Novel insights of dietary polyphenols and obesity

The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of nutritional biochemistry Ročník 25; číslo 1; s. 1 - 18
Hlavní autori: Wang, Shu, Moustaid-Moussa, Naima, Chen, Lixia, Mo, Huanbiao, Shastri, Anuradha, Su, Rui, Bapat, Priyanka, Kwun, InSook, Shen, Chwan-Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.01.2014
Predmet:
FFA
Apo
aP2
GTP
UCP
MDA
FFM
GPX
DBP
EC
HSL
IL
PON
CVD
MMP
ROS
FA
RCT
FM
LXR
LPL
IFN
BW
BMI
EGC
SBP
ACC
ECG
SOD
AGP
TC
TG
GTC
FAS
GTE
HF
ISSN:0955-2863, 1873-4847, 1873-4847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
AbstractList The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid I2-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor I3, CCAAT/enhancer binding protein I-, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-IoB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Author Moustaid-Moussa, Naima
Mo, Huanbiao
Shen, Chwan-Li
Kwun, InSook
Su, Rui
Wang, Shu
Shastri, Anuradha
Chen, Lixia
Bapat, Priyanka
AuthorAffiliation 2 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
4 Department of Nutrition and Food Sciences, College of Human Ecology, Andong National Univeristy, Andong, South Korea
1 Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
5 Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
3 Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
6 Laura W. Bush Institute for Women’s Health, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
AuthorAffiliation_xml – name: 2 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
– name: 6 Laura W. Bush Institute for Women’s Health, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
– name: 4 Department of Nutrition and Food Sciences, College of Human Ecology, Andong National Univeristy, Andong, South Korea
– name: 5 Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
– name: 1 Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– name: 3 Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
Author_xml – sequence: 1
  givenname: Shu
  surname: Wang
  fullname: Wang, Shu
  organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 2
  givenname: Naima
  surname: Moustaid-Moussa
  fullname: Moustaid-Moussa, Naima
  organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 3
  givenname: Lixia
  surname: Chen
  fullname: Chen, Lixia
  organization: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
– sequence: 4
  givenname: Huanbiao
  surname: Mo
  fullname: Mo, Huanbiao
  organization: Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
– sequence: 5
  givenname: Anuradha
  surname: Shastri
  fullname: Shastri, Anuradha
  organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 6
  givenname: Rui
  surname: Su
  fullname: Su, Rui
  organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 7
  givenname: Priyanka
  surname: Bapat
  fullname: Bapat, Priyanka
  organization: Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 8
  givenname: InSook
  surname: Kwun
  fullname: Kwun, InSook
  organization: Department of Nutrition and Food Sciences, College of Human Ecology. Andong National Univeristy, Andong, South Korea
– sequence: 9
  givenname: Chwan-Li
  surname: Shen
  fullname: Shen, Chwan-Li
  email: leslie.shen@ttuhsc.edu
  organization: Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24314860$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNPHTwDNks0Mfo8tJBCqWkCqYANry2PfaRxN7DB2IuXf4ygpAjZZeXG_c3zuPVfoIqYICL0muCOYyHerbhW3ZQipo5iwDusOY_ICLYjqWcsV7y_QAmshWqoku0RXOa8wxpQL-QpdUs4IVxIvEPmWdjA1IebwtCy5SWPjAxQ775tNmvabJcQ05cZG36QBcij7G_RytFOG29N7jX4-3P-4-9I-fv_89e7TY-sEY6X1o7fEeyaw8nYYeiWFolySEbR31Pe9BsWkFFI5LEYpnXVq1I5jyjxzwNk1-nD03WyHNXgHscx2Mps5rGs6k2ww_05iWJqntDNMU9kLXA3engzm9GsLuZh1yA6myUZI22xovQdRWkh5Fq1Yz6Rmsj-P8urXCy10Rd_8vcGf6M_Xr8D7I-DmlPMMo3Gh2BLSYaEwGYLNoWuzMqeuzaFrg7Wpyata_Kd-_uCc7uNRB7W9XYDZZBcgOvBhBleMT-GMw29mE8a4
CitedBy_id crossref_primary_10_1016_j_jnutbio_2015_07_016
crossref_primary_10_1016_j_anifeedsci_2021_114832
crossref_primary_10_1016_j_bbrc_2019_04_179
crossref_primary_10_1039_D3FO04348G
crossref_primary_10_3390_antiox8030074
crossref_primary_10_1016_j_aca_2016_10_043
crossref_primary_10_1016_j_scitotenv_2018_04_291
crossref_primary_10_3390_antiox9100910
crossref_primary_10_1016_j_jnutbio_2017_11_006
crossref_primary_10_1002_fsn3_2580
crossref_primary_10_3390_nu12092572
crossref_primary_10_1039_D0FO02485F
crossref_primary_10_3390_antiox12061232
crossref_primary_10_1080_09168451_2018_1514247
crossref_primary_10_1039_D3FO02048G
crossref_primary_10_1016_j_foodres_2022_111202
crossref_primary_10_3390_molecules24010119
crossref_primary_10_1186_s12944_018_0738_0
crossref_primary_10_3390_nu9090959
crossref_primary_10_1108_NFS_03_2018_0091
crossref_primary_10_1371_journal_pone_0172900
crossref_primary_10_3945_an_116_012575
crossref_primary_10_1080_19768354_2016_1254110
crossref_primary_10_1094_CCHEM_04_16_0112_R
crossref_primary_10_1007_s11103_020_01022_x
crossref_primary_10_1016_j_numecd_2019_11_015
crossref_primary_10_1007_s00394_015_0854_9
crossref_primary_10_1016_j_bbalip_2016_07_003
crossref_primary_10_1016_j_jnutbio_2016_01_002
crossref_primary_10_1186_s12944_022_01627_9
crossref_primary_10_3390_molecules21101305
crossref_primary_10_3390_nu14235171
crossref_primary_10_3390_ijms16036124
crossref_primary_10_3390_nu16172837
crossref_primary_10_1002_fsn3_1363
crossref_primary_10_3945_cdn_117_001115
crossref_primary_10_3390_ijms252212005
crossref_primary_10_1016_j_jff_2019_05_030
crossref_primary_10_1089_jmf_2017_3962
crossref_primary_10_3390_molecules27082477
crossref_primary_10_1002_mco2_70226
crossref_primary_10_3390_molecules26020453
crossref_primary_10_1016_j_foodres_2021_110182
crossref_primary_10_1016_j_fitote_2020_104490
crossref_primary_10_1016_j_cej_2024_152755
crossref_primary_10_3390_nu9080907
crossref_primary_10_3389_fpls_2024_1423323
crossref_primary_10_1016_j_jff_2021_104570
crossref_primary_10_1016_j_phrs_2022_106175
crossref_primary_10_1080_10408398_2025_2556470
crossref_primary_10_3389_fphar_2017_00387
crossref_primary_10_3390_nu9121328
crossref_primary_10_1080_16070658_2018_1465652
crossref_primary_10_1186_s12889_016_2739_0
crossref_primary_10_1016_j_arr_2016_08_001
crossref_primary_10_1016_j_jff_2014_12_045
crossref_primary_10_1371_journal_pone_0180865
crossref_primary_10_3390_pharmaceutics14071445
crossref_primary_10_1002_mnfr_201700606
crossref_primary_10_1007_s12079_014_0257_3
crossref_primary_10_1016_j_jff_2024_106479
crossref_primary_10_1016_j_biopha_2017_01_028
crossref_primary_10_1039_D4FO02545H
crossref_primary_10_1016_j_tifs_2021_01_072
crossref_primary_10_1089_met_2023_0248
crossref_primary_10_1111_1750_3841_14746
crossref_primary_10_3945_jn_114_199158
crossref_primary_10_1002_iub_2720
crossref_primary_10_1016_j_fbio_2022_102075
crossref_primary_10_1016_j_jff_2019_103558
crossref_primary_10_1016_j_jff_2019_103679
crossref_primary_10_1080_10408398_2020_1765736
crossref_primary_10_1155_2020_8013189
crossref_primary_10_3390_molecules21101404
crossref_primary_10_1097_MD_0000000000034665
crossref_primary_10_1186_s12937_016_0179_4
crossref_primary_10_1016_j_foodres_2017_09_001
crossref_primary_10_1016_j_jff_2018_03_042
crossref_primary_10_1016_j_omto_2021_08_015
crossref_primary_10_3389_fnut_2021_781622
crossref_primary_10_3390_nu8010017
crossref_primary_10_3390_ijms20030532
crossref_primary_10_1016_j_jnutbio_2019_108335
crossref_primary_10_3390_nu16234150
crossref_primary_10_1007_s00394_021_02678_x
crossref_primary_10_1016_j_bbadis_2014_06_027
crossref_primary_10_1016_j_biocel_2017_01_012
crossref_primary_10_3390_ph17050590
crossref_primary_10_1016_j_foodres_2015_06_044
crossref_primary_10_1186_s12906_019_2756_5
crossref_primary_10_3389_fendo_2019_00413
crossref_primary_10_1186_s12967_015_0436_x
crossref_primary_10_2174_0929867328666210902131021
crossref_primary_10_1002_mnfr_202000034
crossref_primary_10_1002_ptr_8182
crossref_primary_10_1134_S0006297916040015
crossref_primary_10_1007_s00394_024_03335_9
crossref_primary_10_3389_fnut_2021_667514
crossref_primary_10_3390_molecules30132827
crossref_primary_10_1002_mnfr_201501064
crossref_primary_10_1002_mnfr_201400521
crossref_primary_10_3390_nu9050452
crossref_primary_10_1007_s10068_015_0042_y
crossref_primary_10_52711_0974_360X_2023_00776
crossref_primary_10_1194_jlr_D065664
crossref_primary_10_5487_TR_2018_34_1_013
crossref_primary_10_3390_ijms23126703
crossref_primary_10_1016_j_fbio_2021_101500
crossref_primary_10_1016_j_jff_2014_10_014
crossref_primary_10_3389_fpls_2019_01028
crossref_primary_10_1016_j_jff_2017_10_019
crossref_primary_10_1016_j_jff_2022_104953
crossref_primary_10_1186_s12916_022_02525_8
crossref_primary_10_3390_molecules28031476
crossref_primary_10_3389_fphar_2021_729745
crossref_primary_10_3390_ijms21082860
crossref_primary_10_1016_j_jsbmb_2014_07_007
crossref_primary_10_3389_fendo_2023_1148934
crossref_primary_10_3390_endocrines5020016
crossref_primary_10_1371_journal_pone_0173074
crossref_primary_10_1016_j_colsurfb_2017_12_044
crossref_primary_10_1016_j_foodres_2017_10_011
crossref_primary_10_1016_j_jdermsci_2017_10_004
crossref_primary_10_1186_s41043_023_00376_4
crossref_primary_10_3109_13880209_2015_1113995
crossref_primary_10_3892_etm_2017_5076
crossref_primary_10_1186_s12964_024_02025_7
crossref_primary_10_1002_mnfr_201400631
crossref_primary_10_1002_fsn3_3586
crossref_primary_10_1007_s11010_021_04106_4
crossref_primary_10_1371_journal_pone_0141227
crossref_primary_10_3389_fphar_2016_00529
crossref_primary_10_1016_j_nut_2016_09_008
crossref_primary_10_3390_ijms241612641
crossref_primary_10_1186_s12933_018_0744_6
crossref_primary_10_1186_s12986_017_0228_9
crossref_primary_10_1186_s41043_025_00991_3
crossref_primary_10_3390_molecules29245955
crossref_primary_10_1139_apnm_2016_0374
crossref_primary_10_1016_j_foodchem_2024_139584
crossref_primary_10_1016_j_phrs_2021_105604
crossref_primary_10_1080_01635581_2018_1446093
crossref_primary_10_1039_D4FO03844D
crossref_primary_10_1016_j_jff_2020_104132
crossref_primary_10_1155_2014_908539
crossref_primary_10_3390_nu14235080
crossref_primary_10_1007_s13668_019_00281_5
crossref_primary_10_3390_nu14194009
crossref_primary_10_1016_j_ijcard_2016_08_158
crossref_primary_10_3389_fsufs_2021_699147
crossref_primary_10_3390_ijms17060843
crossref_primary_10_3390_molecules26102959
crossref_primary_10_1007_s11033_024_09334_7
crossref_primary_10_1016_j_etap_2016_06_015
crossref_primary_10_1016_j_nutres_2016_01_011
crossref_primary_10_2478_fhort_2020_0030
crossref_primary_10_1186_s12950_015_0055_6
crossref_primary_10_3390_foods11091232
crossref_primary_10_1016_j_jff_2015_06_047
crossref_primary_10_1016_j_cofs_2014_11_008
crossref_primary_10_3390_nu10081102
crossref_primary_10_1016_j_cofs_2014_11_002
crossref_primary_10_1016_j_phrs_2020_104681
crossref_primary_10_3389_fimmu_2019_00729
crossref_primary_10_1016_j_ahj_2019_03_014
crossref_primary_10_1016_j_jfca_2019_103233
crossref_primary_10_3390_molecules26092627
crossref_primary_10_1002_biof_1921
crossref_primary_10_1016_j_fbio_2021_100988
crossref_primary_10_1039_D5FO02327K
crossref_primary_10_1016_j_nano_2015_05_001
crossref_primary_10_1016_j_procbio_2014_06_002
crossref_primary_10_1371_journal_pone_0122925
crossref_primary_10_1002_slct_202000176
crossref_primary_10_3390_ijms21165642
crossref_primary_10_1016_j_phrs_2017_02_008
crossref_primary_10_1016_j_ecoenv_2020_110650
crossref_primary_10_3389_fnut_2025_1614947
crossref_primary_10_3892_mmr_2017_6604
crossref_primary_10_4239_wjd_v11_i2_26
crossref_primary_10_1016_j_jnutbio_2015_05_006
crossref_primary_10_1016_j_jff_2020_104111
crossref_primary_10_4162_nrp_2025_19_2_186
crossref_primary_10_3389_fphar_2018_00537
crossref_primary_10_15407_biotech13_03_052
crossref_primary_10_1089_jmf_2019_4649
crossref_primary_10_3390_ijms20082034
crossref_primary_10_1080_1745039X_2017_1355129
crossref_primary_10_1016_j_cbi_2023_110612
crossref_primary_10_3390_pr2030596
crossref_primary_10_1515_acve_2017_0010
crossref_primary_10_1016_j_jep_2015_12_047
crossref_primary_10_3390_molecules26144307
crossref_primary_10_3390_molecules26185537
crossref_primary_10_1016_j_numecd_2022_04_015
crossref_primary_10_1016_j_ctim_2020_102478
crossref_primary_10_3390_nu14132688
crossref_primary_10_3390_nu17071249
crossref_primary_10_1016_j_phrs_2021_106029
crossref_primary_10_1186_s40168_024_01774_4
crossref_primary_10_17116_profmed202528051117
crossref_primary_10_1002_ejlt_201800311
crossref_primary_10_1016_j_cca_2021_08_005
crossref_primary_10_1016_j_foodres_2014_03_050
crossref_primary_10_1016_j_jinorgbio_2019_01_008
crossref_primary_10_1080_10408398_2018_1529654
crossref_primary_10_3389_fnut_2024_1410811
crossref_primary_10_3390_molecules27123816
crossref_primary_10_1186_s43141_022_00430_4
crossref_primary_10_3390_nu16050683
crossref_primary_10_1016_j_nutres_2023_04_004
crossref_primary_10_3390_nu12123792
crossref_primary_10_3390_antiox9100982
crossref_primary_10_5582_bst_2018_01172
crossref_primary_10_3390_ijms21113982
crossref_primary_10_1016_j_meatsci_2016_07_016
crossref_primary_10_1007_s00424_018_02250_3
crossref_primary_10_1002_mnfr_201500428
crossref_primary_10_1093_ndt_gfx052
crossref_primary_10_1155_2017_3079148
crossref_primary_10_3389_fphys_2022_795980
crossref_primary_10_1002_jbt_22234
crossref_primary_10_1016_j_chroma_2017_02_021
crossref_primary_10_3389_fimmu_2020_01542
crossref_primary_10_3389_fnagi_2022_1019942
crossref_primary_10_1007_s11033_022_07918_9
crossref_primary_10_1142_S0192415X15500536
crossref_primary_10_1186_s12902_022_01025_3
crossref_primary_10_1016_j_biochi_2021_10_010
crossref_primary_10_1371_journal_pone_0193473
crossref_primary_10_3390_foods10112666
crossref_primary_10_3390_nu7085324
crossref_primary_10_3390_life12111768
crossref_primary_10_3389_fphar_2017_00436
crossref_primary_10_3390_nu16142357
crossref_primary_10_3390_pr8111411
crossref_primary_10_3390_molecules23040788
crossref_primary_10_1002_mnfr_201700459
crossref_primary_10_1016_j_phytochem_2022_113218
crossref_primary_10_3389_fnut_2018_00087
crossref_primary_10_3389_fphar_2021_696603
crossref_primary_10_1371_journal_pone_0163433
crossref_primary_10_5812_asjsm_35776
crossref_primary_10_1108_NFS_08_2021_0260
crossref_primary_10_1155_2023_1555942
crossref_primary_10_1371_journal_pone_0140431
crossref_primary_10_1016_j_lfs_2021_119797
crossref_primary_10_1038_ijo_2015_23
crossref_primary_10_1155_2016_4563815
crossref_primary_10_3390_fermentation10080384
crossref_primary_10_3390_nu11112665
crossref_primary_10_1007_s10068_017_0230_z
crossref_primary_10_1371_journal_pone_0277692
crossref_primary_10_3390_nu12051308
crossref_primary_10_1002_oby_21523
crossref_primary_10_1007_s12013_022_01077_1
crossref_primary_10_3390_antiox9100960
crossref_primary_10_1002_mnfr_202200600
crossref_primary_10_1080_10408398_2021_2000932
crossref_primary_10_3390_nu8050247
crossref_primary_10_1007_s12230_018_09706_3
crossref_primary_10_1007_s10068_023_01272_7
crossref_primary_10_1016_j_apsb_2024_10_010
crossref_primary_10_1142_S0192415X15500676
crossref_primary_10_1155_2016_4353604
crossref_primary_10_3390_molecules26092446
crossref_primary_10_4102_jomped_v4i1_94
crossref_primary_10_3390_molecules24234277
crossref_primary_10_1016_j_jbiotec_2025_02_004
crossref_primary_10_3390_pr8040479
crossref_primary_10_1186_s12906_015_0957_0
crossref_primary_10_1039_D0FO02886J
crossref_primary_10_3389_fnut_2022_837601
crossref_primary_10_33808_clinexphealthsci_1082047
crossref_primary_10_1016_j_heliyon_2020_e04395
crossref_primary_10_1111_1541_4337_12320
crossref_primary_10_1016_j_jnutbio_2022_109242
crossref_primary_10_3390_app11188276
crossref_primary_10_1080_13813455_2020_1779309
crossref_primary_10_1016_j_rvsc_2020_06_008
crossref_primary_10_1017_S000711451400275X
crossref_primary_10_4162_nrp_2022_16_1_46
crossref_primary_10_1038_s41538_024_00323_5
crossref_primary_10_1089_jmf_2016_3806
crossref_primary_10_3390_foods9101343
crossref_primary_10_3390_nu17152569
crossref_primary_10_1155_2022_6945745
crossref_primary_10_4103_1673_5374_335826
crossref_primary_10_1155_2015_837452
crossref_primary_10_3390_plants11131741
crossref_primary_10_1002_brb3_1655
crossref_primary_10_1016_j_jff_2017_03_047
crossref_primary_10_1108_NFS_01_2020_0031
crossref_primary_10_3390_molecules28237832
crossref_primary_10_1039_D5NA00115C
crossref_primary_10_1016_j_phrs_2020_104956
crossref_primary_10_1155_2019_2579734
crossref_primary_10_3389_fphar_2020_01225
crossref_primary_10_3390_nu17091487
crossref_primary_10_1016_j_diabres_2017_07_009
crossref_primary_10_1016_j_tifs_2018_05_026
crossref_primary_10_3390_nu10101523
crossref_primary_10_1016_j_biopha_2018_03_006
crossref_primary_10_1016_j_jff_2019_103596
crossref_primary_10_1128_mSphere_00164_18
crossref_primary_10_1002_ejlt_202200077
crossref_primary_10_1016_j_mad_2021_111518
crossref_primary_10_1016_j_jnutbio_2015_07_002
crossref_primary_10_1016_j_envres_2025_121119
crossref_primary_10_1039_D2QO00758D
crossref_primary_10_1016_j_jnutbio_2016_09_011
crossref_primary_10_3390_molecules25153318
crossref_primary_10_1155_2024_8359294
crossref_primary_10_1016_j_nutres_2022_10_007
crossref_primary_10_1016_j_plipres_2017_04_002
crossref_primary_10_1016_j_tifs_2020_01_013
crossref_primary_10_1371_journal_pone_0262270
crossref_primary_10_3390_app15031007
crossref_primary_10_1039_D0FO01643H
crossref_primary_10_1080_15384101_2023_2297567
crossref_primary_10_1016_j_mssp_2022_106897
crossref_primary_10_3390_foods12193688
crossref_primary_10_1016_j_heliyon_2023_e17383
crossref_primary_10_3402_fnr_v60_28373
crossref_primary_10_1016_j_jnutbio_2018_09_028
crossref_primary_10_3389_fnut_2022_1014883
crossref_primary_10_1002_jcb_25070
crossref_primary_10_1016_j_lfs_2016_04_014
crossref_primary_10_1080_10408398_2014_980499
crossref_primary_10_3389_fgene_2022_795049
crossref_primary_10_3390_nu13113693
crossref_primary_10_1016_j_jconrel_2019_04_018
crossref_primary_10_3390_ijms231911712
crossref_primary_10_1007_s44371_025_00266_0
crossref_primary_10_1039_D3FO01992F
crossref_primary_10_3390_ani15020177
crossref_primary_10_1016_j_jcs_2015_09_002
crossref_primary_10_3390_molecules25133061
crossref_primary_10_1016_j_nutres_2014_10_004
crossref_primary_10_1155_2015_480943
crossref_primary_10_1155_2018_9794625
crossref_primary_10_1111_obr_12775
crossref_primary_10_1080_10408398_2020_1815644
crossref_primary_10_1371_journal_pone_0163640
crossref_primary_10_1016_j_jfda_2017_10_010
crossref_primary_10_1007_s10353_015_0363_3
crossref_primary_10_1177_0963689720968090
crossref_primary_10_3390_ijms22031384
crossref_primary_10_1007_s00394_024_03405_y
crossref_primary_10_1016_j_lfs_2024_123202
crossref_primary_10_1016_j_nutres_2023_05_009
crossref_primary_10_3390_antiox10020188
crossref_primary_10_1002_fft2_65
crossref_primary_10_1039_D1FO00290B
crossref_primary_10_1002_fsh3_12036
crossref_primary_10_1016_j_jff_2016_03_010
crossref_primary_10_1016_j_pharmthera_2016_06_005
crossref_primary_10_1007_s00430_015_0391_4
crossref_primary_10_3389_fnut_2023_1130224
crossref_primary_10_3390_nu16183168
crossref_primary_10_3390_cancers13184499
crossref_primary_10_1016_j_kjms_2017_08_009
crossref_primary_10_3390_ijms24021755
crossref_primary_10_4162_nrp_2015_9_6_606
crossref_primary_10_1177_11786388251346309
crossref_primary_10_3390_molecules20022310
crossref_primary_10_1007_s11306_021_01815_1
crossref_primary_10_1016_j_intimp_2022_109587
crossref_primary_10_1007_s10565_023_09826_5
crossref_primary_10_1007_s42452_025_06556_7
crossref_primary_10_1016_j_meatsci_2017_06_012
crossref_primary_10_3389_fimmu_2022_949746
crossref_primary_10_1515_jcim_2022_0018
crossref_primary_10_1186_s13098_023_01037_6
crossref_primary_10_12677_PI_2020_91001
crossref_primary_10_3390_pr8020138
crossref_primary_10_1111_obr_13848
crossref_primary_10_1016_j_conctc_2022_101034
crossref_primary_10_2174_0929867330666230517124033
crossref_primary_10_1111_1541_4337_12891
crossref_primary_10_2147_JIR_S228361
crossref_primary_10_3390_life12050693
crossref_primary_10_1016_j_jnutbio_2025_109992
crossref_primary_10_1002_ptr_8400
crossref_primary_10_1038_srep15216
crossref_primary_10_1186_s12906_018_2169_x
crossref_primary_10_1111_nph_14730
crossref_primary_10_3390_ijms20205150
crossref_primary_10_1136_bmjopen_2024_096399
crossref_primary_10_2174_0929867326666181220094721
crossref_primary_10_1016_j_clnu_2019_02_003
crossref_primary_10_1002_mnfr_201900995
crossref_primary_10_1016_j_jff_2014_07_017
crossref_primary_10_1002_mnfr_201900999
crossref_primary_10_3390_molecules26175355
crossref_primary_10_1080_87559129_2022_2026376
crossref_primary_10_3390_molecules26040985
crossref_primary_10_3390_nu13020296
crossref_primary_10_1002_fsh3_12013
crossref_primary_10_3390_ijms24087247
crossref_primary_10_1007_s00394_020_02214_3
crossref_primary_10_3390_molecules23092103
crossref_primary_10_1016_j_enfcli_2019_07_043
crossref_primary_10_1515_hmbci_2016_0034
crossref_primary_10_1016_j_jnutbio_2017_07_008
crossref_primary_10_1186_s12906_021_03459_z
crossref_primary_10_7717_peerj_12848
crossref_primary_10_3390_ijms242316731
crossref_primary_10_1111_jfpp_15815
crossref_primary_10_1038_s41598_018_27093_x
crossref_primary_10_1039_D1FO01394G
crossref_primary_10_1089_jmf_2016_0115
crossref_primary_10_1111_jfbc_12469
crossref_primary_10_2174_1381612828666221003105619
crossref_primary_10_1002_biof_1288
crossref_primary_10_3390_biom10111512
crossref_primary_10_1097_MOL_0000000000000145
crossref_primary_10_1039_D3FO05122F
crossref_primary_10_1111_pbi_14278
crossref_primary_10_1016_j_biopha_2024_117610
crossref_primary_10_1016_j_cbi_2020_108977
crossref_primary_10_1016_j_numecd_2021_05_007
crossref_primary_10_3390_antiox11122425
crossref_primary_10_1002_oby_21242
crossref_primary_10_1007_s12272_015_0559_x
crossref_primary_10_1080_09637486_2020_1780567
crossref_primary_10_1016_S1875_5364_15_30061_3
crossref_primary_10_1007_s13105_018_0659_4
crossref_primary_10_1016_j_ijbiomac_2023_123325
crossref_primary_10_1016_j_clnesp_2018_12_087
crossref_primary_10_3390_nu12030689
crossref_primary_10_1042_BSR20171302
crossref_primary_10_1080_10408398_2017_1399859
crossref_primary_10_3382_ps_pex353
crossref_primary_10_1016_j_foodres_2021_110302
crossref_primary_10_1016_j_jff_2016_02_012
crossref_primary_10_1155_2015_594656
crossref_primary_10_5812_thrita_106322
crossref_primary_10_1002_tox_22687
crossref_primary_10_1089_met_2016_0035
crossref_primary_10_1016_j_jnutbio_2022_109085
crossref_primary_10_1016_j_phanu_2021_100260
crossref_primary_10_2217_epi_15_74
crossref_primary_10_3390_plants10071323
crossref_primary_10_1016_j_arabjc_2023_104881
crossref_primary_10_1016_j_jff_2015_09_009
crossref_primary_10_1002_ptr_6434
crossref_primary_10_1016_j_foodres_2023_112567
crossref_primary_10_1016_j_sajb_2023_07_043
crossref_primary_10_3390_nu16121817
crossref_primary_10_3390_nu9030295
crossref_primary_10_1111_jpi_12281
crossref_primary_10_3390_pr8030283
crossref_primary_10_1016_j_jconrel_2021_03_022
crossref_primary_10_1089_met_2014_0082
crossref_primary_10_1007_s11101_024_10047_9
crossref_primary_10_1016_j_jnutbio_2015_09_006
crossref_primary_10_1002_mnfr_201601010
crossref_primary_10_1016_j_jep_2022_115378
crossref_primary_10_3390_ijms24043266
crossref_primary_10_31435_ijitss_3_47__2025_3689
crossref_primary_10_1002_ptr_5570
crossref_primary_10_1186_s12906_018_2189_6
crossref_primary_10_1016_j_foodchem_2025_143318
crossref_primary_10_1042_BSR20212358
crossref_primary_10_4162_nrp_2014_8_6_655
crossref_primary_10_1016_j_plefa_2017_04_001
crossref_primary_10_1186_s12986_016_0143_5
crossref_primary_10_1111_ijfs_13479
crossref_primary_10_1016_j_apjtb_2017_09_008
crossref_primary_10_1016_j_prenap_2025_100234
crossref_primary_10_1016_j_nut_2019_05_005
crossref_primary_10_1002_mnfr_201601122
crossref_primary_10_1017_S000711451400347X
crossref_primary_10_1007_s00394_020_02459_y
crossref_primary_10_1089_jmf_2017_4157
crossref_primary_10_3390_antiox10060858
crossref_primary_10_3390_molecules22071082
crossref_primary_10_1016_j_nut_2024_112669
crossref_primary_10_1080_13813455_2021_1908366
crossref_primary_10_1016_j_intimp_2025_114570
crossref_primary_10_1016_j_jnutbio_2015_11_013
crossref_primary_10_1016_j_jnutbio_2015_11_011
crossref_primary_10_3390_ijms17071177
crossref_primary_10_1155_2018_3140267
crossref_primary_10_3390_ijms19092632
crossref_primary_10_1080_09168451_2015_1042833
crossref_primary_10_1111_ijfs_13102
crossref_primary_10_3390_nu17101630
crossref_primary_10_1007_s00394_022_02963_3
crossref_primary_10_1016_j_biopha_2018_01_012
crossref_primary_10_3390_nu12103072
crossref_primary_10_3390_molecules191015900
crossref_primary_10_3390_nu8100633
crossref_primary_10_1111_asj_13674
crossref_primary_10_3390_app15137238
crossref_primary_10_3389_fsufs_2020_555426
crossref_primary_10_1016_j_foodchem_2022_134668
crossref_primary_10_3390_ijms22031431
crossref_primary_10_1002_mnfr_201600746
crossref_primary_10_3390_molecules25245840
crossref_primary_10_1097_NT_0000000000000433
crossref_primary_10_1093_ndt_gfu338
crossref_primary_10_3390_ijms17071069
crossref_primary_10_1002_ptr_7615
crossref_primary_10_3390_biom12060852
crossref_primary_10_1097_SGA_0000000000000384
crossref_primary_10_3390_pathogens13080634
crossref_primary_10_1016_j_ejphar_2023_176300
crossref_primary_10_1016_j_jnutbio_2018_07_008
crossref_primary_10_13005_bpj_2274
crossref_primary_10_4162_nrp_2017_11_1_17
crossref_primary_10_1155_2021_9995903
crossref_primary_10_15171_apb_2018_036
crossref_primary_10_3390_proteomes11040031
crossref_primary_10_1038_s41598_017_12597_9
crossref_primary_10_1002_uog_18974
crossref_primary_10_3389_fvets_2025_1634086
crossref_primary_10_3389_fphar_2022_921123
crossref_primary_10_1016_j_bbrc_2016_04_073
crossref_primary_10_1080_02652048_2017_1280095
crossref_primary_10_1016_j_biopha_2021_111970
crossref_primary_10_1016_j_livsci_2023_105258
crossref_primary_10_1055_a_1787_3396
crossref_primary_10_3390_molecules27030777
crossref_primary_10_3390_nu11020344
crossref_primary_10_1039_D0FO01160F
crossref_primary_10_2478_bgbl_2023_0048
crossref_primary_10_1016_j_bbrc_2019_01_023
crossref_primary_10_2174_0113816128335400241101115928
crossref_primary_10_1016_j_biopha_2019_109439
crossref_primary_10_1016_j_jff_2023_105745
crossref_primary_10_3390_horticulturae9020189
crossref_primary_10_1016_j_lfs_2019_04_051
crossref_primary_10_1016_j_jff_2015_11_033
crossref_primary_10_3390_nu7020905
crossref_primary_10_1016_j_tjnut_2023_05_016
crossref_primary_10_1155_2014_917698
crossref_primary_10_1111_1750_3841_15551
crossref_primary_10_1177_1759091414568185
crossref_primary_10_1007_s00394_014_0814_9
crossref_primary_10_1016_j_foodres_2025_116101
crossref_primary_10_1038_s41366_025_01793_7
crossref_primary_10_1038_s41598_022_27260_1
crossref_primary_10_1016_j_bbrc_2015_01_034
crossref_primary_10_1016_j_ijdevneu_2018_09_003
crossref_primary_10_1039_D2FO01206E
crossref_primary_10_1002_jssc_201700342
crossref_primary_10_3390_ph13100292
crossref_primary_10_1016_j_jnutbio_2017_06_012
crossref_primary_10_1016_j_jnutbio_2017_12_009
crossref_primary_10_1111_jfbc_12986
crossref_primary_10_3390_nu9070746
crossref_primary_10_1002_mnfr_202300856
crossref_primary_10_1074_jbc_REV119_008897
crossref_primary_10_3390_app11115163
crossref_primary_10_1007_s11033_021_06190_7
crossref_primary_10_3389_fnut_2022_998044
crossref_primary_10_1002_ptr_6602
crossref_primary_10_1016_j_rce_2015_07_010
crossref_primary_10_1016_j_jff_2020_103903
crossref_primary_10_3390_foods9091268
crossref_primary_10_1038_s41430_018_0253_4
crossref_primary_10_1002_biof_1310
crossref_primary_10_3389_fimmu_2020_594433
crossref_primary_10_1111_liv_12975
crossref_primary_10_3390_biomedicines10071468
crossref_primary_10_1016_j_jnutbio_2020_108430
crossref_primary_10_1155_2016_2042107
crossref_primary_10_1002_vms3_70224
crossref_primary_10_1111_1750_3841_13793
crossref_primary_10_1002_iub_2707
crossref_primary_10_1586_17446651_2015_1096771
crossref_primary_10_1159_000442399
crossref_primary_10_3390_metabo14060327
crossref_primary_10_3109_13813455_2015_1120753
crossref_primary_10_1016_j_ejphar_2017_01_009
crossref_primary_10_1016_j_freeradbiomed_2021_12_008
crossref_primary_10_1016_j_jnutbio_2016_10_012
crossref_primary_10_1016_j_sajb_2019_03_006
crossref_primary_10_1021_acs_chemrestox_5b00121
crossref_primary_10_3390_cells12050714
crossref_primary_10_1371_journal_pone_0137809
crossref_primary_10_1016_j_jnutbio_2021_108618
crossref_primary_10_3389_fphar_2022_893171
crossref_primary_10_1080_01635581_2022_2096909
crossref_primary_10_1016_j_jnutbio_2020_108343
crossref_primary_10_3390_life11070645
crossref_primary_10_1016_j_phymed_2015_12_004
crossref_primary_10_1016_j_tetlet_2017_11_024
crossref_primary_10_3390_antiox7030043
crossref_primary_10_1016_j_metabol_2017_12_009
crossref_primary_10_1016_j_freeradbiomed_2022_07_023
crossref_primary_10_3389_fnut_2023_1204981
crossref_primary_10_1007_s00394_017_1599_4
crossref_primary_10_1016_j_jff_2017_06_014
crossref_primary_10_1002_ptr_5852
crossref_primary_10_1007_s00394_014_0828_3
crossref_primary_10_1080_10408398_2022_2038540
crossref_primary_10_1016_j_bcp_2024_116647
crossref_primary_10_3390_nu15041037
crossref_primary_10_1002_jbm_a_37063
crossref_primary_10_1016_j_jnutbio_2017_06_002
crossref_primary_10_1016_j_numecd_2023_02_022
crossref_primary_10_1038_s44319_023_00012_6
crossref_primary_10_2174_0113894501347158250305074908
crossref_primary_10_1016_j_jff_2019_01_035
crossref_primary_10_1016_j_aquaculture_2019_03_041
crossref_primary_10_1080_09637486_2018_1442819
crossref_primary_10_3390_nu13020377
crossref_primary_10_3390_molecules26041119
crossref_primary_10_1080_14786419_2024_2384080
crossref_primary_10_3390_molecules26072074
crossref_primary_10_1007_s40199_019_00289_w
crossref_primary_10_3390_foods14030491
crossref_primary_10_1016_j_fct_2017_12_055
crossref_primary_10_1016_j_fct_2018_08_071
crossref_primary_10_1155_2018_9719584
crossref_primary_10_1016_j_phrs_2015_10_006
crossref_primary_10_1039_C4FO01035C
crossref_primary_10_1002_mnfr_201500906
crossref_primary_10_1080_07315724_2017_1392264
crossref_primary_10_1080_07315724_2017_1392263
Cites_doi 10.1016/j.bbrc.2005.09.195
10.1016/j.cell.2006.11.013
10.1038/nrd2060
10.1196/annals.1352.010
10.2337/db12-0975
10.1016/S0092-8674(00)80611-X
10.1074/jbc.M707892200
10.1186/1743-7075-8-29
10.1016/j.nutres.2009.10.003
10.1074/jbc.M110.188144
10.1079/BJN20041061
10.1038/nrd770
10.1016/j.phrs.2007.09.013
10.1016/j.jnutbio.2010.03.009
10.1093/jn/136.11.2791
10.1097/00041433-200406000-00010
10.1016/j.cmet.2011.10.002
10.1007/s10616-010-9285-x
10.1002/ptr.2647
10.1371/journal.pone.0053796
10.3945/jn.108.098293
10.3390/nu2070737
10.1016/j.jnutbio.2012.06.019
10.1021/jf801297w
10.1002/ptr.2737
10.1186/1743-7075-9-105
10.1055/s-2007-985897
10.1017/S0007114508047727
10.1002/ptr.2503
10.1017/S0007114511002492
10.1093/ajcn/70.6.1040
10.1016/j.jnutbio.2011.01.001
10.1080/07315724.2010.10719814
10.1007/s10238-012-0189-2
10.1055/s-0030-1249877
10.1079/BJN20051580
10.3945/ajcn.2009.28473B
10.1016/S0895-3988(09)60019-2
10.1093/jn/138.2.323
10.1038/nature02583
10.1021/jf040274w
10.1038/ejcn.2010.47
10.1021/jf0112973
10.1186/1472-6793-10-11
10.1074/jbc.M109.088682
10.1249/01.mss.0000178062.66981.a8
10.1021/jf2053788
10.1016/j.nut.2010.01.015
10.4162/nrp.2012.6.4.286
10.1186/1471-230X-8-40
10.1210/en.2008-0262
10.1016/S0009-9120(96)00155-5
10.1111/j.1467-789X.2009.00708.x
10.1271/bbb.63.2118
10.1038/oby.2003.145
10.1016/j.phrs.2010.12.013
10.1055/s-2006-957450
10.1186/1476-511X-12-8
10.1016/j.jnutbio.2010.08.003
10.1021/jf2029016
10.1002/jcp.22623
10.1016/j.jnutbio.2006.03.004
10.1007/s11695-010-0251-7
10.1152/ajpendo.00325.2005
10.1194/jlr.R800079-JLR200
10.1016/S0047-6374(00)00169-X
10.2307/3870059
10.1016/j.jnutbio.2012.12.013
10.3945/an.111.000505
10.1021/jf802737z
10.3945/ajcn.2009.28933
10.1038/oby.2008.60
10.3945/ajcn.2009.28157
10.1002/mnfr.201100673
10.1021/mp700113r
10.1016/j.lfs.2011.09.006
10.3945/ajcn.2009.28435
10.1016/j.jnutbio.2011.06.003
10.1089/107555303321223035
10.1016/j.nutres.2012.06.014
10.1271/bbb.80563
10.4239/wjd.v3.i5.94
10.1016/j.nut.2009.02.001
10.1078/0944-7113-00078
10.1016/j.bcp.2007.08.016
10.1016/j.jnutbio.2010.07.007
10.2174/092986706775197962
10.1093/aje/153.3.242
10.1016/j.bbrc.2008.02.034
10.1038/oby.2007.176
10.1093/jn/131.6.1731
10.1016/S0899-9007(03)00093-5
10.1093/jn/138.9.1677
10.1080/07315724.2007.10719627
10.1371/journal.pone.0028784
10.1017/S0007114511002753
10.1016/j.metabol.2008.06.014
10.1038/oby.2010.22
10.1016/j.physbeh.2007.10.009
10.1093/ajcn/81.1.122
10.1016/S0047-6374(00)00089-0
10.1038/sj.ijo.0802926
10.1007/BF03185932
10.1038/oby.2005.115
10.1016/j.cell.2012.01.017
10.1016/S0024-3205(99)00410-5
10.3945/jn.108.100966
10.1016/j.freeradbiomed.2011.04.032
10.1016/j.phymed.2012.09.003
10.1016/j.nutres.2012.05.001
10.1152/ajpcell.00369.2009
10.1093/jn/128.3.593
10.1021/jf050045p
10.1159/000341287
10.3945/jn.111.148544
10.1016/j.jnutbio.2010.12.014
10.1016/j.biochi.2010.02.024
10.1016/0891-5849(96)00129-3
10.1021/jf981024g
10.1007/s11010-011-0978-z
10.18632/aging.100442
10.1007/s11010-010-0707-z
10.1038/nature05354
10.1016/j.bcp.2008.11.027
10.2337/db11-0275
10.4162/nrp.2012.6.6.499
10.1016/j.phrs.2013.03.011
10.1016/j.mam.2011.10.011
10.1016/j.nut.2012.09.011
10.1080/07315724.2011.10719971
10.1016/j.nutres.2012.08.004
10.1002/mnfr.201100438
10.1111/j.1753-4887.2007.tb00314.x
10.1152/ajpcell.00569.2004
10.1007/s10557-012-6427-8
10.1016/j.bcp.2011.03.012
10.1017/S0007114511002376
10.1001/archinte.162.11.1286
10.1371/journal.pone.0038332
10.1155/2013/635470
10.1371/journal.pone.0015441
10.1093/jn/138.11.2156
10.1017/S000711450999208X
10.1186/1743-7075-5-17
10.1016/j.lfs.2006.11.030
10.1038/oby.2007.309
10.1080/07315724.2007.10719628
10.1021/jf103873k
10.1152/ajpcell.00272.2008
10.1271/bbb.68.2353
10.1021/jf000877h
10.1038/ijo.2009.135
10.1002/biof.5520220126
10.1038/ijo.2011.136
10.1016/j.phrs.2009.01.015
10.1016/j.bmc.2008.10.009
10.1111/j.1747-0285.2009.00901.x
10.1093/jn/100.11.1307
10.1016/j.jnutbio.2005.09.005
10.1007/s12011-012-9448-z
10.1016/j.bbrc.2007.10.109
10.1093/jn/131.11.2932
10.1016/j.clnu.2008.03.007
10.1111/j.1753-4887.2010.00341.x
10.1016/j.nutres.2012.05.007
10.1016/j.ejphar.2010.02.054
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2014.
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2014.
– notice: 2013 Elsevier Inc. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
7S9
L.6
5PM
DOI 10.1016/j.jnutbio.2013.09.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE


Physical Education Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Diet & Clinical Nutrition
EISSN 1873-4847
EndPage 18
ExternalDocumentID PMC3926750
24314860
10_1016_j_jnutbio_2013_09_001
S0955286313001617
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: U01 AT006691
– fundername: NCCIH NIH HHS
  grantid: U01AT006691
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29L
4.4
457
4CK
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
VH1
WH7
WUQ
ZGI
ZXP
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
7S9
L.6
5PM
ID FETCH-LOGICAL-c533t-dfda1dd3508dabb786582461fe9dc2d779e8366568c05f66cac8f9c4023d3ce43
ISICitedReferencesCount 705
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329531500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0955-2863
1873-4847
IngestDate Tue Sep 30 16:08:44 EDT 2025
Sun Sep 28 04:42:31 EDT 2025
Sun Sep 28 01:57:37 EDT 2025
Sun Sep 28 12:36:51 EDT 2025
Mon Jul 21 06:05:58 EDT 2025
Sat Nov 29 07:07:08 EST 2025
Tue Nov 18 22:33:33 EST 2025
Fri Feb 23 02:31:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FFA
Apo
C/EBPα
aP2
GTP
IGF-I
UCP
MDA
FFM
GPX
HDL-C
Antioxidants
NF-κB
DBP
PAI-1
SCD1
Cell
EC
HSL
Human
Obesity
IL
EGCG
TBARS
MAPK
SIRT1
PON
PPARγ
CVD
HOMA-IR
MMP
Animal
ROS
AMPK
FA
Dietary polyphenols
CPT-1
MCP-1
RCT
LDL-C
ATGL
Molecular mechanism
FM
LXR
LPL
ACAT
cAMP
FOXO1
IFN
BW
BMI
ABCA1
EGC
SBP
ACC
GSSG
PDEs
ECG
SOD
AGP
PGC-1α
SREBP-1c
TC
FABP4
TG
TNF-α
FASN
GTC
FAS
GTE
GPAT
HF
acyl-coenzyme A: cholesterol acyltransferase
total cholesterol
uncoupling protein
tumor necrosis factor-alpha
insulin-like growth factor-I
diastolic blood pressure
high-density lipoprotein cholesterol
phosphodiesterases
green tea catechin
glycerol-3-phosphate acyltransferase
fatty acid synthase
superoxide dismutase
hormone-sensitive lipase
peroxisome proliferator activator receptor γ
epigallocatechin
glutathione peroxidase
fat mass
fatty acid binding protein 4
mitogen-activated protein kinase
sterol regulatory element-binding protein 1c
epicatechin
cardiovascular disease
thiobarbituric acid reactive substances
adenosine-monophosphate-activated protein kinase
plasminogen activator inhibitor type 1
randomized controlled trial
cyclic adenosine monophosphate
lipoprotein lipase
adipocyte P2 protein, which is also known as aFABP, the adipocyte fatty acid binding protein or FAPB-4
green tea extracts
apolipoprotein
carnitine palmitoyltransferase-1
glutathione disulfide
epigallocatechin gallate
epicatechin gallate
adenosine-triphosphate-binding cassette A1
systolic blood pressure
body weight
CCAAT/enhancer binding protein α
adipose triglyceride lipase
malondialdehyde
liver X receptor
paraoxonase
homeostasis model assessment of insulin resistance
aminoalkyl glucosaminide 4-phosphate
body mass index
acetyl-coenzyme A carboxylase
forkhead box protein O1
nuclear factor-κB
stearoyl-CoA desaturase-1
triglyceride
low-density lipoprotein cholesterol
fatty acid
monocyte chemoattractant protein-1
fat-free mass
reactive oxygen species
interleukin
sirtuin 1
interferon
high fat
peroxisome proliferator-activated receptor gamma coactivator 1-alpha
free fatty acid
green tea polyphenols
matrix metalloproteinase
Language English
License 2014.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c533t-dfda1dd3508dabb786582461fe9dc2d779e8366568c05f66cac8f9c4023d3ce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3926750
PMID 24314860
PQID 1466375959
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3926750
proquest_miscellaneous_2000189566
proquest_miscellaneous_1897369367
proquest_miscellaneous_1466375959
pubmed_primary_24314860
crossref_citationtrail_10_1016_j_jnutbio_2013_09_001
crossref_primary_10_1016_j_jnutbio_2013_09_001
elsevier_sciencedirect_doi_10_1016_j_jnutbio_2013_09_001
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
2014-Jan
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of nutritional biochemistry
PublicationTitleAlternate J Nutr Biochem
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lu, Zhu, Shen, Gao (bb0215) 2012; 7
Chen, Li, Li, Shan, Zhu (bb0440) 2011; 89
Shen, Cao, Dagda, Chanjaplammootil, Lu, Chyu (bb0255) 2012; 32
Dulloo, Duret, Rohrer, Girardier, Mensi, Fathi (bb0330) 1999; 70
Wang, Noh, Koo (bb0805) 2006; 136
Chen, Xiao, Feng, Li, Zhou, Zheng (bb0445) 2012; 23
Wang, Noh, Koo (bb0070) 2006; 17
Kim, Jeon, Lee, Jung, Shin, Choi (bb0205) 2009; 23
Hsu, Liou (bb0825) 2011; 226
Jang, Choi, Jung, Kim, Kim, Jeon (bb0770) 2008; 57
Fischer-Posovszky, Kukulus, Tews, Unterkircher, Debatin, Fulda (bb0835) 2010; 92
Chung, Park, Manautou, Koo, Bruno (bb0190) 2012; 23
Shishodia, Sethi, Aggarwal (bb0645) 2005; 1056
Park, DiNatale, Chung, Park, Lee, Koo (bb0225) 2011; 22
Beher, Wu, Cumine, Kim, Lu, Atangan (bb0525) 2009; 74
Ahn, Lee, Kim, Ha (bb0670) 2010; 298
Brown, Lane, Coverly, Stocks, Jackson, Stephen (bb0305) 2009; 101
Xie, Kong, Wu, Li, Li (bb0715) 2012; 20
Ramadan, El-Beih, Abd El-Ghffar (bb0235) 2009; 102
Chung (bb0510) 2012; 4
Asai, Miyazawa (bb0735) 2001; 131
Umeda, Yano, Yamada, Tachibana (bb0820) 2008; 283
Alberdi, Rodriguez, Macarulla, Miranda, Churruca, Portillo (bb0555) 2013; 29
Heber (bb0015) 2010; 91
Zhu, Yong, Wu, Yu, Lv, Liu (bb0500) 2008; 369
Ramirez-Bosca, Soler, Carrion, Diaz-Alperi, Bernd, Quintanilla (bb0790) 2000; 119
Alberdi, Rodriguez, Miranda, Macarulla, Arias, Andres-Lacueva (bb0560) 2011; 8
Chen, Zhu, Tsang, Huang (bb0080) 2001; 49
Asai, Nakagawa, Miyazawa (bb0765) 1999; 63
Goran MI, Alderete TL. Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutrition Institute workshop series. 2012;73:49–60; discussion p1-6.
Kempaiah, Srinivasan (bb0775) 2006; 17
Alvehus, Buren, Sjostrom, Goedecke, Olsson (bb0275) 2010; 18
Kang, Ha, Kim, Kim (bb0460) 2012; 6
Timmers, Konings, Bilet, Houtkooper, van de Weijer, Goossens (bb0620) 2011; 14
policydocument.htm. Accessed on July 4.
Basu, Du, Sanchez, Leyva, Betts, Blevins (bb0285) 2011; 27
Bogdanski, Suliburska, Szulinska, Stepien, Pupek-Musialik, Jablecka (bb0295) 2012; 32
Pischon, Hankinson, Hotamisligil, Rifai, Rimm (bb0045) 2003; 11
Sae-tan, Grove, Lambert (bb0245) 2011; 64
Cunha, Lira, Rosa Neto, Pimentel, Souza, da Silva (bb0195) 2013; 2013
Rayalam, Yang, Ambati, Della-Fera, Baile (bb0480) 2008; 22
Lee, Kim (bb0915) 2009; 73
Dal-Pan, Blanc, Aujard (bb0575) 2010; 10
Phung, Baker, Matthews, Lanosa, Thorne, Coleman (bb0390) 2010; 91
Tian, Ye, Zhang, Long, Ren, Ding (bb0265) 2013; 8
Ejaz, Wu, Kwan, Meydani (bb0680) 2009; 139
Hsu, Tsai, Kao, Hwang, Tseng, Chou (bb0340) 2008; 27
Macarulla, Alberdi, Gomez, Tueros, Bald, Rodriguez (bb0595) 2009; 65
Lee, Kim, Kim, Kim (bb0120) 2009; 23
Shao, Yu, Chiang, Yang, Chai, Foltz (bb0700) 2012; 7
Bujanda, Hijona, Larzabal, Beraza, Aldazabal, Garcia-Urkia (bb0570) 2008; 8
Liu, Chen, Hung, Kao (bb0135) 2006; 290
Kang, Heng, Yuan, Baolin, Fang (bb0455) 2010; 92
Crowley, Yeo, O'Rahilly (bb0550) 2002; 1
Poulsen, Vestergaard, Clasen, Radko, Christensen, Stodkilde-Jorgensen (bb0615) 2013; 62
He, Wang, Gao, Ling, Yu, Jin (bb0755) 2012; 3
Kwon, Seo, Yue, Cheng, Lee, Kim (bb0465) 2012; 32
Moon, Chung, Lee, Kim, Choi, Cho (bb0140) 2007; 15
Chen, Bezzina, Hinch, Lewandowski, Cameron-Smith, Mathai (bb0180) 2009; 29
Kalupahana, Claycombe, Moustaid-Moussa (bb0900) 2011; 2
Yekollu, Thomas, O'Sullivan (bb0760) 2011; 60
Friedrich, Petzke, Raederstorff, Wolfram, Klaus (bb0200) 2012; 36
Kovacs, Lejeune, Nijs, Westerterp-Plantenga (bb0345) 2004; 91
Gomez-Zorita, Fernandez-Quintela, Macarulla, Aguirre, Hijona, Bujanda (bb0585) 2012; 107
Baur, Sinclair (bb0875) 2006; 5
Rivera, Moron, Zarzuelo, Galisteo (bb0610) 2009; 77
Anand, Kunnumakkara, Newman, Aggarwal (bb0870) 2007; 4
Chen, Lee, Li, Yang (bb0850) 1997; 25
Abramson, Vaccarino (bb0035) 2002; 162
Costa Cdos, Rohden, Hammes, Margis, Bortolotto, Padoin (bb0450) 2011; 21
Pongchaidecha, Lailerd, Boonprasert, Chattipakorn (bb0730) 2009; 25
Suliburska, Bogdanski, Szulinska, Stepien, Pupek-Musialik, Jablecka (bb0370) 2012; 149
Baum, Cheung, Mok, Lam, Leung, Hui (bb0800) 2007; 56
Zhao, Sun, Ye, Tian (bb0720) 2011; 351
Richard, Kefi, Barbe, Poli, Bausero, Visioli (bb0240) 2009; 59
Lazar MA. Resistin- and Obesity-associated metabolic diseases. Hormone and metabolic research=Hormon- und Stoffwechselforschung=Hormones et metabolisme. 2007;39:710–6.
Dixon, Paiva (bb0400) 1995; 7
Monteiro, Assuncao, Andrade, Neves, Calhau, Azevedo (bb0220) 2008; 138
Warden, Smith, Beecher, Balentine, Clevidence (bb0855) 2001; 131
Cheng, Hsu, Lin, Hsu, Ho, Shen (bb0665) 2001; 21
Chan, Wei, Castro-Munozledo, Koo (bb0905) 2011; 89
Basu, Sanchez, Leyva, Wu, Betts, Aston (bb0290) 2010; 29
Nagao, Jinnouchi, Kai, Yanagita (bb0600) 2013; 12
Kim, Le, Chen, Cheng, Kim (bb0690) 2011; 22
Poulsen, Larsen, Hamilton-Dutoit, Clasen, Jessen, Paulsen (bb0605) 2012; 32
Wakil, Abu-Elheiga (bb0150) 2009; 50
Park, Ahmad, Philp, Baar, Williams, Luo (bb0505) 2012; 148
Kim, Jin, Choi, Park (bb0590) 2011; 81
Szkudelska, Szkudelski (bb0540) 2010; 635
Hung, Wu, Chen, Chen, Chen, Wu (bb0095) 2005; 288
Gonzales, Orlando (bb0685) 2008; 5
Pacholec, Bleasdale, Chrunyk, Cunningham, Flynn, Garofalo (bb0520) 2010; 285
Mercader, Palou, Bonet (bb0545) 2011; 22
Shoba, Joy, Joseph, Majeed, Rajendran, Srinivas (bb0865) 1998; 64
Maki, Reeves, Farmer, Yasunaga, Matsuo, Katsuragi (bb0350) 2009; 139
Lasa, Miranda, Churruca, Simon, Arias, Milagro (bb0470) 2011; 26
Zhang, Du ZX (bb0925) 2013; 13
Lagouge, Argmann, Gerhart-Hines, Meziane, Lerin, Daussin (bb0530) 2006; 127
Dong, Zhao, Wu, Yang, Xie, Yu (bb0675) 2011; 358
Goel, Kunnumakkara, Aggarwal (bb0660) 2008; 75
Weisberg, Leibel, Tortoriello (bb0745) 2008; 149
Hong, Lu, Meng, Ryu, Hara, Yang (bb0815) 2002; 62
Harp (bb0535) 2004; 15
Ramirez Bosca, Soler, Carrion-Gutierrez, Pamies Mira, Pardo Zapata, Diaz-Alperi (bb0795) 2000; 114
Siriwardhana, Kalupahana, Cekanova, Lemieux, Greer, Moustaid-Moussa (bb0020) 2013; 24
Wang, Liu, Liu, Dong, Glickman, Slaga (bb0485) 2011; 286
Ahn, Lee, Kim, Ha (bb0435) 2007; 364
Lin, Della-Fera, Baile (bb0130) 2005; 13
Nagao, Komine, Soga, Meguro, Hase, Tanaka (bb0365) 2005; 81
Kalupahana, Moustaid-Moussa (bb0055) 2012; 47
Chainani-Wu (bb0655) 2003; 9
Mesa, Aguilera, Ramirez-Tortosa, Ramirez-Tortosa, Quiles, Baro (bb0785) 2003; 19
Axling, Olsson, Xu, Fernandez, Larsson, Strom (bb0165) 2012; 9
Kalupahana, Moustaid-Moussa, Claycombe (bb0025) 2012; 33
Jurgens, Whelan, Killian, Doucette, Kirk, Foy (bb0395) 2012; 12
Wu, Puigserver, Andersson, Zhang, Adelmant, Mootha (bb0515) 1999; 98
Shimotoyodome, Haramizu, Inaba, Murase, Tokimitsu (bb0260) 2005; 37
Auvichayapat, Prapochanung, Tunkamnerdthai, Sripanidkulchai, Auvichayapat, Thinkhamrop (bb0280) 2008; 93
Klaus, Pultz, Thone-Reineke, Wolfram (bb0210) 2005; 29
Soleas, Diamandis, Goldberg (bb0425) 1997; 30
Zhang, Huang, Choi, Seo (bb0495) 2012; 6
Hollman, vd Gaag, Mengelers, van Trijp, de Vries, Katan (bb0885) 1996; 21
Dietary guidelines for Americans.
Picard, Kurtev, Chung, Topark-Ngarm, Senawong, Machado De Oliveira (bb0840) 2004; 429
Tome-Carneiro, Gonzalvez, Larrosa, Garcia-Almagro, Aviles-Plaza, Parra (bb0625) 2012; 56
Oner-Iyidogan, Kocak, Seyidhanoglu, Gurdol, Gulcubuk, Yildirim (bb0940) 2013
Lasa, Schweiger, Kotzbeck, Churruca, Simon, Zechner (bb0475) 2012; 23
Tsai, Williamson, Glick (bb0005) 2011; 12
Thielecke, Rahn, Bohnke, Adams, Birkenfeld, Jordan (bb0375) 2010; 64
Alappat, Awad (bb0640) 2010; 68
Brown, Lane, Holyoak, Nicol, Mayes, Dadd (bb0310) 2011; 106
Matsuyama, Tanaka, Kamimaki, Nagao, Tokimitsu (bb0355) 2008; 16
Esfahani, Wong, Truan, Villa, Mirrahimi, Srichaikul (bb0060) 2011; 30
Yu, Hu, Yan (bb0945) 2008; 42
Di Pierro, Menghi, Barreca, Lucarelli, Calandrelli (bb0320) 2009; 14
Geffken, Cushman, Burke, Polak, Sakkinen, Tracy (bb0040) 2001; 153
Furuyashiki, Nagayasu, Aoki, Bessho, Hashimoto, Kanazawa (bb0090) 2004; 68
Lee, Lee, Hwang, Kwon, Surh, Park (bb0695) 2009; 57
Ku, Liu, Hung, Chen, Liu, Chang (bb0115) 2012; 56
Wang, Bai, Chen, Ching (bb0380) 2010; 5
Wang, Li, Wen, Chen, Na, Li (bb0705) 2009; 22
Basu, Lucas (bb0075) 2007; 65
Bose, Lambert, Ju, Reuhl, Shapses, Yang (bb0170) 2008; 138
Tome-Carneiro, Gonzalvez, Larrosa, Yanez-Gascon, Garcia-Almagro, Ruiz-Ros (bb0630) 2013; 27
Hurst, Glinski, Miller, Apgar, Davey, Stuart (bb0420) 2008; 56
Leray, Freuchet, Le Bloc'h, Jeusette, Torre, Nguyen (bb0780) 2011; 106
Ku, Chang, Liu, Hsiao, Lee, Hu (bb0110) 2009; 297
Hill, Coates, Buckley, Ross, Thielecke, Howe (bb0335) 2007; 26
Boschmann, Thielecke (bb0300) 2007; 26
Hursel, Viechtbauer, Westerterp-Plantenga (bb0385) 2009; 33
Romero-Perez, Ibern-Gomez, Lamuela-Raventos, de La Torre-Boronat (bb0410) 1999; 47
Ashida, Furuyashiki, Nagayasu, Bessho, Sakakibara, Hashimoto (bb0160) 2004; 22
Lotito, Zhang, Yang, Crozier, Frei (bb0895) 2011; 51
Fremont (bb0405) 2000; 66
Rao, Sekhara, Satyanarayana, Srinivasan (bb0725) 1970; 100
Wu, Hung, Chen, Huang, Chang, Kao (bb0145) 2005; 53
Chantre, Lairon (bb0315) 2002; 9
Bouchard (bb0010) 2010; 91
Hwang, Park, Shin, Lee, Lee, Baik (bb0100) 2005; 338
Franco, Lisboa, Lima, Amaral, Peixoto-Silva, Resende (bb0930) 2013; 24
Hsieh, Tsuei, Liu, Kao, Shih, Ho (bb0830) 2010; 76
Burns, Yokota, Ashihara, Lean, Crozier (bb0415) 2002; 50
Woo, Kang, Kawada, Yoo, Sung, Yu (bb0710) 2007; 80
Orallo (bb0430) 2006; 13
Conquer, Maiani, Azzini, Raguzzini, Holub (bb0880) 1998; 128
Han, Matsumura, Kim, Hyon (bb0810) 2008; 16
Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In vivo. 2000;14:481–4.
Ueda, Ashida (bb0270) 2012; 60
Hong, Mitchell (bb0890) 2004; 52
Bruno, Dugan, Smyth, DiNatale, Koo (bb0175) 2008; 138
Kim, Hiraishi, Tsuchiya, Sakamoto (bb0910) 2010; 62
Baur, Pearson, Price, Jamieson, Lerin, Kalra (bb0565) 2006; 444
Kim, Bordenave, Ferruzzi, Safavy, Kim (bb0845) 2011; 59
Park, Lee, Chung, Park, Bower, Koo (bb0230) 2012; 142
Diepvens, Kovacs, Nijs, Vogels, Westerterp-Plantenga (bb0325) 2005; 94
Tome-Carneiro, Larrosa, Yanez-Gascon, Davalos, Gil-Zamorano, Gonzalvez (bb0935) 2013; 72
Lee, Maliakal, Chen, Meng, Bondoc, Prabhu (bb0860) 2002; 11
Nagao, Hase, Tokimitsu (bb0360) 2007; 15
Chen, Cheung, Reuhl, Liu, Lee, Lu (bb0185) 2011; 59
Meydani,
Shishodia (10.1016/j.jnutbio.2013.09.001_bb0645) 2005; 1056
Hill (10.1016/j.jnutbio.2013.09.001_bb0335) 2007; 26
Dulloo (10.1016/j.jnutbio.2013.09.001_bb0330) 1999; 70
Tsai (10.1016/j.jnutbio.2013.09.001_bb0005) 2011; 12
Poulsen (10.1016/j.jnutbio.2013.09.001_bb0615) 2013; 62
Jurgens (10.1016/j.jnutbio.2013.09.001_bb0395) 2012; 12
Alberdi (10.1016/j.jnutbio.2013.09.001_bb0555) 2013; 29
Tian (10.1016/j.jnutbio.2013.09.001_bb0265) 2013; 8
Auvichayapat (10.1016/j.jnutbio.2013.09.001_bb0280) 2008; 93
Nagao (10.1016/j.jnutbio.2013.09.001_bb0360) 2007; 15
Suliburska (10.1016/j.jnutbio.2013.09.001_bb0370) 2012; 149
Shao (10.1016/j.jnutbio.2013.09.001_bb0700) 2012; 7
Leray (10.1016/j.jnutbio.2013.09.001_bb0780) 2011; 106
Lee (10.1016/j.jnutbio.2013.09.001_bb0695) 2009; 57
Lee (10.1016/j.jnutbio.2013.09.001_bb0860) 2002; 11
Nagao (10.1016/j.jnutbio.2013.09.001_bb0600) 2013; 12
Picard (10.1016/j.jnutbio.2013.09.001_bb0840) 2004; 429
Geffken (10.1016/j.jnutbio.2013.09.001_bb0040) 2001; 153
Chen (10.1016/j.jnutbio.2013.09.001_bb0185) 2011; 59
Chen (10.1016/j.jnutbio.2013.09.001_bb0180) 2009; 29
Costa Cdos (10.1016/j.jnutbio.2013.09.001_bb0450) 2011; 21
Jang (10.1016/j.jnutbio.2013.09.001_bb0770) 2008; 57
Ku (10.1016/j.jnutbio.2013.09.001_bb0115) 2012; 56
Park (10.1016/j.jnutbio.2013.09.001_bb0505) 2012; 148
Yu (10.1016/j.jnutbio.2013.09.001_bb0945) 2008; 42
He (10.1016/j.jnutbio.2013.09.001_bb0755) 2012; 3
Hollman (10.1016/j.jnutbio.2013.09.001_bb0885) 1996; 21
Kim (10.1016/j.jnutbio.2013.09.001_bb0205) 2009; 23
Brown (10.1016/j.jnutbio.2013.09.001_bb0305) 2009; 101
Liu (10.1016/j.jnutbio.2013.09.001_bb0135) 2006; 290
Lasa (10.1016/j.jnutbio.2013.09.001_bb0470) 2011; 26
Ejaz (10.1016/j.jnutbio.2013.09.001_bb0680) 2009; 139
Monteiro (10.1016/j.jnutbio.2013.09.001_bb0220) 2008; 138
Zhu (10.1016/j.jnutbio.2013.09.001_bb0500) 2008; 369
Basu (10.1016/j.jnutbio.2013.09.001_bb0285) 2011; 27
Boschmann (10.1016/j.jnutbio.2013.09.001_bb0300) 2007; 26
Friedrich (10.1016/j.jnutbio.2013.09.001_bb0200) 2012; 36
Gonzales (10.1016/j.jnutbio.2013.09.001_bb0685) 2008; 5
Anand (10.1016/j.jnutbio.2013.09.001_bb0870) 2007; 4
Ramadan (10.1016/j.jnutbio.2013.09.001_bb0235) 2009; 102
10.1016/j.jnutbio.2013.09.001_bb0065
Alappat (10.1016/j.jnutbio.2013.09.001_bb0640) 2010; 68
Kempaiah (10.1016/j.jnutbio.2013.09.001_bb0775) 2006; 17
Asai (10.1016/j.jnutbio.2013.09.001_bb0735) 2001; 131
Hung (10.1016/j.jnutbio.2013.09.001_bb0095) 2005; 288
Kovacs (10.1016/j.jnutbio.2013.09.001_bb0345) 2004; 91
Fischer-Posovszky (10.1016/j.jnutbio.2013.09.001_bb0835) 2010; 92
Alvehus (10.1016/j.jnutbio.2013.09.001_bb0275) 2010; 18
Asai (10.1016/j.jnutbio.2013.09.001_bb0765) 1999; 63
Yekollu (10.1016/j.jnutbio.2013.09.001_bb0760) 2011; 60
Baum (10.1016/j.jnutbio.2013.09.001_bb0800) 2007; 56
Lu (10.1016/j.jnutbio.2013.09.001_bb0215) 2012; 7
Hwang (10.1016/j.jnutbio.2013.09.001_bb0100) 2005; 338
Ramirez Bosca (10.1016/j.jnutbio.2013.09.001_bb0795) 2000; 114
Nagao (10.1016/j.jnutbio.2013.09.001_bb0365) 2005; 81
Meydani (10.1016/j.jnutbio.2013.09.001_bb0650) 2010; 2
Cunha (10.1016/j.jnutbio.2013.09.001_bb0195) 2013; 2013
Zhao (10.1016/j.jnutbio.2013.09.001_bb0720) 2011; 351
Chen (10.1016/j.jnutbio.2013.09.001_bb0445) 2012; 23
Wu (10.1016/j.jnutbio.2013.09.001_bb0145) 2005; 53
Lasa (10.1016/j.jnutbio.2013.09.001_bb0475) 2012; 23
Ashida (10.1016/j.jnutbio.2013.09.001_bb0160) 2004; 22
Pongchaidecha (10.1016/j.jnutbio.2013.09.001_bb0730) 2009; 25
Baur (10.1016/j.jnutbio.2013.09.001_bb0565) 2006; 444
Cheng (10.1016/j.jnutbio.2013.09.001_bb0665) 2001; 21
Xie (10.1016/j.jnutbio.2013.09.001_bb0715) 2012; 20
Zhang (10.1016/j.jnutbio.2013.09.001_bb0495) 2012; 6
10.1016/j.jnutbio.2013.09.001_bb0920
Heber (10.1016/j.jnutbio.2013.09.001_bb0015) 2010; 91
Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0630) 2013; 27
Dong (10.1016/j.jnutbio.2013.09.001_bb0675) 2011; 358
Lagouge (10.1016/j.jnutbio.2013.09.001_bb0530) 2006; 127
Macarulla (10.1016/j.jnutbio.2013.09.001_bb0595) 2009; 65
Ramirez-Bosca (10.1016/j.jnutbio.2013.09.001_bb0790) 2000; 119
Klaus (10.1016/j.jnutbio.2013.09.001_bb0210) 2005; 29
Kim (10.1016/j.jnutbio.2013.09.001_bb0690) 2011; 22
Crowley (10.1016/j.jnutbio.2013.09.001_bb0550) 2002; 1
Matsuyama (10.1016/j.jnutbio.2013.09.001_bb0355) 2008; 16
Wakil (10.1016/j.jnutbio.2013.09.001_bb0150) 2009; 50
Thielecke (10.1016/j.jnutbio.2013.09.001_bb0375) 2010; 64
Gomez-Zorita (10.1016/j.jnutbio.2013.09.001_bb0585) 2012; 107
Chen (10.1016/j.jnutbio.2013.09.001_bb0850) 1997; 25
Chen (10.1016/j.jnutbio.2013.09.001_bb0440) 2011; 89
Rivera (10.1016/j.jnutbio.2013.09.001_bb0610) 2009; 77
Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0625) 2012; 56
Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0025) 2012; 33
Chan (10.1016/j.jnutbio.2013.09.001_bb0905) 2011; 89
Wang (10.1016/j.jnutbio.2013.09.001_bb0380) 2010; 5
Ku (10.1016/j.jnutbio.2013.09.001_bb0110) 2009; 297
Hurst (10.1016/j.jnutbio.2013.09.001_bb0420) 2008; 56
Ahn (10.1016/j.jnutbio.2013.09.001_bb0670) 2010; 298
Kang (10.1016/j.jnutbio.2013.09.001_bb0460) 2012; 6
Wang (10.1016/j.jnutbio.2013.09.001_bb0705) 2009; 22
Oner-Iyidogan (10.1016/j.jnutbio.2013.09.001_bb0940) 2013
Harp (10.1016/j.jnutbio.2013.09.001_bb0535) 2004; 15
Mercader (10.1016/j.jnutbio.2013.09.001_bb0545) 2011; 22
Hsu (10.1016/j.jnutbio.2013.09.001_bb0825) 2011; 226
Kim (10.1016/j.jnutbio.2013.09.001_bb0910) 2010; 62
Tome-Carneiro (10.1016/j.jnutbio.2013.09.001_bb0935) 2013; 72
Pischon (10.1016/j.jnutbio.2013.09.001_bb0045) 2003; 11
Bogdanski (10.1016/j.jnutbio.2013.09.001_bb0295) 2012; 32
Esfahani (10.1016/j.jnutbio.2013.09.001_bb0060) 2011; 30
Wu (10.1016/j.jnutbio.2013.09.001_bb0515) 1999; 98
Ahn (10.1016/j.jnutbio.2013.09.001_bb0435) 2007; 364
Shoba (10.1016/j.jnutbio.2013.09.001_bb0865) 1998; 64
Hsu (10.1016/j.jnutbio.2013.09.001_bb0340) 2008; 27
Wang (10.1016/j.jnutbio.2013.09.001_bb0805) 2006; 136
Warden (10.1016/j.jnutbio.2013.09.001_bb0855) 2001; 131
Chen (10.1016/j.jnutbio.2013.09.001_bb0080) 2001; 49
Bruno (10.1016/j.jnutbio.2013.09.001_bb0175) 2008; 138
Brown (10.1016/j.jnutbio.2013.09.001_bb0310) 2011; 106
Hong (10.1016/j.jnutbio.2013.09.001_bb0890) 2004; 52
Hursel (10.1016/j.jnutbio.2013.09.001_bb0385) 2009; 33
Burns (10.1016/j.jnutbio.2013.09.001_bb0415) 2002; 50
Wang (10.1016/j.jnutbio.2013.09.001_bb0485) 2011; 286
Chung (10.1016/j.jnutbio.2013.09.001_bb0510) 2012; 4
Beher (10.1016/j.jnutbio.2013.09.001_bb0525) 2009; 74
Bouchard (10.1016/j.jnutbio.2013.09.001_bb0010) 2010; 91
Kwon (10.1016/j.jnutbio.2013.09.001_bb0465) 2012; 32
Rayalam (10.1016/j.jnutbio.2013.09.001_bb0480) 2008; 22
Wang (10.1016/j.jnutbio.2013.09.001_bb0070) 2006; 17
Bose (10.1016/j.jnutbio.2013.09.001_bb0170) 2008; 138
Maki (10.1016/j.jnutbio.2013.09.001_bb0350) 2009; 139
Pacholec (10.1016/j.jnutbio.2013.09.001_bb0520) 2010; 285
Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0900) 2011; 2
Kim (10.1016/j.jnutbio.2013.09.001_bb0590) 2011; 81
Weisberg (10.1016/j.jnutbio.2013.09.001_bb0745) 2008; 149
Kalupahana (10.1016/j.jnutbio.2013.09.001_bb0055) 2012; 47
Kang (10.1016/j.jnutbio.2013.09.001_bb0455) 2010; 92
Fremont (10.1016/j.jnutbio.2013.09.001_bb0405) 2000; 66
Zhang (10.1016/j.jnutbio.2013.09.001_bb0925) 2013; 13
Lin (10.1016/j.jnutbio.2013.09.001_bb0130) 2005; 13
Sae-tan (10.1016/j.jnutbio.2013.09.001_bb0245) 2011; 64
Shen (10.1016/j.jnutbio.2013.09.001_bb0255) 2012; 32
Romero-Perez (10.1016/j.jnutbio.2013.09.001_bb0410) 1999; 47
Franco (10.1016/j.jnutbio.2013.09.001_bb0930) 2013; 24
Abramson (10.1016/j.jnutbio.2013.09.001_bb0035) 2002; 162
Szkudelska (10.1016/j.jnutbio.2013.09.001_bb0540) 2010; 635
Mesa (10.1016/j.jnutbio.2013.09.001_bb0785) 2003; 19
Lotito (10.1016/j.jnutbio.2013.09.001_bb0895) 2011; 51
Moon (10.1016/j.jnutbio.2013.09.001_bb0140) 2007; 15
Baur (10.1016/j.jnutbio.2013.09.001_bb0875) 2006; 5
Diepvens (10.1016/j.jnutbio.2013.09.001_bb0325) 2005; 94
Goel (10.1016/j.jnutbio.2013.09.001_bb0660) 2008; 75
Conquer (10.1016/j.jnutbio.2013.09.001_bb0880) 1998; 128
Umeda (10.1016/j.jnutbio.2013.09.001_bb0820) 2008; 283
Phung (10.1016/j.jnutbio.2013.09.001_bb0390) 2010; 91
Chung (10.1016/j.jnutbio.2013.09.001_bb0190) 2012; 23
Soleas (10.1016/j.jnutbio.2013.09.001_bb0425) 1997; 30
Siriwardhana (10.1016/j.jnutbio.2013.09.001_bb0020) 2013; 24
Richard (10.1016/j.jnutbio.2013.09.001_bb0240) 2009; 59
Ueda (10.1016/j.jnutbio.2013.09.001_bb0270) 2012; 60
Rao (10.1016/j.jnutbio.2013.09.001_bb0725) 1970; 100
Han (10.1016/j.jnutbio.2013.09.001_bb0810) 2008; 16
Woo (10.1016/j.jnutbio.2013.09.001_bb0710) 2007; 80
Park (10.1016/j.jnutbio.2013.09.001_bb0225) 2011; 22
Lee (10.1016/j.jnutbio.2013.09.001_bb0915) 2009; 73
Kim (10.1016/j.jnutbio.2013.09.001_bb0845) 2011; 59
10.1016/j.jnutbio.2013.09.001_bb0155
Bujanda (10.1016/j.jnutbio.2013.09.001_bb0570) 2008; 8
Basu (10.1016/j.jnutbio.2013.09.001_bb0075) 2007; 65
10.1016/j.jnutbio.2013.09.001_bb0030
Axling (10.1016/j.jnutbio.2013.09.001_bb0165) 2012; 9
Timmers (10.1016/j.jnutbio.2013.09.001_bb0620) 2011; 14
Hsieh (10.1016/j.jnutbio.2013.09.001_bb0830) 2010; 76
Dixon (10.1016/j.jnutbio.2013.09.001_bb0400) 1995; 7
Shimotoyodome (10.1016/j.jnutbio.2013.09.001_bb0260) 2005; 37
Furuyashiki (10.1016/j.jnutbio.2013.09.001_bb0090) 2004; 68
Dal-Pan (10.1016/j.jnutbio.2013.09.001_bb0575) 2010; 10
Basu (10.1016/j.jnutbio.2013.09.001_bb0290) 2010; 29
Chantre (10.1016/j.jnutbio.2013.09.001_bb0315) 2002; 9
Hong (10.1016/j.jnutbio.2013.09.001_bb0815) 2002; 62
Orallo (10.1016/j.jnutbio.2013.09.001_bb0430) 2006; 13
Di Pierro (10.1016/j.jnutbio.2013.09.001_bb0320) 2009; 14
Poulsen (10.1016/j.jnutbio.2013.09.001_bb0605) 2012; 32
Alberdi (10.1016/j.jnutbio.2013.09.001_bb0560) 2011; 8
Lee (10.1016/j.jnutbio.2013.09.001_bb0120) 2009; 23
Park (10.1016/j.jnutbio.2013.09.001_bb0230) 2012; 142
Chainani-Wu (10.1016/j.jnutbio.2013.09.001_bb0655) 2003; 9
9127691 - Clin Biochem. 1997 Mar;30(2):91-113
20595643 - J Am Coll Nutr. 2010 Feb;29(1):31-40
21221723 - Mol Cell Biochem. 2011 May;351(1-2):19-28
17951067 - Pharmacol Res. 2007 Dec;56(6):509-14
15640470 - Am J Clin Nutr. 2005 Jan;81(1):122-9
18940397 - Metabolism. 2008 Nov;57(11):1576-83
19906797 - Am J Clin Nutr. 2010 Jan;91(1):73-81
20357182 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1510-6
22072344 - Nutr Hosp. 2011 Sep-Oct;26(5):997-1003
20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51
21109418 - J Nutr Biochem. 2011 Sep;22(9):828-34
22017765 - Can J Physiol Pharmacol. 2011 Nov;89(11):793-9
22749178 - Nutr Res. 2012 Jun;32(6):421-7
22416799 - J Agric Food Chem. 2012 Sep 12;60(36):8917-23
12972675 - Obes Res. 2003 Sep;11(9):1055-64
22005428 - Br J Nutr. 2011 Oct;106 Suppl 1:S198-201
19932867 - Nutr Res. 2009 Nov;29(11):784-93
23084643 - Nutr Res. 2012 Sep;32(9):701-8
19051209 - Phytother Res. 2009 Apr;23(4):467-71
19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24
18710606 - Br J Nutr. 2009 Mar;101(6):886-94
21571063 - Free Radic Biol Med. 2011 Jul 15;51(2):454-63
23346299 - Nutr Res Pract. 2012 Dec;6(6):499-504
19594224 - Altern Med Rev. 2009 Jun;14(2):154-60
23374859 - Lipids Health Dis. 2013;12:8
23235664 - Cochrane Database Syst Rev. 2012;12:CD008650
20872255 - Obes Surg. 2011 Mar;21(3):356-61
21750518 - Int J Obes (Lond). 2012 May;36(5):735-43
22645638 - World J Diabetes. 2012 May 15;3(5):94-104
20188786 - Biochimie. 2010 Jul;92(7):789-96
18079119 - J Biol Chem. 2008 Feb 8;283(6):3050-8
11712783 - Anticancer Res. 2001 Jul-Aug;21(4B):2895-900
17112576 - Cell. 2006 Dec 15;127(6):1109-22
11157411 - Am J Epidemiol. 2001 Feb 1;153(3):242-50
16387689 - Ann N Y Acad Sci. 2005 Nov;1056:206-17
15738931 - Int J Obes (Lond). 2005 Jun;29(6):615-23
19297423 - J Nutr. 2009 May;139(5):919-25
10945161 - In Vivo. 2000 Jul-Aug;14(4):481-4
20372175 - Eur J Clin Nutr. 2010 Jul;64(7):704-13
22648627 - Mol Nutr Food Res. 2012 May;56(5):810-21
19597519 - Int J Obes (Lond). 2009 Sep;33(9):956-61
17999464 - Mol Pharm. 2007 Nov-Dec;4(6):807-18
18291098 - Biochem Biophys Res Commun. 2008 May 2;369(2):471-7
18716169 - J Nutr. 2008 Sep;138(9):1677-83
12010007 - J Agric Food Chem. 2002 May 22;50(11):3337-40
19176142 - Zhonghua Yu Fang Yi Xue Za Zhi. 2008 Nov;42(11):818-22
20605696 - Nutrition. 2011 Feb;27(2):206-13
15998135 - J Agric Food Chem. 2005 Jul 13;53(14):5695-701
16351782 - Br J Nutr. 2005 Dec;94(6):1026-34
19100718 - Biochem Pharmacol. 2009 Mar 15;77(6):1053-63
20059703 - Obes Rev. 2011 Jan;12(1):50-61
22332072 - Adv Nutr. 2011 Jul;2(4):304-16
22081614 - J Am Coll Nutr. 2011 Oct;30(5):285-94
19074207 - J Nutr. 2009 Feb;139(2):264-70
23274094 - Nutrition. 2013 Mar;29(3):562-7
12921893 - Nutrition. 2003 Sep;19(9):800-4
17867370 - Nutr Rev. 2007 Aug;65(8 Pt 1):361-75
16713229 - J Nutr Biochem. 2006 Jul;17(7):492-8
16159906 - Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E273-81
21193040 - Pharmacol Res. 2011 Aug;64(2):146-54
10564012 - J Agric Food Chem. 1999 Apr;47(4):1533-6
8891673 - Free Radic Biol Med. 1996;21(5):703-7
20596890 - Cytotechnology. 2010 Jul;62(3):245-55
23431242 - Mediators Inflamm. 2013;2013:635470
21189228 - J Nutr Biochem. 2011 Oct;22(10):910-20
20358350 - J Physiol Biochem. 2009 Dec;65(4):369-76
22715380 - PLoS One. 2012;7(6):e38332
19093868 - J Agric Food Chem. 2009 Jan 14;57(1):305-10
17056802 - J Nutr. 2006 Nov;136(11):2791-6
12120279 - Nat Rev Drug Discov. 2002 Apr;1(4):276-86
22720713 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):379-90
12499265 - Cancer Res. 2002 Dec 15;62(24):7241-6
19107849 - Phytother Res. 2009 Aug;23(8):1088-91
23557933 - Pharmacol Res. 2013 Jun;72:69-82
16286857 - Med Sci Sports Exerc. 2005 Nov;37(11):1884-92
16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506
18759443 - J Agric Food Chem. 2008 Sep 24;56(18):8374-8
19825205 - Br J Nutr. 2009 Dec;102(11):1611-9
23193181 - Diabetes. 2013 Apr;62(4):1186-95
17900536 - Biochem Pharmacol. 2008 Feb 15;75(4):787-809
15647388 - Am J Physiol Cell Physiol. 2005 May;288(5):C1094-108
12376503 - Cancer Epidemiol Biomarkers Prev. 2002 Oct;11(10 Pt 1):1025-32
21978785 - Life Sci. 2011 Nov 21;89(21-22):779-85
18468736 - Clin Nutr. 2008 Jun;27(3):363-70
19398300 - Nutrition. 2009 Jul-Aug;25(7-8):870-8
23430567 - J Physiol Biochem. 2013 Dec;69(4):677-86
11694621 - J Nutr. 2001 Nov;131(11):2932-5
12676044 - J Altern Complement Med. 2003 Feb;9(1):161-8
17557985 - Obesity (Silver Spring). 2007 Jun;15(6):1473-83
9619120 - Planta Med. 1998 May;64(4):353-6
19923373 - Am J Clin Nutr. 2010 Jan;91(1):280S-283S
17967414 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):972-7
18006026 - Physiol Behav. 2008 Feb 27;93(3):486-91
22157544 - J Nutr. 2012 Jan;142(1):57-63
20980258 - J Biol Chem. 2011 Jan 7;286(1):60-6
15630268 - Biofactors. 2004;22(1-4):135-40
22254051 - Nutrients. 2010 Jul;2(7):737-51
16236247 - Biochem Biophys Res Commun. 2005 Dec 16;338(2):694-9
15175761 - Nature. 2004 Jun 17;429(6993):771-6
20655714 - J Nutr Biochem. 2011 Apr;22(4):393-400
20463039 - Am J Clin Nutr. 2010 Jul;92(1):5-15
10412986 - Cell. 1999 Jul 9;98(1):115-24
21748336 - Mol Cell Biochem. 2011 Dec;358(1-2):281-5
12242399 - Plant Cell. 1995 Jul;7(7):1085-1097
21792929 - J Cell Physiol. 2011 Oct;226(10):2721-30
15166786 - Curr Opin Lipidol. 2004 Jun;15(3):303-7
18688788 - Phytother Res. 2008 Oct;22(10):1367-71
23342006 - PLoS One. 2013;8(1):e53796
22584682 - Clin Exp Med. 2013 Aug;13(3):193-9
15005829 - Br J Nutr. 2004 Mar;91(3):431-7
22495985 - Mol Nutr Food Res. 2012 Apr;56(4):580-92
22935344 - Nutr Res. 2012 Aug;32(8):607-16
23224687 - Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48
19462685 - Biomed Environ Sci. 2009 Feb;22(1):32-9
20186138 - Obesity (Silver Spring). 2010 May;18(5):879-83
11040400 - Mech Ageing Dev. 2000 Oct 20;119(1-2):41-7
18936213 - J Nutr. 2008 Nov;138(11):2156-63
10680575 - Life Sci. 2000 Jan 14;66(8):663-73
20303945 - Eur J Pharmacol. 2010 Jun 10;635(1-3):1-8
22977681 - Nutr Res Pract. 2012 Aug;6(4):286-93
10664844 - Biosci Biotechnol Biochem. 1999 Dec;63(12):2118-22
22253696 - PLoS One. 2012;7(1):e28784
18782455 - BMC Gastroenterol. 2008;8:40
11924761 - Phytomedicine. 2002 Jan;9(1):3-8
20455202 - Planta Med. 2010 Oct;76(15):1694-8
21569266 - Nutr Metab (Lond). 2011 May 10;8(1):29
21091916 - Nutr Rev. 2010 Dec;68(12):729-38
11385060 - J Nutr. 2001 Jun;131(6):1731-7
16457641 - Curr Med Chem. 2006;13(1):87-98
18403477 - Endocrinology. 2008 Jul;149(7):3549-58
22304913 - Cell. 2012 Feb 3;148(3):421-33
10584049 - Am J Clin Nutr. 1999 Dec;70(6):1040-5
20569453 - BMC Physiol. 2010;10:11
21932846 - J Agric Food Chem. 2011 Nov 9;59(21):11862-71
11170614 - J Agric Food Chem. 2001 Jan;49(1):477-82
22749181 - Nutr Res. 2012 Jun;32(6):448-57
23083815 - Phytomedicine. 2012 Dec 15;20(1):3-8
22137261 - J Nutr Biochem. 2012 Sep;23(9):1100-12
18549505 - Nutr Metab (Lond). 2008 Jun 12;5:17
21439945 - Biochem Pharmacol. 2011 Jun 1;81(11):1343-51
10802125 - Mech Ageing Dev. 2000 Apr 14;114(3):207-10
17196622 - Life Sci. 2007 Feb 13;80(10):926-31
21204534 - J Agric Food Chem. 2011 Feb 9;59(3):1012-9
18356827 - Obesity (Silver Spring). 2008 Jun;16(6):1338-48
18070748 - Obesity (Silver Spring). 2007 Nov;15(11):2571-82
17906192 - J Am Coll Nutr. 2007 Aug;26(4):389S-395S
17952831 - Horm Metab Res. 2007 Oct;39(10):710-6
22388573 - Aging (Albany NY). 2012 Mar;4(3):144-5
19202275 - Biosci Biotechnol Biochem. 2009 Feb;73(2):434-6
21124793 - PLoS One. 2010;5(11):e15441
16263255 - J Nutr Biochem. 2006 Jul;17(7):471-8
23498665 - J Nutr Biochem. 2013 Apr;24(4):613-23
15976140 - Obes Res. 2005 Jun;13(6):982-90
19416635 - Pharmacol Res. 2009 May;59(5):351-4
18203899 - J Nutr. 2008 Feb;138(2):323-31
21543206 - J Nutr Biochem. 2012 Apr;23(4):379-84
9482769 - J Nutr. 1998 Mar;128(3):593-7
5476433 - J Nutr. 1970 Nov;100(11):1307-15
9311619 - Drug Metab Dispos. 1997 Sep;25(9):1045-50
22040698 - Mol Aspects Med. 2012 Feb;33(1):26-34
23181558 - Nutr Metab (Lond). 2012 Nov 26;9(1):105
18951028 - Bioorg Med Chem. 2008 Nov 15;16(22):9652-9
22581111 - Biol Trace Elem Res. 2012 Dec;149(3):315-22
19176763 - Am J Physiol Cell Physiol. 2009 Jul;297(1):C121-32
21733326 - Br J Nutr. 2012 Jan;107(2):202-10
15506818 - J Agric Food Chem. 2004 Nov 3;52(22):6794-801
21543212 - J Nutr Biochem. 2012 Apr;23(4):361-7
17906193 - J Am Coll Nutr. 2007 Aug;26(4):396S-402S
12038947 - Arch Intern Med. 2002 Jun 10;162(11):1286-92
19047759 - J Lipid Res. 2009 Apr;50 Suppl:S138-43
22959054 - J Nutr Biochem. 2013 Jun;24(6):960-6
21885868 - Diabetes. 2011 Nov;60(11):2928-38
19939981 - Am J Clin Nutr. 2010 Jan;91(1):5-6
21736785 - Br J Nutr. 2011 Dec;106(12):1880-9
17086191 - Nature. 2006 Nov 16;444(7117):337-42
23128765 - Nestle Nutr Inst Workshop Ser. 2012;73:49-60; discussion p61-6
22055504 - Cell Metab. 2011 Nov 2;14(5):612-22
15564676 - Biosci Biotechnol Biochem. 2004 Nov;68(11):2353-9
References_xml – volume: 98
  start-page: 115
  year: 1999
  end-page: 124
  ident: bb0515
  article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
  publication-title: Cell
– volume: 92
  start-page: 789
  year: 2010
  end-page: 796
  ident: bb0455
  article-title: Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses
  publication-title: Biochimie
– volume: 24
  start-page: 960
  year: 2013
  end-page: 966
  ident: bb0930
  article-title: Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning
  publication-title: J Nutr Biochem
– volume: 59
  start-page: 1012
  year: 2011
  end-page: 1019
  ident: bb0845
  article-title: Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property
  publication-title: J Agric Food Chem
– volume: 36
  start-page: 735
  year: 2012
  end-page: 743
  ident: bb0200
  article-title: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet
  publication-title: Int J Obes
– volume: 22
  start-page: 910
  year: 2011
  end-page: 920
  ident: bb0690
  article-title: Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion
  publication-title: J Nutr Biochem
– volume: 138
  start-page: 1677
  year: 2008
  end-page: 1683
  ident: bb0170
  article-title: The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice
  publication-title: J Nutr
– volume: 114
  start-page: 207
  year: 2000
  end-page: 210
  ident: bb0795
  article-title: An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen
  publication-title: Mech Ageing Dev
– volume: 26
  start-page: 389S
  year: 2007
  end-page: 395S
  ident: bb0300
  article-title: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study
  publication-title: J Am Coll Nutr
– volume: 2
  start-page: 737
  year: 2010
  end-page: 751
  ident: bb0650
  article-title: Dietary polyphenols and obesity
  publication-title: Nutrients
– volume: 100
  start-page: 1307
  year: 1970
  end-page: 1315
  ident: bb0725
  article-title: Effect of curcumin on serum and liver cholesterol levels in the rat
  publication-title: J Nutr
– volume: 75
  start-page: 787
  year: 2008
  end-page: 809
  ident: bb0660
  article-title: Curcumin as “Curecumin”: from kitchen to clinic
  publication-title: Biochem Pharmacol
– volume: 338
  start-page: 694
  year: 2005
  end-page: 699
  ident: bb0100
  article-title: Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase
  publication-title: Biochem Biophys Res Commun
– volume: 70
  start-page: 1040
  year: 1999
  end-page: 1045
  ident: bb0330
  article-title: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans
  publication-title: Am J Clin Nutr
– volume: 52
  start-page: 6794
  year: 2004
  end-page: 6801
  ident: bb0890
  article-title: Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry
  publication-title: J Agric Food Chem
– volume: 106
  start-page: S198
  year: 2011
  end-page: S201
  ident: bb0780
  article-title: Effect of citrus polyphenol- and curcumin-supplemented diet on inflammatory state in obese cats
  publication-title: Br J Nutr
– volume: 148
  start-page: 421
  year: 2012
  end-page: 433
  ident: bb0505
  article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
  publication-title: Cell
– volume: 22
  start-page: 135
  year: 2004
  end-page: 140
  ident: bb0160
  article-title: Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors
  publication-title: Biofactors
– volume: 64
  start-page: 704
  year: 2010
  end-page: 713
  ident: bb0375
  article-title: Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study
  publication-title: Eur J Clin Nutr
– volume: 149
  start-page: 315
  year: 2012
  end-page: 322
  ident: bb0370
  article-title: Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients
  publication-title: Biol Trace Elem Res
– volume: 23
  start-page: 1088
  year: 2009
  end-page: 1091
  ident: bb0120
  article-title: Inhibitory effects of green tea catechin on the lipid accumulation in 3 T3-L1 adipocytes
  publication-title: Phytother Res
– volume: 63
  start-page: 2118
  year: 1999
  end-page: 2122
  ident: bb0765
  article-title: Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice
  publication-title: Biosci Biotechnol Biochem
– volume: 139
  start-page: 264
  year: 2009
  end-page: 270
  ident: bb0350
  article-title: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults
  publication-title: J Nutr
– volume: 635
  start-page: 1
  year: 2010
  end-page: 8
  ident: bb0540
  article-title: Resveratrol, obesity and diabetes
  publication-title: Eur J Pharmacol
– volume: 22
  start-page: 32
  year: 2009
  end-page: 39
  ident: bb0705
  article-title: Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3 T3-L1 adipocytes through NF-kappaB and JNK pathway
  publication-title: Biomed Environ Sci
– volume: 32
  start-page: 448
  year: 2012
  end-page: 457
  ident: bb0255
  article-title: Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats
  publication-title: Nutr Res
– volume: 283
  start-page: 3050
  year: 2008
  end-page: 3058
  ident: bb0820
  article-title: Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor
  publication-title: J Biol Chem
– volume: 93
  start-page: 486
  year: 2008
  end-page: 491
  ident: bb0280
  article-title: Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial
  publication-title: Physiol Behav
– volume: 285
  start-page: 8340
  year: 2010
  end-page: 8351
  ident: bb0520
  article-title: SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
  publication-title: J Biol Chem
– volume: 119
  start-page: 41
  year: 2000
  end-page: 47
  ident: bb0790
  article-title: An hydroalcoholic extract of curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention.
  publication-title: Mech Ageing Dev
– volume: 138
  start-page: 2156
  year: 2008
  end-page: 2163
  ident: bb0220
  article-title: Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue
  publication-title: J Nutr
– volume: 81
  start-page: 122
  year: 2005
  end-page: 129
  ident: bb0365
  article-title: Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men
  publication-title: Am J Clin Nutr
– volume: 5
  start-page: e15441
  year: 2010
  ident: bb0380
  article-title: Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells
  publication-title: PloS one
– volume: 62
  start-page: 7241
  year: 2002
  end-page: 7246
  ident: bb0815
  article-title: Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells
  publication-title: Cancer Res
– volume: 25
  start-page: 1045
  year: 1997
  end-page: 1050
  ident: bb0850
  article-title: Absorption, distribution, elimination of tea polyphenols in rats
  publication-title: Drug Metab Dispos
– volume: 11
  start-page: 1025
  year: 2002
  end-page: 1032
  ident: bb0860
  article-title: Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 42
  start-page: 818
  year: 2008
  end-page: 822
  ident: bb0945
  article-title: The study of insulin resistance and leptin resistance on the model of simplicity obesity rats by curcumin
  publication-title: Zhonghua yu fang yi xue za zhi
– volume: 29
  start-page: 31
  year: 2010
  end-page: 40
  ident: bb0290
  article-title: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome
  publication-title: J Am Coll Nutr
– volume: 56
  start-page: 810
  year: 2012
  end-page: 821
  ident: bb0625
  article-title: Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial
  publication-title: Mol Nutr Food Res
– volume: 62
  start-page: 245
  year: 2010
  end-page: 255
  ident: bb0910
  article-title: (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c
  publication-title: Cytotechnology
– volume: 76
  start-page: 1694
  year: 2010
  end-page: 1698
  ident: bb0830
  article-title: Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways
  publication-title: Planta Med
– volume: 14
  start-page: 612
  year: 2011
  end-page: 622
  ident: bb0620
  article-title: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
  publication-title: Cell Metab
– volume: 286
  start-page: 60
  year: 2011
  end-page: 66
  ident: bb0485
  article-title: Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L
  publication-title: J Biol Chem
– volume: 101
  start-page: 886
  year: 2009
  end-page: 894
  ident: bb0305
  article-title: Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial
  publication-title: Br J Nutr
– volume: 56
  start-page: 8374
  year: 2008
  end-page: 8378
  ident: bb0420
  article-title: Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products
  publication-title: J Agric Food Chem
– volume: 4
  start-page: 144
  year: 2012
  end-page: 145
  ident: bb0510
  article-title: Using PDE, inhibitors to harness the benefits of calorie restriction: lessons from resveratrol
  publication-title: Aging
– volume: 29
  start-page: 615
  year: 2005
  end-page: 623
  ident: bb0210
  article-title: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation
  publication-title: Int J Obes
– volume: 27
  start-page: 206
  year: 2011
  end-page: 213
  ident: bb0285
  article-title: Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome
  publication-title: Nutrition
– volume: 2
  start-page: 304
  year: 2011
  end-page: 316
  ident: bb0900
  article-title: (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights
  publication-title: Adv Nutr
– volume: 16
  start-page: 9652
  year: 2008
  end-page: 9659
  ident: bb0810
  article-title: Time-dependent intracellular trafficking of FITC-conjugated epigallocatechin-3-
  publication-title: Bioorg Med Chem
– volume: 65
  start-page: 369
  year: 2009
  end-page: 376
  ident: bb0595
  article-title: Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet
  publication-title: J Physiol Biochem
– volume: 81
  start-page: 1343
  year: 2011
  end-page: 1351
  ident: bb0590
  article-title: Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice
  publication-title: Biochem Pharmacol
– volume: 15
  start-page: 1473
  year: 2007
  end-page: 1483
  ident: bb0360
  article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans
  publication-title: Obesity
– volume: 6
  start-page: 286
  year: 2012
  end-page: 293
  ident: bb0495
  article-title: Anti-obesity effect of resveratrol-amplified grape skin extracts on 3 T3-L1 adipocytes differentiation
  publication-title: Nutr Res Pract
– volume: 369
  start-page: 471
  year: 2008
  end-page: 477
  ident: bb0500
  article-title: Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes
  publication-title: Biochem Biophys Res Commun
– volume: 21
  start-page: 703
  year: 1996
  end-page: 707
  ident: bb0885
  article-title: Absorption and disposition kinetics of the dietary antioxidant quercetin in man
  publication-title: Free Radic Biol Med
– volume: 23
  start-page: 379
  year: 2012
  end-page: 384
  ident: bb0475
  article-title: Resveratrol regulates lipolysis via adipose triglyceride lipase
  publication-title: J Nutr Biochem
– volume: 89
  start-page: 793
  year: 2011
  end-page: 799
  ident: bb0440
  article-title: Resveratrol inhibits cell differentiation in 3 T3-L1 adipocytes via activation of AMPK
  publication-title: Can J Physiol Pharmacol
– volume: 9
  start-page: 3
  year: 2002
  end-page: 8
  ident: bb0315
  article-title: Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity
  publication-title: Phytomed
– volume: 80
  start-page: 926
  year: 2007
  end-page: 931
  ident: bb0710
  article-title: Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes
  publication-title: Life Sci
– volume: 6
  start-page: 499
  year: 2012
  end-page: 504
  ident: bb0460
  article-title: Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3 T3-L1 preadipocytes
  publication-title: Nutr Res Pract
– volume: 20
  start-page: 3
  year: 2012
  end-page: 8
  ident: bb0715
  article-title: Curcumin attenuates lipolysis stimulated by tumor necrosis factor-alpha or isoproterenol in 3 T3-L1 adipocytes
  publication-title: Phytomed
– volume: 22
  start-page: 828
  year: 2011
  end-page: 834
  ident: bb0545
  article-title: Resveratrol enhances fatty acid oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression in white adipocytes
  publication-title: J Nutr Biochem
– volume: 29
  start-page: 562
  year: 2013
  end-page: 567
  ident: bb0555
  article-title: Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet
  publication-title: Nutrition
– volume: 127
  start-page: 1109
  year: 2006
  end-page: 1122
  ident: bb0530
  article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
  publication-title: Cell
– volume: 91
  start-page: 73
  year: 2010
  end-page: 81
  ident: bb0390
  article-title: Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis
  publication-title: Am J Clin Nutr
– volume: 10
  start-page: 11
  year: 2010
  ident: bb0575
  article-title: Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity
  publication-title: BMC Physiol
– volume: 12
  start-page: 50
  year: 2011
  end-page: 61
  ident: bb0005
  article-title: Direct medical cost of overweight and obesity in the USA: a quantitative systematic review
  publication-title: Obes Rev
– volume: 136
  start-page: 2791
  year: 2006
  end-page: 2796
  ident: bb0805
  article-title: Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats
  publication-title: J Nutr
– volume: 297
  start-page: C121
  year: 2009
  end-page: C132
  ident: bb0110
  article-title: Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway
  publication-title: Am J Physiol Cell Physiol
– volume: 149
  start-page: 3549
  year: 2008
  end-page: 3558
  ident: bb0745
  article-title: Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity
  publication-title: Endocrinology
– reference: Goran MI, Alderete TL. Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutrition Institute workshop series. 2012;73:49–60; discussion p1-6.
– volume: 106
  start-page: 1880
  year: 2011
  end-page: 1889
  ident: bb0310
  article-title: Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial
  publication-title: Br J Nutr
– volume: 50
  start-page: S138
  year: 2009
  end-page: S143
  ident: bb0150
  article-title: Fatty acid metabolism: target for metabolic syndrome
  publication-title: J Lipid Res
– volume: 13
  start-page: 193
  year: 2013
  end-page: 199
  ident: bb0925
  article-title: Resveratrol prevents TNFalpha-induced suppression of adiponectin expression via PPARgamma activation in 3T3-L1 adipocytes
  publication-title: Clin Exp Med
– volume: 21
  start-page: 2895
  year: 2001
  end-page: 2900
  ident: bb0665
  article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions
  publication-title: Anticancer Res
– volume: 9
  start-page: 105
  year: 2012
  ident: bb0165
  article-title: Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6 J mice
  publication-title: Nutr Metab
– volume: 1056
  start-page: 206
  year: 2005
  end-page: 217
  ident: bb0645
  article-title: Curcumin: getting back to the roots
  publication-title: Ann N Y Acad Sci
– volume: 26
  start-page: 396S
  year: 2007
  end-page: 402S
  ident: bb0335
  article-title: Can EGCG reduce abdominal fat in obese subjects?
  publication-title: J Am Coll Nutr
– volume: 56
  start-page: 580
  year: 2012
  end-page: 592
  ident: bb0115
  article-title: Green tea (−)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway
  publication-title: Mol Nutr Food Res
– volume: 29
  start-page: 784
  year: 2009
  end-page: 793
  ident: bb0180
  article-title: Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet
  publication-title: Nutr Res
– volume: 4
  start-page: 807
  year: 2007
  end-page: 818
  ident: bb0870
  article-title: Bioavailability of curcumin: problems and promises
  publication-title: Mol Pharm
– volume: 33
  start-page: 26
  year: 2012
  end-page: 34
  ident: bb0025
  article-title: Immunity as a link between obesity and insulin resistance
  publication-title: Mol Aspects Med
– reference: Dietary guidelines for Americans.
– volume: 5
  start-page: 17
  year: 2008
  ident: bb0685
  article-title: Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes
  publication-title: Nutr Metab
– volume: 91
  start-page: 5
  year: 2010
  end-page: 6
  ident: bb0010
  article-title: Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task
  publication-title: Am J Clin Nutr
– volume: 7
  start-page: 1085
  year: 1995
  end-page: 1097
  ident: bb0400
  article-title: Stress-induced phenylpropanoid metabolism
  publication-title: Plant Cell
– volume: 77
  start-page: 1053
  year: 2009
  end-page: 1063
  ident: bb0610
  article-title: Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats
  publication-title: Biochem Pharmacol
– volume: 7
  start-page: e38332
  year: 2012
  ident: bb0215
  article-title: Green tea polyphenols reduce body weight in rats by modulating obesity-related genes
  publication-title: PloS one
– volume: 17
  start-page: 471
  year: 2006
  end-page: 478
  ident: bb0775
  article-title: Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats
  publication-title: J Nutr Biochem
– volume: 138
  start-page: 323
  year: 2008
  end-page: 331
  ident: bb0175
  article-title: Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury
  publication-title: J Nutr
– volume: 13
  start-page: 87
  year: 2006
  end-page: 98
  ident: bb0430
  article-title: Comparative studies of the antioxidant effects of cis- and trans-resveratrol
  publication-title: Curr Med Chem
– volume: 30
  start-page: 285
  year: 2011
  end-page: 294
  ident: bb0060
  article-title: Health effects of mixed fruit and vegetable concentrates: a systematic review of the clinical interventions
  publication-title: J Am Coll Nutr
– volume: 5
  start-page: 493
  year: 2006
  end-page: 506
  ident: bb0875
  article-title: Therapeutic potential of resveratrol: the in vivo evidence
  publication-title: Nat Rev Drug Discov
– volume: 16
  start-page: 1338
  year: 2008
  end-page: 1348
  ident: bb0355
  article-title: Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children
  publication-title: Obesity
– volume: 27
  start-page: 37
  year: 2013
  end-page: 48
  ident: bb0630
  article-title: Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease
  publication-title: Cardiovasc Drugs Ther
– volume: 23
  start-page: 1100
  year: 2012
  end-page: 1112
  ident: bb0445
  article-title: Resveratrol induces Sirt1-dependent apoptosis in 3 T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression
  publication-title: J Nutr Biochem
– volume: 68
  start-page: 729
  year: 2010
  end-page: 738
  ident: bb0640
  article-title: Curcumin and obesity: evidence and mechanisms
  publication-title: Nutr Rev
– volume: 128
  start-page: 593
  year: 1998
  end-page: 597
  ident: bb0880
  article-title: Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects
  publication-title: J Nutr
– volume: 73
  start-page: 434
  year: 2009
  end-page: 436
  ident: bb0915
  article-title: (−)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes
  publication-title: Biosci Biotechnol Biochem
– volume: 21
  start-page: 356
  year: 2011
  end-page: 361
  ident: bb0450
  article-title: Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARgamma1-3 mRNA expression in human visceral adipocytes
  publication-title: Obes Surg
– volume: 91
  start-page: 280S
  year: 2010
  end-page: 283S
  ident: bb0015
  article-title: An integrative view of obesity
  publication-title: Am J Clin Nutr
– volume: 60
  start-page: 8917
  year: 2012
  end-page: 8923
  ident: bb0270
  article-title: Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice
  publication-title: J Agric Food Chem
– reference: Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In vivo. 2000;14:481–4.
– volume: 32
  start-page: 421
  year: 2012
  end-page: 427
  ident: bb0295
  article-title: Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients
  publication-title: Nutr Res
– volume: 53
  start-page: 5695
  year: 2005
  end-page: 5701
  ident: bb0145
  article-title: The apoptotic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the Cdk2 pathway
  publication-title: J Agric Food Chem
– volume: 62
  start-page: 1186
  year: 2013
  end-page: 1195
  ident: bb0615
  article-title: High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition
  publication-title: Diabetes
– volume: 11
  start-page: 1055
  year: 2003
  end-page: 1064
  ident: bb0045
  article-title: Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers
  publication-title: Obes Res
– volume: 9
  start-page: 161
  year: 2003
  end-page: 168
  ident: bb0655
  article-title: Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa)
  publication-title: J Altern Complement Med
– volume: 56
  start-page: 509
  year: 2007
  end-page: 514
  ident: bb0800
  article-title: Curcumin effects on blood lipid profile in a 6-month human study
  publication-title: Pharmacol Res
– volume: 65
  start-page: 361
  year: 2007
  end-page: 375
  ident: bb0075
  article-title: Mechanisms and effects of green tea on cardiovascular health
  publication-title: Nutr Rev
– volume: 131
  start-page: 2932
  year: 2001
  end-page: 2935
  ident: bb0735
  article-title: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue
  publication-title: J Nutr
– reference: policydocument.htm. Accessed on July 4.
– volume: 25
  start-page: 870
  year: 2009
  end-page: 878
  ident: bb0730
  article-title: Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats
  publication-title: Nutrition
– volume: 3
  start-page: 94
  year: 2012
  end-page: 104
  ident: bb0755
  article-title: Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice
  publication-title: World J Diabetes
– volume: 57
  start-page: 1576
  year: 2008
  end-page: 1583
  ident: bb0770
  article-title: Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters
  publication-title: Metabolism
– volume: 15
  start-page: 303
  year: 2004
  end-page: 307
  ident: bb0535
  article-title: New insights into inhibitors of adipogenesis
  publication-title: Curr Opin Lipidol
– volume: 226
  start-page: 2721
  year: 2011
  end-page: 2730
  ident: bb0825
  article-title: The anti-cancer effects of (−)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells
  publication-title: J Cell Physiol
– volume: 15
  start-page: 2571
  year: 2007
  end-page: 2582
  ident: bb0140
  article-title: Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3 T3-L1 cells
  publication-title: Obesity
– volume: 92
  start-page: 5
  year: 2010
  end-page: 15
  ident: bb0835
  article-title: Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner
  publication-title: Am J Clin Nutr
– volume: 68
  start-page: 2353
  year: 2004
  end-page: 2359
  ident: bb0090
  article-title: Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3 T3-L1 cells
  publication-title: Biosci Biotechnol Biochem
– volume: 429
  start-page: 771
  year: 2004
  end-page: 776
  ident: bb0840
  article-title: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
  publication-title: Nature
– volume: 50
  start-page: 3337
  year: 2002
  end-page: 3340
  ident: bb0415
  article-title: Plant foods and herbal sources of resveratrol
  publication-title: J Agric Food Chem
– volume: 24
  start-page: 613
  year: 2013
  end-page: 623
  ident: bb0020
  article-title: Modulation of adipose tissue inflammation by bioactive food compounds
  publication-title: J Nutr Biochem
– volume: 12
  start-page: 8
  year: 2013
  ident: bb0600
  article-title: Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats
  publication-title: Lipids health Dis
– volume: 37
  start-page: 1884
  year: 2005
  end-page: 1892
  ident: bb0260
  article-title: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice
  publication-title: Med Sci Sports Exerc
– volume: 8
  start-page: e53796
  year: 2013
  ident: bb0265
  article-title: Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARgamma-adiponectin pathway
  publication-title: PloS one
– volume: 14
  start-page: 154
  year: 2009
  end-page: 160
  ident: bb0320
  article-title: Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial
  publication-title: Altern Med Rev
– volume: 72
  start-page: 69
  year: 2013
  end-page: 82
  ident: bb0935
  article-title: One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease
  publication-title: Pharmacol Res
– volume: 142
  start-page: 57
  year: 2012
  end-page: 63
  ident: bb0230
  article-title: Green tea extract suppresses NFkappaB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis
  publication-title: J Nutr
– volume: 32
  start-page: 701
  year: 2012
  end-page: 708
  ident: bb0605
  article-title: Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet
  publication-title: Nutr Res
– volume: 64
  start-page: 353
  year: 1998
  end-page: 356
  ident: bb0865
  article-title: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers
  publication-title: Planta Med
– volume: 23
  start-page: 361
  year: 2012
  end-page: 367
  ident: bb0190
  article-title: Green tea extract protects against nonalcoholic steatohepatitis in
  publication-title: J Nutr Biochem
– volume: 51
  start-page: 454
  year: 2011
  end-page: 463
  ident: bb0895
  article-title: Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties
  publication-title: Free Radic Biol Med
– volume: 290
  start-page: E273
  year: 2006
  end-page: E281
  ident: bb0135
  article-title: Inhibitory effect of green tea (−)-epigallocatechin gallate on resistin gene expression in 3 T3-L1 adipocytes depends on the ERK pathway
  publication-title: Am J Physiol Endocrinol Metab
– volume: 59
  start-page: 11862
  year: 2011
  end-page: 11871
  ident: bb0185
  article-title: Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice
  publication-title: J Agric Food Chem
– volume: 102
  start-page: 1611
  year: 2009
  end-page: 1619
  ident: bb0235
  article-title: Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models
  publication-title: Br J Nutr
– volume: 91
  start-page: 431
  year: 2004
  end-page: 437
  ident: bb0345
  article-title: Effects of green tea on weight maintenance after body-weight loss
  publication-title: Br J Nutr
– volume: 30
  start-page: 91
  year: 1997
  end-page: 113
  ident: bb0425
  article-title: Resveratrol: a molecule whose time has come? And gone?
  publication-title: Clin Biochem
– volume: 22
  start-page: 1367
  year: 2008
  end-page: 1371
  ident: bb0480
  article-title: Resveratrol induces apoptosis and inhibits adipogenesis in 3 T3-L1 adipocytes
  publication-title: Phytother Res
– volume: 8
  start-page: 29
  year: 2011
  ident: bb0560
  article-title: Changes in white adipose tissue metabolism induced by resveratrol in rats
  publication-title: Nutr Metab
– volume: 64
  start-page: 146
  year: 2011
  end-page: 154
  ident: bb0245
  article-title: Weight control and prevention of metabolic syndrome by green tea
  publication-title: Pharmacol Res
– volume: 12
  year: 2012
  ident: bb0395
  article-title: Green tea for weight loss and weight maintenance in overweight or obese adults
  publication-title: Cochrane Database Syst Rev
– reference: Lazar MA. Resistin- and Obesity-associated metabolic diseases. Hormone and metabolic research=Hormon- und Stoffwechselforschung=Hormones et metabolisme. 2007;39:710–6.
– volume: 7
  start-page: e28784
  year: 2012
  ident: bb0700
  article-title: Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes
  publication-title: PloS one
– volume: 131
  start-page: 1731
  year: 2001
  end-page: 1737
  ident: bb0855
  article-title: Catechins are bioavailable in men and women drinking black tea throughout the day
  publication-title: J Nutr
– volume: 66
  start-page: 663
  year: 2000
  end-page: 673
  ident: bb0405
  article-title: Biological effects of resveratrol
  publication-title: Life Sci
– volume: 47
  start-page: 1533
  year: 1999
  end-page: 1536
  ident: bb0410
  article-title: Piceid, the major resveratrol derivative in grape juices
  publication-title: J Agric Food Chem
– volume: 162
  start-page: 1286
  year: 2002
  end-page: 1292
  ident: bb0035
  article-title: Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults
  publication-title: Arch Intern Med
– volume: 49
  start-page: 477
  year: 2001
  end-page: 482
  ident: bb0080
  article-title: Degradation of green tea catechins in tea drinks
  publication-title: J Agric Food Chem
– volume: 444
  start-page: 337
  year: 2006
  end-page: 342
  ident: bb0565
  article-title: Resveratrol improves health and survival of mice on a high-calorie diet
  publication-title: Nature
– volume: 139
  start-page: 919
  year: 2009
  end-page: 925
  ident: bb0680
  article-title: Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice
  publication-title: J Nutr
– volume: 60
  start-page: 2928
  year: 2011
  end-page: 2938
  ident: bb0760
  article-title: Targeting curcusomes to inflammatory dendritic cells inhibits NF-kappaB and improves insulin resistance in obese mice
  publication-title: Diabetes
– year: 2013
  ident: bb0940
  article-title: Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet
  publication-title: J Physiol Biochem
– volume: 19
  start-page: 800
  year: 2003
  end-page: 804
  ident: bb0785
  article-title: Oral administration of a turmeric extract inhibits erythrocyte and liver microsome membrane oxidation in rabbits fed with an atherogenic diet
  publication-title: Nutrition
– volume: 8
  start-page: 40
  year: 2008
  ident: bb0570
  article-title: Resveratrol inhibits nonalcoholic fatty liver disease in rats
  publication-title: BMC Gastroenterol
– volume: 32
  start-page: 607
  year: 2012
  end-page: 616
  ident: bb0465
  article-title: An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis
  publication-title: Nutr Res
– volume: 57
  start-page: 305
  year: 2009
  end-page: 310
  ident: bb0695
  article-title: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3 T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells
  publication-title: J Agric Food Chem
– volume: 59
  start-page: 351
  year: 2009
  end-page: 354
  ident: bb0240
  article-title: Weight and plasma lipid control by decaffeinated green tea
  publication-title: Pharmacol Res
– volume: 26
  start-page: 997
  year: 2011
  end-page: 1003
  ident: bb0470
  article-title: The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3 T3-L1 adipocytes
  publication-title: Nutr Hosp
– volume: 33
  start-page: 956
  year: 2009
  end-page: 961
  ident: bb0385
  article-title: The effects of green tea on weight loss and weight maintenance: a meta-analysis
  publication-title: Int J Obes
– volume: 364
  start-page: 972
  year: 2007
  end-page: 977
  ident: bb0435
  article-title: Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3 T3-L1 adipocytes
  publication-title: Biochem Biophys Res Commun
– volume: 153
  start-page: 242
  year: 2001
  end-page: 250
  ident: bb0040
  article-title: Association between physical activity and markers of inflammation in a healthy elderly population
  publication-title: Am J Epidemiol
– volume: 351
  start-page: 19
  year: 2011
  end-page: 28
  ident: bb0720
  article-title: Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin
  publication-title: Mol Cell Biochem
– volume: 74
  start-page: 619
  year: 2009
  end-page: 624
  ident: bb0525
  article-title: Resveratrol is not a direct activator of SIRT1 enzyme activity
  publication-title: Chem Biol Drug Des
– volume: 94
  start-page: 1026
  year: 2005
  end-page: 1034
  ident: bb0325
  article-title: Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females
  publication-title: Br J Nutr
– volume: 47
  start-page: 379
  year: 2012
  end-page: 390
  ident: bb0055
  article-title: The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms
  publication-title: CritRev Biochem Mol Biol
– volume: 23
  start-page: 467
  year: 2009
  end-page: 471
  ident: bb0205
  article-title: Antilipogenic effect of green tea extract in C57BL/6 J-Lep
  publication-title: Phytother Res
– volume: 2013
  start-page: 635470
  year: 2013
  ident: bb0195
  article-title: Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet
  publication-title: Mediators Inflamm
– volume: 13
  start-page: 982
  year: 2005
  end-page: 990
  ident: bb0130
  article-title: Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3 T3-L1 adipocytes
  publication-title: Obes Res
– volume: 22
  start-page: 393
  year: 2011
  end-page: 400
  ident: bb0225
  article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in
  publication-title: J Nutr Biochem
– volume: 298
  start-page: C1510
  year: 2010
  end-page: C1516
  ident: bb0670
  article-title: Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling
  publication-title: Am J Physiol Cell Physiol
– volume: 17
  start-page: 492
  year: 2006
  end-page: 498
  ident: bb0070
  article-title: Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats
  publication-title: J Nutr Biochem
– volume: 18
  start-page: 879
  year: 2010
  end-page: 883
  ident: bb0275
  article-title: The human visceral fat depot has a unique inflammatory profile
  publication-title: Obesity
– volume: 1
  start-page: 276
  year: 2002
  end-page: 286
  ident: bb0550
  article-title: Obesity therapy: altering the energy intake-and-expenditure balance sheet
  publication-title: Nat Rev Drug Discov
– volume: 288
  start-page: C1094
  year: 2005
  end-page: C1108
  ident: bb0095
  article-title: Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the ERK and Cdk2 pathways
  publication-title: Am J Physiol Cell Physiol
– volume: 358
  start-page: 281
  year: 2011
  end-page: 285
  ident: bb0675
  article-title: Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway
  publication-title: Mol Cell Biochem
– volume: 27
  start-page: 363
  year: 2008
  end-page: 370
  ident: bb0340
  article-title: Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial
  publication-title: Clin Nutr
– volume: 89
  start-page: 779
  year: 2011
  end-page: 785
  ident: bb0905
  article-title: (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression
  publication-title: Life Sci
– volume: 107
  start-page: 202
  year: 2012
  end-page: 210
  ident: bb0585
  article-title: Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress
  publication-title: Br J Nutr
– volume: 338
  start-page: 694
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0100
  article-title: Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.09.195
– volume: 127
  start-page: 1109
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0530
  article-title: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.013
– volume: 42
  start-page: 818
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0945
  article-title: The study of insulin resistance and leptin resistance on the model of simplicity obesity rats by curcumin
  publication-title: Zhonghua yu fang yi xue za zhi
– volume: 5
  start-page: 493
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0875
  article-title: Therapeutic potential of resveratrol: the in vivo evidence
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2060
– volume: 1056
  start-page: 206
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0645
  article-title: Curcumin: getting back to the roots
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1352.010
– volume: 62
  start-page: 1186
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0615
  article-title: High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition
  publication-title: Diabetes
  doi: 10.2337/db12-0975
– volume: 98
  start-page: 115
  year: 1999
  ident: 10.1016/j.jnutbio.2013.09.001_bb0515
  article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80611-X
– volume: 283
  start-page: 3050
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0820
  article-title: Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M707892200
– volume: 8
  start-page: 29
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0560
  article-title: Changes in white adipose tissue metabolism induced by resveratrol in rats
  publication-title: Nutr Metab
  doi: 10.1186/1743-7075-8-29
– volume: 29
  start-page: 784
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0180
  article-title: Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2009.10.003
– volume: 286
  start-page: 60
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0485
  article-title: Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.188144
– volume: 91
  start-page: 431
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0345
  article-title: Effects of green tea on weight maintenance after body-weight loss
  publication-title: Br J Nutr
  doi: 10.1079/BJN20041061
– volume: 1
  start-page: 276
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0550
  article-title: Obesity therapy: altering the energy intake-and-expenditure balance sheet
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd770
– volume: 56
  start-page: 509
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0800
  article-title: Curcumin effects on blood lipid profile in a 6-month human study
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2007.09.013
– volume: 22
  start-page: 393
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0225
  article-title: Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2010.03.009
– volume: 136
  start-page: 2791
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0805
  article-title: Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats
  publication-title: J Nutr
  doi: 10.1093/jn/136.11.2791
– volume: 15
  start-page: 303
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0535
  article-title: New insights into inhibitors of adipogenesis
  publication-title: Curr Opin Lipidol
  doi: 10.1097/00041433-200406000-00010
– volume: 14
  start-page: 612
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0620
  article-title: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.10.002
– year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0940
  article-title: Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet
  publication-title: J Physiol Biochem
– volume: 62
  start-page: 245
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0910
  article-title: (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c
  publication-title: Cytotechnology
  doi: 10.1007/s10616-010-9285-x
– volume: 23
  start-page: 467
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0205
  article-title: Antilipogenic effect of green tea extract in C57BL/6 J-Lep ob/ob mice
  publication-title: Phytother Res
  doi: 10.1002/ptr.2647
– volume: 8
  start-page: e53796
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0265
  article-title: Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARgamma-adiponectin pathway
  publication-title: PloS one
  doi: 10.1371/journal.pone.0053796
– volume: 62
  start-page: 7241
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0815
  article-title: Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells
  publication-title: Cancer Res
– volume: 139
  start-page: 264
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0350
  article-title: Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults
  publication-title: J Nutr
  doi: 10.3945/jn.108.098293
– ident: 10.1016/j.jnutbio.2013.09.001_bb0920
– volume: 2
  start-page: 737
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0650
  article-title: Dietary polyphenols and obesity
  publication-title: Nutrients
  doi: 10.3390/nu2070737
– volume: 24
  start-page: 960
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0930
  article-title: Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2012.06.019
– volume: 56
  start-page: 8374
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0420
  article-title: Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products
  publication-title: J Agric Food Chem
  doi: 10.1021/jf801297w
– volume: 23
  start-page: 1088
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0120
  article-title: Inhibitory effects of green tea catechin on the lipid accumulation in 3 T3-L1 adipocytes
  publication-title: Phytother Res
  doi: 10.1002/ptr.2737
– volume: 25
  start-page: 1045
  year: 1997
  ident: 10.1016/j.jnutbio.2013.09.001_bb0850
  article-title: Absorption, distribution, elimination of tea polyphenols in rats
  publication-title: Drug Metab Dispos
– volume: 9
  start-page: 105
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0165
  article-title: Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6 J mice
  publication-title: Nutr Metab
  doi: 10.1186/1743-7075-9-105
– ident: 10.1016/j.jnutbio.2013.09.001_bb0155
  doi: 10.1055/s-2007-985897
– volume: 101
  start-page: 886
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0305
  article-title: Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial
  publication-title: Br J Nutr
  doi: 10.1017/S0007114508047727
– volume: 22
  start-page: 1367
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0480
  article-title: Resveratrol induces apoptosis and inhibits adipogenesis in 3 T3-L1 adipocytes
  publication-title: Phytother Res
  doi: 10.1002/ptr.2503
– volume: 106
  start-page: S198
  issue: Suppl 1
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0780
  article-title: Effect of citrus polyphenol- and curcumin-supplemented diet on inflammatory state in obese cats
  publication-title: Br J Nutr
  doi: 10.1017/S0007114511002492
– volume: 70
  start-page: 1040
  year: 1999
  ident: 10.1016/j.jnutbio.2013.09.001_bb0330
  article-title: Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/70.6.1040
– volume: 23
  start-page: 361
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0190
  article-title: Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2011.01.001
– volume: 29
  start-page: 31
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0290
  article-title: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2010.10719814
– volume: 13
  start-page: 193
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0925
  article-title: Resveratrol prevents TNFalpha-induced suppression of adiponectin expression via PPARgamma activation in 3T3-L1 adipocytes
  publication-title: Clin Exp Med
  doi: 10.1007/s10238-012-0189-2
– volume: 76
  start-page: 1694
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0830
  article-title: Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways
  publication-title: Planta Med
  doi: 10.1055/s-0030-1249877
– volume: 94
  start-page: 1026
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0325
  article-title: Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females
  publication-title: Br J Nutr
  doi: 10.1079/BJN20051580
– volume: 91
  start-page: 280S
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0015
  article-title: An integrative view of obesity
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.2009.28473B
– volume: 22
  start-page: 32
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0705
  article-title: Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3 T3-L1 adipocytes through NF-kappaB and JNK pathway
  publication-title: Biomed Environ Sci
  doi: 10.1016/S0895-3988(09)60019-2
– volume: 138
  start-page: 323
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0175
  article-title: Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury
  publication-title: J Nutr
  doi: 10.1093/jn/138.2.323
– volume: 429
  start-page: 771
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0840
  article-title: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
  publication-title: Nature
  doi: 10.1038/nature02583
– volume: 52
  start-page: 6794
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0890
  article-title: Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry
  publication-title: J Agric Food Chem
  doi: 10.1021/jf040274w
– volume: 64
  start-page: 704
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0375
  article-title: Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2010.47
– volume: 50
  start-page: 3337
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0415
  article-title: Plant foods and herbal sources of resveratrol
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0112973
– volume: 10
  start-page: 11
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0575
  article-title: Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity
  publication-title: BMC Physiol
  doi: 10.1186/1472-6793-10-11
– volume: 21
  start-page: 2895
  year: 2001
  ident: 10.1016/j.jnutbio.2013.09.001_bb0665
  article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions
  publication-title: Anticancer Res
– volume: 285
  start-page: 8340
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0520
  article-title: SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.088682
– volume: 37
  start-page: 1884
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0260
  article-title: Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/01.mss.0000178062.66981.a8
– volume: 47
  start-page: 379
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0055
  article-title: The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms
  publication-title: CritRev Biochem Mol Biol
– volume: 60
  start-page: 8917
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0270
  article-title: Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice
  publication-title: J Agric Food Chem
  doi: 10.1021/jf2053788
– volume: 27
  start-page: 206
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0285
  article-title: Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome
  publication-title: Nutrition
  doi: 10.1016/j.nut.2010.01.015
– volume: 6
  start-page: 286
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0495
  article-title: Anti-obesity effect of resveratrol-amplified grape skin extracts on 3 T3-L1 adipocytes differentiation
  publication-title: Nutr Res Pract
  doi: 10.4162/nrp.2012.6.4.286
– volume: 8
  start-page: 40
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0570
  article-title: Resveratrol inhibits nonalcoholic fatty liver disease in rats
  publication-title: BMC Gastroenterol
  doi: 10.1186/1471-230X-8-40
– volume: 149
  start-page: 3549
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0745
  article-title: Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0262
– volume: 30
  start-page: 91
  year: 1997
  ident: 10.1016/j.jnutbio.2013.09.001_bb0425
  article-title: Resveratrol: a molecule whose time has come? And gone?
  publication-title: Clin Biochem
  doi: 10.1016/S0009-9120(96)00155-5
– volume: 12
  start-page: 50
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0005
  article-title: Direct medical cost of overweight and obesity in the USA: a quantitative systematic review
  publication-title: Obes Rev
  doi: 10.1111/j.1467-789X.2009.00708.x
– volume: 63
  start-page: 2118
  year: 1999
  ident: 10.1016/j.jnutbio.2013.09.001_bb0765
  article-title: Antioxidative effects of turmeric, rosemary and capsicum extracts on membrane phospholipid peroxidation and liver lipid metabolism in mice
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.63.2118
– volume: 11
  start-page: 1055
  year: 2003
  ident: 10.1016/j.jnutbio.2013.09.001_bb0045
  article-title: Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers
  publication-title: Obes Res
  doi: 10.1038/oby.2003.145
– volume: 64
  start-page: 146
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0245
  article-title: Weight control and prevention of metabolic syndrome by green tea
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2010.12.013
– volume: 64
  start-page: 353
  year: 1998
  ident: 10.1016/j.jnutbio.2013.09.001_bb0865
  article-title: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers
  publication-title: Planta Med
  doi: 10.1055/s-2006-957450
– volume: 12
  start-page: 8
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0600
  article-title: Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats
  publication-title: Lipids health Dis
  doi: 10.1186/1476-511X-12-8
– volume: 22
  start-page: 910
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0690
  article-title: Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2010.08.003
– volume: 59
  start-page: 11862
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0185
  article-title: Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice
  publication-title: J Agric Food Chem
  doi: 10.1021/jf2029016
– volume: 226
  start-page: 2721
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0825
  article-title: The anti-cancer effects of (−)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.22623
– volume: 17
  start-page: 492
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0070
  article-title: Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2006.03.004
– volume: 21
  start-page: 356
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0450
  article-title: Resveratrol upregulated SIRT1, FOXO1, and adiponectin and downregulated PPARgamma1-3 mRNA expression in human visceral adipocytes
  publication-title: Obes Surg
  doi: 10.1007/s11695-010-0251-7
– volume: 290
  start-page: E273
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0135
  article-title: Inhibitory effect of green tea (−)-epigallocatechin gallate on resistin gene expression in 3 T3-L1 adipocytes depends on the ERK pathway
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00325.2005
– volume: 50
  start-page: S138
  issue: Suppl
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0150
  article-title: Fatty acid metabolism: target for metabolic syndrome
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R800079-JLR200
– volume: 119
  start-page: 41
  year: 2000
  ident: 10.1016/j.jnutbio.2013.09.001_bb0790
  article-title: An hydroalcoholic extract of curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention.
  publication-title: Mech Ageing Dev
  doi: 10.1016/S0047-6374(00)00169-X
– volume: 7
  start-page: 1085
  year: 1995
  ident: 10.1016/j.jnutbio.2013.09.001_bb0400
  article-title: Stress-induced phenylpropanoid metabolism
  publication-title: Plant Cell
  doi: 10.2307/3870059
– volume: 24
  start-page: 613
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0020
  article-title: Modulation of adipose tissue inflammation by bioactive food compounds
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2012.12.013
– volume: 2
  start-page: 304
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0900
  article-title: (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights
  publication-title: Adv Nutr
  doi: 10.3945/an.111.000505
– volume: 57
  start-page: 305
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0695
  article-title: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3 T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells
  publication-title: J Agric Food Chem
  doi: 10.1021/jf802737z
– volume: 91
  start-page: 5
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0010
  article-title: Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.2009.28933
– volume: 16
  start-page: 1338
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0355
  article-title: Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children
  publication-title: Obesity
  doi: 10.1038/oby.2008.60
– volume: 91
  start-page: 73
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0390
  article-title: Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.2009.28157
– volume: 56
  start-page: 810
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0625
  article-title: Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201100673
– volume: 4
  start-page: 807
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0870
  article-title: Bioavailability of curcumin: problems and promises
  publication-title: Mol Pharm
  doi: 10.1021/mp700113r
– volume: 89
  start-page: 779
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0905
  article-title: (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2011.09.006
– volume: 92
  start-page: 5
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0835
  article-title: Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.2009.28435
– volume: 23
  start-page: 1100
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0445
  article-title: Resveratrol induces Sirt1-dependent apoptosis in 3 T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2011.06.003
– volume: 9
  start-page: 161
  year: 2003
  ident: 10.1016/j.jnutbio.2013.09.001_bb0655
  article-title: Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa)
  publication-title: J Altern Complement Med
  doi: 10.1089/107555303321223035
– volume: 32
  start-page: 607
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0465
  article-title: An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2012.06.014
– volume: 73
  start-page: 434
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0915
  article-title: (−)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.80563
– volume: 3
  start-page: 94
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0755
  article-title: Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice
  publication-title: World J Diabetes
  doi: 10.4239/wjd.v3.i5.94
– volume: 25
  start-page: 870
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0730
  article-title: Effects of curcuminoid supplement on cardiac autonomic status in high-fat-induced obese rats
  publication-title: Nutrition
  doi: 10.1016/j.nut.2009.02.001
– ident: 10.1016/j.jnutbio.2013.09.001_bb0065
– volume: 9
  start-page: 3
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0315
  article-title: Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity
  publication-title: Phytomed
  doi: 10.1078/0944-7113-00078
– volume: 75
  start-page: 787
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0660
  article-title: Curcumin as “Curecumin”: from kitchen to clinic
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2007.08.016
– volume: 12
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0395
  article-title: Green tea for weight loss and weight maintenance in overweight or obese adults
  publication-title: Cochrane Database Syst Rev
– volume: 22
  start-page: 828
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0545
  article-title: Resveratrol enhances fatty acid oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression in white adipocytes
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2010.07.007
– volume: 13
  start-page: 87
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0430
  article-title: Comparative studies of the antioxidant effects of cis- and trans-resveratrol
  publication-title: Curr Med Chem
  doi: 10.2174/092986706775197962
– volume: 153
  start-page: 242
  year: 2001
  ident: 10.1016/j.jnutbio.2013.09.001_bb0040
  article-title: Association between physical activity and markers of inflammation in a healthy elderly population
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/153.3.242
– volume: 369
  start-page: 471
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0500
  article-title: Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.02.034
– volume: 15
  start-page: 1473
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0360
  article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans
  publication-title: Obesity
  doi: 10.1038/oby.2007.176
– volume: 131
  start-page: 1731
  year: 2001
  ident: 10.1016/j.jnutbio.2013.09.001_bb0855
  article-title: Catechins are bioavailable in men and women drinking black tea throughout the day
  publication-title: J Nutr
  doi: 10.1093/jn/131.6.1731
– volume: 19
  start-page: 800
  year: 2003
  ident: 10.1016/j.jnutbio.2013.09.001_bb0785
  article-title: Oral administration of a turmeric extract inhibits erythrocyte and liver microsome membrane oxidation in rabbits fed with an atherogenic diet
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(03)00093-5
– volume: 138
  start-page: 1677
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0170
  article-title: The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice
  publication-title: J Nutr
  doi: 10.1093/jn/138.9.1677
– volume: 26
  start-page: 389S
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0300
  article-title: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2007.10719627
– volume: 7
  start-page: e28784
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0700
  article-title: Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes
  publication-title: PloS one
  doi: 10.1371/journal.pone.0028784
– volume: 107
  start-page: 202
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0585
  article-title: Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress
  publication-title: Br J Nutr
  doi: 10.1017/S0007114511002753
– volume: 57
  start-page: 1576
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0770
  article-title: Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2008.06.014
– volume: 18
  start-page: 879
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0275
  article-title: The human visceral fat depot has a unique inflammatory profile
  publication-title: Obesity
  doi: 10.1038/oby.2010.22
– volume: 93
  start-page: 486
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0280
  article-title: Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2007.10.009
– volume: 81
  start-page: 122
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0365
  article-title: Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/81.1.122
– volume: 114
  start-page: 207
  year: 2000
  ident: 10.1016/j.jnutbio.2013.09.001_bb0795
  article-title: An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen
  publication-title: Mech Ageing Dev
  doi: 10.1016/S0047-6374(00)00089-0
– volume: 29
  start-page: 615
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0210
  article-title: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation
  publication-title: Int J Obes
  doi: 10.1038/sj.ijo.0802926
– volume: 65
  start-page: 369
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0595
  article-title: Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet
  publication-title: J Physiol Biochem
  doi: 10.1007/BF03185932
– volume: 13
  start-page: 982
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0130
  article-title: Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3 T3-L1 adipocytes
  publication-title: Obes Res
  doi: 10.1038/oby.2005.115
– volume: 148
  start-page: 421
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0505
  article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.017
– volume: 66
  start-page: 663
  year: 2000
  ident: 10.1016/j.jnutbio.2013.09.001_bb0405
  article-title: Biological effects of resveratrol
  publication-title: Life Sci
  doi: 10.1016/S0024-3205(99)00410-5
– volume: 139
  start-page: 919
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0680
  article-title: Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice
  publication-title: J Nutr
  doi: 10.3945/jn.108.100966
– volume: 26
  start-page: 997
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0470
  article-title: The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3 T3-L1 adipocytes
  publication-title: Nutr Hosp
– volume: 51
  start-page: 454
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0895
  article-title: Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2011.04.032
– volume: 20
  start-page: 3
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0715
  article-title: Curcumin attenuates lipolysis stimulated by tumor necrosis factor-alpha or isoproterenol in 3 T3-L1 adipocytes
  publication-title: Phytomed
  doi: 10.1016/j.phymed.2012.09.003
– volume: 32
  start-page: 448
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0255
  article-title: Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2012.05.001
– volume: 11
  start-page: 1025
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0860
  article-title: Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 298
  start-page: C1510
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0670
  article-title: Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00369.2009
– volume: 128
  start-page: 593
  year: 1998
  ident: 10.1016/j.jnutbio.2013.09.001_bb0880
  article-title: Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects
  publication-title: J Nutr
  doi: 10.1093/jn/128.3.593
– volume: 53
  start-page: 5695
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0145
  article-title: The apoptotic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the Cdk2 pathway
  publication-title: J Agric Food Chem
  doi: 10.1021/jf050045p
– ident: 10.1016/j.jnutbio.2013.09.001_bb0030
  doi: 10.1159/000341287
– volume: 142
  start-page: 57
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0230
  article-title: Green tea extract suppresses NFkappaB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis
  publication-title: J Nutr
  doi: 10.3945/jn.111.148544
– volume: 23
  start-page: 379
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0475
  article-title: Resveratrol regulates lipolysis via adipose triglyceride lipase
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2010.12.014
– volume: 92
  start-page: 789
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0455
  article-title: Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2010.02.024
– volume: 21
  start-page: 703
  year: 1996
  ident: 10.1016/j.jnutbio.2013.09.001_bb0885
  article-title: Absorption and disposition kinetics of the dietary antioxidant quercetin in man
  publication-title: Free Radic Biol Med
  doi: 10.1016/0891-5849(96)00129-3
– volume: 47
  start-page: 1533
  year: 1999
  ident: 10.1016/j.jnutbio.2013.09.001_bb0410
  article-title: Piceid, the major resveratrol derivative in grape juices
  publication-title: J Agric Food Chem
  doi: 10.1021/jf981024g
– volume: 358
  start-page: 281
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0675
  article-title: Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-011-0978-z
– volume: 4
  start-page: 144
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0510
  article-title: Using PDE, inhibitors to harness the benefits of calorie restriction: lessons from resveratrol
  publication-title: Aging
  doi: 10.18632/aging.100442
– volume: 351
  start-page: 19
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0720
  article-title: Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-010-0707-z
– volume: 444
  start-page: 337
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0565
  article-title: Resveratrol improves health and survival of mice on a high-calorie diet
  publication-title: Nature
  doi: 10.1038/nature05354
– volume: 77
  start-page: 1053
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0610
  article-title: Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2008.11.027
– volume: 60
  start-page: 2928
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0760
  article-title: Targeting curcusomes to inflammatory dendritic cells inhibits NF-kappaB and improves insulin resistance in obese mice
  publication-title: Diabetes
  doi: 10.2337/db11-0275
– volume: 6
  start-page: 499
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0460
  article-title: Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3 T3-L1 preadipocytes
  publication-title: Nutr Res Pract
  doi: 10.4162/nrp.2012.6.6.499
– volume: 72
  start-page: 69
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0935
  article-title: One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2013.03.011
– volume: 33
  start-page: 26
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0025
  article-title: Immunity as a link between obesity and insulin resistance
  publication-title: Mol Aspects Med
  doi: 10.1016/j.mam.2011.10.011
– volume: 29
  start-page: 562
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0555
  article-title: Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet
  publication-title: Nutrition
  doi: 10.1016/j.nut.2012.09.011
– volume: 30
  start-page: 285
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0060
  article-title: Health effects of mixed fruit and vegetable concentrates: a systematic review of the clinical interventions
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2011.10719971
– volume: 32
  start-page: 701
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0605
  article-title: Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2012.08.004
– volume: 56
  start-page: 580
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0115
  article-title: Green tea (−)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201100438
– volume: 65
  start-page: 361
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0075
  article-title: Mechanisms and effects of green tea on cardiovascular health
  publication-title: Nutr Rev
  doi: 10.1111/j.1753-4887.2007.tb00314.x
– volume: 288
  start-page: C1094
  year: 2005
  ident: 10.1016/j.jnutbio.2013.09.001_bb0095
  article-title: Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3 T3-L1 preadipocytes depends on the ERK and Cdk2 pathways
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00569.2004
– volume: 27
  start-page: 37
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0630
  article-title: Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-012-6427-8
– volume: 81
  start-page: 1343
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0590
  article-title: Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2011.03.012
– volume: 106
  start-page: 1880
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0310
  article-title: Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial
  publication-title: Br J Nutr
  doi: 10.1017/S0007114511002376
– volume: 89
  start-page: 793
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0440
  article-title: Resveratrol inhibits cell differentiation in 3 T3-L1 adipocytes via activation of AMPK
  publication-title: Can J Physiol Pharmacol
– volume: 162
  start-page: 1286
  year: 2002
  ident: 10.1016/j.jnutbio.2013.09.001_bb0035
  article-title: Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.162.11.1286
– volume: 7
  start-page: e38332
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0215
  article-title: Green tea polyphenols reduce body weight in rats by modulating obesity-related genes
  publication-title: PloS one
  doi: 10.1371/journal.pone.0038332
– volume: 2013
  start-page: 635470
  year: 2013
  ident: 10.1016/j.jnutbio.2013.09.001_bb0195
  article-title: Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet
  publication-title: Mediators Inflamm
  doi: 10.1155/2013/635470
– volume: 5
  start-page: e15441
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0380
  article-title: Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells
  publication-title: PloS one
  doi: 10.1371/journal.pone.0015441
– volume: 138
  start-page: 2156
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0220
  article-title: Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue
  publication-title: J Nutr
  doi: 10.1093/jn/138.11.2156
– volume: 102
  start-page: 1611
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0235
  article-title: Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models
  publication-title: Br J Nutr
  doi: 10.1017/S000711450999208X
– volume: 5
  start-page: 17
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0685
  article-title: Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes
  publication-title: Nutr Metab
  doi: 10.1186/1743-7075-5-17
– volume: 80
  start-page: 926
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0710
  article-title: Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2006.11.030
– volume: 15
  start-page: 2571
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0140
  article-title: Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3 T3-L1 cells
  publication-title: Obesity
  doi: 10.1038/oby.2007.309
– volume: 14
  start-page: 154
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0320
  article-title: Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial
  publication-title: Altern Med Rev
– volume: 26
  start-page: 396S
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0335
  article-title: Can EGCG reduce abdominal fat in obese subjects?
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2007.10719628
– volume: 59
  start-page: 1012
  year: 2011
  ident: 10.1016/j.jnutbio.2013.09.001_bb0845
  article-title: Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property
  publication-title: J Agric Food Chem
  doi: 10.1021/jf103873k
– volume: 297
  start-page: C121
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0110
  article-title: Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3 T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00272.2008
– volume: 68
  start-page: 2353
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0090
  article-title: Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3 T3-L1 cells
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.68.2353
– volume: 49
  start-page: 477
  year: 2001
  ident: 10.1016/j.jnutbio.2013.09.001_bb0080
  article-title: Degradation of green tea catechins in tea drinks
  publication-title: J Agric Food Chem
  doi: 10.1021/jf000877h
– volume: 33
  start-page: 956
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0385
  article-title: The effects of green tea on weight loss and weight maintenance: a meta-analysis
  publication-title: Int J Obes
  doi: 10.1038/ijo.2009.135
– volume: 22
  start-page: 135
  year: 2004
  ident: 10.1016/j.jnutbio.2013.09.001_bb0160
  article-title: Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors
  publication-title: Biofactors
  doi: 10.1002/biof.5520220126
– volume: 36
  start-page: 735
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0200
  article-title: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet
  publication-title: Int J Obes
  doi: 10.1038/ijo.2011.136
– volume: 59
  start-page: 351
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0240
  article-title: Weight and plasma lipid control by decaffeinated green tea
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2009.01.015
– volume: 16
  start-page: 9652
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0810
  article-title: Time-dependent intracellular trafficking of FITC-conjugated epigallocatechin-3-O-gallate in L-929 cells
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2008.10.009
– volume: 74
  start-page: 619
  year: 2009
  ident: 10.1016/j.jnutbio.2013.09.001_bb0525
  article-title: Resveratrol is not a direct activator of SIRT1 enzyme activity
  publication-title: Chem Biol Drug Des
  doi: 10.1111/j.1747-0285.2009.00901.x
– volume: 100
  start-page: 1307
  year: 1970
  ident: 10.1016/j.jnutbio.2013.09.001_bb0725
  article-title: Effect of curcumin on serum and liver cholesterol levels in the rat
  publication-title: J Nutr
  doi: 10.1093/jn/100.11.1307
– volume: 17
  start-page: 471
  year: 2006
  ident: 10.1016/j.jnutbio.2013.09.001_bb0775
  article-title: Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2005.09.005
– volume: 149
  start-page: 315
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0370
  article-title: Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-012-9448-z
– volume: 364
  start-page: 972
  year: 2007
  ident: 10.1016/j.jnutbio.2013.09.001_bb0435
  article-title: Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3 T3-L1 adipocytes
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.10.109
– volume: 131
  start-page: 2932
  year: 2001
  ident: 10.1016/j.jnutbio.2013.09.001_bb0735
  article-title: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue
  publication-title: J Nutr
  doi: 10.1093/jn/131.11.2932
– volume: 27
  start-page: 363
  year: 2008
  ident: 10.1016/j.jnutbio.2013.09.001_bb0340
  article-title: Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2008.03.007
– volume: 68
  start-page: 729
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0640
  article-title: Curcumin and obesity: evidence and mechanisms
  publication-title: Nutr Rev
  doi: 10.1111/j.1753-4887.2010.00341.x
– volume: 32
  start-page: 421
  year: 2012
  ident: 10.1016/j.jnutbio.2013.09.001_bb0295
  article-title: Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2012.05.007
– volume: 635
  start-page: 1
  year: 2010
  ident: 10.1016/j.jnutbio.2013.09.001_bb0540
  article-title: Resveratrol, obesity and diabetes
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2010.02.054
– reference: 12038947 - Arch Intern Med. 2002 Jun 10;162(11):1286-92
– reference: 11157411 - Am J Epidemiol. 2001 Feb 1;153(3):242-50
– reference: 21885868 - Diabetes. 2011 Nov;60(11):2928-38
– reference: 20605696 - Nutrition. 2011 Feb;27(2):206-13
– reference: 20188786 - Biochimie. 2010 Jul;92(7):789-96
– reference: 16351782 - Br J Nutr. 2005 Dec;94(6):1026-34
– reference: 22749178 - Nutr Res. 2012 Jun;32(6):421-7
– reference: 22017765 - Can J Physiol Pharmacol. 2011 Nov;89(11):793-9
– reference: 22720713 - Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):379-90
– reference: 23342006 - PLoS One. 2013;8(1):e53796
– reference: 18710606 - Br J Nutr. 2009 Mar;101(6):886-94
– reference: 16286857 - Med Sci Sports Exerc. 2005 Nov;37(11):1884-92
– reference: 22254051 - Nutrients. 2010 Jul;2(7):737-51
– reference: 18759443 - J Agric Food Chem. 2008 Sep 24;56(18):8374-8
– reference: 17952831 - Horm Metab Res. 2007 Oct;39(10):710-6
– reference: 21091916 - Nutr Rev. 2010 Dec;68(12):729-38
– reference: 10945161 - In Vivo. 2000 Jul-Aug;14(4):481-4
– reference: 17999464 - Mol Pharm. 2007 Nov-Dec;4(6):807-18
– reference: 23431242 - Mediators Inflamm. 2013;2013:635470
– reference: 12376503 - Cancer Epidemiol Biomarkers Prev. 2002 Oct;11(10 Pt 1):1025-32
– reference: 17112576 - Cell. 2006 Dec 15;127(6):1109-22
– reference: 8891673 - Free Radic Biol Med. 1996;21(5):703-7
– reference: 22977681 - Nutr Res Pract. 2012 Aug;6(4):286-93
– reference: 19202275 - Biosci Biotechnol Biochem. 2009 Feb;73(2):434-6
– reference: 11712783 - Anticancer Res. 2001 Jul-Aug;21(4B):2895-900
– reference: 9482769 - J Nutr. 1998 Mar;128(3):593-7
– reference: 23193181 - Diabetes. 2013 Apr;62(4):1186-95
– reference: 12972675 - Obes Res. 2003 Sep;11(9):1055-64
– reference: 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24
– reference: 19594224 - Altern Med Rev. 2009 Jun;14(2):154-60
– reference: 15175761 - Nature. 2004 Jun 17;429(6993):771-6
– reference: 11924761 - Phytomedicine. 2002 Jan;9(1):3-8
– reference: 10584049 - Am J Clin Nutr. 1999 Dec;70(6):1040-5
– reference: 22072344 - Nutr Hosp. 2011 Sep-Oct;26(5):997-1003
– reference: 19074207 - J Nutr. 2009 Feb;139(2):264-70
– reference: 23430567 - J Physiol Biochem. 2013 Dec;69(4):677-86
– reference: 23084643 - Nutr Res. 2012 Sep;32(9):701-8
– reference: 12921893 - Nutrition. 2003 Sep;19(9):800-4
– reference: 22304913 - Cell. 2012 Feb 3;148(3):421-33
– reference: 16263255 - J Nutr Biochem. 2006 Jul;17(7):471-8
– reference: 22253696 - PLoS One. 2012;7(1):e28784
– reference: 20358350 - J Physiol Biochem. 2009 Dec;65(4):369-76
– reference: 15738931 - Int J Obes (Lond). 2005 Jun;29(6):615-23
– reference: 23374859 - Lipids Health Dis. 2013;12:8
– reference: 21748336 - Mol Cell Biochem. 2011 Dec;358(1-2):281-5
– reference: 17056802 - J Nutr. 2006 Nov;136(11):2791-6
– reference: 19416635 - Pharmacol Res. 2009 May;59(5):351-4
– reference: 18549505 - Nutr Metab (Lond). 2008 Jun 12;5:17
– reference: 19047759 - J Lipid Res. 2009 Apr;50 Suppl:S138-43
– reference: 19398300 - Nutrition. 2009 Jul-Aug;25(7-8):870-8
– reference: 19597519 - Int J Obes (Lond). 2009 Sep;33(9):956-61
– reference: 20655714 - J Nutr Biochem. 2011 Apr;22(4):393-400
– reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42
– reference: 21124793 - PLoS One. 2010;5(11):e15441
– reference: 23557933 - Pharmacol Res. 2013 Jun;72:69-82
– reference: 18688788 - Phytother Res. 2008 Oct;22(10):1367-71
– reference: 18940397 - Metabolism. 2008 Nov;57(11):1576-83
– reference: 20596890 - Cytotechnology. 2010 Jul;62(3):245-55
– reference: 20595643 - J Am Coll Nutr. 2010 Feb;29(1):31-40
– reference: 22137261 - J Nutr Biochem. 2012 Sep;23(9):1100-12
– reference: 22416799 - J Agric Food Chem. 2012 Sep 12;60(36):8917-23
– reference: 23181558 - Nutr Metab (Lond). 2012 Nov 26;9(1):105
– reference: 11040400 - Mech Ageing Dev. 2000 Oct 20;119(1-2):41-7
– reference: 21221723 - Mol Cell Biochem. 2011 May;351(1-2):19-28
– reference: 22581111 - Biol Trace Elem Res. 2012 Dec;149(3):315-22
– reference: 19462685 - Biomed Environ Sci. 2009 Feb;22(1):32-9
– reference: 22645638 - World J Diabetes. 2012 May 15;3(5):94-104
– reference: 20372175 - Eur J Clin Nutr. 2010 Jul;64(7):704-13
– reference: 15630268 - Biofactors. 2004;22(1-4):135-40
– reference: 21736785 - Br J Nutr. 2011 Dec;106(12):1880-9
– reference: 20569453 - BMC Physiol. 2010;10:11
– reference: 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506
– reference: 19923373 - Am J Clin Nutr. 2010 Jan;91(1):280S-283S
– reference: 23083815 - Phytomedicine. 2012 Dec 15;20(1):3-8
– reference: 21543206 - J Nutr Biochem. 2012 Apr;23(4):379-84
– reference: 17557985 - Obesity (Silver Spring). 2007 Jun;15(6):1473-83
– reference: 22749181 - Nutr Res. 2012 Jun;32(6):448-57
– reference: 19100718 - Biochem Pharmacol. 2009 Mar 15;77(6):1053-63
– reference: 10564012 - J Agric Food Chem. 1999 Apr;47(4):1533-6
– reference: 23498665 - J Nutr Biochem. 2013 Apr;24(4):613-23
– reference: 21750518 - Int J Obes (Lond). 2012 May;36(5):735-43
– reference: 16457641 - Curr Med Chem. 2006;13(1):87-98
– reference: 19176142 - Zhonghua Yu Fang Yi Xue Za Zhi. 2008 Nov;42(11):818-22
– reference: 23128765 - Nestle Nutr Inst Workshop Ser. 2012;73:49-60; discussion p61-6
– reference: 21978785 - Life Sci. 2011 Nov 21;89(21-22):779-85
– reference: 11694621 - J Nutr. 2001 Nov;131(11):2932-5
– reference: 18079119 - J Biol Chem. 2008 Feb 8;283(6):3050-8
– reference: 18356827 - Obesity (Silver Spring). 2008 Jun;16(6):1338-48
– reference: 10664844 - Biosci Biotechnol Biochem. 1999 Dec;63(12):2118-22
– reference: 23346299 - Nutr Res Pract. 2012 Dec;6(6):499-504
– reference: 11170614 - J Agric Food Chem. 2001 Jan;49(1):477-82
– reference: 18006026 - Physiol Behav. 2008 Feb 27;93(3):486-91
– reference: 9127691 - Clin Biochem. 1997 Mar;30(2):91-113
– reference: 21571063 - Free Radic Biol Med. 2011 Jul 15;51(2):454-63
– reference: 20463039 - Am J Clin Nutr. 2010 Jul;92(1):5-15
– reference: 20980258 - J Biol Chem. 2011 Jan 7;286(1):60-6
– reference: 18951028 - Bioorg Med Chem. 2008 Nov 15;16(22):9652-9
– reference: 20186138 - Obesity (Silver Spring). 2010 May;18(5):879-83
– reference: 21792929 - J Cell Physiol. 2011 Oct;226(10):2721-30
– reference: 20872255 - Obes Surg. 2011 Mar;21(3):356-61
– reference: 22648627 - Mol Nutr Food Res. 2012 May;56(5):810-21
– reference: 22388573 - Aging (Albany NY). 2012 Mar;4(3):144-5
– reference: 16159906 - Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E273-81
– reference: 18468736 - Clin Nutr. 2008 Jun;27(3):363-70
– reference: 5476433 - J Nutr. 1970 Nov;100(11):1307-15
– reference: 19107849 - Phytother Res. 2009 Aug;23(8):1088-91
– reference: 22005428 - Br J Nutr. 2011 Oct;106 Suppl 1:S198-201
– reference: 18782455 - BMC Gastroenterol. 2008;8:40
– reference: 15564676 - Biosci Biotechnol Biochem. 2004 Nov;68(11):2353-9
– reference: 18070748 - Obesity (Silver Spring). 2007 Nov;15(11):2571-82
– reference: 22584682 - Clin Exp Med. 2013 Aug;13(3):193-9
– reference: 23274094 - Nutrition. 2013 Mar;29(3):562-7
– reference: 12499265 - Cancer Res. 2002 Dec 15;62(24):7241-6
– reference: 20303945 - Eur J Pharmacol. 2010 Jun 10;635(1-3):1-8
– reference: 19939981 - Am J Clin Nutr. 2010 Jan;91(1):5-6
– reference: 21193040 - Pharmacol Res. 2011 Aug;64(2):146-54
– reference: 20059703 - Obes Rev. 2011 Jan;12(1):50-61
– reference: 22081614 - J Am Coll Nutr. 2011 Oct;30(5):285-94
– reference: 15647388 - Am J Physiol Cell Physiol. 2005 May;288(5):C1094-108
– reference: 15640470 - Am J Clin Nutr. 2005 Jan;81(1):122-9
– reference: 22935344 - Nutr Res. 2012 Aug;32(8):607-16
– reference: 19051209 - Phytother Res. 2009 Apr;23(4):467-71
– reference: 21204534 - J Agric Food Chem. 2011 Feb 9;59(3):1012-9
– reference: 18203899 - J Nutr. 2008 Feb;138(2):323-31
– reference: 21109418 - J Nutr Biochem. 2011 Sep;22(9):828-34
– reference: 15998135 - J Agric Food Chem. 2005 Jul 13;53(14):5695-701
– reference: 19825205 - Br J Nutr. 2009 Dec;102(11):1611-9
– reference: 22055504 - Cell Metab. 2011 Nov 2;14(5):612-22
– reference: 12676044 - J Altern Complement Med. 2003 Feb;9(1):161-8
– reference: 18291098 - Biochem Biophys Res Commun. 2008 May 2;369(2):471-7
– reference: 17967414 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):972-7
– reference: 23235664 - Cochrane Database Syst Rev. 2012;12:CD008650
– reference: 18403477 - Endocrinology. 2008 Jul;149(7):3549-58
– reference: 22715380 - PLoS One. 2012;7(6):e38332
– reference: 10680575 - Life Sci. 2000 Jan 14;66(8):663-73
– reference: 19906797 - Am J Clin Nutr. 2010 Jan;91(1):73-81
– reference: 22040698 - Mol Aspects Med. 2012 Feb;33(1):26-34
– reference: 9311619 - Drug Metab Dispos. 1997 Sep;25(9):1045-50
– reference: 9619120 - Planta Med. 1998 May;64(4):353-6
– reference: 17900536 - Biochem Pharmacol. 2008 Feb 15;75(4):787-809
– reference: 20455202 - Planta Med. 2010 Oct;76(15):1694-8
– reference: 15005829 - Br J Nutr. 2004 Mar;91(3):431-7
– reference: 17196622 - Life Sci. 2007 Feb 13;80(10):926-31
– reference: 12120279 - Nat Rev Drug Discov. 2002 Apr;1(4):276-86
– reference: 23224687 - Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48
– reference: 15506818 - J Agric Food Chem. 2004 Nov 3;52(22):6794-801
– reference: 17867370 - Nutr Rev. 2007 Aug;65(8 Pt 1):361-75
– reference: 10412986 - Cell. 1999 Jul 9;98(1):115-24
– reference: 19297423 - J Nutr. 2009 May;139(5):919-25
– reference: 17906193 - J Am Coll Nutr. 2007 Aug;26(4):396S-402S
– reference: 18716169 - J Nutr. 2008 Sep;138(9):1677-83
– reference: 18936213 - J Nutr. 2008 Nov;138(11):2156-63
– reference: 12242399 - Plant Cell. 1995 Jul;7(7):1085-1097
– reference: 16713229 - J Nutr Biochem. 2006 Jul;17(7):492-8
– reference: 11385060 - J Nutr. 2001 Jun;131(6):1731-7
– reference: 19932867 - Nutr Res. 2009 Nov;29(11):784-93
– reference: 19093868 - J Agric Food Chem. 2009 Jan 14;57(1):305-10
– reference: 10802125 - Mech Ageing Dev. 2000 Apr 14;114(3):207-10
– reference: 15976140 - Obes Res. 2005 Jun;13(6):982-90
– reference: 21932846 - J Agric Food Chem. 2011 Nov 9;59(21):11862-71
– reference: 17906192 - J Am Coll Nutr. 2007 Aug;26(4):389S-395S
– reference: 21439945 - Biochem Pharmacol. 2011 Jun 1;81(11):1343-51
– reference: 17951067 - Pharmacol Res. 2007 Dec;56(6):509-14
– reference: 22959054 - J Nutr Biochem. 2013 Jun;24(6):960-6
– reference: 16387689 - Ann N Y Acad Sci. 2005 Nov;1056:206-17
– reference: 21543212 - J Nutr Biochem. 2012 Apr;23(4):361-7
– reference: 16236247 - Biochem Biophys Res Commun. 2005 Dec 16;338(2):694-9
– reference: 20357182 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1510-6
– reference: 21569266 - Nutr Metab (Lond). 2011 May 10;8(1):29
– reference: 21733326 - Br J Nutr. 2012 Jan;107(2):202-10
– reference: 12010007 - J Agric Food Chem. 2002 May 22;50(11):3337-40
– reference: 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51
– reference: 22495985 - Mol Nutr Food Res. 2012 Apr;56(4):580-92
– reference: 15166786 - Curr Opin Lipidol. 2004 Jun;15(3):303-7
– reference: 19176763 - Am J Physiol Cell Physiol. 2009 Jul;297(1):C121-32
– reference: 21189228 - J Nutr Biochem. 2011 Oct;22(10):910-20
– reference: 22332072 - Adv Nutr. 2011 Jul;2(4):304-16
– reference: 22157544 - J Nutr. 2012 Jan;142(1):57-63
SSID ssj0002456
Score 2.6118293
SecondaryResourceType review_article
Snippet The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of...
Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms adipocytes
Adipocytes - drug effects
Adipocytes - metabolism
adipogenesis
Animal
Animals
Antioxidants
beta oxidation
binding proteins
Catechin - analogs & derivatives
Catechin - pharmacology
Cell
Cell Differentiation - drug effects
chronic diseases
curcumin
Curcumin - pharmacology
Diet
Dietary polyphenols
energy expenditure
epigallocatechin
fatty acids
flavanols
gender
glucose
green tea
hemostasis
Human
Humans
inflammation
lipolysis
Molecular mechanism
nationalities and ethnic groups
Obesity
Obesity - metabolism
peroxisome proliferator-activated receptors
Plant Extracts - pharmacology
polyphenols
Polyphenols - pharmacology
randomized clinical trials
Randomized Controlled Trials as Topic
resveratrol
signal transduction
Stilbenes - pharmacology
Tea - chemistry
transcription factor NF-kappa B
triacylglycerols
viability
weight loss
Title Novel insights of dietary polyphenols and obesity
URI https://dx.doi.org/10.1016/j.jnutbio.2013.09.001
https://www.ncbi.nlm.nih.gov/pubmed/24314860
https://www.proquest.com/docview/1466375959
https://www.proquest.com/docview/1897369367
https://www.proquest.com/docview/2000189566
https://pubmed.ncbi.nlm.nih.gov/PMC3926750
Volume 25
WOSCitedRecordID wos000329531500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002456
  issn: 0955-2863
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9owFLfWdtJ6mTa6D_ZRZdLUWxjBJnaOiFFtE2I7UIlbZGxHDWIJK1DR_77vxU4CG127wy5RSOyQ5PfL83v2-yDkoxQKCyIFPu0a47OgbXwZ0sRXireZ0glwoEjiOuSjkZhMoh9uQn9ZlBPgWSY2m2jxX6GGYwA2hs7-A9zVReEA7APosAXYYfsg4Ef5tcFEGks0uwtHDZ2aFTrHLfL5Dbp05XObmDm3RQG29dM6UmxuXTxcrn74OU2xuJatDldPw7vZ5st1hVxehGRpH3eW0krwtJb-fRcOMkw3qaw7FUPgWmbTVObbMxEB25qJsMJTcOozYTNotsyeY07i2lDnHWZZ8RnsFep2fmHWmsFDw7OiPx5t2Tyj9ShWrtyPvsfnF8NhPB5MxmeLXz7WF8N1eFds5YAcdXg3AhF-1Ps6mHyrRm1cAEbjvLzfOtrr095_vkuP-dNO-d3ddkt_GT8jTx2oXs8S5jl5ZLIGOellcpX_vPHOvMIVuFhjaZAn_RLoBml-BvbAeZdAdu6NSk6ckKDgmldyzcsTz3HN2-KaB1zzHNdekIvzwbj_xXc1OHwFhsDK14mWgdYU9Hgtp1MuQGPFFISJibTqaM4jI2gIRoFQ7W4ShkoqkUSKgSqoqTKMviSHWZ6Z18SjoYoYC2k7mXYYKLJSgu7MJLzwLk24TJqElW80Vi5BPdZJmcelJ-IsdkDECETcjtAjs0laVbeFzdByXwdRwhU7NdOqjzEQ7r6uH0p4Y4AB19ZkZuBzQgs6pECsbvSXNgLEYhjRkN_dBiPnoB0YWU3yytKmeqoOKPtYM65J-A6hqgaYKn73TJZeFinjwQoKwTZ484D7f0uO64_7HTlcXa3Ne_JYXa_S5dUpOeATceo-nlsmzuIU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+insights+of+dietary+polyphenols+and+obesity&rft.jtitle=The+Journal+of+nutritional+biochemistry&rft.au=Wang%2C+Shu&rft.au=Moustaid-Moussa%2C+Naima&rft.au=Chen%2C+Lixia&rft.au=Mo%2C+Huanbiao&rft.date=2014-01-01&rft.issn=1873-4847&rft.eissn=1873-4847&rft.volume=25&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jnutbio.2013.09.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2863&client=summon