Fabrication and evaluation of a host-guest polylactic acid/gelatin-hydroxyapatite-blueberry scaffold for bone regeneration

Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability....

Full description

Saved in:
Bibliographic Details
Published in:Journal of orthopaedic surgery and research Vol. 20; no. 1; pp. 788 - 24
Main Authors: Sistani, Someyra, Asgharzade, Samira, Arab, Samaneh, Bahraminasab, Marjan, Soltani-Fard, Elahe
Format: Journal Article
Language:English
Published: London BioMed Central 22.08.2025
BioMed Central Ltd
BMC
Subjects:
ISSN:1749-799X, 1749-799X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements.
AbstractList Abstract Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements.
Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements.
Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1[alpha]1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements.
Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1[alpha]1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. Keywords: 3D printing, Scaffold, Hydroxyapatite, Polylactic acid, Gelatin, Blueberry, Bone regeneration
ArticleNumber 788
Audience Academic
Author Soltani-Fard, Elahe
Sistani, Someyra
Arab, Samaneh
Asgharzade, Samira
Bahraminasab, Marjan
Author_xml – sequence: 1
  givenname: Someyra
  surname: Sistani
  fullname: Sistani, Someyra
  organization: Student research committee, Semnan University of Medical Sciences
– sequence: 2
  givenname: Samira
  surname: Asgharzade
  fullname: Asgharzade, Samira
  organization: Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences
– sequence: 3
  givenname: Samaneh
  surname: Arab
  fullname: Arab, Samaneh
  organization: Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences
– sequence: 4
  givenname: Marjan
  surname: Bahraminasab
  fullname: Bahraminasab, Marjan
  email: m.bahraminasab@yahoo.com, m.bahraminasab@semums.ac.ir
  organization: Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences
– sequence: 5
  givenname: Elahe
  surname: Soltani-Fard
  fullname: Soltani-Fard, Elahe
  organization: Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40847359$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1r3DAQhk1JaT7aP9BDMfTSixPJ-rJPJYSmDQR6aaE3MZbHXi1aaSvZodtfX-06DVkoxWBb8jMPo_F7Xpz44LEo3lJySWkjrxJlhDYVqUVFJJWy4i-KM6p4W6m2_XHy7P20OE9pTYggouGvilNOGq6YaM-K37fQRWtgssGX4PsSH8DNyzIMJZSrkKZqnDFN5Ta4nQMzWVOCsf3ViC6Dvlrt-hh-7WCbVxNWnZuxwxh3ZTIwDMH15RBi2eXmy4gjeowH_-vi5QAu4ZvH50Xx_fbTt5sv1f3Xz3c31_eVEYxNFSggUAtshDJAId8JFz0QXhOBIKUaeNc3sqNGtDAog0L1lHNVSzKYzhB2Udwt3j7AWm-j3UDc6QBWHzZCHDXEfCiHum6YaRnn1CjGs6wVjOaZddLk2UnVZtfHxbWduw32Bv0UwR1Jj794u9JjeNC0ZoozQbPhw6Mhhp_7seqNTQadA49hTprVXLJaSt5k9P2CjpB7s34IWWn2uL5uRN1yIdo9dfkPKl89bqzJQx9s3j8qePf8DE_N_w1FBuoFMDGkFHF4QijR--TpJXk6J08fkqd5LmJLUcqwHzHqdZijzz_2f1V_AGUU3Fs
Cites_doi 10.1093/bmb/ldt007
10.1016/j.jmbbm.2020.103616
10.1371/journal.pone.0024486
10.1097/BOT.0000000000001115
10.1016/j.polymdegradstab.2024.110726
10.1186/s13018-022-03213-2
10.1089/ten.TEA.2016.0407
10.1186/s12938-020-00810-2
10.1093/bmb/ldz034
10.1007/s10856-018-6064-2
10.3390/polym12081711
10.1166/jbn.2014.1893
10.1016/j.msec.2019.109960
10.1089/scd.2006.15.118
10.1002/jbm.a.36388
10.1039/C7TA03870D
10.1016/j.actbio.2013.06.013
10.1002/bit.26975
10.3390/molecules28083610
10.1016/j.fcl.2010.07.002
10.2174/157488812800793081
10.1002/biof.552210140
10.3390/pharmaceutics14091752
10.1016/j.ijbiomac.2024.132361
10.1002/jbm.a.36226
10.1016/j.cobme.2020.100248
10.1016/j.msec.2021.112287
10.1371/journal.pone.0188352
10.1002/jbm.b.31394
10.3390/ijerph17103376
10.1007/s13233-021-9028-1
10.1002/ardp.202000011
10.1016/j.msec.2020.110698
10.1016/j.actbio.2018.07.024
10.1016/j.jnutbio.2007.09.004
10.3390/membranes11030200
10.1016/j.phymed.2007.04.003
10.1016/j.biomaterials.2009.02.044
10.1186/s12938-022-01056-w
10.1088/1758-5090/acb6b7
10.3390/ma15238475
10.1186/1471-2350-15-45
10.1089/ten.teb.2019.0256
10.3390/ph14070615
10.1016/j.rser.2017.05.143
10.1016/j.gene.2020.144855
10.1016/j.lfs.2022.120559
10.1021/jf051333o
10.1002/jbm.a.35215
10.1016/j.tifs.2021.11.006
10.1080/03008207.2018.1499732
10.1016/j.ijbiomac.2023.124406
10.1111/ijac.13678
10.1016/j.matpr.2015.07.097
10.1016/j.smaim.2020.10.003
10.1016/j.tice.2020.101341
10.1007/s10856-008-3488-0
10.1186/s13036-023-00338-8
10.1016/j.ijbiomac.2020.06.157
10.1016/j.ijbiomac.2019.04.115
10.1016/j.polymertesting.2016.03.005
10.1179/1476830511Y.0000000007
10.1039/D3NJ04951E
10.3390/ph15070879
10.1002/jbm.a.35731
10.1016/j.ijbiomac.2025.141114
10.1016/j.matpr.2020.12.922
10.1002/jbm.a.31585
10.1016/j.polymdegradstab.2008.07.018
10.1186/1749-799x-9-18
10.3390/cells9051268
10.1016/j.mtbio.2023.100872
10.1016/j.actbio.2018.11.039
10.1016/j.actbio.2008.04.006
10.1093/bmb/ldr006
10.1007/s11357-012-9412-z
10.1016/j.injury.2024.111976
10.3390/polym13040647
10.1002/term.2510
10.1016/j.compositesb.2018.10.078
10.3144/expresspolymlett.2015.42
10.1021/acsbiomaterials.1c00920
10.1016/j.compositesb.2021.109192
10.3390/ma13030648
10.1016/j.bone.2023.116965
10.1002/jbm.a.30658
10.1080/1040869059096
10.3892/ijmm.2016.2757
10.4137/BTRI.S36138
10.1016/j.biomaterials.2008.12.068
10.1016/j.nutres.2012.09.018
10.3389/fphar.2020.00757
10.1016/j.fct.2017.09.054
10.1016/j.ejmp.2015.01.019
10.1093/bmb/ldab024
10.1016/j.compscitech.2019.01.004
10.1016/j.ceramint.2019.10.057
10.1002/mnfr.201200549
10.3390/pharmaceutics13030399
10.3390/pharmaceutics13091448
10.1002/ptr.7296
10.1002/biot.202100282
10.1007/s12291-013-0408-y
10.1016/j.ijbiomac.2015.04.008
10.3390/life12111718
10.1016/j.matlet.2014.10.099
10.1016/j.actbio.2016.08.039
10.1016/j.polymertesting.2025.108783
ContentType Journal Article
Copyright The Author(s) 2025
COPYRIGHT 2025 BioMed Central Ltd.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s13018-025-06166-4
DatabaseName Springer Nature Link
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1749-799X
EndPage 24
ExternalDocumentID oai_doaj_org_article_283c93441c734af79531505b6c005679
PMC12374351
A852945598
40847359
10_1186_s13018_025_06166_4
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Semnan University of Medical Sciences and Health Services
  grantid: 2376
  funderid: https://doi.org/10.13039/501100018764
– fundername: Semnan University of Medical Sciences and Health Services
  grantid: 2376
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
IPT
ITC
KQ8
M1P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
AFFHD
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c533t-a7a0a25e857ca1a57c045da04205ea667f4bd86b1c59af7ce57d1447260fcbc03
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001559333800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1749-799X
IngestDate Fri Oct 03 12:45:25 EDT 2025
Tue Nov 04 02:05:49 EST 2025
Thu Sep 04 12:31:47 EDT 2025
Tue Nov 11 10:45:41 EST 2025
Tue Nov 04 18:10:36 EST 2025
Thu Sep 04 05:03:00 EDT 2025
Sat Nov 29 07:31:55 EST 2025
Sat Sep 06 07:23:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gelatin
Bone regeneration
Blueberry
Polylactic acid
Hydroxyapatite
Scaffold
3D printing
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-a7a0a25e857ca1a57c045da04205ea667f4bd86b1c59af7ce57d1447260fcbc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/283c93441c734af79531505b6c005679
PMID 40847359
PQID 3246326648
PQPubID 23479
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_283c93441c734af79531505b6c005679
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12374351
proquest_miscellaneous_3246326648
gale_infotracmisc_A852945598
gale_infotracacademiconefile_A852945598
pubmed_primary_40847359
crossref_primary_10_1186_s13018_025_06166_4
springer_journals_10_1186_s13018_025_06166_4
PublicationCentury 2000
PublicationDate 2025-08-22
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of orthopaedic surgery and research
PublicationTitleAbbrev J Orthop Surg Res
PublicationTitleAlternate J Orthop Surg Res
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References Z Dai (6166_CR91) 2007; 14
6166_CR100
S-H Woo (6166_CR75) 2024; 223
A Nauth (6166_CR2) 2018; 32
N Celikkin (6166_CR66) 2018; 106
M Cai (6166_CR96) 2021; 11
DD Herrera-Balandrano (6166_CR69) 2021; 118
CM Kaneto (6166_CR99) 2014; 15
X Lin (6166_CR98) 2020; 11
M Bahraminasab (6166_CR18) 2020; 19
S Castañeda-Rodríguez (6166_CR95) 2023; 17
M Bahraminasab (6166_CR29) 2021; 18
M Oliveira (6166_CR82) 2016; 51
A Scalbert (6166_CR35) 2005; 45
X Liu (6166_CR55) 2009; 30
Z Wang (6166_CR94) 2021; 128
M Shahrezaie (6166_CR24) 2018; 12
6166_CR86
DM Zaher (6166_CR89) 2020; 353
M Schneider (6166_CR53) 2020; 12
C Guo (6166_CR52) 2015; 140
B Chen (6166_CR105) 2016; 38
C-L Shen (6166_CR107) 2012; 32
W Yi (6166_CR72) 2005; 53
6166_CR83
M Alonzo (6166_CR12) 2021; 17
6166_CR97
6166_CR11
6166_CR10
6166_CR13
AB Baba (6166_CR71) 2017; 109
A Bharadwaz (6166_CR59) 2020; 110
NC Keramaris (6166_CR93) 2012; 7
T Ariga (6166_CR108) 2004; 21
W Wang (6166_CR3) 2021; 224
M Bahraminasab (6166_CR19) 2022; 17
M Giacalone (6166_CR68) 2011; 14
A Samadikuchaksaraei (6166_CR80) 2016; 104
M Alizadeh-Osgouei (6166_CR25) 2021; 2
G Chen (6166_CR20) 2019; 172
G Percoco (6166_CR21) 2020; 13
S Vimalraj (6166_CR101) 2015; 78
6166_CR26
J Liu (6166_CR47) 2023; 240
N Xue (6166_CR1) 2022; 15
S Mondal (6166_CR28) 2020; 46
M Govoni (6166_CR14) 2017; 23
F-L Jin (6166_CR50) 2019; 164
M Janmohammadi (6166_CR40) 2023; 23
6166_CR38
PC Bickford (6166_CR73) 2006; 15
S Vimalraj (6166_CR88) 2020; 754
J Shi (6166_CR103) 2022; 15
S Ranganathan (6166_CR33) 2019; 133
F Migliorini (6166_CR16) 2021; 140
P de Martinez (6166_CR54) 2011; 100
6166_CR31
J Zhang (6166_CR37) 2011; 6
E Trucillo (6166_CR17) 2019; 116
R Neuendorf (6166_CR48) 2008; 4
R Papalia (6166_CR5) 2013; 107
S Swetha (6166_CR30) 2021; 16
J-A Kim (6166_CR76) 2016; 44
Z-C Xiong (6166_CR85) 2017; 5
D Clark (6166_CR102) 2015; 103
MSF Hussin (6166_CR60) 2021; 13
M Bahraminasab (6166_CR43) 2020; 64
U Sharma (6166_CR45) 2014; 29
6166_CR41
JP Furia (6166_CR63) 2010; 15
M Wang (6166_CR84) 2008; 85
Z Orafa (6166_CR6) 2021; 29
S Khajavi (6166_CR44) 2024; 48
X Bai (6166_CR34) 2023; 28
M Motskin (6166_CR87) 2009; 30
Y Gu (6166_CR92) 2018; 106
H Tan (6166_CR65) 2009; 91B
L Devareddy (6166_CR36) 2008; 19
MC Chang (6166_CR77) 2008; 19
J Khotib (6166_CR104) 2021; 14
I Gendviliene (6166_CR27) 2020; 104
M Čolnik (6166_CR78) 2025; 146
VS Kattimani (6166_CR58) 2016; 7
AB Bello (6166_CR62) 2020; 26
H Zhang (6166_CR106) 2018; 77
E Salmerón-Manzano (6166_CR67) 2020; 17
6166_CR56
JG Dellinger (6166_CR79) 2006; 77A
P Sotiropoulou (6166_CR46) 2015; 31
E Vey (6166_CR74) 2008; 93
L Cipollaro (6166_CR8) 2019; 132
6166_CR51
M Bahraminasab (6166_CR7) 2021; 7
J Venkatesan (6166_CR57) 2014; 10
Z Moradi (6166_CR42) 2021; 35
AB Kutikov (6166_CR49) 2013; 9
6166_CR64
LR Yadav (6166_CR32) 2022; 299
J Zhang (6166_CR90) 2013; 35
VB Nidagundi (6166_CR22) 2015; 2
L Zhang (6166_CR15) 2019; 84
M Janmohammadi (6166_CR39) 2024; 270
MA Elsawy (6166_CR81) 2017; 79
S Hassanajili (6166_CR23) 2019; 104
6166_CR61
6166_CR4
6166_CR9
KK Mak (6166_CR70) 2013; 57
References_xml – volume: 107
  start-page: 19
  year: 2013
  ident: 6166_CR5
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldt007
– volume: 104
  start-page: 103616
  year: 2020
  ident: 6166_CR27
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2020.103616
– volume: 6
  start-page: e24486
  year: 2011
  ident: 6166_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024486
– volume: 32
  start-page: S7
  year: 2018
  ident: 6166_CR2
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001115
– volume: 223
  start-page: 110726
  year: 2024
  ident: 6166_CR75
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2024.110726
– volume: 17
  start-page: 320
  year: 2022
  ident: 6166_CR19
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-022-03213-2
– volume: 23
  start-page: 811
  year: 2017
  ident: 6166_CR14
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.TEA.2016.0407
– volume: 19
  start-page: 69
  year: 2020
  ident: 6166_CR18
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-020-00810-2
– volume: 132
  start-page: 53
  year: 2019
  ident: 6166_CR8
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldz034
– ident: 6166_CR56
  doi: 10.1007/s10856-018-6064-2
– volume: 12
  start-page: 1711
  year: 2020
  ident: 6166_CR53
  publication-title: Polymers
  doi: 10.3390/polym12081711
– volume: 10
  start-page: 3124
  year: 2014
  ident: 6166_CR57
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2014.1893
– volume: 104
  start-page: 109960
  year: 2019
  ident: 6166_CR23
  publication-title: Mater Sci Engineering: C
  doi: 10.1016/j.msec.2019.109960
– volume: 15
  start-page: 118
  year: 2006
  ident: 6166_CR73
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2006.15.118
– volume: 106
  start-page: 1851
  year: 2018
  ident: 6166_CR92
  publication-title: J Biomedical Mater Res Part A
  doi: 10.1002/jbm.a.36388
– volume: 5
  start-page: 17482
  year: 2017
  ident: 6166_CR85
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA03870D
– volume: 9
  start-page: 8354
  year: 2013
  ident: 6166_CR49
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.06.013
– volume: 116
  start-page: 1777
  year: 2019
  ident: 6166_CR17
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.26975
– volume: 28
  start-page: 3610
  year: 2023
  ident: 6166_CR34
  publication-title: Molecules
  doi: 10.3390/molecules28083610
– volume: 15
  start-page: 651
  year: 2010
  ident: 6166_CR63
  publication-title: Foot Ankle Clin
  doi: 10.1016/j.fcl.2010.07.002
– volume: 7
  start-page: 293
  year: 2012
  ident: 6166_CR93
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/157488812800793081
– volume: 21
  start-page: 197
  year: 2004
  ident: 6166_CR108
  publication-title: BioFactors
  doi: 10.1002/biof.552210140
– ident: 6166_CR10
  doi: 10.3390/pharmaceutics14091752
– volume: 270
  start-page: 132361
  year: 2024
  ident: 6166_CR39
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2024.132361
– volume: 106
  start-page: 201
  year: 2018
  ident: 6166_CR66
  publication-title: J Biomedical Mater Res Part A
  doi: 10.1002/jbm.a.36226
– volume: 17
  start-page: 100248
  year: 2021
  ident: 6166_CR12
  publication-title: Curr Opin Biomedical Eng
  doi: 10.1016/j.cobme.2020.100248
– volume: 128
  start-page: 112287
  year: 2021
  ident: 6166_CR94
  publication-title: Mater Sci Engineering: C
  doi: 10.1016/j.msec.2021.112287
– ident: 6166_CR86
  doi: 10.1371/journal.pone.0188352
– volume: 91B
  start-page: 228
  year: 2009
  ident: 6166_CR65
  publication-title: J Biomedical Mater Res Part B: Appl Biomaterials
  doi: 10.1002/jbm.b.31394
– volume: 17
  start-page: 3376
  year: 2020
  ident: 6166_CR67
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17103376
– volume: 29
  start-page: 191
  year: 2021
  ident: 6166_CR6
  publication-title: Macromol Res
  doi: 10.1007/s13233-021-9028-1
– volume: 353
  start-page: e2000011
  year: 2020
  ident: 6166_CR89
  publication-title: Arch Pharm
  doi: 10.1002/ardp.202000011
– volume: 110
  start-page: 110698
  year: 2020
  ident: 6166_CR59
  publication-title: Mater Sci Engineering: C
  doi: 10.1016/j.msec.2020.110698
– volume: 77
  start-page: 212
  year: 2018
  ident: 6166_CR106
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.07.024
– volume: 19
  start-page: 694
  year: 2008
  ident: 6166_CR36
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2007.09.004
– volume: 11
  start-page: 200
  year: 2021
  ident: 6166_CR96
  publication-title: Membranes
  doi: 10.3390/membranes11030200
– volume: 14
  start-page: 806
  year: 2007
  ident: 6166_CR91
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2007.04.003
– volume: 30
  start-page: 3307
  year: 2009
  ident: 6166_CR87
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.044
– ident: 6166_CR38
  doi: 10.1186/s12938-022-01056-w
– ident: 6166_CR97
  doi: 10.1088/1758-5090/acb6b7
– volume: 15
  start-page: 8475
  year: 2022
  ident: 6166_CR103
  publication-title: Materials
  doi: 10.3390/ma15238475
– volume: 15
  start-page: 1
  year: 2014
  ident: 6166_CR99
  publication-title: BMC Med Genet
  doi: 10.1186/1471-2350-15-45
– volume: 26
  start-page: 164
  year: 2020
  ident: 6166_CR62
  publication-title: Tissue Eng Part B: Reviews
  doi: 10.1089/ten.teb.2019.0256
– volume: 14
  start-page: 615
  year: 2021
  ident: 6166_CR104
  publication-title: Pharmaceuticals
  doi: 10.3390/ph14070615
– volume: 79
  start-page: 1346
  year: 2017
  ident: 6166_CR81
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.143
– volume: 754
  start-page: 144855
  year: 2020
  ident: 6166_CR88
  publication-title: Gene
  doi: 10.1016/j.gene.2020.144855
– volume: 299
  start-page: 120559
  year: 2022
  ident: 6166_CR32
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2022.120559
– volume: 53
  start-page: 7320
  year: 2005
  ident: 6166_CR72
  publication-title: J Agric Food Chem
  doi: 10.1021/jf051333o
– volume: 103
  start-page: 639
  year: 2015
  ident: 6166_CR102
  publication-title: J Biomedical Mater Res Part A
  doi: 10.1002/jbm.a.35215
– volume: 118
  start-page: 808
  year: 2021
  ident: 6166_CR69
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2021.11.006
– ident: 6166_CR26
  doi: 10.1080/03008207.2018.1499732
– volume: 240
  start-page: 124406
  year: 2023
  ident: 6166_CR47
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.124406
– volume: 18
  start-page: 573
  year: 2021
  ident: 6166_CR29
  publication-title: Int J Appl Ceram Technol
  doi: 10.1111/ijac.13678
– volume: 2
  start-page: 1691
  year: 2015
  ident: 6166_CR22
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2015.07.097
– volume: 2
  start-page: 15
  year: 2021
  ident: 6166_CR25
  publication-title: Smart Mater Med
  doi: 10.1016/j.smaim.2020.10.003
– volume: 64
  start-page: 101341
  year: 2020
  ident: 6166_CR43
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2020.101341
– volume: 19
  start-page: 3411
  year: 2008
  ident: 6166_CR77
  publication-title: J Mater Science: Mater Med
  doi: 10.1007/s10856-008-3488-0
– volume: 17
  start-page: 21
  year: 2023
  ident: 6166_CR95
  publication-title: J Biol Eng
  doi: 10.1186/s13036-023-00338-8
– ident: 6166_CR31
  doi: 10.1016/j.ijbiomac.2020.06.157
– volume: 133
  start-page: 354
  year: 2019
  ident: 6166_CR33
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.04.115
– volume: 51
  start-page: 109
  year: 2016
  ident: 6166_CR82
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2016.03.005
– volume: 14
  start-page: 119
  year: 2011
  ident: 6166_CR68
  publication-title: Nutr Neurosci
  doi: 10.1179/1476830511Y.0000000007
– volume: 48
  start-page: 6977
  year: 2024
  ident: 6166_CR44
  publication-title: New J Chem
  doi: 10.1039/D3NJ04951E
– volume: 15
  start-page: 879
  year: 2022
  ident: 6166_CR1
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15070879
– volume: 104
  start-page: 2001
  year: 2016
  ident: 6166_CR80
  publication-title: J Biomedical Mater Res Part A
  doi: 10.1002/jbm.a.35731
– ident: 6166_CR41
  doi: 10.1016/j.ijbiomac.2025.141114
– ident: 6166_CR64
  doi: 10.1016/j.matpr.2020.12.922
– volume: 85
  start-page: 418
  year: 2008
  ident: 6166_CR84
  publication-title: J Biomedical Mater Res Part A: Official J Soc Biomaterials Japanese Soc Biomaterials Australian Soc Biomaterials Korean Soc Biomaterials
  doi: 10.1002/jbm.a.31585
– volume: 93
  start-page: 1869
  year: 2008
  ident: 6166_CR74
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2008.07.018
– ident: 6166_CR11
  doi: 10.1186/1749-799x-9-18
– ident: 6166_CR51
  doi: 10.3390/cells9051268
– volume: 23
  start-page: 100872
  year: 2023
  ident: 6166_CR40
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2023.100872
– volume: 84
  start-page: 16
  year: 2019
  ident: 6166_CR15
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.11.039
– volume: 4
  start-page: 1288
  year: 2008
  ident: 6166_CR48
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2008.04.006
– volume: 100
  start-page: 39
  year: 2011
  ident: 6166_CR54
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldr006
– volume: 35
  start-page: 807
  year: 2013
  ident: 6166_CR90
  publication-title: Age
  doi: 10.1007/s11357-012-9412-z
– ident: 6166_CR9
  doi: 10.1016/j.injury.2024.111976
– volume: 13
  start-page: 647
  year: 2021
  ident: 6166_CR60
  publication-title: Polymers
  doi: 10.3390/polym13040647
– volume: 12
  start-page: 936
  year: 2018
  ident: 6166_CR24
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.2510
– volume: 164
  start-page: 287
  year: 2019
  ident: 6166_CR50
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2018.10.078
– ident: 6166_CR83
  doi: 10.3144/expresspolymlett.2015.42
– volume: 7
  start-page: 5397
  year: 2021
  ident: 6166_CR7
  publication-title: ACS Biomaterials Sci Eng
  doi: 10.1021/acsbiomaterials.1c00920
– volume: 224
  start-page: 109192
  year: 2021
  ident: 6166_CR3
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2021.109192
– volume: 13
  start-page: 648
  year: 2020
  ident: 6166_CR21
  publication-title: Materials
  doi: 10.3390/ma13030648
– ident: 6166_CR61
  doi: 10.1016/j.bone.2023.116965
– volume: 77A
  start-page: 563
  year: 2006
  ident: 6166_CR79
  publication-title: J Biomedical Mater Res Part A
  doi: 10.1002/jbm.a.30658
– volume: 45
  start-page: 287
  year: 2005
  ident: 6166_CR35
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/1040869059096
– volume: 38
  start-page: 1531
  year: 2016
  ident: 6166_CR105
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2016.2757
– volume: 7
  start-page: S36138
  year: 2016
  ident: 6166_CR58
  publication-title: Bone Tissue Regeneration Insights
  doi: 10.4137/BTRI.S36138
– volume: 30
  start-page: 2252
  year: 2009
  ident: 6166_CR55
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.068
– volume: 32
  start-page: 897
  year: 2012
  ident: 6166_CR107
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2012.09.018
– volume: 11
  start-page: 521497
  year: 2020
  ident: 6166_CR98
  publication-title: Bone Extracell Matrix Bone Formation Regeneration Front Pharmacol
  doi: 10.3389/fphar.2020.00757
– volume: 109
  start-page: 534
  year: 2017
  ident: 6166_CR71
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2017.09.054
– volume: 31
  start-page: 307
  year: 2015
  ident: 6166_CR46
  publication-title: Physica Med
  doi: 10.1016/j.ejmp.2015.01.019
– volume: 140
  start-page: 50
  year: 2021
  ident: 6166_CR16
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldab024
– volume: 172
  start-page: 17
  year: 2019
  ident: 6166_CR20
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2019.01.004
– volume: 46
  start-page: 3443
  year: 2020
  ident: 6166_CR28
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.10.057
– volume: 57
  start-page: 1123
  year: 2013
  ident: 6166_CR70
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201200549
– ident: 6166_CR100
  doi: 10.3390/pharmaceutics13030399
– ident: 6166_CR13
  doi: 10.3390/pharmaceutics13091448
– volume: 35
  start-page: 6428
  year: 2021
  ident: 6166_CR42
  publication-title: Phytother Res
  doi: 10.1002/ptr.7296
– volume: 16
  start-page: 2100282
  year: 2021
  ident: 6166_CR30
  publication-title: Biotechnol J
  doi: 10.1002/biot.202100282
– volume: 29
  start-page: 269
  year: 2014
  ident: 6166_CR45
  publication-title: Indian J Clin Biochem
  doi: 10.1007/s12291-013-0408-y
– volume: 78
  start-page: 202
  year: 2015
  ident: 6166_CR101
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2015.04.008
– ident: 6166_CR4
  doi: 10.3390/life12111718
– volume: 140
  start-page: 144
  year: 2015
  ident: 6166_CR52
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.10.099
– volume: 44
  start-page: 155
  year: 2016
  ident: 6166_CR76
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.08.039
– volume: 146
  start-page: 108783
  year: 2025
  ident: 6166_CR78
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2025.108783
SSID ssj0050584
Score 2.365753
Snippet Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model...
Abstract Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 788
SubjectTerms 3D printing
Biopolymers
Blueberry
Ethylenediaminetetraacetic acid
Gelatin
Gene expression
Hydroxyapatite
Medicine
Medicine & Public Health
Orthopedics
Polylactic acid
Scaffold
Surgical Orthopedics
Tissue engineering
Vascular endothelial growth factor
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagIMSFfRkoyEhIHCBqkvGWY0GMuFAhNvVmeYmnlUZJlcwgDb-ez56kkIKQ4JJD7CTPz2_5HL_3TMhzA8gPt5tnRcByFYiAZ1VZyiwU3FVwX0FZlw6bkEdH6vi4-jAkhfVjtPu4JZksdVJrJQ56WNtCZfH4VfgggRdfJlfg7lRUx4-fvo72Fy5dsTE95o_PTVxQqtT_uz3-xSFdDJa8sGOaHNHi5v8N4Ra5MQBPeriTlNvkUt3cIdfeD1vrd8n3hbHd8AOPmsbTn3XAaRuooTEdJFtGqulZu9quUnYVNQ7SvEwRdU12svUxKsbEKO11ndnVBpPXdVvaOxNCu_IUEJnatqlpVy9Twev4_nvky-Lt5zfvsuFghswBHa4zI01uSl4rLp0pDK4Aht5A_3NeGyFkYNYrYQvHKxOkq7n0WLhJrJ2Csy6f3yd7Db71kFBf-NKzIOaeV8zaXDFT5F5Y7yIWK6sZeTnOlT7b1d_Qad2ihN6xU4OdOrFTsxl5HafzvGesnZ1utN1SD6qoAahcNQcMdHLOQF4FMwShscLFuqgSn3wRhUFHDceMOzMkKoDgWCtLHypeViwWtp-R_UlPaKabND8bxUnHphjO1tTtptdAsQK4WTD0ebATr3OaGXgg5xxkqIngTQY1bWlOT1JhcKAQAEJezMirUf70YJL6v3Dt0b91f0yul0mEYWLLfbK37jb1E3LVfVuf9t3TpIs_ACznMDY
  priority: 102
  providerName: Springer Nature
Title Fabrication and evaluation of a host-guest polylactic acid/gelatin-hydroxyapatite-blueberry scaffold for bone regeneration
URI https://link.springer.com/article/10.1186/s13018-025-06166-4
https://www.ncbi.nlm.nih.gov/pubmed/40847359
https://www.proquest.com/docview/3246326648
https://pubmed.ncbi.nlm.nih.gov/PMC12374351
https://doaj.org/article/283c93441c734af79531505b6c005679
Volume 20
WOSCitedRecordID wos001559333800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1749-799X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0050584
  issn: 1749-799X
  databaseCode: RSV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cAFgXgZSrRISBxgVT_25WOLGsGBKCoPhdNqH960UmRXdoIUfj2za7vURYILF0vOruLJPL9xZmYReq0B8kPYTUnmIV0FRMBImeeC-IzZEsKXl8bGwybEYiFXq3J57aivUBPWjwfuGXcE4c-WBQRtKwqqvShBaSBqG27DFEsRW_cA9YzJVO-DYYOkY4uM5EcdeOpMknB0K8QvDkRNwlCc1v-nT74WlG4WTN741zQGo_kDdH9Akfi4p_4hulXVj9DPuTbt8AoO69rh35O8ceOxxqGhg6zDM_Fls9lvYn8U1hb0cR1r4mpyvnehrkWHOuttRcxmB-xv2z3urPa-2TgMIBebpq5wW63jyOrw_Y_R1_npl_cfyHC0ArGA77ZEC53qnFWSCaszDVeAdk6DBaes0pwLT42T3GSWlcB0WzHhIPUSkP14a2xaPEEHNTzrGcIuc7mjnheOldSYVFKdpY4bZwOayssEvR05rS77CRoqZh6Sq14uCuSiolwUTdBJEMbVzjD9On4AOqEGnVD_0okEvQmiVMFGQV5WD60GQHCYdqWOJctLGkbTJ-hwshNsy06WX43KoMJSKEirq2bXKcChHJAvp7Dnaa8cVzRT4IEoGJAhJ2oz-VHTlfriPI72BhwBkI5lCXo3apganEr3F649_x9ce4Hu5dFCwHXmh-hg2-6ql-iu_bG96NoZui1WIl7lDN05OV0sz2bR5uBu-fHT8jvcnX3-9gvPxSzr
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMqFN2WhgJGQOIBFHn7lWBCrItoVgoJ6s_zcVlolVbKLtPx6xt6kkIKQ4JJD7CTj8Tw-xzNjhJ5rgPzgdjOSB1iuAiJgpCoKQULObAXuK0hj02ETYjaTx8fVxz4prBui3YctyWSpk1pL_roDa5tLEo9fBR_E4cWX0RUKHisG8n36_HWwv-DSJR3SY_743MgFpUr9v9vjXxzSxWDJCzumyRFNb_7fEG6hGz3wxHsbSbmNLvn6Drp22G-t30Xfp9q0_Q88rGuHf9YBx03AGsd0EDKPVOOzZrFepOwqrC1I8zxF1NXkZO1iVIyOUdpLT8xiBZPXtmvcWR1Cs3AYIDI2Te1x6-ep4HV8_z30Zfru6O0-6Q9mIBbQ4ZJooTNdMC-ZsDrXcAVg6DTof8a85lwEapzkJres0kFYz4SDhZuAtVOwxmblfbRVw7ceIOxyVzgaeOlYRY3JJNV55rhxNmKxopqgl8NcqbNN_Q2V1i2Sqw07FbBTJXYqOkFv4nSe94y1s9ONpp2rXhUVACpblQADrSgpkFeBGQKhMdzGuqgCPvkiCoOKGg4zbnWfqAAEx1pZak-yoqKxsP0E7Y56gmbaUfOzQZxUbIrhbLVvVp0CFMsBN3MKfXY24nVOMwUeiJIBGXIkeKNBjVvq05NUGBxQCABClk_Qq0H-VG-Sur9w7eG_dX-KtvePDg_UwfvZh0foepHEGcxtsYu2lu3KP0ZX7bfladc-SXr5A3G-Mxo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagoIoX7sJCASMh8QBWc_jKYzlWIGBViUN9s3zE20qrZJVkkZZfz9hJSlMQEuIlD2tvbI_n-CaeGSP0TAPkB7ObkNSDuwqIgJEiywTxKbMFmC8vjY2XTYjFQh4fF0fnsvhjtPt4JNnnNIQqTVV3sHa-F3HJD1rQvKkk4SpWsEccBrmMrtBwaVDw1z9_G3UxmHdJx1SZP_5vYo5i1f7fdfM543QxcPLC6Wk0SvMb_7-cm-j6AEjxYc9Bt9ClsrqNdj8NR-530I-5Ns3wYQ_ryuFf9cFx7bHGIU2ELMMK8LpebVcx6wprC1y-jJF2FTnZuhAto0P0dlcSs9rApjbNFrdWe1-vHAbojE1dlbgpl7EQdnj_XfR1_vbL63dkuLCBWECNHdFCJzpjpWTC6lTDEwCj06AXElZqzoWnxkluUssK7YUtmXDg0Anwqbw1Nsn30E4FY91H2KUuc9Tz3LGCGpNIqtPEceNswGhZMUMvxn1T674uh4r-jOSqJ6cCcqpITkVn6FXY2rOeoaZ2_KFulmoQUQVAyxY5wEMrcgrTK0A9AQMZbkO9VAFDPg-MoYLkw-5bPSQwwIRDDS11KFlW0FDwfob2Jz1BYu2k-enIWio0hTC3qqw3rQJ0ywFPcwp97vWsdjZnCjQQOYNpyAkTThY1balOT2LBcEAnABRZOkMvR15Ug6pq_0K1B__W_QnaPXozVx_fLz48RNeyyM2ghbN9tNM1m_IRumq_d6dt8ziK6E8fDTv-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+and+evaluation+of+a+host-guest+polylactic+acid%2Fgelatin-hydroxyapatite-blueberry+scaffold+for+bone+regeneration&rft.jtitle=Journal+of+orthopaedic+surgery+and+research&rft.au=Sistani%2C+Someyra&rft.au=Asgharzade%2C+Samira&rft.au=Arab%2C+Samaneh&rft.au=Bahraminasab%2C+Marjan&rft.date=2025-08-22&rft.issn=1749-799X&rft.eissn=1749-799X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13018-025-06166-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13018_025_06166_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-799X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-799X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-799X&client=summon