecules27123816 crossref_primary_10_1186_s43141_022_00430_4 crossref_primary_10_3390_nu16050683 crossref_primary_10_1016_j_nutres_2023_04_004 crossref_primary_10_3390_nu12123792 crossref_primary_10_3390_antiox9100982 crossref_primary_10_5582_bst_2018_01172 crossref_primary_10_3390_ijms21113982 crossref_primary_10_1016_j_meatsci_2016_07_016 crossref_primary_10_1007_s00424_018_02250_3 crossref_primary_10_1002_mnfr_201500428 crossref_primary_10_1093_ndt_gfx052 crossref_primary_10_1155_2017_3079148 crossref_primary_10_3389_fphys_2022_795980 crossref_primary_10_1002_jbt_22234 crossref_primary_10_1016_j_chroma_2017_02_021 crossref_primary_10_3389_fimmu_2020_01542 crossref_primary_10_3389_fnagi_2022_1019942 crossref_primary_10_1007_s11033_022_07918_9 crossref_primary_10_1142_S0192415X15500536 crossref_primary_10_1186_s12902_022_01025_3 crossref_primary_10_1016_j_biochi_2021_10_010 crossref_primary_10_1371_journal_pone_0193473 crossref_primary_10_3390_foods10112666 crossref_primary_10_3390_nu7085324 crossref_primary_10_3390_life12111768 crossref_primary_10_3389_fphar_2017_00436 crossref_primary_10_3390_nu16142357 crossref_primary_10_3390_pr8111411 crossref_primary_10_3390_molecules23040788 crossref_primary_10_1002_mnfr_201700459 crossref_primary_10_1016_j_phytochem_2022_113218 crossref_primary_10_3389_fnut_2018_00087 crossref_primary_10_3389_fphar_2021_696603 crossref_primary_10_1371_journal_pone_0163433 crossref_primary_10_5812_asjsm_35776 crossref_primary_10_1108_NFS_08_2021_0260 crossref_primary_10_1155_2023_1555942 crossref_primary_10_1371_journal_pone_0140431 crossref_primary_10_1016_j_lfs_2021_119797 crossref_primary_10_1038_ijo_2015_23 crossref_primary_10_1155_2016_4563815 crossref_primary_10_3390_fermentation10080384 crossref_primary_10_3390_nu11112665 crossref_primary_10_1007_s10068_017_0230_z crossref_primary_10_1371_journal_pone_0277692 crossref_primary_10_3390_nu12051308 crossref_primary_10_1002_oby_21523 crossref_primary_10_1007_s12013_022_01077_1 crossref_primary_10_3390_antiox9100960 crossref_primary_10_1002_mnfr_202200600 crossref_primary_10_1080_10408398_2021_2000932 crossref_primary_10_3390_nu8050247 crossref_primary_10_1007_s12230_018_09706_3 crossref_primary_10_1007_s10068_023_01272_7 crossref_primary_10_1016_j_apsb_2024_10_010 crossref_primary_10_1142_S0192415X15500676 crossref_primary_10_1155_2016_4353604 crossref_primary_10_3390_molecules26092446 crossref_primary_10_4102_jomped_v4i1_94 crossref_primary_10_3390_molecules24234277 crossref_primary_10_1016_j_jbiotec_2025_02_004 crossref_primary_10_3390_pr8040479 crossref_primary_10_1186_s12906_015_0957_0 crossref_primary_10_1039_D0FO02886J crossref_primary_10_3389_fnut_2022_837601 crossref_primary_10_33808_clinexphealthsci_1082047 crossref_primary_10_1016_j_heliyon_2020_e04395 crossref_primary_10_1111_1541_4337_12320 crossref_primary_10_1016_j_jnutbio_2022_109242 crossref_primary_10_3390_app11188276 crossref_primary_10_1080_13813455_2020_1779309 crossref_primary_10_1016_j_rvsc_2020_06_008 crossref_primary_10_1017_S000711451400275X crossref_primary_10_4162_nrp_2022_16_1_46 crossref_primary_10_1038_s41538_024_00323_5 crossref_primary_10_1089_jmf_2016_3806 crossref_primary_10_3390_foods9101343 crossref_primary_10_3390_nu17152569 crossref_primary_10_1155_2022_6945745 crossref_primary_10_4103_1673_5374_335826 crossref_primary_10_1155_2015_837452 crossref_primary_10_3390_plants11131741 crossref_primary_10_1002_brb3_1655 crossref_primary_10_1016_j_jff_2017_03_047 crossref_primary_10_1108_NFS_01_2020_0031 crossref_primary_10_3390_molecules28237832 crossref_primary_10_1039_D5NA00115C crossref_primary_10_1016_j_phrs_2020_104956 crossref_primary_10_1155_2019_2579734 crossref_primary_10_3389_fphar_2020_01225 crossref_primary_10_3390_nu17091487 crossref_primary_10_1016_j_diabres_2017_07_009 crossref_primary_10_1016_j_tifs_2018_05_026 crossref_primary_10_3390_nu10101523 crossref_primary_10_1016_j_biopha_2018_03_006 crossref_primary_10_1016_j_jff_2019_103596 crossref_primary_10_1128_mSphere_00164_18 crossref_primary_10_1002_ejlt_202200077 crossref_primary_10_1016_j_mad_2021_111518 crossref_primary_10_1016_j_jnutbio_2015_07_002 crossref_primary_10_1016_j_envres_2025_121119 crossref_primary_10_1039_D2QO00758D crossref_primary_10_1016_j_jnutbio_2016_09_011 crossref_primary_10_3390_molecules25153318 crossref_primary_10_1155_2024_8359294 crossref_primary_10_1016_j_nutres_2022_10_007 crossref_primary_10_1016_j_plipres_2017_04_002 crossref_primary_10_1016_j_tifs_2020_01_013 crossref_primary_10_1371_journal_pone_0262270 crossref_primary_10_3390_app15031007 crossref_primary_10_1039_D0FO01643H crossref_primary_10_1080_15384101_2023_2297567 crossref_primary_10_1016_j_mssp_2022_106897 crossref_primary_10_3390_foods12193688 crossref_primary_10_1016_j_heliyon_2023_e17383 crossref_primary_10_3402_fnr_v60_28373 crossref_primary_10_1016_j_jnutbio_2018_09_028 crossref_primary_10_3389_fnut_2022_1014883 crossref_primary_10_1002_jcb_25070 crossref_primary_10_1016_j_lfs_2016_04_014 crossref_primary_10_1080_10408398_2014_980499 crossref_primary_10_3389_fgene_2022_795049 crossref_primary_10_3390_nu13113693 crossref_primary_10_1016_j_jconrel_2019_04_018 crossref_primary_10_3390_ijms231911712 crossref_primary_10_1007_s44371_025_00266_0 crossref_primary_10_1039_D3FO01992F crossref_primary_10_3390_ani15020177 crossref_primary_10_1016_j_jcs_2015_09_002 crossref_primary_10_3390_molecules25133061 crossref_primary_10_1016_j_nutres_2014_10_004 crossref_primary_10_1155_2015_480943 crossref_primary_10_1155_2018_9794625 crossref_primary_10_1111_obr_12775 crossref_primary_10_1080_10408398_2020_1815644 crossref_primary_10_1371_journal_pone_0163640 crossref_primary_10_1016_j_jfda_2017_10_010 crossref_primary_10_1007_s10353_015_0363_3 crossref_primary_10_1177_0963689720968090 crossref_primary_10_3390_ijms22031384 crossref_primary_10_1007_s00394_024_03405_y crossref_primary_10_1016_j_lfs_2024_123202 crossref_primary_10_1016_j_nutres_2023_05_009 crossref_primary_10_3390_antiox10020188 crossref_primary_10_1002_fft2_65 crossref_primary_10_1039_D1FO00290B crossref_primary_10_1002_fsh3_12036 crossref_primary_10_1016_j_jff_2016_03_010 crossref_primary_10_1016_j_pharmthera_2016_06_005 crossref_primary_10_1007_s00430_015_0391_4 crossref_primary_10_3389_fnut_2023_1130224 crossref_primary_10_3390_nu16183168 crossref_primary_10_3390_cancers13184499 crossref_primary_10_1016_j_kjms_2017_08_009 crossref_primary_10_3390_ijms24021755 crossref_primary_10_4162_nrp_2015_9_6_606 crossref_primary_10_1177_11786388251346309 crossref_primary_10_3390_molecules20022310 crossref_primary_10_1007_s11306_021_01815_1 crossref_primary_10_1016_j_intimp_2022_109587 crossref_primary_10_1007_s10565_023_09826_5 crossref_primary_10_1007_s42452_025_06556_7 crossref_primary_10_1016_j_meatsci_2017_06_012 crossref_primary_10_3389_fimmu_2022_949746 crossref_primary_10_1515_jcim_2022_0018 crossref_primary_10_1186_s13098_023_01037_6 crossref_primary_10_12677_PI_2020_91001 crossref_primary_10_3390_pr8020138 crossref_primary_10_1111_obr_13848 crossref_primary_10_1016_j_conctc_2022_101034 crossref_primary_10_2174_0929867330666230517124033 crossref_primary_10_1111_1541_4337_12891 crossref_primary_10_2147_JIR_S228361 crossref_primary_10_3390_life12050693 crossref_primary_10_1016_j_jnutbio_2025_109992 crossref_primary_10_1002_ptr_8400 crossref_primary_10_1038_srep15216 crossref_primary_10_1186_s12906_018_2169_x crossref_primary_10_1111_nph_14730 crossref_primary_10_3390_ijms20205150 crossref_primary_10_1136_bmjopen_2024_096399 crossref_primary_10_2174_0929867326666181220094721 crossref_primary_10_1016_j_clnu_2019_02_003 crossref_primary_10_1002_mnfr_201900995 crossref_primary_10_1016_j_jff_2014_07_017 crossref_primary_10_1002_mnfr_201900999 crossref_primary_10_3390_molecules26175355 crossref_primary_10_1080_87559129_2022_2026376 crossref_primary_10_3390_molecules26040985 crossref_primary_10_3390_nu13020296 crossref_primary_10_1002_fsh3_12013 crossref_primary_10_3390_ijms24087247 crossref_primary_10_1007_s00394_020_02214_3 crossref_primary_10_3390_molecules23092103 crossref_primary_10_1016_j_enfcli_2019_07_043 crossref_primary_10_1515_hmbci_2016_0034 crossref_primary_10_1016_j_jnutbio_2017_07_008 crossref_primary_10_1186_s12906_021_03459_z crossref_primary_10_7717_peerj_12848 crossref_primary_10_3390_ijms242316731 crossref_primary_10_1111_jfpp_15815 crossref_primary_10_1038_s41598_018_27093_x crossref_primary_10_1039_D1FO01394G crossref_primary_10_1089_jmf_2016_0115 crossref_primary_10_1111_jfbc_12469 crossref_primary_10_2174_1381612828666221003105619 crossref_primary_10_1002_biof_1288 crossref_primary_10_3390_biom10111512 crossref_primary_10_1097_MOL_0000000000000145 crossref_primary_10_1039_D3FO05122F crossref_primary_10_1111_pbi_14278 crossref_primary_10_1016_j_biopha_2024_117610 crossref_primary_10_1016_j_cbi_2020_108977 crossref_primary_10_1016_j_numecd_2021_05_007 crossref_primary_10_3390_antiox11122425 crossref_primary_10_1002_oby_21242 crossref_primary_10_1007_s12272_015_0559_x crossref_primary_10_1080_09637486_2020_1780567 crossref_primary_10_1016_S1875_5364_15_30061_3 crossref_primary_10_1007_s13105_018_0659_4 crossref_primary_10_1016_j_ijbiomac_2023_123325 crossref_primary_10_1016_j_clnesp_2018_12_087 crossref_primary_10_3390_nu12030689 crossref_primary_10_1042_BSR20171302 crossref_primary_10_1080_10408398_2017_1399859 crossref_primary_10_3382_ps_pex353 crossref_primary_10_1016_j_foodres_2021_110302 crossref_primary_10_1016_j_jff_2016_02_012 crossref_primary_10_1155_2015_594656 crossref_primary_10_5812_thrita_106322 crossref_primary_10_1002_tox_22687 crossref_primary_10_1089_met_2016_0035 crossref_primary_10_1016_j_jnutbio_2022_109085 crossref_primary_10_1016_j_phanu_2021_100260 crossref_primary_10_2217_epi_15_74 crossref_primary_10_3390_plants10071323 crossref_primary_10_1016_j_arabjc_2023_104881 crossref_primary_10_1016_j_jff_2015_09_009 crossref_primary_10_1002_ptr_6434 crossref_primary_10_1016_j_foodres_2023_112567 crossref_primary_10_1016_j_sajb_2023_07_043 crossref_primary_10_3390_nu16121817 crossref_primary_10_3390_nu9030295 crossref_primary_10_1111_jpi_12281 crossref_primary_10_3390_pr8030283 crossref_primary_10_1016_j_jconrel_2021_03_022 crossref_primary_10_1089_met_2014_0082 crossref_primary_10_1007_s11101_024_10047_9 crossref_primary_10_1016_j_jnutbio_2015_09_006 crossref_primary_10_1002_mnfr_201601010 crossref_primary_10_1016_j_jep_2022_115378 crossref_primary_10_3390_ijms24043266 crossref_primary_10_31435_ijitss_3_47__2025_3689 crossref_primary_10_1002_ptr_5570 crossref_primary_10_1186_s12906_018_2189_6 crossref_primary_10_1016_j_foodchem_2025_143318 crossref_primary_10_1042_BSR20212358 crossref_primary_10_4162_nrp_2014_8_6_655 crossref_primary_10_1016_j_plefa_2017_04_001 crossref_primary_10_1186_s12986_016_0143_5 crossref_primary_10_1111_ijfs_13479 crossref_primary_10_1016_j_apjtb_2017_09_008 crossref_primary_10_1016_j_prenap_2025_100234 crossref_primary_10_1016_j_nut_2019_05_005 crossref_primary_10_1002_mnfr_201601122 crossref_primary_10_1017_S000711451400347X crossref_primary_10_1007_s00394_020_02459_y crossref_primary_10_1089_jmf_2017_4157 crossref_primary_10_3390_antiox10060858 crossref_primary_10_3390_molecules22071082 crossref_primary_10_1016_j_nut_2024_112669 crossref_primary_10_1080_13813455_2021_1908366 crossref_primary_10_1016_j_intimp_2025_114570 crossref_primary_10_1016_j_jnutbio_2015_11_013 crossref_primary_10_1016_j_jnutbio_2015_11_011 crossref_primary_10_3390_ijms17071177 crossref_primary_10_1155_2018_3140267 crossref_primary_10_3390_ijms19092632 crossref_primary_10_1080_09168451_2015_1042833 crossref_primary_10_1111_ijfs_13102 crossref_primary_10_3390_nu17101630 crossref_primary_10_1007_s00394_022_02963_3 crossref_primary_10_1016_j_biopha_2018_01_012 crossref_primary_10_3390_nu12103072 crossref_primary_10_3390_molecules191015900 crossref_primary_10_3390_nu8100633 crossref_primary_10_1111_asj_13674 crossref_primary_10_3390_app15137238 crossref_primary_10_3389_fsufs_2020_555426 crossref_primary_10_1016_j_foodchem_2022_134668 crossref_primary_10_3390_ijms22031431 crossref_primary_10_1002_mnfr_201600746 crossref_primary_10_3390_molecules25245840 crossref_primary_10_1097_NT_0000000000000433 crossref_primary_10_1093_ndt_gfu338 crossref_primary_10_3390_ijms17071069 crossref_primary_10_1002_ptr_7615 crossref_primary_10_3390_biom12060852 crossref_primary_10_1097_SGA_0000000000000384 crossref_primary_10_3390_pathogens13080634 crossref_primary_10_1016_j_ejphar_2023_176300 crossref_primary_10_1016_j_jnutbio_2018_07_008 crossref_primary_10_13005_bpj_2274 crossref_primary_10_4162_nrp_2017_11_1_17 crossref_primary_10_1155_2021_9995903 crossref_primary_10_15171_apb_2018_036 crossref_primary_10_3390_proteomes11040031 crossref_primary_10_1038_s41598_017_12597_9 crossref_primary_10_1002_uog_18974 crossref_primary_10_3389_fvets_2025_1634086 crossref_primary_10_3389_fphar_2022_921123 crossref_primary_10_1016_j_bbrc_2016_04_073 crossref_primary_10_1080_02652048_2017_1280095 crossref_primary_10_1016_j_biopha_2021_111970 crossref_primary_10_1016_j_livsci_2023_105258 crossref_primary_10_1055_a_1787_3396 crossref_primary_10_3390_molecules27030777 crossref_primary_10_3390_nu11020344 crossref_primary_10_1039_D0FO01160F crossref_primary_10_2478_bgbl_2023_0048 crossref_primary_10_1016_j_bbrc_2019_01_023 crossref_primary_10_2174_0113816128335400241101115928 crossref_primary_10_1016_j_biopha_2019_109439 crossref_primary_10_1016_j_jff_2023_105745 crossref_primary_10_3390_horticulturae9020189 crossref_primary_10_1016_j_lfs_2019_04_051 crossref_primary_10_1016_j_jff_2015_11_033 crossref_primary_10_3390_nu7020905 crossref_primary_10_1016_j_tjnut_2023_05_016 crossref_primary_10_1155_2014_917698 crossref_primary_10_1111_1750_3841_15551 crossref_primary_10_1177_1759091414568185 crossref_primary_10_1007_s00394_014_0814_9 crossref_primary_10_1016_j_foodres_2025_116101 crossref_primary_10_1038_s41366_025_01793_7 crossref_primary_10_1038_s41598_022_27260_1 crossref_primary_10_1016_j_bbrc_2015_01_034 crossref_primary_10_1016_j_ijdevneu_2018_09_003 crossref_primary_10_1039_D2FO01206E crossref_primary_10_1002_jssc_201700342 crossref_primary_10_3390_ph13100292 crossref_primary_10_1016_j_jnutbio_2017_06_012 crossref_primary_10_1016_j_jnutbio_2017_12_009 crossref_primary_10_1111_jfbc_12986 crossref_primary_10_3390_nu9070746 crossref_primary_10_1002_mnfr_202300856 crossref_primary_10_1074_jbc_REV119_008897 crossref_primary_10_3390_app11115163 crossref_primary_10_1007_s11033_021_06190_7 crossref_primary_10_3389_fnut_2022_998044 crossref_primary_10_1002_ptr_6602 crossref_primary_10_1016_j_rce_2015_07_010 crossref_primary_10_1016_j_jff_2020_103903 crossref_primary_10_3390_foods9091268 crossref_primary_10_1038_s41430_018_0253_4 crossref_primary_10_1002_biof_1310 crossref_primary_10_3389_fimmu_2020_594433 crossref_primary_10_1111_liv_12975 crossref_primary_10_3390_biomedicines10071468 crossref_primary_10_1016_j_jnutbio_2020_108430 crossref_primary_10_1155_2016_2042107 crossref_primary_10_1002_vms3_70224 crossref_primary_10_1111_1750_3841_13793 crossref_primary_10_1002_iub_2707 crossref_primary_10_1586_17446651_2015_1096771 crossref_primary_10_1159_000442399 crossref_primary_10_3390_metabo14060327 crossref_primary_10_3109_13813455_2015_1120753 crossref_primary_10_1016_j_ejphar_2017_01_009 crossref_primary_10_1016_j_freeradbiomed_2021_12_008 crossref_primary_10_1016_j_jnutbio_2016_10_012 crossref_primary_10_1016_j_sajb_2019_03_006 crossref_primary_10_1021_acs_chemrestox_5b00121 crossref_primary_10_3390_cells12050714 crossref_primary_10_1371_journal_pone_0137809 crossref_primary_10_1016_j_jnutbio_2021_108618 crossref_primary_10_3389_fphar_2022_893171 crossref_primary_10_1080_01635581_2022_2096909 crossref_primary_10_1016_j_jnutbio_2020_108343 crossref_primary_10_3390_life11070645 crossref_primary_10_1016_j_phymed_2015_12_004 crossref_primary_10_1016_j_tetlet_2017_11_024 crossref_primary_10_3390_antiox7030043 crossref_primary_10_1016_j_metabol_2017_12_009 crossref_primary_10_1016_j_freeradbiomed_2022_07_023 crossref_primary_10_3389_fnut_2023_1204981 crossref_primary_10_1007_s00394_017_1599_4 crossref_primary_10_1016_j_jff_2017_06_014 crossref_primary_10_1002_ptr_5852 crossref_primary_10_1007_s00394_014_0828_3 crossref_primary_10_1080_10408398_2022_2038540 crossref_primary_10_1016_j_bcp_2024_116647 crossref_primary_10_3390_nu15041037 crossref_primary_10_1002_jbm_a_37063 crossref_primary_10_1016_j_jnutbio_2017_06_002 crossref_primary_10_1016_j_numecd_2023_02_022 crossref_primary_10_1038_s44319_023_00012_6 crossref_primary_10_2174_0113894501347158250305074908 crossref_primary_10_1016_j_jff_2019_01_035 crossref_primary_10_1016_j_aquaculture_2019_03_041 crossref_primary_10_1080_09637486_2018_1442819 crossref_primary_10_3390_nu13020377 crossref_primary_10_3390_molecules26041119 crossref_primary_10_1080_14786419_2024_2384080 crossref_primary_10_3390_molecules26072074 crossref_primary_10_1007_s40199_019_00289_w crossref_primary_10_3390_foods14030491 crossref_primary_10_1016_j_fct_2017_12_055 crossref_primary_10_1016_j_fct_2018_08_071 crossref_primary_10_1155_2018_9719584 crossref_primary_10_1016_j_phrs_2015_10_006 crossref_primary_10_1039_C4FO01035C crossref_primary_10_1002_mnfr_201500906 crossref_primary_10_1080_07315724_2017_1392264 crossref_primary_10_1080_07315724_2017_1392263 |
| Cites_doi | 10.1016/j.bbrc.2005.09.195 10.1016/j.cell.2006.11.013 10.1038/nrd2060 10.1196/annals.1352.010 10.2337/db12-0975 10.1016/S0092-8674(00)80611-X 10.1074/jbc.M707892200 10.1186/1743-7075-8-29 10.1016/j.nutres.2009.10.003 10.1074/jbc.M110.188144 10.1079/BJN20041061 10.1038/nrd770 10.1016/j.phrs.2007.09.013 10.1016/j.jnutbio.2010.03.009 10.1093/jn/136.11.2791 10.1097/00041433-200406000-00010 10.1016/j.cmet.2011.10.002 10.1007/s10616-010-9285-x 10.1002/ptr.2647 10.1371/journal.pone.0053796 10.3945/jn.108.098293 10.3390/nu2070737 10.1016/j.jnutbio.2012.06.019 10.1021/jf801297w 10.1002/ptr.2737 10.1186/1743-7075-9-105 10.1055/s-2007-985897 10.1017/S0007114508047727 10.1002/ptr.2503 10.1017/S0007114511002492 10.1093/ajcn/70.6.1040 10.1016/j.jnutbio.2011.01.001 10.1080/07315724.2010.10719814 10.1007/s10238-012-0189-2 10.1055/s-0030-1249877 10.1079/BJN20051580 10.3945/ajcn.2009.28473B 10.1016/S0895-3988(09)60019-2 10.1093/jn/138.2.323 10.1038/nature02583 10.1021/jf040274w 10.1038/ejcn.2010.47 10.1021/jf0112973 10.1186/1472-6793-10-11 10.1074/jbc.M109.088682 10.1249/01.mss.0000178062.66981.a8 10.1021/jf2053788 10.1016/j.nut.2010.01.015 10.4162/nrp.2012.6.4.286 10.1186/1471-230X-8-40 10.1210/en.2008-0262 10.1016/S0009-9120(96)00155-5 10.1111/j.1467-789X.2009.00708.x 10.1271/bbb.63.2118 10.1038/oby.2003.145 10.1016/j.phrs.2010.12.013 10.1055/s-2006-957450 10.1186/1476-511X-12-8 10.1016/j.jnutbio.2010.08.003 10.1021/jf2029016 10.1002/jcp.22623 10.1016/j.jnutbio.2006.03.004 10.1007/s11695-010-0251-7 10.1152/ajpendo.00325.2005 10.1194/jlr.R800079-JLR200 10.1016/S0047-6374(00)00169-X 10.2307/3870059 10.1016/j.jnutbio.2012.12.013 10.3945/an.111.000505 10.1021/jf802737z 10.3945/ajcn.2009.28933 10.1038/oby.2008.60 10.3945/ajcn.2009.28157 10.1002/mnfr.201100673 10.1021/mp700113r 10.1016/j.lfs.2011.09.006 10.3945/ajcn.2009.28435 10.1016/j.jnutbio.2011.06.003 10.1089/107555303321223035 10.1016/j.nutres.2012.06.014 10.1271/bbb.80563 10.4239/wjd.v3.i5.94 10.1016/j.nut.2009.02.001 10.1078/0944-7113-00078 10.1016/j.bcp.2007.08.016 10.1016/j.jnutbio.2010.07.007 10.2174/092986706775197962 10.1093/aje/153.3.242 10.1016/j.bbrc.2008.02.034 10.1038/oby.2007.176 10.1093/jn/131.6.1731 10.1016/S0899-9007(03)00093-5 10.1093/jn/138.9.1677 10.1080/07315724.2007.10719627 10.1371/journal.pone.0028784 10.1017/S0007114511002753 10.1016/j.metabol.2008.06.014 10.1038/oby.2010.22 10.1016/j.physbeh.2007.10.009 10.1093/ajcn/81.1.122 10.1016/S0047-6374(00)00089-0 10.1038/sj.ijo.0802926 10.1007/BF03185932 10.1038/oby.2005.115 10.1016/j.cell.2012.01.017 10.1016/S0024-3205(99)00410-5 10.3945/jn.108.100966 10.1016/j.freeradbiomed.2011.04.032 10.1016/j.phymed.2012.09.003 10.1016/j.nutres.2012.05.001 10.1152/ajpcell.00369.2009 10.1093/jn/128.3.593 10.1021/jf050045p 10.1159/000341287 10.3945/jn.111.148544 10.1016/j.jnutbio.2010.12.014 10.1016/j.biochi.2010.02.024 10.1016/0891-5849(96)00129-3 10.1021/jf981024g 10.1007/s11010-011-0978-z 10.18632/aging.100442 10.1007/s11010-010-0707-z 10.1038/nature05354 10.1016/j.bcp.2008.11.027 10.2337/db11-0275 10.4162/nrp.2012.6.6.499 10.1016/j.phrs.2013.03.011 10.1016/j.mam.2011.10.011 10.1016/j.nut.2012.09.011 10.1080/07315724.2011.10719971 10.1016/j.nutres.2012.08.004 10.1002/mnfr.201100438 10.1111/j.1753-4887.2007.tb00314.x 10.1152/ajpcell.00569.2004 10.1007/s10557-012-6427-8 10.1016/j.bcp.2011.03.012 10.1017/S0007114511002376 10.1001/archinte.162.11.1286 10.1371/journal.pone.0038332 10.1155/2013/635470 10.1371/journal.pone.0015441 10.1093/jn/138.11.2156 10.1017/S000711450999208X 10.1186/1743-7075-5-17 10.1016/j.lfs.2006.11.030 10.1038/oby.2007.309 10.1080/07315724.2007.10719628 10.1021/jf103873k 10.1152/ajpcell.00272.2008 10.1271/bbb.68.2353 10.1021/jf000877h 10.1038/ijo.2009.135 10.1002/biof.5520220126 10.1038/ijo.2011.136 10.1016/j.phrs.2009.01.015 10.1016/j.bmc.2008.10.009 10.1111/j.1747-0285.2009.00901.x 10.1093/jn/100.11.1307 10.1016/j.jnutbio.2005.09.005 10.1007/s12011-012-9448-z 10.1016/j.bbrc.2007.10.109 10.1093/jn/131.11.2932 10.1016/j.clnu.2008.03.007 10.1111/j.1753-4887.2010.00341.x 10.1016/j.nutres.2012.05.007 10.1016/j.ejphar.2010.02.054 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. 2014. 2013 Elsevier Inc. All rights reserved. 2013 |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2014. – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS 7S9 L.6 5PM |
| DOI | 10.1016/j.jnutbio.2013.09.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Physical Education Index AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Physical Education Index AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Physical Education Index |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Diet & Clinical Nutrition |
| EISSN | 1873-4847 |
| EndPage | 18 |
| ExternalDocumentID | PMC3926750 24314860 10_1016_j_jnutbio_2013_09_001 S0955286313001617 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: U01 AT006691 – fundername: NCCIH NIH HHS grantid: U01AT006691 |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29L 4.4 457 4CK 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO ABBQC ABFNM ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HLW HMK HMO HVGLF HZ~ IHE J1W KOM LCYCR LX3 LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K VH1 WH7 WUQ ZGI ZXP ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 7TS 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c533t-dfda1dd3508dabb786582461fe9dc2d779e8366568c05f66cac8f9c4023d3ce43 |
| ISICitedReferencesCount | 705 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329531500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0955-2863 1873-4847 |
| IngestDate | Tue Sep 30 16:08:44 EDT 2025 Sun Sep 28 04:42:31 EDT 2025 Sun Sep 28 01:57:37 EDT 2025 Sun Sep 28 12:36:51 EDT 2025 Mon Jul 21 06:05:58 EDT 2025 Sat Nov 29 07:07:08 EST 2025 Tue Nov 18 22:33:33 EST 2025 Fri Feb 23 02:31:09 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | FFA Apo C/EBPα aP2 GTP IGF-I UCP MDA FFM GPX HDL-C Antioxidants NF-κB DBP PAI-1 SCD1 Cell EC HSL Human Obesity IL EGCG TBARS MAPK SIRT1 PON PPARγ CVD HOMA-IR MMP Animal ROS AMPK FA Dietary polyphenols CPT-1 MCP-1 RCT LDL-C ATGL Molecular mechanism FM LXR LPL ACAT cAMP FOXO1 IFN BW BMI ABCA1 EGC SBP ACC GSSG PDEs ECG SOD AGP PGC-1α SREBP-1c TC FABP4 TG TNF-α FASN GTC FAS GTE GPAT HF acyl-coenzyme A: cholesterol acyltransferase total cholesterol uncoupling protein tumor necrosis factor-alpha insulin-like growth factor-I diastolic blood pressure high-density lipoprotein cholesterol phosphodiesterases green tea catechin glycerol-3-phosphate acyltransferase fatty acid synthase superoxide dismutase hormone-sensitive lipase peroxisome proliferator activator receptor γ epigallocatechin glutathione peroxidase fat mass fatty acid binding protein 4 mitogen-activated protein kinase sterol regulatory element-binding protein 1c epicatechin cardiovascular disease thiobarbituric acid reactive substances adenosine-monophosphate-activated protein kinase plasminogen activator inhibitor type 1 randomized controlled trial cyclic adenosine monophosphate lipoprotein lipase adipocyte P2 protein, which is also known as aFABP, the adipocyte fatty acid binding protein or FAPB-4 green tea extracts apolipoprotein carnitine palmitoyltransferase-1 glutathione disulfide epigallocatechin gallate epicatechin gallate adenosine-triphosphate-binding cassette A1 systolic blood pressure body weight CCAAT/enhancer binding protein α adipose triglyceride lipase malondialdehyde liver X receptor paraoxonase homeostasis model assessment of insulin resistance aminoalkyl glucosaminide 4-phosphate body mass index acetyl-coenzyme A carboxylase forkhead box protein O1 nuclear factor-κB stearoyl-CoA desaturase-1 triglyceride low-density lipoprotein cholesterol fatty acid monocyte chemoattractant protein-1 fat-free mass reactive oxygen species interleukin sirtuin 1 interferon high fat peroxisome proliferator-activated receptor gamma coactivator 1-alpha free fatty acid green tea polyphenols matrix metalloproteinase |
| Language | English |
| License | 2014. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c533t-dfda1dd3508dabb786582461fe9dc2d779e8366568c05f66cac8f9c4023d3ce43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3926750 |
| PMID | 24314860 |
| PQID | 1466375959 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3926750 proquest_miscellaneous_2000189566 proquest_miscellaneous_1897369367 proquest_miscellaneous_1466375959 pubmed_primary_24314860 crossref_citationtrail_10_1016_j_jnutbio_2013_09_001 crossref_primary_10_1016_j_jnutbio_2013_09_001 elsevier_sciencedirect_doi_10_1016_j_jnutbio_2013_09_001 |
| PublicationCentury | 2000 |
| PublicationDate | January 2014 2014-01-00 2014-Jan 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of nutritional biochemistry |
| PublicationTitleAlternate | J Nutr Biochem |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Lu, Zhu, Shen, Gao (bb0215) 2012; 7 Chen, Li, Li, Shan, Zhu (bb0440) 2011; 89 Shen, Cao, Dagda, Chanjaplammootil, Lu, Chyu (bb0255) 2012; 32 Dulloo, Duret, Rohrer, Girardier, Mensi, Fathi (bb0330) 1999; 70 Wang, Noh, Koo (bb0805) 2006; 136 Chen, Xiao, Feng, Li, Zhou, Zheng (bb0445) 2012; 23 Wang, Noh, Koo (bb0070) 2006; 17 Kim, Jeon, Lee, Jung, Shin, Choi (bb0205) 2009; 23 Hsu, Liou (bb0825) 2011; 226 Jang, Choi, Jung, Kim, Kim, Jeon (bb0770) 2008; 57 Fischer-Posovszky, Kukulus, Tews, Unterkircher, Debatin, Fulda (bb0835) 2010; 92 Chung, Park, Manautou, Koo, Bruno (bb0190) 2012; 23 Shishodia, Sethi, Aggarwal (bb0645) 2005; 1056 Park, DiNatale, Chung, Park, Lee, Koo (bb0225) 2011; 22 Beher, Wu, Cumine, Kim, Lu, Atangan (bb0525) 2009; 74 Ahn, Lee, Kim, Ha (bb0670) 2010; 298 Brown, Lane, Coverly, Stocks, Jackson, Stephen (bb0305) 2009; 101 Xie, Kong, Wu, Li, Li (bb0715) 2012; 20 Ramadan, El-Beih, Abd El-Ghffar (bb0235) 2009; 102 Chung (bb0510) 2012; 4 Asai, Miyazawa (bb0735) 2001; 131 Umeda, Yano, Yamada, Tachibana (bb0820) 2008; 283 Alberdi, Rodriguez, Macarulla, Miranda, Churruca, Portillo (bb0555) 2013; 29 Heber (bb0015) 2010; 91 Zhu, Yong, Wu, Yu, Lv, Liu (bb0500) 2008; 369 Ramirez-Bosca, Soler, Carrion, Diaz-Alperi, Bernd, Quintanilla (bb0790) 2000; 119 Alberdi, Rodriguez, Miranda, Macarulla, Arias, Andres-Lacueva (bb0560) 2011; 8 Chen, Zhu, Tsang, Huang (bb0080) 2001; 49 Asai, Nakagawa, Miyazawa (bb0765) 1999; 63 Goran MI, Alderete TL. Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutrition Institute workshop series. 2012;73:49–60; discussion p1-6. Kempaiah, Srinivasan (bb0775) 2006; 17 Alvehus, Buren, Sjostrom, Goedecke, Olsson (bb0275) 2010; 18 Kang, Ha, Kim, Kim (bb0460) 2012; 6 Timmers, Konings, Bilet, Houtkooper, van de Weijer, Goossens (bb0620) 2011; 14 policydocument.htm. Accessed on July 4. Basu, Du, Sanchez, Leyva, Betts, Blevins (bb0285) 2011; 27 Bogdanski, Suliburska, Szulinska, Stepien, Pupek-Musialik, Jablecka (bb0295) 2012; 32 Pischon, Hankinson, Hotamisligil, Rifai, Rimm (bb0045) 2003; 11 Sae-tan, Grove, Lambert (bb0245) 2011; 64 Cunha, Lira, Rosa Neto, Pimentel, Souza, da Silva (bb0195) 2013; 2013 Rayalam, Yang, Ambati, Della-Fera, Baile (bb0480) 2008; 22 Lee, Kim (bb0915) 2009; 73 Dal-Pan, Blanc, Aujard (bb0575) 2010; 10 Phung, Baker, Matthews, Lanosa, Thorne, Coleman (bb0390) 2010; 91 Tian, Ye, Zhang, Long, Ren, Ding (bb0265) 2013; 8 Ejaz, Wu, Kwan, Meydani (bb0680) 2009; 139 Hsu, Tsai, Kao, Hwang, Tseng, Chou (bb0340) 2008; 27 Macarulla, Alberdi, Gomez, Tueros, Bald, Rodriguez (bb0595) 2009; 65 Lee, Kim, Kim, Kim (bb0120) 2009; 23 Shao, Yu, Chiang, Yang, Chai, Foltz (bb0700) 2012; 7 Bujanda, Hijona, Larzabal, Beraza, Aldazabal, Garcia-Urkia (bb0570) 2008; 8 Liu, Chen, Hung, Kao (bb0135) 2006; 290 Kang, Heng, Yuan, Baolin, Fang (bb0455) 2010; 92 Crowley, Yeo, O'Rahilly (bb0550) 2002; 1 Poulsen, Vestergaard, Clasen, Radko, Christensen, Stodkilde-Jorgensen (bb0615) 2013; 62 He, Wang, Gao, Ling, Yu, Jin (bb0755) 2012; 3 Kwon, Seo, Yue, Cheng, Lee, Kim (bb0465) 2012; 32 Moon, Chung, Lee, Kim, Choi, Cho (bb0140) 2007; 15 Chen, Bezzina, Hinch, Lewandowski, Cameron-Smith, Mathai (bb0180) 2009; 29 Kalupahana, Claycombe, Moustaid-Moussa (bb0900) 2011; 2 Yekollu, Thomas, O'Sullivan (bb0760) 2011; 60 Friedrich, Petzke, Raederstorff, Wolfram, Klaus (bb0200) 2012; 36 Kovacs, Lejeune, Nijs, Westerterp-Plantenga (bb0345) 2004; 91 Gomez-Zorita, Fernandez-Quintela, Macarulla, Aguirre, Hijona, Bujanda (bb0585) 2012; 107 Baur, Sinclair (bb0875) 2006; 5 Rivera, Moron, Zarzuelo, Galisteo (bb0610) 2009; 77 Anand, Kunnumakkara, Newman, Aggarwal (bb0870) 2007; 4 Chen, Lee, Li, Yang (bb0850) 1997; 25 Abramson, Vaccarino (bb0035) 2002; 162 Costa Cdos, Rohden, Hammes, Margis, Bortolotto, Padoin (bb0450) 2011; 21 Pongchaidecha, Lailerd, Boonprasert, Chattipakorn (bb0730) 2009; 25 Suliburska, Bogdanski, Szulinska, Stepien, Pupek-Musialik, Jablecka (bb0370) 2012; 149 Baum, Cheung, Mok, Lam, Leung, Hui (bb0800) 2007; 56 Zhao, Sun, Ye, Tian (bb0720) 2011; 351 Richard, Kefi, Barbe, Poli, Bausero, Visioli (bb0240) 2009; 59 Lazar MA. Resistin- and Obesity-associated metabolic diseases. Hormone and metabolic research=Hormon- und Stoffwechselforschung=Hormones et metabolisme. 2007;39:710–6. Dixon, Paiva (bb0400) 1995; 7 Monteiro, Assuncao, Andrade, Neves, Calhau, Azevedo (bb0220) 2008; 138 Warden, Smith, Beecher, Balentine, Clevidence (bb0855) 2001; 131 Cheng, Hsu, Lin, Hsu, Ho, Shen (bb0665) 2001; 21 Chan, Wei, Castro-Munozledo, Koo (bb0905) 2011; 89 Basu, Sanchez, Leyva, Wu, Betts, Aston (bb0290) 2010; 29 Nagao, Jinnouchi, Kai, Yanagita (bb0600) 2013; 12 Kim, Le, Chen, Cheng, Kim (bb0690) 2011; 22 Poulsen, Larsen, Hamilton-Dutoit, Clasen, Jessen, Paulsen (bb0605) 2012; 32 Wakil, Abu-Elheiga (bb0150) 2009; 50 Park, Ahmad, Philp, Baar, Williams, Luo (bb0505) 2012; 148 Kim, Jin, Choi, Park (bb0590) 2011; 81 Szkudelska, Szkudelski (bb0540) 2010; 635 Hung, Wu, Chen, Chen, Chen, Wu (bb0095) 2005; 288 Gonzales, Orlando (bb0685) 2008; 5 Pacholec, Bleasdale, Chrunyk, Cunningham, Flynn, Garofalo (bb0520) 2010; 285 Mercader, Palou, Bonet (bb0545) 2011; 22 Shoba, Joy, Joseph, Majeed, Rajendran, Srinivas (bb0865) 1998; 64 Maki, Reeves, Farmer, Yasunaga, Matsuo, Katsuragi (bb0350) 2009; 139 Lasa, Miranda, Churruca, Simon, Arias, Milagro (bb0470) 2011; 26 Zhang, Du ZX (bb0925) 2013; 13 Lagouge, Argmann, Gerhart-Hines, Meziane, Lerin, Daussin (bb0530) 2006; 127 Dong, Zhao, Wu, Yang, Xie, Yu (bb0675) 2011; 358 Goel, Kunnumakkara, Aggarwal (bb0660) 2008; 75 Weisberg, Leibel, Tortoriello (bb0745) 2008; 149 Hong, Lu, Meng, Ryu, Hara, Yang (bb0815) 2002; 62 Harp (bb0535) 2004; 15 Ramirez Bosca, Soler, Carrion-Gutierrez, Pamies Mira, Pardo Zapata, Diaz-Alperi (bb0795) 2000; 114 Siriwardhana, Kalupahana, Cekanova, Lemieux, Greer, Moustaid-Moussa (bb0020) 2013; 24 Wang, Liu, Liu, Dong, Glickman, Slaga (bb0485) 2011; 286 Ahn, Lee, Kim, Ha (bb0435) 2007; 364 Lin, Della-Fera, Baile (bb0130) 2005; 13 Nagao, Komine, Soga, Meguro, Hase, Tanaka (bb0365) 2005; 81 Kalupahana, Moustaid-Moussa (bb0055) 2012; 47 Chainani-Wu (bb0655) 2003; 9 Mesa, Aguilera, Ramirez-Tortosa, Ramirez-Tortosa, Quiles, Baro (bb0785) 2003; 19 Axling, Olsson, Xu, Fernandez, Larsson, Strom (bb0165) 2012; 9 Kalupahana, Moustaid-Moussa, Claycombe (bb0025) 2012; 33 Jurgens, Whelan, Killian, Doucette, Kirk, Foy (bb0395) 2012; 12 Wu, Puigserver, Andersson, Zhang, Adelmant, Mootha (bb0515) 1999; 98 Shimotoyodome, Haramizu, Inaba, Murase, Tokimitsu (bb0260) 2005; 37 Auvichayapat, Prapochanung, Tunkamnerdthai, Sripanidkulchai, Auvichayapat, Thinkhamrop (bb0280) 2008; 93 Klaus, Pultz, Thone-Reineke, Wolfram (bb0210) 2005; 29 Soleas, Diamandis, Goldberg (bb0425) 1997; 30 Zhang, Huang, Choi, Seo (bb0495) 2012; 6 Hollman, vd Gaag, Mengelers, van Trijp, de Vries, Katan (bb0885) 1996; 21 Dietary guidelines for Americans. Picard, Kurtev, Chung, Topark-Ngarm, Senawong, Machado De Oliveira (bb0840) 2004; 429 Tome-Carneiro, Gonzalvez, Larrosa, Garcia-Almagro, Aviles-Plaza, Parra (bb0625) 2012; 56 Oner-Iyidogan, Kocak, Seyidhanoglu, Gurdol, Gulcubuk, Yildirim (bb0940) 2013 Lasa, Schweiger, Kotzbeck, Churruca, Simon, Zechner (bb0475) 2012; 23 Tsai, Williamson, Glick (bb0005) 2011; 12 Thielecke, Rahn, Bohnke, Adams, Birkenfeld, Jordan (bb0375) 2010; 64 Alappat, Awad (bb0640) 2010; 68 Brown, Lane, Holyoak, Nicol, Mayes, Dadd (bb0310) 2011; 106 Matsuyama, Tanaka, Kamimaki, Nagao, Tokimitsu (bb0355) 2008; 16 Esfahani, Wong, Truan, Villa, Mirrahimi, Srichaikul (bb0060) 2011; 30 Yu, Hu, Yan (bb0945) 2008; 42 Di Pierro, Menghi, Barreca, Lucarelli, Calandrelli (bb0320) 2009; 14 Geffken, Cushman, Burke, Polak, Sakkinen, Tracy (bb0040) 2001; 153 Furuyashiki, Nagayasu, Aoki, Bessho, Hashimoto, Kanazawa (bb0090) 2004; 68 Lee, Lee, Hwang, Kwon, Surh, Park (bb0695) 2009; 57 Ku, Liu, Hung, Chen, Liu, Chang (bb0115) 2012; 56 Wang, Bai, Chen, Ching (bb0380) 2010; 5 Wang, Li, Wen, Chen, Na, Li (bb0705) 2009; 22 Basu, Lucas (bb0075) 2007; 65 Bose, Lambert, Ju, Reuhl, Shapses, Yang (bb0170) 2008; 138 Tome-Carneiro, Gonzalvez, Larrosa, Yanez-Gascon, Garcia-Almagro, Ruiz-Ros (bb0630) 2013; 27 Hurst, Glinski, Miller, Apgar, Davey, Stuart (bb0420) 2008; 56 Leray, Freuchet, Le Bloc'h, Jeusette, Torre, Nguyen (bb0780) 2011; 106 Ku, Chang, Liu, Hsiao, Lee, Hu (bb0110) 2009; 297 Hill, Coates, Buckley, Ross, Thielecke, Howe (bb0335) 2007; 26 Boschmann, Thielecke (bb0300) 2007; 26 Hursel, Viechtbauer, Westerterp-Plantenga (bb0385) 2009; 33 Romero-Perez, Ibern-Gomez, Lamuela-Raventos, de La Torre-Boronat (bb0410) 1999; 47 Ashida, Furuyashiki, Nagayasu, Bessho, Sakakibara, Hashimoto (bb0160) 2004; 22 Lotito, Zhang, Yang, Crozier, Frei (bb0895) 2011; 51 Fremont (bb0405) 2000; 66 Rao, Sekhara, Satyanarayana, Srinivasan (bb0725) 1970; 100 Wu, Hung, Chen, Huang, Chang, Kao (bb0145) 2005; 53 Chantre, Lairon (bb0315) 2002; 9 Bouchard (bb0010) 2010; 91 Hwang, Park, Shin, Lee, Lee, Baik (bb0100) 2005; 338 Franco, Lisboa, Lima, Amaral, Peixoto-Silva, Resende (bb0930) 2013; 24 Hsieh, Tsuei, Liu, Kao, Shih, Ho (bb0830) 2010; 76 Burns, Yokota, Ashihara, Lean, Crozier (bb0415) 2002; 50 Woo, Kang, Kawada, Yoo, Sung, Yu (bb0710) 2007; 80 Orallo (bb0430) 2006; 13 Conquer, Maiani, Azzini, Raguzzini, Holub (bb0880) 1998; 128 Han, Matsumura, Kim, Hyon (bb0810) 2008; 16 Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In vivo. 2000;14:481–4. Ueda, Ashida (bb0270) 2012; 60 Hong, Mitchell (bb0890) 2004; 52 Bruno, Dugan, Smyth, DiNatale, Koo (bb0175) 2008; 138 Kim, Hiraishi, Tsuchiya, Sakamoto (bb0910) 2010; 62 Baur, Pearson, Price, Jamieson, Lerin, Kalra (bb0565) 2006; 444 Kim, Bordenave, Ferruzzi, Safavy, Kim (bb0845) 2011; 59 Park, Lee, Chung, Park, Bower, Koo (bb0230) 2012; 142 Diepvens, Kovacs, Nijs, Vogels, Westerterp-Plantenga (bb0325) 2005; 94 Tome-Carneiro, Larrosa, Yanez-Gascon, Davalos, Gil-Zamorano, Gonzalvez (bb0935) 2013; 72 Lee, Maliakal, Chen, Meng, Bondoc, Prabhu (bb0860) 2002; 11 Nagao, Hase, Tokimitsu (bb0360) 2007; 15 Chen, Cheung, Reuhl, Liu, Lee, Lu (bb0185) 2011; 59 Meydani, Shishodia (10.1016/j.jnutbio.2013.09.001_bb0645) 2005; 1056 Hill (10.1016/j.jnutbio.2013.09.001_bb0335) 2007; 26 Dulloo (10.1016/j.jnutbio.2013.09.001_bb0330) 1999; 70 Tsai (10.1016/j.jnutbio.2013.09.001_bb0005) 2011; 12 Poulsen (10.1016/j.jnutbio.2013.09.001_bb0615) 2013; 62 Jurgens (10.1016/j.jnutbio.2013.09.001_bb0395) 2012; 12 Alberdi (10.1016/j.jnutbio.2013.09.001_bb0555) 2013; 29 Tian (10.1016/j.jnutbio.2013.09.001_bb0265) 2013; 8 Auvichayapat (10.1016/j.jnutbio.2013.09.001_bb0280) 2008; 93 Nagao (10.1016/j.jnutbio.2013.09.001_bb0360) 2007; 15 Suliburska (10.1016/j.jnutbio.2013.09.001_bb0370) 2012; 149 Shao (10.1016/j.jnutbio.2013.09.001_bb0700) 2012; 7 Leray (10.1016/j.jnutbio.2013.09.001_bb0780) 2011; 106 Lee (10.1016/j.jnutbio.2013.09.001_bb0695) 2009; 57 Lee (10.1016/j.jnutbio.2013.09.001_bb0860) 2002; 11 Nagao (10.1016/j.jnutbio.2013.09.001_bb0600) 2013; 12 Picard (10.1016/j.jnutbio.2013.09.001_bb0840) 2004; 429 Geffken (10.1016/j.jnutbio.2013.09.001_bb0040) 2001; 153 Chen (10.1016/j.jnutbio.2013.09.001_bb0185) 2011; 59 Chen (10.1016/j.jnutbio.2013.09.001_bb0180) 2009; 29 Costa Cdos (10.1016/j.jnutbio.2013.09.001_bb0450) 2011; 21 Jang (10.1016/j.jnutbio.2013.09.001_bb0770) 2008; 57 Ku (10.1016/j.jnutbio.2013.09.001_bb0115) 2012; 56 Park (10.1016/j.jnutbio.2013.09.001_bb0505) 2012; 148 Yu (10.1016/j.jnutbio.2013.09.001_bb0945) 2008; 42 He (10.1016/j.jnutbio.2013.09.001_bb0755) 2012; 3 Hollman (10.1016/j.jnutbio.2013.09.001_bb0885) 1996; 21 Kim (10.1016/j.jnutbio.2013.09.001_bb0205) 2009; 23 Brown (10.1016/j.jnutbio.2013.09.001_bb0305) 2009; 101 Liu (10.1016/j.jnutbio.2013.09.001_bb0135) 2006; 290 Lasa (10.1016/j.jnutbio.2013.09.001_bb0470) 2011; 26 Ejaz (10.1016/j.jnutbio.2013.09.001_bb0680) 2009; 139 Monteiro (10.1016/j.jnutbio.2013.09.001_bb0220) 2008; 138 Zhu (10.1016/j.jnutbio.2013.09.001_bb0500) 2008; 369 Basu (10.1016/j.jnutbio.2013.09.001_bb0285) 2011; 27 Boschmann (10.1016/j.jnutbio.2013.09.001_bb0300) 2007; 26 Friedrich (10.1016/j.jnutbio.2013.09.001_bb0200) 2012; 36 Gonzales (10.1016/j.jnutbio.2013.09.001_bb0685) 2008; 5 Anand (10.1016/j.jnutbio.2013.09.001_bb0870) 2007; 4 Ramadan (10.1016/j.jnutbio.2013.09.001_bb0235) 2009; 102 10.1016/j.jnutbio.2013.09.001_bb0065 Alappat (10.1016/j.jnutbio.2013.09.001_bb0640) 2010; 68 Kempaiah (10.1016/j.jnutbio.2013.09.001_bb0775) 2006; 17 Asai (10.1016/j.jnutbio.2013.09.001_bb0735) 2001; 131 Hung (10.1016/j.jnutbio.2013.09.001_bb0095) 2005; 288 Kovacs (10.1016/j.jnutbio.2013.09.001_bb0345) 2004; 91 Fischer-Posovszky (10.1016/j.jnutbio.2013.09.001_bb0835) 2010; 92 Alvehus (10.1016/j.jnutbio.2013.09.001_bb0275) 2010; 18 Asai (10.1016/j.jnutbio.2013.09.001_bb0765) 1999; 63 Yekollu (10.1016/j.jnutbio.2013.09.001_bb0760) 2011; 60 Baum (10.1016/j.jnutbio.2013.09.001_bb0800) 2007; 56 Lu (10.1016/j.jnutbio.2013.09.001_bb0215) 2012; 7 Hwang (10.1016/j.jnutbio.2013.09.001_bb0100) 2005; 338 Ramirez Bosca (10.1016/j.jnutbio.2013.09.001_bb0795) 2000; 114 Nagao (10.1016/j.jnutbio.2013.09.001_bb0365) 2005; 81 Meydani (10.1016/j.jnutbio.2013.09.001_bb0650) 2010; 2 Cunha (10.1016/j.jnutbio.2013.09.001_bb0195) 2013; 2013 Zhao (10.1016/j.jnutbio.2013.09.001_bb0720) 2011; 351 Chen (10.1016/j.jnutbio.2013.09.001_bb0445) 2012; 23 Wu (10.1016/j.jnutbio.2013.09.001_bb0145) 2005; 53 Lasa (10.1016/j.jnutbio.2013.09.001_bb0475) 2012; 23 Ashida (10.1016/j.jnutbio.2013.09.001_bb0160) 2004; 22 Pongchaidecha (10.1016/j.jnutbio.2013.09.001_bb0730) 2009; 25 Baur (10.1016/j.jnutbio.2013.09.001_bb0565) 2006; 444 Cheng (10.1016/j.jnutbio.2013.09.001_bb0665) 2001; 21 Xie (10.1016/j.jnutbio.2013.09.001_bb0715) 2012; 20 Zhang (10.1016/j.jnutbio.2013.09.001_bb0495) 2012; 6 10.1016/j.jnutbio.2013.09.001_bb0920 Heber (10.1016/j.jnutbio.2013.09.001_bb0015) 2010; 91 Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0630) 2013; 27 Dong (10.1016/j.jnutbio.2013.09.001_bb0675) 2011; 358 Lagouge (10.1016/j.jnutbio.2013.09.001_bb0530) 2006; 127 Macarulla (10.1016/j.jnutbio.2013.09.001_bb0595) 2009; 65 Ramirez-Bosca (10.1016/j.jnutbio.2013.09.001_bb0790) 2000; 119 Klaus (10.1016/j.jnutbio.2013.09.001_bb0210) 2005; 29 Kim (10.1016/j.jnutbio.2013.09.001_bb0690) 2011; 22 Crowley (10.1016/j.jnutbio.2013.09.001_bb0550) 2002; 1 Matsuyama (10.1016/j.jnutbio.2013.09.001_bb0355) 2008; 16 Wakil (10.1016/j.jnutbio.2013.09.001_bb0150) 2009; 50 Thielecke (10.1016/j.jnutbio.2013.09.001_bb0375) 2010; 64 Gomez-Zorita (10.1016/j.jnutbio.2013.09.001_bb0585) 2012; 107 Chen (10.1016/j.jnutbio.2013.09.001_bb0850) 1997; 25 Chen (10.1016/j.jnutbio.2013.09.001_bb0440) 2011; 89 Rivera (10.1016/j.jnutbio.2013.09.001_bb0610) 2009; 77 Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0625) 2012; 56 Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0025) 2012; 33 Chan (10.1016/j.jnutbio.2013.09.001_bb0905) 2011; 89 Wang (10.1016/j.jnutbio.2013.09.001_bb0380) 2010; 5 Ku (10.1016/j.jnutbio.2013.09.001_bb0110) 2009; 297 Hurst (10.1016/j.jnutbio.2013.09.001_bb0420) 2008; 56 Ahn (10.1016/j.jnutbio.2013.09.001_bb0670) 2010; 298 Kang (10.1016/j.jnutbio.2013.09.001_bb0460) 2012; 6 Wang (10.1016/j.jnutbio.2013.09.001_bb0705) 2009; 22 Oner-Iyidogan (10.1016/j.jnutbio.2013.09.001_bb0940) 2013 Harp (10.1016/j.jnutbio.2013.09.001_bb0535) 2004; 15 Mercader (10.1016/j.jnutbio.2013.09.001_bb0545) 2011; 22 Hsu (10.1016/j.jnutbio.2013.09.001_bb0825) 2011; 226 Kim (10.1016/j.jnutbio.2013.09.001_bb0910) 2010; 62 Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0935) 2013; 72 Pischon (10.1016/j.jnutbio.2013.09.001_bb0045) 2003; 11 Bogdanski (10.1016/j.jnutbio.2013.09.001_bb0295) 2012; 32 Esfahani (10.1016/j.jnutbio.2013.09.001_bb0060) 2011; 30 Wu (10.1016/j.jnutbio.2013.09.001_bb0515) 1999; 98 Ahn (10.1016/j.jnutbio.2013.09.001_bb0435) 2007; 364 Shoba (10.1016/j.jnutbio.2013.09.001_bb0865) 1998; 64 Hsu (10.1016/j.jnutbio.2013.09.001_bb0340) 2008; 27 Wang (10.1016/j.jnutbio.2013.09.001_bb0805) 2006; 136 Warden (10.1016/j.jnutbio.2013.09.001_bb0855) 2001; 131 Chen (10.1016/j.jnutbio.2013.09.001_bb0080) 2001; 49 Bruno (10.1016/j.jnutbio.2013.09.001_bb0175) 2008; 138 Brown (10.1016/j.jnutbio.2013.09.001_bb0310) 2011; 106 Hong (10.1016/j.jnutbio.2013.09.001_bb0890) 2004; 52 Hursel (10.1016/j.jnutbio.2013.09.001_bb0385) 2009; 33 Burns (10.1016/j.jnutbio.2013.09.001_bb0415) 2002; 50 Wang (10.1016/j.jnutbio.2013.09.001_bb0485) 2011; 286 Chung (10.1016/j.jnutbio.2013.09.001_bb0510) 2012; 4 Beher (10.1016/j.jnutbio.2013.09.001_bb0525) 2009; 74 Bouchard (10.1016/j.jnutbio.2013.09.001_bb0010) 2010; 91 Kwon (10.1016/j.jnutbio.2013.09.001_bb0465) 2012; 32 Rayalam (10.1016/j.jnutbio.2013.09.001_bb0480) 2008; 22 Wang (10.1016/j.jnutbio.2013.09.001_bb0070) 2006; 17 Bose (10.1016/j.jnutbio.2013.09.001_bb0170) 2008; 138 Maki (10.1016/j.jnutbio.2013.09.001_bb0350) 2009; 139 Pacholec (10.1016/j.jnutbio.2013.09.001_bb0520) 2010; 285 Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0900) 2011; 2 Kim (10.1016/j.jnutbio.2013.09.001_bb0590) 2011; 81 Weisberg (10.1016/j.jnutbio.2013.09.001_bb0745) 2008; 149 Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0055) 2012; 47 Kang (10.1016/j.jnutbio.2013.09.001_bb0455) 2010; 92 Fremont (10.1016/j.jnutbio.2013.09.001_bb0405) 2000; 66 Zhang (10.1016/j.jnutbio.2013.09.001_bb0925) 2013; 13 Lin (10.1016/j.jnutbio.2013.09.001_bb0130) 2005; 13 Sae-tan (10.1016/j.jnutbio.2013.09.001_bb0245) 2011; 64 Shen (10.1016/j.jnutbio.2013.09.001_bb0255) 2012; 32 Romero-Perez (10.1016/j.jnutbio.2013.09.001_bb0410) 1999; 47 Franco (10.1016/j.jnutbio.2013.09.001_bb0930) 2013; 24 Abramson (10.1016/j.jnutbio.2013.09.001_bb0035) 2002; 162 Szkudelska (10.1016/j.jnutbio.2013.09.001_bb0540) 2010; 635 Mesa (10.1016/j.jnutbio.2013.09.001_bb0785) 2003; 19 Lotito (10.1016/j.jnutbio.2013.09.001_bb0895) 2011; 51 Moon (10.1016/j.jnutbio.2013.09.001_bb0140) 2007; 15 Baur (10.1016/j.jnutbio.2013.09.001_bb0875) 2006; 5 Diepvens (10.1016/j.jnutbio.2013.09.001_bb0325) 2005; 94 Goel (10.1016/j.jnutbio.2013.09.001_bb0660) 2008; 75 Conquer (10.1016/j.jnutbio.2013.09.001_bb0880) 1998; 128 Umeda (10.1016/j.jnutbio.2013.09.001_bb0820) 2008; 283 Phung (10.1016/j.jnutbio.2013.09.001_bb0390) 2010; 91 Chung (10.1016/j.jnutbio.2013.09.001_bb0190) 2012; 23 Soleas (10.1016/j.jnutbio.2013.09.001_bb0425) 1997; 30 Siriwardhana (10.1016/j.jnutbio.2013.09.001_bb0020) 2013; 24 Richard (10.1016/j.jnutbio.2013.09.001_bb0240) 2009; 59 Ueda (10.1016/j.jnutbio.2013.09.001_bb0270) 2012; 60 Rao (10.1016/j.jnutbio.2013.09.001_bb0725) 1970; 100 Han (10.1016/j.jnutbio.2013.09.001_bb0810) 2008; 16 Woo (10.1016/j.jnutbio.2013.09.001_bb0710) 2007; 80 Park (10.1016/j.jnutbio.2013.09.001_bb0225) 2011; 22 Lee (10.1016/j.jnutbio.2013.09.001_bb0915) 2009; 73 Kim (10.1016/j.jnutbio.2013.09.001_bb0845) 2011; 59 10.1016/j.jnutbio.2013.09.001_bb0155 Bujanda (10.1016/j.jnutbio.2013.09.001_bb0570) 2008; 8 Basu (10.1016/j.jnutbio.2013.09.001_bb0075) 2007; 65 10.1016/j.jnutbio.2013.09.001_bb0030 Axling (10.1016/j.jnutbio.2013.09.001_bb0165) 2012; 9 Timmers (10.1016/j.jnutbio.2013.09.001_bb0620) 2011; 14 Hsieh (10.1016/j.jnutbio.2013.09.001_bb0830) 2010; 76 Dixon (10.1016/j.jnutbio.2013.09.001_bb0400) 1995; 7 Shimotoyodome (10.1016/j.jnutbio.2013.09.001_bb0260) 2005; 37 Furuyashiki (10.1016/j.jnutbio.2013.09.001_bb0090) 2004; 68 Dal-Pan (10.1016/j.jnutbio.2013.09.001_bb0575) 2010; 10 Basu (10.1016/j.jnutbio.2013.09.001_bb0290) 2010; 29 Chantre (10.1016/j.jnutbio.2013.09.001_bb0315) 2002; 9 Hong (10.1016/j.jnutbio.2013.09.001_bb0815) 2002; 62 Orallo (10.1016/j.jnutbio.2013.09.001_bb0430) 2006; 13 Di Pierro (10.1016/j.jnutbio.2013.09.001_bb0320) 2009; 14 Poulsen (10.1016/j.jnutbio.2013.09.001_bb0605) 2012; 32 Alberdi (10.1016/j.jnutbio.2013.09.001_bb0560) 2011; 8 Lee (10.1016/j.jnutbio.2013.09.001_bb0120) 2009; 23 Park (10.1016/j.jnutbio.2013.09.001_bb0230) 2012; 142 Chainani-Wu (10.1016/j.jnutbio.2013.09.001_bb0655) 2003; 9 9127691 - Clin Biochem. 1997 Mar;30(2):91-113 20595643 - J Am Coll Nutr. 2010 Feb;29(1):31-40 21221723 - Mol Cell Biochem. 2011 May;351(1-2):19-28 17951067 - Pharmacol Res. 2007 Dec;56(6):509-14 15640470 - Am J Clin Nutr. 2005 Jan;81(1):122-9 18940397 - Metabolism. 2008 Nov;57(11):1576-83 19906797 - Am J Clin Nutr. 2010 Jan;91(1):73-81 20357182 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1510-6 22072344 - Nutr Hosp. 2011 Sep-Oct;26(5):997-1003 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51 21109418 - J Nutr Biochem. 2011 Sep;22(9):828-34 22017765 - Can J Physiol Pharmacol. 2011 Nov;89(11):793-9 22749178 - Nutr Res. 2012 Jun;32(6):421-7 22416799 - J Agric Food Chem. 2012 Sep 12;60(36):8917-23 12972675 - Obes Res. 2003 Sep;11(9):1055-64 22005428 - Br J Nutr. 2011 Oct;106 Suppl 1:S198-201 19932867 - Nutr Res. 2009 Nov;29(11):784-93 23084643 - Nutr Res. 2012 Sep;32(9):701-8 19051209 - Phytother Res. 2009 Apr;23(4):467-71 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24 18710606 - Br J Nutr. 2009 Mar;101(6):886-94 21571063 - Free Radic Biol Med. 2011 Jul 15;51(2):454-63 23346299 - Nutr Res Pract. 2012 Dec;6(6):499-504 19594224 - Altern Med Rev. 2009 Jun;14(2):154-60 23374859 - Lipids Health Dis. 2013;12:8 23235664 - Cochrane Database Syst Rev. 2012;12:CD008650 20872255 - Obes Surg. 2011 Mar;21(3):356-61 21750518 - Int J Obes (Lond). 2012 May;36(5):735-43 22645638 - World J Diabetes. 2012 May 15;3(5):94-104 20188786 - Biochimie. 2010 Jul;92(7):789-96 18079119 - J Biol Chem. 2008 Feb 8;283(6):3050-8 11712783 - Anticancer Res. 2001 Jul-Aug;21(4B):2895-900 17112576 - Cell. 2006 Dec 15;127(6):1109-22 11157411 - Am J Epidemiol. 2001 Feb 1;153(3):242-50 16387689 - Ann N Y Acad Sci. 2005 Nov;1056:206-17 15738931 - Int J Obes (Lond). 2005 Jun;29(6):615-23 19297423 - J Nutr. 2009 May;139(5):919-25 10945161 - In Vivo. 2000 Jul-Aug;14(4):481-4 20372175 - Eur J Clin Nutr. 2010 Jul;64(7):704-13 22648627 - Mol Nutr Food Res. 2012 May;56(5):810-21 19597519 - Int J Obes (Lond). 2009 Sep;33(9):956-61 17999464 - Mol Pharm. 2007 Nov-Dec;4(6):807-18 18291098 - Biochem Biophys Res Commun. 2008 May 2;369(2):471-7 18716169 - J Nutr. 2008 Sep;138(9):1677-83 12010007 - J Agric Food Chem. 2002 May 22;50(11):3337-40 19176142 - Zhonghua Yu Fang Yi Xue Za Zhi. 2008 Nov;42(11):818-22 20605696 - Nutrition. 2011 Feb;27(2):206-13 15998135 - J Agric Food Chem. 2005 Jul 13;53(14):5695-701 16351782 - Br J Nutr. 2005 Dec;94(6):1026-34 19100718 - Biochem Pharmacol. 2009 Mar 15;77(6):1053-63 20059703 - Obes Rev. 2011 Jan;12(1):50-61 22332072 - Adv Nutr. 2011 Jul;2(4):304-16 22081614 - J Am Coll Nutr. 2011 Oct;30(5):285-94 19074207 - J Nutr. 2009 Feb;139(2):264-70 23274094 - Nutrition. 2013 Mar;29(3):562-7 12921893 - Nutrition. 2003 Sep;19(9):800-4 17867370 - Nutr Rev. 2007 Aug;65(8 Pt 1):361-75 16713229 - J Nutr Biochem. 2006 Jul;17(7):492-8 16159906 - Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E273-81 21193040 - Pharmacol Res. 2011 Aug;64(2):146-54 10564012 - J Agric Food Chem. 1999 Apr;47(4):1533-6 8891673 - Free Radic Biol Med. 1996;21(5):703-7 20596890 - Cytotechnology. 2010 Jul;62(3):245-55 23431242 - Mediators Inflamm. 2013;2013:635470 21189228 - J Nutr Biochem. 2011 Oct;22(10):910-20 20358350 - J Physiol Biochem. 2009 Dec;65(4):369-76 22715380 - PLoS One. 2012;7(6):e38332 19093868 - J Agric Food Chem. 2009 Jan 14;57(1):305-10 17056802 - J Nutr. 2006 Nov;136(11):2791-6 12120279 - Nat Rev Drug Discov. 2002 Apr;1(4):276-86 22720713 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):379-90 12499265 - Cancer Res. 2002 Dec 15;62(24):7241-6 19107849 - Phytother Res. 2009 Aug;23(8):1088-91 23557933 - Pharmacol Res. 2013 Jun;72:69-82 16286857 - Med Sci Sports Exerc. 2005 Nov;37(11):1884-92 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 18759443 - J Agric Food Chem. 2008 Sep 24;56(18):8374-8 19825205 - Br J Nutr. 2009 Dec;102(11):1611-9 23193181 - Diabetes. 2013 Apr;62(4):1186-95 17900536 - Biochem Pharmacol. 2008 Feb 15;75(4):787-809 15647388 - Am J Physiol Cell Physiol. 2005 May;288(5):C1094-108 12376503 - Cancer Epidemiol Biomarkers Prev. 2002 Oct;11(10 Pt 1):1025-32 21978785 - Life Sci. 2011 Nov 21;89(21-22):779-85 18468736 - Clin Nutr. 2008 Jun;27(3):363-70 19398300 - Nutrition. 2009 Jul-Aug;25(7-8):870-8 23430567 - J Physiol Biochem. 2013 Dec;69(4):677-86 11694621 - J Nutr. 2001 Nov;131(11):2932-5 12676044 - J Altern Complement Med. 2003 Feb;9(1):161-8 17557985 - Obesity (Silver Spring). 2007 Jun;15(6):1473-83 9619120 - Planta Med. 1998 May;64(4):353-6 19923373 - Am J Clin Nutr. 2010 Jan;91(1):280S-283S 17967414 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):972-7 18006026 - Physiol Behav. 2008 Feb 27;93(3):486-91 22157544 - J Nutr. 2012 Jan;142(1):57-63 20980258 - J Biol Chem. 2011 Jan 7;286(1):60-6 15630268 - Biofactors. 2004;22(1-4):135-40 22254051 - Nutrients. 2010 Jul;2(7):737-51 16236247 - Biochem Biophys Res Commun. 2005 Dec 16;338(2):694-9 15175761 - Nature. 2004 Jun 17;429(6993):771-6 20655714 - J Nutr Biochem. 2011 Apr;22(4):393-400 20463039 - Am J Clin Nutr. 2010 Jul;92(1):5-15 10412986 - Cell. 1999 Jul 9;98(1):115-24 21748336 - Mol Cell Biochem. 2011 Dec;358(1-2):281-5 12242399 - Plant Cell. 1995 Jul;7(7):1085-1097 21792929 - J Cell Physiol. 2011 Oct;226(10):2721-30 15166786 - Curr Opin Lipidol. 2004 Jun;15(3):303-7 18688788 - Phytother Res. 2008 Oct;22(10):1367-71 23342006 - PLoS One. 2013;8(1):e53796 22584682 - Clin Exp Med. 2013 Aug;13(3):193-9 15005829 - Br J Nutr. 2004 Mar;91(3):431-7 22495985 - Mol Nutr Food Res. 2012 Apr;56(4):580-92 22935344 - Nutr Res. 2012 Aug;32(8):607-16 23224687 - Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48 19462685 - Biomed Environ Sci. 2009 Feb;22(1):32-9 20186138 - Obesity (Silver Spring). 2010 May;18(5):879-83 11040400 - Mech Ageing Dev. 2000 Oct 20;119(1-2):41-7 18936213 - J Nutr. 2008 Nov;138(11):2156-63 10680575 - Life Sci. 2000 Jan 14;66(8):663-73 20303945 - Eur J Pharmacol. 2010 Jun 10;635(1-3):1-8 22977681 - Nutr Res Pract. 2012 Aug;6(4):286-93 10664844 - Biosci Biotechnol Biochem. 1999 Dec;63(12):2118-22 22253696 - PLoS One. 2012;7(1):e28784 18782455 - BMC Gastroenterol. 2008;8:40 11924761 - Phytomedicine. 2002 Jan;9(1):3-8 20455202 - Planta Med. 2010 Oct;76(15):1694-8 21569266 - Nutr Metab (Lond). 2011 May 10;8(1):29 21091916 - Nutr Rev. 2010 Dec;68(12):729-38 11385060 - J Nutr. 2001 Jun;131(6):1731-7 16457641 - Curr Med Chem. 2006;13(1):87-98 18403477 - Endocrinology. 2008 Jul;149(7):3549-58 22304913 - Cell. 2012 Feb 3;148(3):421-33 10584049 - Am J Clin Nutr. 1999 Dec;70(6):1040-5 20569453 - BMC Physiol. 2010;10:11 21932846 - J Agric Food Chem. 2011 Nov 9;59(21):11862-71 11170614 - J Agric Food Chem. 2001 Jan;49(1):477-82 22749181 - Nutr Res. 2012 Jun;32(6):448-57 23083815 - Phytomedicine. 2012 Dec 15;20(1):3-8 22137261 - J Nutr Biochem. 2012 Sep;23(9):1100-12 18549505 - Nutr Metab (Lond). 2008 Jun 12;5:17 21439945 - Biochem Pharmacol. 2011 Jun 1;81(11):1343-51 10802125 - Mech Ageing Dev. 2000 Apr 14;114(3):207-10 17196622 - Life Sci. 2007 Feb 13;80(10):926-31 21204534 - J Agric Food Chem. 2011 Feb 9;59(3):1012-9 18356827 - Obesity (Silver Spring). 2008 Jun;16(6):1338-48 18070748 - Obesity (Silver Spring). 2007 Nov;15(11):2571-82 17906192 - J Am Coll Nutr. 2007 Aug;26(4):389S-395S 17952831 - Horm Metab Res. 2007 Oct;39(10):710-6 22388573 - Aging (Albany NY). 2012 Mar;4(3):144-5 19202275 - Biosci Biotechnol Biochem. 2009 Feb;73(2):434-6 21124793 - PLoS One. 2010;5(11):e15441 16263255 - J Nutr Biochem. 2006 Jul;17(7):471-8 23498665 - J Nutr Biochem. 2013 Apr;24(4):613-23 15976140 - Obes Res. 2005 Jun;13(6):982-90 19416635 - Pharmacol Res. 2009 May;59(5):351-4 18203899 - J Nutr. 2008 Feb;138(2):323-31 21543206 - J Nutr Biochem. 2012 Apr;23(4):379-84 9482769 - J Nutr. 1998 Mar;128(3):593-7 5476433 - J Nutr. 1970 Nov;100(11):1307-15 9311619 - Drug Metab Dispos. 1997 Sep;25(9):1045-50 22040698 - Mol Aspects Med. 2012 Feb;33(1):26-34 23181558 - Nutr Metab (Lond). 2012 Nov 26;9(1):105 18951028 - Bioorg Med Chem. 2008 Nov 15;16(22):9652-9 22581111 - Biol Trace Elem Res. 2012 Dec;149(3):315-22 19176763 - Am J Physiol Cell Physiol. 2009 Jul;297(1):C121-32 21733326 - Br J Nutr. 2012 Jan;107(2):202-10 15506818 - J Agric Food Chem. 2004 Nov 3;52(22):6794-801 21543212 - J Nutr Biochem. 2012 Apr;23(4):361-7 17906193 - J Am Coll Nutr. 2007 Aug;26(4):396S-402S 12038947 - Arch Intern Med. 2002 Jun 10;162(11):1286-92 19047759 - J Lipid Res. 2009 Apr;50 Suppl:S138-43 22959054 - J Nutr Biochem. 2013 Jun;24(6):960-6 21885868 - Diabetes. 2011 Nov;60(11):2928-38 19939981 - Am J Clin Nutr. 2010 Jan;91(1):5-6 21736785 - Br J Nutr. 2011 Dec;106(12):1880-9 17086191 - Nature. 2006 Nov 16;444(7117):337-42 23128765 - Nestle Nutr Inst Workshop Ser. 2012;73:49-60; discussion p61-6 22055504 - Cell Metab. 2011 Nov 2;14(5):612-22 15564676 - Biosci Biotechnol Biochem. 2004 Nov;68(11):2353-9 |
| References_xml | – volume: 98 start-page: 115 year: 1999 end-page: 124 ident: bb0515 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 publication-title: Cell – volume: 92 start-page: 789 year: 2010 end-page: 796 ident: bb0455 article-title: Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses publication-title: Biochimie – volume: 24 start-page: 960 year: 2013 end-page: 966 ident: bb0930 article-title: Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning publication-title: J Nutr Biochem – volume: 59 start-page: 1012 year: 2011 end-page: 1019 ident: bb0845 article-title: Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property publication-title: J Agric Food Chem – volume: 36 start-page: 735 year: 2012 end-page: 743 ident: bb0200 article-title: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet publication-title: Int J Obes – volume: 22 start-page: 910 year: 2011 end-page: 920 ident: bb0690 article-title: Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion publication-title: J Nutr Biochem – volume: 138 start-page: 1677 year: 2008 end-page: 1683 ident: bb0170 article-title: The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice publication-title: J Nutr – volume: 114 start-page: 207 year: 2000 end-page: 210 ident: bb0795 article-title: An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen publication-title: Mech Ageing Dev – volume: 26 start-page: 389S year: 2007 end-page: 395S ident: bb0300 article-title: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study publication-title: J Am Coll Nutr – volume: 2 start-page: 737 year: 2010 end-page: 751 ident: bb0650 article-title: Dietary polyphenols and obesity publication-title: Nutrients – volume: 100 start-page: 1307 year: 1970 end-page: 1315 ident: bb0725 article-title: Effect of curcumin on serum and liver cholesterol levels in the rat publication-title: J Nutr – volume: 75 start-page: 787 year: 2008 end-page: 809 ident: bb0660 article-title: Curcumin as “Curecumin”: from kitchen to clinic publication-title: Biochem Pharmacol – volume: 338 start-page: 694 year: 2005 end-page: 699 ident: bb0100 article-title: Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase publication-title: Biochem Biophys Res Commun – volume: 70 start-page: 1040 year: 1999 end-page: 1045 ident: bb0330 article-title: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans publication-title: Am J Clin Nutr – volume: 52 start-page: 6794 year: 2004 end-page: 6801 ident: bb0890 article-title: Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry publication-title: J Agric Food Chem – volume: 106 start-page: S198 year: 2011 end-page: S201 ident: bb0780 article-title: Effect of citrus polyphenol- and curcumin-supplemented diet on inflammatory state in obese cats publication-title: Br J Nutr – volume: 148 start-page: 421 year: 2012 end-page: 433 ident: bb0505 article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases publication-title: Cell – volume: 22 start-page: 135 year: 2004 end-page: 140 ident: bb0160 article-title: Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors publication-title: Biofactors – volume: 64 start-page: 704 year: 2010 end-page: 713 ident: bb0375 article-title: Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study publication-title: Eur J Clin Nutr – volume: 149 start-page: 315 year: 2012 end-page: 322 ident: bb0370 article-title: Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients publication-title: Biol Trace Elem Res – volume: 23 start-page: 1088 year: 2009 end-page: 1091 ident: bb0120 article-title: Inhibitory effects of green tea catechin on the lipid accumulation in 3 T3-L1 adipocytes publication-title: Phytother Res – volume: 63 start-page: 2118 year: 1999 end-page: 2122 ident: bb0765 article-title: Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice publication-title: Biosci Biotechnol Biochem – volume: 139 start-page: 264 year: 2009 end-page: 270 ident: bb0350 article-title: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults publication-title: J Nutr – volume: 635 start-page: 1 year: 2010 end-page: 8 ident: bb0540 article-title: Resveratrol, obesity and diabetes publication-title: Eur J Pharmacol – volume: 22 start-page: 32 year: 2009 end-page: 39 ident: bb0705 article-title: Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3 T3-L1 adipocytes through NF-kappaB and JNK pathway publication-title: Biomed Environ Sci – volume: 32 start-page: 448 year: 2012 end-page: 457 ident: bb0255 article-title: Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats publication-title: Nutr Res – volume: 283 start-page: 3050 year: 2008 end-page: 3058 ident: bb0820 article-title: Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor publication-title: J Biol Chem – volume: 93 start-page: 486 year: 2008 end-page: 491 ident: bb0280 article-title: Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial publication-title: Physiol Behav – volume: 285 start-page: 8340 year: 2010 end-page: 8351 ident: bb0520 article-title: SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 publication-title: J Biol Chem – volume: 119 start-page: 41 year: 2000 end-page: 47 ident: bb0790 article-title: An hydroalcoholic extract of curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention. publication-title: Mech Ageing Dev – volume: 138 start-page: 2156 year: 2008 end-page: 2163 ident: bb0220 article-title: Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue publication-title: J Nutr – volume: 81 start-page: 122 year: 2005 end-page: 129 ident: bb0365 article-title: Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men publication-title: Am J Clin Nutr – volume: 5 start-page: e15441 year: 2010 ident: bb0380 article-title: Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells publication-title: PloS one – volume: 62 start-page: 7241 year: 2002 end-page: 7246 ident: bb0815 article-title: Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells publication-title: Cancer Res – volume: 25 start-page: 1045 year: 1997 end-page: 1050 ident: bb0850 article-title: Absorption, distribution, elimination of tea polyphenols in rats publication-title: Drug Metab Dispos – volume: 11 start-page: 1025 year: 2002 end-page: 1032 ident: bb0860 article-title: Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability publication-title: Cancer Epidemiol Biomarkers Prev – volume: 42 start-page: 818 year: 2008 end-page: 822 ident: bb0945 article-title: The study of insulin resistance and leptin resistance on the model of simplicity obesity rats by curcumin publication-title: Zhonghua yu fang yi xue za zhi – volume: 29 start-page: 31 year: 2010 end-page: 40 ident: bb0290 article-title: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome publication-title: J Am Coll Nutr – volume: 56 start-page: 810 year: 2012 end-page: 821 ident: bb0625 article-title: Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial publication-title: Mol Nutr Food Res – volume: 62 start-page: 245 year: 2010 end-page: 255 ident: bb0910 article-title: (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c publication-title: Cytotechnology – volume: 76 start-page: 1694 year: 2010 end-page: 1698 ident: bb0830 article-title: Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways publication-title: Planta Med – volume: 14 start-page: 612 year: 2011 end-page: 622 ident: bb0620 article-title: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans publication-title: Cell Metab – volume: 286 start-page: 60 year: 2011 end-page: 66 ident: bb0485 article-title: Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L publication-title: J Biol Chem – volume: 101 start-page: 886 year: 2009 end-page: 894 ident: bb0305 article-title: Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial publication-title: Br J Nutr – volume: 56 start-page: 8374 year: 2008 end-page: 8378 ident: bb0420 article-title: Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products publication-title: J Agric Food Chem – volume: 4 start-page: 144 year: 2012 end-page: 145 ident: bb0510 article-title: Using PDE, inhibitors to harness the benefits of calorie restriction: lessons from resveratrol publication-title: Aging – volume: 29 start-page: 615 year: 2005 end-page: 623 ident: bb0210 article-title: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation publication-title: Int J Obes – volume: 27 start-page: 206 year: 2011 end-page: 213 ident: bb0285 article-title: Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome publication-title: Nutrition – volume: 2 start-page: 304 year: 2011 end-page: 316 ident: bb0900 article-title: (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights publication-title: Adv Nutr – volume: 16 start-page: 9652 year: 2008 end-page: 9659 ident: bb0810 article-title: Time-dependent intracellular trafficking of FITC-conjugated epigallocatechin-3- publication-title: Bioorg Med Chem – volume: 65 start-page: 369 year: 2009 end-page: 376 ident: bb0595 article-title: Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet publication-title: J Physiol Biochem – volume: 81 start-page: 1343 year: 2011 end-page: 1351 ident: bb0590 article-title: Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice publication-title: Biochem Pharmacol – volume: 15 start-page: 1473 year: 2007 end-page: 1483 ident: bb0360 article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans publication-title: Obesity – volume: 6 start-page: 286 year: 2012 end-page: 293 ident: bb0495 article-title: Anti-obesity effect of resveratrol-amplified grape skin extracts on 3 T3-L1 adipocytes differentiation publication-title: Nutr Res Pract – volume: 369 start-page: 471 year: 2008 end-page: 477 ident: bb0500 article-title: Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes publication-title: Biochem Biophys Res Commun – volume: 21 start-page: 703 year: 1996 end-page: 707 ident: bb0885 article-title: Absorption and disposition kinetics of the dietary antioxidant quercetin in man publication-title: Free Radic Biol Med – volume: 23 start-page: 379 year: 2012 end-page: 384 ident: bb0475 article-title: Resveratrol regulates lipolysis via adipose triglyceride lipase publication-title: J Nutr Biochem – volume: 89 start-page: 793 year: 2011 end-page: 799 ident: bb0440 article-title: Resveratrol inhibits cell differentiation in 3 T3-L1 adipocytes via activation of AMPK publication-title: Can J Physiol Pharmacol – volume: 9 start-page: 3 year: 2002 end-page: 8 ident: bb0315 article-title: Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity publication-title: Phytomed – volume: 80 start-page: 926 year: 2007 end-page: 931 ident: bb0710 article-title: Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes publication-title: Life Sci – volume: 6 start-page: 499 year: 2012 end-page: 504 ident: bb0460 article-title: Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3 T3-L1 preadipocytes publication-title: Nutr Res Pract – volume: 20 start-page: 3 year: 2012 end-page: 8 ident: bb0715 article-title: Curcumin attenuates lipolysis stimulated by tumor necrosis factor-alpha or isoproterenol in 3 T3-L1 adipocytes publication-title: Phytomed – volume: 22 start-page: 828 year: 2011 end-page: 834 ident: bb0545 article-title: Resveratrol enhances fatty acid oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression in white adipocytes publication-title: J Nutr Biochem – volume: 29 start-page: 562 year: 2013 end-page: 567 ident: bb0555 article-title: Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet publication-title: Nutrition – volume: 127 start-page: 1109 year: 2006 end-page: 1122 ident: bb0530 article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha publication-title: Cell – volume: 91 start-page: 73 year: 2010 end-page: 81 ident: bb0390 article-title: Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis publication-title: Am J Clin Nutr – volume: 10 start-page: 11 year: 2010 ident: bb0575 article-title: Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity publication-title: BMC Physiol – volume: 12 start-page: 50 year: 2011 end-page: 61 ident: bb0005 article-title: Direct medical cost of overweight and obesity in the USA: a quantitative systematic review publication-title: Obes Rev – volume: 136 start-page: 2791 year: 2006 end-page: 2796 ident: bb0805 article-title: Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats publication-title: J Nutr – volume: 297 start-page: C121 year: 2009 end-page: C132 ident: bb0110 article-title: Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway publication-title: Am J Physiol Cell Physiol – volume: 149 start-page: 3549 year: 2008 end-page: 3558 ident: bb0745 article-title: Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity publication-title: Endocrinology – reference: Goran MI, Alderete TL. Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutrition Institute workshop series. 2012;73:49–60; discussion p1-6. – volume: 106 start-page: 1880 year: 2011 end-page: 1889 ident: bb0310 article-title: Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial publication-title: Br J Nutr – volume: 50 start-page: S138 year: 2009 end-page: S143 ident: bb0150 article-title: Fatty acid metabolism: target for metabolic syndrome publication-title: J Lipid Res – volume: 13 start-page: 193 year: 2013 end-page: 199 ident: bb0925 article-title: Resveratrol prevents TNFalpha-induced suppression of adiponectin expression via PPARgamma activation in 3T3-L1 adipocytes publication-title: Clin Exp Med – volume: 21 start-page: 2895 year: 2001 end-page: 2900 ident: bb0665 article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions publication-title: Anticancer Res – volume: 9 start-page: 105 year: 2012 ident: bb0165 article-title: Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6 J mice publication-title: Nutr Metab – volume: 1056 start-page: 206 year: 2005 end-page: 217 ident: bb0645 article-title: Curcumin: getting back to the roots publication-title: Ann N Y Acad Sci – volume: 26 start-page: 396S year: 2007 end-page: 402S ident: bb0335 article-title: Can EGCG reduce abdominal fat in obese subjects? publication-title: J Am Coll Nutr – volume: 56 start-page: 580 year: 2012 end-page: 592 ident: bb0115 article-title: Green tea (−)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway publication-title: Mol Nutr Food Res – volume: 29 start-page: 784 year: 2009 end-page: 793 ident: bb0180 article-title: Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet publication-title: Nutr Res – volume: 4 start-page: 807 year: 2007 end-page: 818 ident: bb0870 article-title: Bioavailability of curcumin: problems and promises publication-title: Mol Pharm – volume: 33 start-page: 26 year: 2012 end-page: 34 ident: bb0025 article-title: Immunity as a link between obesity and insulin resistance publication-title: Mol Aspects Med – reference: Dietary guidelines for Americans. – volume: 5 start-page: 17 year: 2008 ident: bb0685 article-title: Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes publication-title: Nutr Metab – volume: 91 start-page: 5 year: 2010 end-page: 6 ident: bb0010 article-title: Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task publication-title: Am J Clin Nutr – volume: 7 start-page: 1085 year: 1995 end-page: 1097 ident: bb0400 article-title: Stress-induced phenylpropanoid metabolism publication-title: Plant Cell – volume: 77 start-page: 1053 year: 2009 end-page: 1063 ident: bb0610 article-title: Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats publication-title: Biochem Pharmacol – volume: 7 start-page: e38332 year: 2012 ident: bb0215 article-title: Green tea polyphenols reduce body weight in rats by modulating obesity-related genes publication-title: PloS one – volume: 17 start-page: 471 year: 2006 end-page: 478 ident: bb0775 article-title: Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats publication-title: J Nutr Biochem – volume: 138 start-page: 323 year: 2008 end-page: 331 ident: bb0175 article-title: Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury publication-title: J Nutr – volume: 13 start-page: 87 year: 2006 end-page: 98 ident: bb0430 article-title: Comparative studies of the antioxidant effects of cis- and trans-resveratrol publication-title: Curr Med Chem – volume: 30 start-page: 285 year: 2011 end-page: 294 ident: bb0060 article-title: Health effects of mixed fruit and vegetable concentrates: a systematic review of the clinical interventions publication-title: J Am Coll Nutr – volume: 5 start-page: 493 year: 2006 end-page: 506 ident: bb0875 article-title: Therapeutic potential of resveratrol: the in vivo evidence publication-title: Nat Rev Drug Discov – volume: 16 start-page: 1338 year: 2008 end-page: 1348 ident: bb0355 article-title: Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children publication-title: Obesity – volume: 27 start-page: 37 year: 2013 end-page: 48 ident: bb0630 article-title: Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease publication-title: Cardiovasc Drugs Ther – volume: 23 start-page: 1100 year: 2012 end-page: 1112 ident: bb0445 article-title: Resveratrol induces Sirt1-dependent apoptosis in 3 T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression publication-title: J Nutr Biochem – volume: 68 start-page: 729 year: 2010 end-page: 738 ident: bb0640 article-title: Curcumin and obesity: evidence and mechanisms publication-title: Nutr Rev – volume: 128 start-page: 593 year: 1998 end-page: 597 ident: bb0880 article-title: Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects publication-title: J Nutr – volume: 73 start-page: 434 year: 2009 end-page: 436 ident: bb0915 article-title: (−)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes publication-title: Biosci Biotechnol Biochem – volume: 21 start-page: 356 year: 2011 end-page: 361 ident: bb0450 article-title: Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARgamma1-3 mRNA expression in human visceral adipocytes publication-title: Obes Surg – volume: 91 start-page: 280S year: 2010 end-page: 283S ident: bb0015 article-title: An integrative view of obesity publication-title: Am J Clin Nutr – volume: 60 start-page: 8917 year: 2012 end-page: 8923 ident: bb0270 article-title: Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice publication-title: J Agric Food Chem – reference: Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In vivo. 2000;14:481–4. – volume: 32 start-page: 421 year: 2012 end-page: 427 ident: bb0295 article-title: Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients publication-title: Nutr Res – volume: 53 start-page: 5695 year: 2005 end-page: 5701 ident: bb0145 article-title: The apoptotic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the Cdk2 pathway publication-title: J Agric Food Chem – volume: 62 start-page: 1186 year: 2013 end-page: 1195 ident: bb0615 article-title: High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition publication-title: Diabetes – volume: 11 start-page: 1055 year: 2003 end-page: 1064 ident: bb0045 article-title: Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers publication-title: Obes Res – volume: 9 start-page: 161 year: 2003 end-page: 168 ident: bb0655 article-title: Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa) publication-title: J Altern Complement Med – volume: 56 start-page: 509 year: 2007 end-page: 514 ident: bb0800 article-title: Curcumin effects on blood lipid profile in a 6-month human study publication-title: Pharmacol Res – volume: 65 start-page: 361 year: 2007 end-page: 375 ident: bb0075 article-title: Mechanisms and effects of green tea on cardiovascular health publication-title: Nutr Rev – volume: 131 start-page: 2932 year: 2001 end-page: 2935 ident: bb0735 article-title: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue publication-title: J Nutr – reference: policydocument.htm. Accessed on July 4. – volume: 25 start-page: 870 year: 2009 end-page: 878 ident: bb0730 article-title: Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats publication-title: Nutrition – volume: 3 start-page: 94 year: 2012 end-page: 104 ident: bb0755 article-title: Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice publication-title: World J Diabetes – volume: 57 start-page: 1576 year: 2008 end-page: 1583 ident: bb0770 article-title: Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters publication-title: Metabolism – volume: 15 start-page: 303 year: 2004 end-page: 307 ident: bb0535 article-title: New insights into inhibitors of adipogenesis publication-title: Curr Opin Lipidol – volume: 226 start-page: 2721 year: 2011 end-page: 2730 ident: bb0825 article-title: The anti-cancer effects of (−)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells publication-title: J Cell Physiol – volume: 15 start-page: 2571 year: 2007 end-page: 2582 ident: bb0140 article-title: Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3 T3-L1 cells publication-title: Obesity – volume: 92 start-page: 5 year: 2010 end-page: 15 ident: bb0835 article-title: Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner publication-title: Am J Clin Nutr – volume: 68 start-page: 2353 year: 2004 end-page: 2359 ident: bb0090 article-title: Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3 T3-L1 cells publication-title: Biosci Biotechnol Biochem – volume: 429 start-page: 771 year: 2004 end-page: 776 ident: bb0840 article-title: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma publication-title: Nature – volume: 50 start-page: 3337 year: 2002 end-page: 3340 ident: bb0415 article-title: Plant foods and herbal sources of resveratrol publication-title: J Agric Food Chem – volume: 24 start-page: 613 year: 2013 end-page: 623 ident: bb0020 article-title: Modulation of adipose tissue inflammation by bioactive food compounds publication-title: J Nutr Biochem – volume: 12 start-page: 8 year: 2013 ident: bb0600 article-title: Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats publication-title: Lipids health Dis – volume: 37 start-page: 1884 year: 2005 end-page: 1892 ident: bb0260 article-title: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice publication-title: Med Sci Sports Exerc – volume: 8 start-page: e53796 year: 2013 ident: bb0265 article-title: Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARgamma-adiponectin pathway publication-title: PloS one – volume: 14 start-page: 154 year: 2009 end-page: 160 ident: bb0320 article-title: Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial publication-title: Altern Med Rev – volume: 72 start-page: 69 year: 2013 end-page: 82 ident: bb0935 article-title: One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease publication-title: Pharmacol Res – volume: 142 start-page: 57 year: 2012 end-page: 63 ident: bb0230 article-title: Green tea extract suppresses NFkappaB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis publication-title: J Nutr – volume: 32 start-page: 701 year: 2012 end-page: 708 ident: bb0605 article-title: Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet publication-title: Nutr Res – volume: 64 start-page: 353 year: 1998 end-page: 356 ident: bb0865 article-title: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers publication-title: Planta Med – volume: 23 start-page: 361 year: 2012 end-page: 367 ident: bb0190 article-title: Green tea extract protects against nonalcoholic steatohepatitis in publication-title: J Nutr Biochem – volume: 51 start-page: 454 year: 2011 end-page: 463 ident: bb0895 article-title: Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties publication-title: Free Radic Biol Med – volume: 290 start-page: E273 year: 2006 end-page: E281 ident: bb0135 article-title: Inhibitory effect of green tea (−)-epigallocatechin gallate on resistin gene expression in 3 T3-L1 adipocytes depends on the ERK pathway publication-title: Am J Physiol Endocrinol Metab – volume: 59 start-page: 11862 year: 2011 end-page: 11871 ident: bb0185 article-title: Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice publication-title: J Agric Food Chem – volume: 102 start-page: 1611 year: 2009 end-page: 1619 ident: bb0235 article-title: Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models publication-title: Br J Nutr – volume: 91 start-page: 431 year: 2004 end-page: 437 ident: bb0345 article-title: Effects of green tea on weight maintenance after body-weight loss publication-title: Br J Nutr – volume: 30 start-page: 91 year: 1997 end-page: 113 ident: bb0425 article-title: Resveratrol: a molecule whose time has come? And gone? publication-title: Clin Biochem – volume: 22 start-page: 1367 year: 2008 end-page: 1371 ident: bb0480 article-title: Resveratrol induces apoptosis and inhibits adipogenesis in 3 T3-L1 adipocytes publication-title: Phytother Res – volume: 8 start-page: 29 year: 2011 ident: bb0560 article-title: Changes in white adipose tissue metabolism induced by resveratrol in rats publication-title: Nutr Metab – volume: 64 start-page: 146 year: 2011 end-page: 154 ident: bb0245 article-title: Weight control and prevention of metabolic syndrome by green tea publication-title: Pharmacol Res – volume: 12 year: 2012 ident: bb0395 article-title: Green tea for weight loss and weight maintenance in overweight or obese adults publication-title: Cochrane Database Syst Rev – reference: Lazar MA. Resistin- and Obesity-associated metabolic diseases. Hormone and metabolic research=Hormon- und Stoffwechselforschung=Hormones et metabolisme. 2007;39:710–6. – volume: 7 start-page: e28784 year: 2012 ident: bb0700 article-title: Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes publication-title: PloS one – volume: 131 start-page: 1731 year: 2001 end-page: 1737 ident: bb0855 article-title: Catechins are bioavailable in men and women drinking black tea throughout the day publication-title: J Nutr – volume: 66 start-page: 663 year: 2000 end-page: 673 ident: bb0405 article-title: Biological effects of resveratrol publication-title: Life Sci – volume: 47 start-page: 1533 year: 1999 end-page: 1536 ident: bb0410 article-title: Piceid, the major resveratrol derivative in grape juices publication-title: J Agric Food Chem – volume: 162 start-page: 1286 year: 2002 end-page: 1292 ident: bb0035 article-title: Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults publication-title: Arch Intern Med – volume: 49 start-page: 477 year: 2001 end-page: 482 ident: bb0080 article-title: Degradation of green tea catechins in tea drinks publication-title: J Agric Food Chem – volume: 444 start-page: 337 year: 2006 end-page: 342 ident: bb0565 article-title: Resveratrol improves health and survival of mice on a high-calorie diet publication-title: Nature – volume: 139 start-page: 919 year: 2009 end-page: 925 ident: bb0680 article-title: Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice publication-title: J Nutr – volume: 60 start-page: 2928 year: 2011 end-page: 2938 ident: bb0760 article-title: Targeting curcusomes to inflammatory dendritic cells inhibits NF-kappaB and improves insulin resistance in obese mice publication-title: Diabetes – year: 2013 ident: bb0940 article-title: Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet publication-title: J Physiol Biochem – volume: 19 start-page: 800 year: 2003 end-page: 804 ident: bb0785 article-title: Oral administration of a turmeric extract inhibits erythrocyte and liver microsome membrane oxidation in rabbits fed with an atherogenic diet publication-title: Nutrition – volume: 8 start-page: 40 year: 2008 ident: bb0570 article-title: Resveratrol inhibits nonalcoholic fatty liver disease in rats publication-title: BMC Gastroenterol – volume: 32 start-page: 607 year: 2012 end-page: 616 ident: bb0465 article-title: An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis publication-title: Nutr Res – volume: 57 start-page: 305 year: 2009 end-page: 310 ident: bb0695 article-title: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3 T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells publication-title: J Agric Food Chem – volume: 59 start-page: 351 year: 2009 end-page: 354 ident: bb0240 article-title: Weight and plasma lipid control by decaffeinated green tea publication-title: Pharmacol Res – volume: 26 start-page: 997 year: 2011 end-page: 1003 ident: bb0470 article-title: The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3 T3-L1 adipocytes publication-title: Nutr Hosp – volume: 33 start-page: 956 year: 2009 end-page: 961 ident: bb0385 article-title: The effects of green tea on weight loss and weight maintenance: a meta-analysis publication-title: Int J Obes – volume: 364 start-page: 972 year: 2007 end-page: 977 ident: bb0435 article-title: Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3 T3-L1 adipocytes publication-title: Biochem Biophys Res Commun – volume: 153 start-page: 242 year: 2001 end-page: 250 ident: bb0040 article-title: Association between physical activity and markers of inflammation in a healthy elderly population publication-title: Am J Epidemiol – volume: 351 start-page: 19 year: 2011 end-page: 28 ident: bb0720 article-title: Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin publication-title: Mol Cell Biochem – volume: 74 start-page: 619 year: 2009 end-page: 624 ident: bb0525 article-title: Resveratrol is not a direct activator of SIRT1 enzyme activity publication-title: Chem Biol Drug Des – volume: 94 start-page: 1026 year: 2005 end-page: 1034 ident: bb0325 article-title: Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females publication-title: Br J Nutr – volume: 47 start-page: 379 year: 2012 end-page: 390 ident: bb0055 article-title: The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms publication-title: CritRev Biochem Mol Biol – volume: 23 start-page: 467 year: 2009 end-page: 471 ident: bb0205 article-title: Antilipogenic effect of green tea extract in C57BL/6 J-Lep publication-title: Phytother Res – volume: 2013 start-page: 635470 year: 2013 ident: bb0195 article-title: Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet publication-title: Mediators Inflamm – volume: 13 start-page: 982 year: 2005 end-page: 990 ident: bb0130 article-title: Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3 T3-L1 adipocytes publication-title: Obes Res – volume: 22 start-page: 393 year: 2011 end-page: 400 ident: bb0225 article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in publication-title: J Nutr Biochem – volume: 298 start-page: C1510 year: 2010 end-page: C1516 ident: bb0670 article-title: Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling publication-title: Am J Physiol Cell Physiol – volume: 17 start-page: 492 year: 2006 end-page: 498 ident: bb0070 article-title: Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats publication-title: J Nutr Biochem – volume: 18 start-page: 879 year: 2010 end-page: 883 ident: bb0275 article-title: The human visceral fat depot has a unique inflammatory profile publication-title: Obesity – volume: 1 start-page: 276 year: 2002 end-page: 286 ident: bb0550 article-title: Obesity therapy: altering the energy intake-and-expenditure balance sheet publication-title: Nat Rev Drug Discov – volume: 288 start-page: C1094 year: 2005 end-page: C1108 ident: bb0095 article-title: Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the ERK and Cdk2 pathways publication-title: Am J Physiol Cell Physiol – volume: 358 start-page: 281 year: 2011 end-page: 285 ident: bb0675 article-title: Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway publication-title: Mol Cell Biochem – volume: 27 start-page: 363 year: 2008 end-page: 370 ident: bb0340 article-title: Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial publication-title: Clin Nutr – volume: 89 start-page: 779 year: 2011 end-page: 785 ident: bb0905 article-title: (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression publication-title: Life Sci – volume: 107 start-page: 202 year: 2012 end-page: 210 ident: bb0585 article-title: Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress publication-title: Br J Nutr – volume: 338 start-page: 694 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0100 article-title: Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.09.195 – volume: 127 start-page: 1109 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0530 article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha publication-title: Cell doi: 10.1016/j.cell.2006.11.013 – volume: 42 start-page: 818 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0945 article-title: The study of insulin resistance and leptin resistance on the model of simplicity obesity rats by curcumin publication-title: Zhonghua yu fang yi xue za zhi – volume: 5 start-page: 493 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0875 article-title: Therapeutic potential of resveratrol: the in vivo evidence publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2060 – volume: 1056 start-page: 206 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0645 article-title: Curcumin: getting back to the roots publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1352.010 – volume: 62 start-page: 1186 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0615 article-title: High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition publication-title: Diabetes doi: 10.2337/db12-0975 – volume: 98 start-page: 115 year: 1999 ident: 10.1016/j.jnutbio.2013.09.001_bb0515 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 publication-title: Cell doi: 10.1016/S0092-8674(00)80611-X – volume: 283 start-page: 3050 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0820 article-title: Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor publication-title: J Biol Chem doi: 10.1074/jbc.M707892200 – volume: 8 start-page: 29 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0560 article-title: Changes in white adipose tissue metabolism induced by resveratrol in rats publication-title: Nutr Metab doi: 10.1186/1743-7075-8-29 – volume: 29 start-page: 784 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0180 article-title: Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet publication-title: Nutr Res doi: 10.1016/j.nutres.2009.10.003 – volume: 286 start-page: 60 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0485 article-title: Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L publication-title: J Biol Chem doi: 10.1074/jbc.M110.188144 – volume: 91 start-page: 431 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0345 article-title: Effects of green tea on weight maintenance after body-weight loss publication-title: Br J Nutr doi: 10.1079/BJN20041061 – volume: 1 start-page: 276 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0550 article-title: Obesity therapy: altering the energy intake-and-expenditure balance sheet publication-title: Nat Rev Drug Discov doi: 10.1038/nrd770 – volume: 56 start-page: 509 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0800 article-title: Curcumin effects on blood lipid profile in a 6-month human study publication-title: Pharmacol Res doi: 10.1016/j.phrs.2007.09.013 – volume: 22 start-page: 393 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0225 article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.03.009 – volume: 136 start-page: 2791 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0805 article-title: Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats publication-title: J Nutr doi: 10.1093/jn/136.11.2791 – volume: 15 start-page: 303 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0535 article-title: New insights into inhibitors of adipogenesis publication-title: Curr Opin Lipidol doi: 10.1097/00041433-200406000-00010 – volume: 14 start-page: 612 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0620 article-title: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans publication-title: Cell Metab doi: 10.1016/j.cmet.2011.10.002 – year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0940 article-title: Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet publication-title: J Physiol Biochem – volume: 62 start-page: 245 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0910 article-title: (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c publication-title: Cytotechnology doi: 10.1007/s10616-010-9285-x – volume: 23 start-page: 467 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0205 article-title: Antilipogenic effect of green tea extract in C57BL/6 J-Lep ob/ob mice publication-title: Phytother Res doi: 10.1002/ptr.2647 – volume: 8 start-page: e53796 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0265 article-title: Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARgamma-adiponectin pathway publication-title: PloS one doi: 10.1371/journal.pone.0053796 – volume: 62 start-page: 7241 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0815 article-title: Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells publication-title: Cancer Res – volume: 139 start-page: 264 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0350 article-title: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults publication-title: J Nutr doi: 10.3945/jn.108.098293 – ident: 10.1016/j.jnutbio.2013.09.001_bb0920 – volume: 2 start-page: 737 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0650 article-title: Dietary polyphenols and obesity publication-title: Nutrients doi: 10.3390/nu2070737 – volume: 24 start-page: 960 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0930 article-title: Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2012.06.019 – volume: 56 start-page: 8374 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0420 article-title: Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products publication-title: J Agric Food Chem doi: 10.1021/jf801297w – volume: 23 start-page: 1088 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0120 article-title: Inhibitory effects of green tea catechin on the lipid accumulation in 3 T3-L1 adipocytes publication-title: Phytother Res doi: 10.1002/ptr.2737 – volume: 25 start-page: 1045 year: 1997 ident: 10.1016/j.jnutbio.2013.09.001_bb0850 article-title: Absorption, distribution, elimination of tea polyphenols in rats publication-title: Drug Metab Dispos – volume: 9 start-page: 105 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0165 article-title: Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6 J mice publication-title: Nutr Metab doi: 10.1186/1743-7075-9-105 – ident: 10.1016/j.jnutbio.2013.09.001_bb0155 doi: 10.1055/s-2007-985897 – volume: 101 start-page: 886 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0305 article-title: Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial publication-title: Br J Nutr doi: 10.1017/S0007114508047727 – volume: 22 start-page: 1367 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0480 article-title: Resveratrol induces apoptosis and inhibits adipogenesis in 3 T3-L1 adipocytes publication-title: Phytother Res doi: 10.1002/ptr.2503 – volume: 106 start-page: S198 issue: Suppl 1 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0780 article-title: Effect of citrus polyphenol- and curcumin-supplemented diet on inflammatory state in obese cats publication-title: Br J Nutr doi: 10.1017/S0007114511002492 – volume: 70 start-page: 1040 year: 1999 ident: 10.1016/j.jnutbio.2013.09.001_bb0330 article-title: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans publication-title: Am J Clin Nutr doi: 10.1093/ajcn/70.6.1040 – volume: 23 start-page: 361 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0190 article-title: Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2011.01.001 – volume: 29 start-page: 31 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0290 article-title: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome publication-title: J Am Coll Nutr doi: 10.1080/07315724.2010.10719814 – volume: 13 start-page: 193 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0925 article-title: Resveratrol prevents TNFalpha-induced suppression of adiponectin expression via PPARgamma activation in 3T3-L1 adipocytes publication-title: Clin Exp Med doi: 10.1007/s10238-012-0189-2 – volume: 76 start-page: 1694 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0830 article-title: Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways publication-title: Planta Med doi: 10.1055/s-0030-1249877 – volume: 94 start-page: 1026 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0325 article-title: Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females publication-title: Br J Nutr doi: 10.1079/BJN20051580 – volume: 91 start-page: 280S year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0015 article-title: An integrative view of obesity publication-title: Am J Clin Nutr doi: 10.3945/ajcn.2009.28473B – volume: 22 start-page: 32 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0705 article-title: Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3 T3-L1 adipocytes through NF-kappaB and JNK pathway publication-title: Biomed Environ Sci doi: 10.1016/S0895-3988(09)60019-2 – volume: 138 start-page: 323 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0175 article-title: Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury publication-title: J Nutr doi: 10.1093/jn/138.2.323 – volume: 429 start-page: 771 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0840 article-title: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma publication-title: Nature doi: 10.1038/nature02583 – volume: 52 start-page: 6794 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0890 article-title: Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry publication-title: J Agric Food Chem doi: 10.1021/jf040274w – volume: 64 start-page: 704 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0375 article-title: Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2010.47 – volume: 50 start-page: 3337 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0415 article-title: Plant foods and herbal sources of resveratrol publication-title: J Agric Food Chem doi: 10.1021/jf0112973 – volume: 10 start-page: 11 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0575 article-title: Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity publication-title: BMC Physiol doi: 10.1186/1472-6793-10-11 – volume: 21 start-page: 2895 year: 2001 ident: 10.1016/j.jnutbio.2013.09.001_bb0665 article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions publication-title: Anticancer Res – volume: 285 start-page: 8340 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0520 article-title: SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 publication-title: J Biol Chem doi: 10.1074/jbc.M109.088682 – volume: 37 start-page: 1884 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0260 article-title: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice publication-title: Med Sci Sports Exerc doi: 10.1249/01.mss.0000178062.66981.a8 – volume: 47 start-page: 379 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0055 article-title: The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms publication-title: CritRev Biochem Mol Biol – volume: 60 start-page: 8917 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0270 article-title: Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice publication-title: J Agric Food Chem doi: 10.1021/jf2053788 – volume: 27 start-page: 206 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0285 article-title: Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome publication-title: Nutrition doi: 10.1016/j.nut.2010.01.015 – volume: 6 start-page: 286 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0495 article-title: Anti-obesity effect of resveratrol-amplified grape skin extracts on 3 T3-L1 adipocytes differentiation publication-title: Nutr Res Pract doi: 10.4162/nrp.2012.6.4.286 – volume: 8 start-page: 40 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0570 article-title: Resveratrol inhibits nonalcoholic fatty liver disease in rats publication-title: BMC Gastroenterol doi: 10.1186/1471-230X-8-40 – volume: 149 start-page: 3549 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0745 article-title: Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity publication-title: Endocrinology doi: 10.1210/en.2008-0262 – volume: 30 start-page: 91 year: 1997 ident: 10.1016/j.jnutbio.2013.09.001_bb0425 article-title: Resveratrol: a molecule whose time has come? And gone? publication-title: Clin Biochem doi: 10.1016/S0009-9120(96)00155-5 – volume: 12 start-page: 50 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0005 article-title: Direct medical cost of overweight and obesity in the USA: a quantitative systematic review publication-title: Obes Rev doi: 10.1111/j.1467-789X.2009.00708.x – volume: 63 start-page: 2118 year: 1999 ident: 10.1016/j.jnutbio.2013.09.001_bb0765 article-title: Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.63.2118 – volume: 11 start-page: 1055 year: 2003 ident: 10.1016/j.jnutbio.2013.09.001_bb0045 article-title: Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers publication-title: Obes Res doi: 10.1038/oby.2003.145 – volume: 64 start-page: 146 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0245 article-title: Weight control and prevention of metabolic syndrome by green tea publication-title: Pharmacol Res doi: 10.1016/j.phrs.2010.12.013 – volume: 64 start-page: 353 year: 1998 ident: 10.1016/j.jnutbio.2013.09.001_bb0865 article-title: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers publication-title: Planta Med doi: 10.1055/s-2006-957450 – volume: 12 start-page: 8 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0600 article-title: Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats publication-title: Lipids health Dis doi: 10.1186/1476-511X-12-8 – volume: 22 start-page: 910 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0690 article-title: Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.08.003 – volume: 59 start-page: 11862 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0185 article-title: Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice publication-title: J Agric Food Chem doi: 10.1021/jf2029016 – volume: 226 start-page: 2721 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0825 article-title: The anti-cancer effects of (−)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells publication-title: J Cell Physiol doi: 10.1002/jcp.22623 – volume: 17 start-page: 492 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0070 article-title: Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2006.03.004 – volume: 21 start-page: 356 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0450 article-title: Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARgamma1-3 mRNA expression in human visceral adipocytes publication-title: Obes Surg doi: 10.1007/s11695-010-0251-7 – volume: 290 start-page: E273 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0135 article-title: Inhibitory effect of green tea (−)-epigallocatechin gallate on resistin gene expression in 3 T3-L1 adipocytes depends on the ERK pathway publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00325.2005 – volume: 50 start-page: S138 issue: Suppl year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0150 article-title: Fatty acid metabolism: target for metabolic syndrome publication-title: J Lipid Res doi: 10.1194/jlr.R800079-JLR200 – volume: 119 start-page: 41 year: 2000 ident: 10.1016/j.jnutbio.2013.09.001_bb0790 article-title: An hydroalcoholic extract of curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention. publication-title: Mech Ageing Dev doi: 10.1016/S0047-6374(00)00169-X – volume: 7 start-page: 1085 year: 1995 ident: 10.1016/j.jnutbio.2013.09.001_bb0400 article-title: Stress-induced phenylpropanoid metabolism publication-title: Plant Cell doi: 10.2307/3870059 – volume: 24 start-page: 613 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0020 article-title: Modulation of adipose tissue inflammation by bioactive food compounds publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2012.12.013 – volume: 2 start-page: 304 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0900 article-title: (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights publication-title: Adv Nutr doi: 10.3945/an.111.000505 – volume: 57 start-page: 305 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0695 article-title: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3 T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells publication-title: J Agric Food Chem doi: 10.1021/jf802737z – volume: 91 start-page: 5 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0010 article-title: Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task publication-title: Am J Clin Nutr doi: 10.3945/ajcn.2009.28933 – volume: 16 start-page: 1338 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0355 article-title: Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children publication-title: Obesity doi: 10.1038/oby.2008.60 – volume: 91 start-page: 73 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0390 article-title: Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis publication-title: Am J Clin Nutr doi: 10.3945/ajcn.2009.28157 – volume: 56 start-page: 810 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0625 article-title: Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201100673 – volume: 4 start-page: 807 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0870 article-title: Bioavailability of curcumin: problems and promises publication-title: Mol Pharm doi: 10.1021/mp700113r – volume: 89 start-page: 779 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0905 article-title: (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression publication-title: Life Sci doi: 10.1016/j.lfs.2011.09.006 – volume: 92 start-page: 5 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0835 article-title: Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner publication-title: Am J Clin Nutr doi: 10.3945/ajcn.2009.28435 – volume: 23 start-page: 1100 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0445 article-title: Resveratrol induces Sirt1-dependent apoptosis in 3 T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2011.06.003 – volume: 9 start-page: 161 year: 2003 ident: 10.1016/j.jnutbio.2013.09.001_bb0655 article-title: Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa) publication-title: J Altern Complement Med doi: 10.1089/107555303321223035 – volume: 32 start-page: 607 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0465 article-title: An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis publication-title: Nutr Res doi: 10.1016/j.nutres.2012.06.014 – volume: 73 start-page: 434 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0915 article-title: (−)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.80563 – volume: 3 start-page: 94 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0755 article-title: Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice publication-title: World J Diabetes doi: 10.4239/wjd.v3.i5.94 – volume: 25 start-page: 870 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0730 article-title: Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats publication-title: Nutrition doi: 10.1016/j.nut.2009.02.001 – ident: 10.1016/j.jnutbio.2013.09.001_bb0065 – volume: 9 start-page: 3 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0315 article-title: Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity publication-title: Phytomed doi: 10.1078/0944-7113-00078 – volume: 75 start-page: 787 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0660 article-title: Curcumin as “Curecumin”: from kitchen to clinic publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2007.08.016 – volume: 12 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0395 article-title: Green tea for weight loss and weight maintenance in overweight or obese adults publication-title: Cochrane Database Syst Rev – volume: 22 start-page: 828 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0545 article-title: Resveratrol enhances fatty acid oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression in white adipocytes publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.07.007 – volume: 13 start-page: 87 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0430 article-title: Comparative studies of the antioxidant effects of cis- and trans-resveratrol publication-title: Curr Med Chem doi: 10.2174/092986706775197962 – volume: 153 start-page: 242 year: 2001 ident: 10.1016/j.jnutbio.2013.09.001_bb0040 article-title: Association between physical activity and markers of inflammation in a healthy elderly population publication-title: Am J Epidemiol doi: 10.1093/aje/153.3.242 – volume: 369 start-page: 471 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0500 article-title: Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.02.034 – volume: 15 start-page: 1473 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0360 article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans publication-title: Obesity doi: 10.1038/oby.2007.176 – volume: 131 start-page: 1731 year: 2001 ident: 10.1016/j.jnutbio.2013.09.001_bb0855 article-title: Catechins are bioavailable in men and women drinking black tea throughout the day publication-title: J Nutr doi: 10.1093/jn/131.6.1731 – volume: 19 start-page: 800 year: 2003 ident: 10.1016/j.jnutbio.2013.09.001_bb0785 article-title: Oral administration of a turmeric extract inhibits erythrocyte and liver microsome membrane oxidation in rabbits fed with an atherogenic diet publication-title: Nutrition doi: 10.1016/S0899-9007(03)00093-5 – volume: 138 start-page: 1677 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0170 article-title: The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice publication-title: J Nutr doi: 10.1093/jn/138.9.1677 – volume: 26 start-page: 389S year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0300 article-title: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study publication-title: J Am Coll Nutr doi: 10.1080/07315724.2007.10719627 – volume: 7 start-page: e28784 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0700 article-title: Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes publication-title: PloS one doi: 10.1371/journal.pone.0028784 – volume: 107 start-page: 202 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0585 article-title: Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress publication-title: Br J Nutr doi: 10.1017/S0007114511002753 – volume: 57 start-page: 1576 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0770 article-title: Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters publication-title: Metabolism doi: 10.1016/j.metabol.2008.06.014 – volume: 18 start-page: 879 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0275 article-title: The human visceral fat depot has a unique inflammatory profile publication-title: Obesity doi: 10.1038/oby.2010.22 – volume: 93 start-page: 486 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0280 article-title: Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial publication-title: Physiol Behav doi: 10.1016/j.physbeh.2007.10.009 – volume: 81 start-page: 122 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0365 article-title: Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men publication-title: Am J Clin Nutr doi: 10.1093/ajcn/81.1.122 – volume: 114 start-page: 207 year: 2000 ident: 10.1016/j.jnutbio.2013.09.001_bb0795 article-title: An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen publication-title: Mech Ageing Dev doi: 10.1016/S0047-6374(00)00089-0 – volume: 29 start-page: 615 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0210 article-title: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation publication-title: Int J Obes doi: 10.1038/sj.ijo.0802926 – volume: 65 start-page: 369 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0595 article-title: Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet publication-title: J Physiol Biochem doi: 10.1007/BF03185932 – volume: 13 start-page: 982 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0130 article-title: Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3 T3-L1 adipocytes publication-title: Obes Res doi: 10.1038/oby.2005.115 – volume: 148 start-page: 421 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0505 article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases publication-title: Cell doi: 10.1016/j.cell.2012.01.017 – volume: 66 start-page: 663 year: 2000 ident: 10.1016/j.jnutbio.2013.09.001_bb0405 article-title: Biological effects of resveratrol publication-title: Life Sci doi: 10.1016/S0024-3205(99)00410-5 – volume: 139 start-page: 919 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0680 article-title: Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice publication-title: J Nutr doi: 10.3945/jn.108.100966 – volume: 26 start-page: 997 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0470 article-title: The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3 T3-L1 adipocytes publication-title: Nutr Hosp – volume: 51 start-page: 454 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0895 article-title: Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2011.04.032 – volume: 20 start-page: 3 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0715 article-title: Curcumin attenuates lipolysis stimulated by tumor necrosis factor-alpha or isoproterenol in 3 T3-L1 adipocytes publication-title: Phytomed doi: 10.1016/j.phymed.2012.09.003 – volume: 32 start-page: 448 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0255 article-title: Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats publication-title: Nutr Res doi: 10.1016/j.nutres.2012.05.001 – volume: 11 start-page: 1025 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0860 article-title: Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability publication-title: Cancer Epidemiol Biomarkers Prev – volume: 298 start-page: C1510 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0670 article-title: Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00369.2009 – volume: 128 start-page: 593 year: 1998 ident: 10.1016/j.jnutbio.2013.09.001_bb0880 article-title: Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects publication-title: J Nutr doi: 10.1093/jn/128.3.593 – volume: 53 start-page: 5695 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0145 article-title: The apoptotic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the Cdk2 pathway publication-title: J Agric Food Chem doi: 10.1021/jf050045p – ident: 10.1016/j.jnutbio.2013.09.001_bb0030 doi: 10.1159/000341287 – volume: 142 start-page: 57 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0230 article-title: Green tea extract suppresses NFkappaB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis publication-title: J Nutr doi: 10.3945/jn.111.148544 – volume: 23 start-page: 379 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0475 article-title: Resveratrol regulates lipolysis via adipose triglyceride lipase publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.12.014 – volume: 92 start-page: 789 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0455 article-title: Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses publication-title: Biochimie doi: 10.1016/j.biochi.2010.02.024 – volume: 21 start-page: 703 year: 1996 ident: 10.1016/j.jnutbio.2013.09.001_bb0885 article-title: Absorption and disposition kinetics of the dietary antioxidant quercetin in man publication-title: Free Radic Biol Med doi: 10.1016/0891-5849(96)00129-3 – volume: 47 start-page: 1533 year: 1999 ident: 10.1016/j.jnutbio.2013.09.001_bb0410 article-title: Piceid, the major resveratrol derivative in grape juices publication-title: J Agric Food Chem doi: 10.1021/jf981024g – volume: 358 start-page: 281 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0675 article-title: Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway publication-title: Mol Cell Biochem doi: 10.1007/s11010-011-0978-z – volume: 4 start-page: 144 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0510 article-title: Using PDE, inhibitors to harness the benefits of calorie restriction: lessons from resveratrol publication-title: Aging doi: 10.18632/aging.100442 – volume: 351 start-page: 19 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0720 article-title: Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin publication-title: Mol Cell Biochem doi: 10.1007/s11010-010-0707-z – volume: 444 start-page: 337 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0565 article-title: Resveratrol improves health and survival of mice on a high-calorie diet publication-title: Nature doi: 10.1038/nature05354 – volume: 77 start-page: 1053 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0610 article-title: Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2008.11.027 – volume: 60 start-page: 2928 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0760 article-title: Targeting curcusomes to inflammatory dendritic cells inhibits NF-kappaB and improves insulin resistance in obese mice publication-title: Diabetes doi: 10.2337/db11-0275 – volume: 6 start-page: 499 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0460 article-title: Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3 T3-L1 preadipocytes publication-title: Nutr Res Pract doi: 10.4162/nrp.2012.6.6.499 – volume: 72 start-page: 69 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0935 article-title: One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease publication-title: Pharmacol Res doi: 10.1016/j.phrs.2013.03.011 – volume: 33 start-page: 26 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0025 article-title: Immunity as a link between obesity and insulin resistance publication-title: Mol Aspects Med doi: 10.1016/j.mam.2011.10.011 – volume: 29 start-page: 562 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0555 article-title: Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet publication-title: Nutrition doi: 10.1016/j.nut.2012.09.011 – volume: 30 start-page: 285 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0060 article-title: Health effects of mixed fruit and vegetable concentrates: a systematic review of the clinical interventions publication-title: J Am Coll Nutr doi: 10.1080/07315724.2011.10719971 – volume: 32 start-page: 701 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0605 article-title: Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet publication-title: Nutr Res doi: 10.1016/j.nutres.2012.08.004 – volume: 56 start-page: 580 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0115 article-title: Green tea (−)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201100438 – volume: 65 start-page: 361 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0075 article-title: Mechanisms and effects of green tea on cardiovascular health publication-title: Nutr Rev doi: 10.1111/j.1753-4887.2007.tb00314.x – volume: 288 start-page: C1094 year: 2005 ident: 10.1016/j.jnutbio.2013.09.001_bb0095 article-title: Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the ERK and Cdk2 pathways publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00569.2004 – volume: 27 start-page: 37 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0630 article-title: Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease publication-title: Cardiovasc Drugs Ther doi: 10.1007/s10557-012-6427-8 – volume: 81 start-page: 1343 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0590 article-title: Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2011.03.012 – volume: 106 start-page: 1880 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0310 article-title: Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial publication-title: Br J Nutr doi: 10.1017/S0007114511002376 – volume: 89 start-page: 793 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0440 article-title: Resveratrol inhibits cell differentiation in 3 T3-L1 adipocytes via activation of AMPK publication-title: Can J Physiol Pharmacol – volume: 162 start-page: 1286 year: 2002 ident: 10.1016/j.jnutbio.2013.09.001_bb0035 article-title: Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults publication-title: Arch Intern Med doi: 10.1001/archinte.162.11.1286 – volume: 7 start-page: e38332 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0215 article-title: Green tea polyphenols reduce body weight in rats by modulating obesity-related genes publication-title: PloS one doi: 10.1371/journal.pone.0038332 – volume: 2013 start-page: 635470 year: 2013 ident: 10.1016/j.jnutbio.2013.09.001_bb0195 article-title: Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet publication-title: Mediators Inflamm doi: 10.1155/2013/635470 – volume: 5 start-page: e15441 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0380 article-title: Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells publication-title: PloS one doi: 10.1371/journal.pone.0015441 – volume: 138 start-page: 2156 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0220 article-title: Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue publication-title: J Nutr doi: 10.1093/jn/138.11.2156 – volume: 102 start-page: 1611 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0235 article-title: Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models publication-title: Br J Nutr doi: 10.1017/S000711450999208X – volume: 5 start-page: 17 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0685 article-title: Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes publication-title: Nutr Metab doi: 10.1186/1743-7075-5-17 – volume: 80 start-page: 926 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0710 article-title: Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes publication-title: Life Sci doi: 10.1016/j.lfs.2006.11.030 – volume: 15 start-page: 2571 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0140 article-title: Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3 T3-L1 cells publication-title: Obesity doi: 10.1038/oby.2007.309 – volume: 14 start-page: 154 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0320 article-title: Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial publication-title: Altern Med Rev – volume: 26 start-page: 396S year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0335 article-title: Can EGCG reduce abdominal fat in obese subjects? publication-title: J Am Coll Nutr doi: 10.1080/07315724.2007.10719628 – volume: 59 start-page: 1012 year: 2011 ident: 10.1016/j.jnutbio.2013.09.001_bb0845 article-title: Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property publication-title: J Agric Food Chem doi: 10.1021/jf103873k – volume: 297 start-page: C121 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0110 article-title: Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00272.2008 – volume: 68 start-page: 2353 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0090 article-title: Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3 T3-L1 cells publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.68.2353 – volume: 49 start-page: 477 year: 2001 ident: 10.1016/j.jnutbio.2013.09.001_bb0080 article-title: Degradation of green tea catechins in tea drinks publication-title: J Agric Food Chem doi: 10.1021/jf000877h – volume: 33 start-page: 956 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0385 article-title: The effects of green tea on weight loss and weight maintenance: a meta-analysis publication-title: Int J Obes doi: 10.1038/ijo.2009.135 – volume: 22 start-page: 135 year: 2004 ident: 10.1016/j.jnutbio.2013.09.001_bb0160 article-title: Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors publication-title: Biofactors doi: 10.1002/biof.5520220126 – volume: 36 start-page: 735 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0200 article-title: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet publication-title: Int J Obes doi: 10.1038/ijo.2011.136 – volume: 59 start-page: 351 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0240 article-title: Weight and plasma lipid control by decaffeinated green tea publication-title: Pharmacol Res doi: 10.1016/j.phrs.2009.01.015 – volume: 16 start-page: 9652 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0810 article-title: Time-dependent intracellular trafficking of FITC-conjugated epigallocatechin-3-O-gallate in L-929 cells publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2008.10.009 – volume: 74 start-page: 619 year: 2009 ident: 10.1016/j.jnutbio.2013.09.001_bb0525 article-title: Resveratrol is not a direct activator of SIRT1 enzyme activity publication-title: Chem Biol Drug Des doi: 10.1111/j.1747-0285.2009.00901.x – volume: 100 start-page: 1307 year: 1970 ident: 10.1016/j.jnutbio.2013.09.001_bb0725 article-title: Effect of curcumin on serum and liver cholesterol levels in the rat publication-title: J Nutr doi: 10.1093/jn/100.11.1307 – volume: 17 start-page: 471 year: 2006 ident: 10.1016/j.jnutbio.2013.09.001_bb0775 article-title: Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2005.09.005 – volume: 149 start-page: 315 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0370 article-title: Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients publication-title: Biol Trace Elem Res doi: 10.1007/s12011-012-9448-z – volume: 364 start-page: 972 year: 2007 ident: 10.1016/j.jnutbio.2013.09.001_bb0435 article-title: Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3 T3-L1 adipocytes publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.10.109 – volume: 131 start-page: 2932 year: 2001 ident: 10.1016/j.jnutbio.2013.09.001_bb0735 article-title: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue publication-title: J Nutr doi: 10.1093/jn/131.11.2932 – volume: 27 start-page: 363 year: 2008 ident: 10.1016/j.jnutbio.2013.09.001_bb0340 article-title: Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial publication-title: Clin Nutr doi: 10.1016/j.clnu.2008.03.007 – volume: 68 start-page: 729 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0640 article-title: Curcumin and obesity: evidence and mechanisms publication-title: Nutr Rev doi: 10.1111/j.1753-4887.2010.00341.x – volume: 32 start-page: 421 year: 2012 ident: 10.1016/j.jnutbio.2013.09.001_bb0295 article-title: Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients publication-title: Nutr Res doi: 10.1016/j.nutres.2012.05.007 – volume: 635 start-page: 1 year: 2010 ident: 10.1016/j.jnutbio.2013.09.001_bb0540 article-title: Resveratrol, obesity and diabetes publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2010.02.054 – reference: 12038947 - Arch Intern Med. 2002 Jun 10;162(11):1286-92 – reference: 11157411 - Am J Epidemiol. 2001 Feb 1;153(3):242-50 – reference: 21885868 - Diabetes. 2011 Nov;60(11):2928-38 – reference: 20605696 - Nutrition. 2011 Feb;27(2):206-13 – reference: 20188786 - Biochimie. 2010 Jul;92(7):789-96 – reference: 16351782 - Br J Nutr. 2005 Dec;94(6):1026-34 – reference: 22749178 - Nutr Res. 2012 Jun;32(6):421-7 – reference: 22017765 - Can J Physiol Pharmacol. 2011 Nov;89(11):793-9 – reference: 22720713 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):379-90 – reference: 23342006 - PLoS One. 2013;8(1):e53796 – reference: 18710606 - Br J Nutr. 2009 Mar;101(6):886-94 – reference: 16286857 - Med Sci Sports Exerc. 2005 Nov;37(11):1884-92 – reference: 22254051 - Nutrients. 2010 Jul;2(7):737-51 – reference: 18759443 - J Agric Food Chem. 2008 Sep 24;56(18):8374-8 – reference: 17952831 - Horm Metab Res. 2007 Oct;39(10):710-6 – reference: 21091916 - Nutr Rev. 2010 Dec;68(12):729-38 – reference: 10945161 - In Vivo. 2000 Jul-Aug;14(4):481-4 – reference: 17999464 - Mol Pharm. 2007 Nov-Dec;4(6):807-18 – reference: 23431242 - Mediators Inflamm. 2013;2013:635470 – reference: 12376503 - Cancer Epidemiol Biomarkers Prev. 2002 Oct;11(10 Pt 1):1025-32 – reference: 17112576 - Cell. 2006 Dec 15;127(6):1109-22 – reference: 8891673 - Free Radic Biol Med. 1996;21(5):703-7 – reference: 22977681 - Nutr Res Pract. 2012 Aug;6(4):286-93 – reference: 19202275 - Biosci Biotechnol Biochem. 2009 Feb;73(2):434-6 – reference: 11712783 - Anticancer Res. 2001 Jul-Aug;21(4B):2895-900 – reference: 9482769 - J Nutr. 1998 Mar;128(3):593-7 – reference: 23193181 - Diabetes. 2013 Apr;62(4):1186-95 – reference: 12972675 - Obes Res. 2003 Sep;11(9):1055-64 – reference: 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24 – reference: 19594224 - Altern Med Rev. 2009 Jun;14(2):154-60 – reference: 15175761 - Nature. 2004 Jun 17;429(6993):771-6 – reference: 11924761 - Phytomedicine. 2002 Jan;9(1):3-8 – reference: 10584049 - Am J Clin Nutr. 1999 Dec;70(6):1040-5 – reference: 22072344 - Nutr Hosp. 2011 Sep-Oct;26(5):997-1003 – reference: 19074207 - J Nutr. 2009 Feb;139(2):264-70 – reference: 23430567 - J Physiol Biochem. 2013 Dec;69(4):677-86 – reference: 23084643 - Nutr Res. 2012 Sep;32(9):701-8 – reference: 12921893 - Nutrition. 2003 Sep;19(9):800-4 – reference: 22304913 - Cell. 2012 Feb 3;148(3):421-33 – reference: 16263255 - J Nutr Biochem. 2006 Jul;17(7):471-8 – reference: 22253696 - PLoS One. 2012;7(1):e28784 – reference: 20358350 - J Physiol Biochem. 2009 Dec;65(4):369-76 – reference: 15738931 - Int J Obes (Lond). 2005 Jun;29(6):615-23 – reference: 23374859 - Lipids Health Dis. 2013;12:8 – reference: 21748336 - Mol Cell Biochem. 2011 Dec;358(1-2):281-5 – reference: 17056802 - J Nutr. 2006 Nov;136(11):2791-6 – reference: 19416635 - Pharmacol Res. 2009 May;59(5):351-4 – reference: 18549505 - Nutr Metab (Lond). 2008 Jun 12;5:17 – reference: 19047759 - J Lipid Res. 2009 Apr;50 Suppl:S138-43 – reference: 19398300 - Nutrition. 2009 Jul-Aug;25(7-8):870-8 – reference: 19597519 - Int J Obes (Lond). 2009 Sep;33(9):956-61 – reference: 20655714 - J Nutr Biochem. 2011 Apr;22(4):393-400 – reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42 – reference: 21124793 - PLoS One. 2010;5(11):e15441 – reference: 23557933 - Pharmacol Res. 2013 Jun;72:69-82 – reference: 18688788 - Phytother Res. 2008 Oct;22(10):1367-71 – reference: 18940397 - Metabolism. 2008 Nov;57(11):1576-83 – reference: 20596890 - Cytotechnology. 2010 Jul;62(3):245-55 – reference: 20595643 - J Am Coll Nutr. 2010 Feb;29(1):31-40 – reference: 22137261 - J Nutr Biochem. 2012 Sep;23(9):1100-12 – reference: 22416799 - J Agric Food Chem. 2012 Sep 12;60(36):8917-23 – reference: 23181558 - Nutr Metab (Lond). 2012 Nov 26;9(1):105 – reference: 11040400 - Mech Ageing Dev. 2000 Oct 20;119(1-2):41-7 – reference: 21221723 - Mol Cell Biochem. 2011 May;351(1-2):19-28 – reference: 22581111 - Biol Trace Elem Res. 2012 Dec;149(3):315-22 – reference: 19462685 - Biomed Environ Sci. 2009 Feb;22(1):32-9 – reference: 22645638 - World J Diabetes. 2012 May 15;3(5):94-104 – reference: 20372175 - Eur J Clin Nutr. 2010 Jul;64(7):704-13 – reference: 15630268 - Biofactors. 2004;22(1-4):135-40 – reference: 21736785 - Br J Nutr. 2011 Dec;106(12):1880-9 – reference: 20569453 - BMC Physiol. 2010;10:11 – reference: 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 – reference: 19923373 - Am J Clin Nutr. 2010 Jan;91(1):280S-283S – reference: 23083815 - Phytomedicine. 2012 Dec 15;20(1):3-8 – reference: 21543206 - J Nutr Biochem. 2012 Apr;23(4):379-84 – reference: 17557985 - Obesity (Silver Spring). 2007 Jun;15(6):1473-83 – reference: 22749181 - Nutr Res. 2012 Jun;32(6):448-57 – reference: 19100718 - Biochem Pharmacol. 2009 Mar 15;77(6):1053-63 – reference: 10564012 - J Agric Food Chem. 1999 Apr;47(4):1533-6 – reference: 23498665 - J Nutr Biochem. 2013 Apr;24(4):613-23 – reference: 21750518 - Int J Obes (Lond). 2012 May;36(5):735-43 – reference: 16457641 - Curr Med Chem. 2006;13(1):87-98 – reference: 19176142 - Zhonghua Yu Fang Yi Xue Za Zhi. 2008 Nov;42(11):818-22 – reference: 23128765 - Nestle Nutr Inst Workshop Ser. 2012;73:49-60; discussion p61-6 – reference: 21978785 - Life Sci. 2011 Nov 21;89(21-22):779-85 – reference: 11694621 - J Nutr. 2001 Nov;131(11):2932-5 – reference: 18079119 - J Biol Chem. 2008 Feb 8;283(6):3050-8 – reference: 18356827 - Obesity (Silver Spring). 2008 Jun;16(6):1338-48 – reference: 10664844 - Biosci Biotechnol Biochem. 1999 Dec;63(12):2118-22 – reference: 23346299 - Nutr Res Pract. 2012 Dec;6(6):499-504 – reference: 11170614 - J Agric Food Chem. 2001 Jan;49(1):477-82 – reference: 18006026 - Physiol Behav. 2008 Feb 27;93(3):486-91 – reference: 9127691 - Clin Biochem. 1997 Mar;30(2):91-113 – reference: 21571063 - Free Radic Biol Med. 2011 Jul 15;51(2):454-63 – reference: 20463039 - Am J Clin Nutr. 2010 Jul;92(1):5-15 – reference: 20980258 - J Biol Chem. 2011 Jan 7;286(1):60-6 – reference: 18951028 - Bioorg Med Chem. 2008 Nov 15;16(22):9652-9 – reference: 20186138 - Obesity (Silver Spring). 2010 May;18(5):879-83 – reference: 21792929 - J Cell Physiol. 2011 Oct;226(10):2721-30 – reference: 20872255 - Obes Surg. 2011 Mar;21(3):356-61 – reference: 22648627 - Mol Nutr Food Res. 2012 May;56(5):810-21 – reference: 22388573 - Aging (Albany NY). 2012 Mar;4(3):144-5 – reference: 16159906 - Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E273-81 – reference: 18468736 - Clin Nutr. 2008 Jun;27(3):363-70 – reference: 5476433 - J Nutr. 1970 Nov;100(11):1307-15 – reference: 19107849 - Phytother Res. 2009 Aug;23(8):1088-91 – reference: 22005428 - Br J Nutr. 2011 Oct;106 Suppl 1:S198-201 – reference: 18782455 - BMC Gastroenterol. 2008;8:40 – reference: 15564676 - Biosci Biotechnol Biochem. 2004 Nov;68(11):2353-9 – reference: 18070748 - Obesity (Silver Spring). 2007 Nov;15(11):2571-82 – reference: 22584682 - Clin Exp Med. 2013 Aug;13(3):193-9 – reference: 23274094 - Nutrition. 2013 Mar;29(3):562-7 – reference: 12499265 - Cancer Res. 2002 Dec 15;62(24):7241-6 – reference: 20303945 - Eur J Pharmacol. 2010 Jun 10;635(1-3):1-8 – reference: 19939981 - Am J Clin Nutr. 2010 Jan;91(1):5-6 – reference: 21193040 - Pharmacol Res. 2011 Aug;64(2):146-54 – reference: 20059703 - Obes Rev. 2011 Jan;12(1):50-61 – reference: 22081614 - J Am Coll Nutr. 2011 Oct;30(5):285-94 – reference: 15647388 - Am J Physiol Cell Physiol. 2005 May;288(5):C1094-108 – reference: 15640470 - Am J Clin Nutr. 2005 Jan;81(1):122-9 – reference: 22935344 - Nutr Res. 2012 Aug;32(8):607-16 – reference: 19051209 - Phytother Res. 2009 Apr;23(4):467-71 – reference: 21204534 - J Agric Food Chem. 2011 Feb 9;59(3):1012-9 – reference: 18203899 - J Nutr. 2008 Feb;138(2):323-31 – reference: 21109418 - J Nutr Biochem. 2011 Sep;22(9):828-34 – reference: 15998135 - J Agric Food Chem. 2005 Jul 13;53(14):5695-701 – reference: 19825205 - Br J Nutr. 2009 Dec;102(11):1611-9 – reference: 22055504 - Cell Metab. 2011 Nov 2;14(5):612-22 – reference: 12676044 - J Altern Complement Med. 2003 Feb;9(1):161-8 – reference: 18291098 - Biochem Biophys Res Commun. 2008 May 2;369(2):471-7 – reference: 17967414 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):972-7 – reference: 23235664 - Cochrane Database Syst Rev. 2012;12:CD008650 – reference: 18403477 - Endocrinology. 2008 Jul;149(7):3549-58 – reference: 22715380 - PLoS One. 2012;7(6):e38332 – reference: 10680575 - Life Sci. 2000 Jan 14;66(8):663-73 – reference: 19906797 - Am J Clin Nutr. 2010 Jan;91(1):73-81 – reference: 22040698 - Mol Aspects Med. 2012 Feb;33(1):26-34 – reference: 9311619 - Drug Metab Dispos. 1997 Sep;25(9):1045-50 – reference: 9619120 - Planta Med. 1998 May;64(4):353-6 – reference: 17900536 - Biochem Pharmacol. 2008 Feb 15;75(4):787-809 – reference: 20455202 - Planta Med. 2010 Oct;76(15):1694-8 – reference: 15005829 - Br J Nutr. 2004 Mar;91(3):431-7 – reference: 17196622 - Life Sci. 2007 Feb 13;80(10):926-31 – reference: 12120279 - Nat Rev Drug Discov. 2002 Apr;1(4):276-86 – reference: 23224687 - Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48 – reference: 15506818 - J Agric Food Chem. 2004 Nov 3;52(22):6794-801 – reference: 17867370 - Nutr Rev. 2007 Aug;65(8 Pt 1):361-75 – reference: 10412986 - Cell. 1999 Jul 9;98(1):115-24 – reference: 19297423 - J Nutr. 2009 May;139(5):919-25 – reference: 17906193 - J Am Coll Nutr. 2007 Aug;26(4):396S-402S – reference: 18716169 - J Nutr. 2008 Sep;138(9):1677-83 – reference: 18936213 - J Nutr. 2008 Nov;138(11):2156-63 – reference: 12242399 - Plant Cell. 1995 Jul;7(7):1085-1097 – reference: 16713229 - J Nutr Biochem. 2006 Jul;17(7):492-8 – reference: 11385060 - J Nutr. 2001 Jun;131(6):1731-7 – reference: 19932867 - Nutr Res. 2009 Nov;29(11):784-93 – reference: 19093868 - J Agric Food Chem. 2009 Jan 14;57(1):305-10 – reference: 10802125 - Mech Ageing Dev. 2000 Apr 14;114(3):207-10 – reference: 15976140 - Obes Res. 2005 Jun;13(6):982-90 – reference: 21932846 - J Agric Food Chem. 2011 Nov 9;59(21):11862-71 – reference: 17906192 - J Am Coll Nutr. 2007 Aug;26(4):389S-395S – reference: 21439945 - Biochem Pharmacol. 2011 Jun 1;81(11):1343-51 – reference: 17951067 - Pharmacol Res. 2007 Dec;56(6):509-14 – reference: 22959054 - J Nutr Biochem. 2013 Jun;24(6):960-6 – reference: 16387689 - Ann N Y Acad Sci. 2005 Nov;1056:206-17 – reference: 21543212 - J Nutr Biochem. 2012 Apr;23(4):361-7 – reference: 16236247 - Biochem Biophys Res Commun. 2005 Dec 16;338(2):694-9 – reference: 20357182 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1510-6 – reference: 21569266 - Nutr Metab (Lond). 2011 May 10;8(1):29 – reference: 21733326 - Br J Nutr. 2012 Jan;107(2):202-10 – reference: 12010007 - J Agric Food Chem. 2002 May 22;50(11):3337-40 – reference: 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51 – reference: 22495985 - Mol Nutr Food Res. 2012 Apr;56(4):580-92 – reference: 15166786 - Curr Opin Lipidol. 2004 Jun;15(3):303-7 – reference: 19176763 - Am J Physiol Cell Physiol. 2009 Jul;297(1):C121-32 – reference: 21189228 - J Nutr Biochem. 2011 Oct;22(10):910-20 – reference: 22332072 - Adv Nutr. 2011 Jul;2(4):304-16 – reference: 22157544 - J Nutr. 2012 Jan;142(1):57-63 |
| SSID | ssj0002456 |
| Score | 2.6118293 |
| SecondaryResourceType | review_article |
| Snippet | The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of... Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | adipocytes Adipocytes - drug effects Adipocytes - metabolism adipogenesis Animal Animals Antioxidants beta oxidation binding proteins Catechin - analogs & derivatives Catechin - pharmacology Cell Cell Differentiation - drug effects chronic diseases curcumin Curcumin - pharmacology Diet Dietary polyphenols energy expenditure epigallocatechin fatty acids flavanols gender glucose green tea hemostasis Human Humans inflammation lipolysis Molecular mechanism nationalities and ethnic groups Obesity Obesity - metabolism peroxisome proliferator-activated receptors Plant Extracts - pharmacology polyphenols Polyphenols - pharmacology randomized clinical trials Randomized Controlled Trials as Topic resveratrol signal transduction Stilbenes - pharmacology Tea - chemistry transcription factor NF-kappa B triacylglycerols viability weight loss |
| Title | Novel insights of dietary polyphenols and obesity |
| URI | https://dx.doi.org/10.1016/j.jnutbio.2013.09.001 https://www.ncbi.nlm.nih.gov/pubmed/24314860 https://www.proquest.com/docview/1466375959 https://www.proquest.com/docview/1897369367 https://www.proquest.com/docview/2000189566 https://pubmed.ncbi.nlm.nih.gov/PMC3926750 |
| Volume | 25 |
| WOSCitedRecordID | wos000329531500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002456 issn: 0955-2863 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9owFLfWdtJ6mTa6D_ZRZdLUWxjBJnaOiFFtE2I7UIlbZGxHDWIJK1DR_77vxU4CG127wy5RSOyQ5PfL83v2-yDkoxQKCyIFPu0a47OgbXwZ0sRXireZ0glwoEjiOuSjkZhMoh9uQn9ZlBPgWSY2m2jxX6GGYwA2hs7-A9zVReEA7APosAXYYfsg4Ef5tcFEGks0uwtHDZ2aFTrHLfL5Dbp05XObmDm3RQG29dM6UmxuXTxcrn74OU2xuJatDldPw7vZ5st1hVxehGRpH3eW0krwtJb-fRcOMkw3qaw7FUPgWmbTVObbMxEB25qJsMJTcOozYTNotsyeY07i2lDnHWZZ8RnsFep2fmHWmsFDw7OiPx5t2Tyj9ShWrtyPvsfnF8NhPB5MxmeLXz7WF8N1eFds5YAcdXg3AhF-1Ps6mHyrRm1cAEbjvLzfOtrr095_vkuP-dNO-d3ddkt_GT8jTx2oXs8S5jl5ZLIGOellcpX_vPHOvMIVuFhjaZAn_RLoBml-BvbAeZdAdu6NSk6ckKDgmldyzcsTz3HN2-KaB1zzHNdekIvzwbj_xXc1OHwFhsDK14mWgdYU9Hgtp1MuQGPFFISJibTqaM4jI2gIRoFQ7W4ShkoqkUSKgSqoqTKMviSHWZ6Z18SjoYoYC2k7mXYYKLJSgu7MJLzwLk24TJqElW80Vi5BPdZJmcelJ-IsdkDECETcjtAjs0laVbeFzdByXwdRwhU7NdOqjzEQ7r6uH0p4Y4AB19ZkZuBzQgs6pECsbvSXNgLEYhjRkN_dBiPnoB0YWU3yytKmeqoOKPtYM65J-A6hqgaYKn73TJZeFinjwQoKwTZ484D7f0uO64_7HTlcXa3Ne_JYXa_S5dUpOeATceo-nlsmzuIU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+insights+of+dietary+polyphenols+and+obesity&rft.jtitle=The+Journal+of+nutritional+biochemistry&rft.au=Wang%2C+Shu&rft.au=Moustaid-Moussa%2C+Naima&rft.au=Chen%2C+Lixia&rft.au=Mo%2C+Huanbiao&rft.date=2014-01-01&rft.issn=1873-4847&rft.eissn=1873-4847&rft.volume=25&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jnutbio.2013.09.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2863&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2863&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2863&client=summon |