Fabrication and evaluation of a host-guest polylactic acid/gelatin-hydroxyapatite-blueberry scaffold for bone regeneration
Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability....
Saved in:
| Published in: | Journal of orthopaedic surgery and research Vol. 20; no. 1; pp. 788 - 24 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
22.08.2025
BioMed Central Ltd BMC |
| Subjects: | |
| ISSN: | 1749-799X, 1749-799X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. |
|---|---|
| AbstractList | Abstract Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1α1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1[alpha]1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model was developed. A porous polylactic acid (PLA) framework (host) was fabricated using a 3D printing technique to provide mechanical stability. The pores in the framework were subsequently occupied with nano-hydroxyapatite (HA), gelatin (G), and blueberry extract (BB) mixed with different ratios (guest). The physicochemical, mechanical, and biological behavior of the scaffolds were investigated. The results exhibited that all fabricated scaffolds degraded gradually as time progressed, with less than 20% degradation occurring within 56 days. The host-guest scaffolds favorably influenced the viability and attachment of MC3T3-E1 cells in vitro. Based on the MTT assay results, all scaffolds showed excellent cell viability, particularly HA10-BB40. Furthermore, the cell attachment increased on the surfaces of scaffolds with increasing HA and BB content. Specifically, high number of cells were observed on HA10-BB20 and HA10-BB40. Meanwhile, the best cell mineralization was detected in HA10-BB40 group. Additionally, the scratch assay also showed the ability of BB to enhance cell migration. According to these findings, HA10-BB40 was identified as the best scaffold composition and further analyzed for mechanical properties, wettability, apatite formation ability, and gene expression. The compressive strength of HA10-BB40 was 4.92 MPa, and its surface demonstrated hydrophilic characteristic. This scaffold formed a uniform apatite layer on its surface after 7 days of immersion in SBF. In addition, the expression of Runx2, Col1[alpha]1, and VEGF genes in HA10-BB40 significantly enhanced compared to the control group. This study showed the potential of the fabricated host-guest scaffolds, particularly HA10-BB40, as a favorable substrate for engineered bone replacements. Keywords: 3D printing, Scaffold, Hydroxyapatite, Polylactic acid, Gelatin, Blueberry, Bone regeneration |
| ArticleNumber | 788 |
| Audience | Academic |
| Author | Soltani-Fard, Elahe Sistani, Someyra Arab, Samaneh Asgharzade, Samira Bahraminasab, Marjan |
| Author_xml | – sequence: 1 givenname: Someyra surname: Sistani fullname: Sistani, Someyra organization: Student research committee, Semnan University of Medical Sciences – sequence: 2 givenname: Samira surname: Asgharzade fullname: Asgharzade, Samira organization: Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences – sequence: 3 givenname: Samaneh surname: Arab fullname: Arab, Samaneh organization: Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences – sequence: 4 givenname: Marjan surname: Bahraminasab fullname: Bahraminasab, Marjan email: m.bahraminasab@yahoo.com, m.bahraminasab@semums.ac.ir organization: Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences – sequence: 5 givenname: Elahe surname: Soltani-Fard fullname: Soltani-Fard, Elahe organization: Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40847359$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1r3DAQhk1JaT7aP9BDMfTSixPJ-rJPJYSmDQR6aaE3MZbHXi1aaSvZodtfX-06DVkoxWBb8jMPo_F7Xpz44LEo3lJySWkjrxJlhDYVqUVFJJWy4i-KM6p4W6m2_XHy7P20OE9pTYggouGvilNOGq6YaM-K37fQRWtgssGX4PsSH8DNyzIMJZSrkKZqnDFN5Ta4nQMzWVOCsf3ViC6Dvlrt-hh-7WCbVxNWnZuxwxh3ZTIwDMH15RBi2eXmy4gjeowH_-vi5QAu4ZvH50Xx_fbTt5sv1f3Xz3c31_eVEYxNFSggUAtshDJAId8JFz0QXhOBIKUaeNc3sqNGtDAog0L1lHNVSzKYzhB2Udwt3j7AWm-j3UDc6QBWHzZCHDXEfCiHum6YaRnn1CjGs6wVjOaZddLk2UnVZtfHxbWduw32Bv0UwR1Jj794u9JjeNC0ZoozQbPhw6Mhhp_7seqNTQadA49hTprVXLJaSt5k9P2CjpB7s34IWWn2uL5uRN1yIdo9dfkPKl89bqzJQx9s3j8qePf8DE_N_w1FBuoFMDGkFHF4QijR--TpJXk6J08fkqd5LmJLUcqwHzHqdZijzz_2f1V_AGUU3Fs |
| Cites_doi | 10.1093/bmb/ldt007 10.1016/j.jmbbm.2020.103616 10.1371/journal.pone.0024486 10.1097/BOT.0000000000001115 10.1016/j.polymdegradstab.2024.110726 10.1186/s13018-022-03213-2 10.1089/ten.TEA.2016.0407 10.1186/s12938-020-00810-2 10.1093/bmb/ldz034 10.1007/s10856-018-6064-2 10.3390/polym12081711 10.1166/jbn.2014.1893 10.1016/j.msec.2019.109960 10.1089/scd.2006.15.118 10.1002/jbm.a.36388 10.1039/C7TA03870D 10.1016/j.actbio.2013.06.013 10.1002/bit.26975 10.3390/molecules28083610 10.1016/j.fcl.2010.07.002 10.2174/157488812800793081 10.1002/biof.552210140 10.3390/pharmaceutics14091752 10.1016/j.ijbiomac.2024.132361 10.1002/jbm.a.36226 10.1016/j.cobme.2020.100248 10.1016/j.msec.2021.112287 10.1371/journal.pone.0188352 10.1002/jbm.b.31394 10.3390/ijerph17103376 10.1007/s13233-021-9028-1 10.1002/ardp.202000011 10.1016/j.msec.2020.110698 10.1016/j.actbio.2018.07.024 10.1016/j.jnutbio.2007.09.004 10.3390/membranes11030200 10.1016/j.phymed.2007.04.003 10.1016/j.biomaterials.2009.02.044 10.1186/s12938-022-01056-w 10.1088/1758-5090/acb6b7 10.3390/ma15238475 10.1186/1471-2350-15-45 10.1089/ten.teb.2019.0256 10.3390/ph14070615 10.1016/j.rser.2017.05.143 10.1016/j.gene.2020.144855 10.1016/j.lfs.2022.120559 10.1021/jf051333o 10.1002/jbm.a.35215 10.1016/j.tifs.2021.11.006 10.1080/03008207.2018.1499732 10.1016/j.ijbiomac.2023.124406 10.1111/ijac.13678 10.1016/j.matpr.2015.07.097 10.1016/j.smaim.2020.10.003 10.1016/j.tice.2020.101341 10.1007/s10856-008-3488-0 10.1186/s13036-023-00338-8 10.1016/j.ijbiomac.2020.06.157 10.1016/j.ijbiomac.2019.04.115 10.1016/j.polymertesting.2016.03.005 10.1179/1476830511Y.0000000007 10.1039/D3NJ04951E 10.3390/ph15070879 10.1002/jbm.a.35731 10.1016/j.ijbiomac.2025.141114 10.1016/j.matpr.2020.12.922 10.1002/jbm.a.31585 10.1016/j.polymdegradstab.2008.07.018 10.1186/1749-799x-9-18 10.3390/cells9051268 10.1016/j.mtbio.2023.100872 10.1016/j.actbio.2018.11.039 10.1016/j.actbio.2008.04.006 10.1093/bmb/ldr006 10.1007/s11357-012-9412-z 10.1016/j.injury.2024.111976 10.3390/polym13040647 10.1002/term.2510 10.1016/j.compositesb.2018.10.078 10.3144/expresspolymlett.2015.42 10.1021/acsbiomaterials.1c00920 10.1016/j.compositesb.2021.109192 10.3390/ma13030648 10.1016/j.bone.2023.116965 10.1002/jbm.a.30658 10.1080/1040869059096 10.3892/ijmm.2016.2757 10.4137/BTRI.S36138 10.1016/j.biomaterials.2008.12.068 10.1016/j.nutres.2012.09.018 10.3389/fphar.2020.00757 10.1016/j.fct.2017.09.054 10.1016/j.ejmp.2015.01.019 10.1093/bmb/ldab024 10.1016/j.compscitech.2019.01.004 10.1016/j.ceramint.2019.10.057 10.1002/mnfr.201200549 10.3390/pharmaceutics13030399 10.3390/pharmaceutics13091448 10.1002/ptr.7296 10.1002/biot.202100282 10.1007/s12291-013-0408-y 10.1016/j.ijbiomac.2015.04.008 10.3390/life12111718 10.1016/j.matlet.2014.10.099 10.1016/j.actbio.2016.08.039 10.1016/j.polymertesting.2025.108783 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 COPYRIGHT 2025 BioMed Central Ltd. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1186/s13018-025-06166-4 |
| DatabaseName | Springer Nature Link CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1749-799X |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_283c93441c734af79531505b6c005679 PMC12374351 A852945598 40847359 10_1186_s13018_025_06166_4 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Semnan University of Medical Sciences and Health Services grantid: 2376 funderid: https://doi.org/10.13039/501100018764 – fundername: Semnan University of Medical Sciences and Health Services grantid: 2376 |
| GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR IPT ITC KQ8 M1P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TUS UKHRP WOQ WOW ~8M AAYXX AFFHD CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c533t-a7a0a25e857ca1a57c045da04205ea667f4bd86b1c59af7ce57d1447260fcbc03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001559333800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1749-799X |
| IngestDate | Fri Oct 03 12:45:25 EDT 2025 Tue Nov 04 02:05:49 EST 2025 Thu Sep 04 12:31:47 EDT 2025 Tue Nov 11 10:45:41 EST 2025 Tue Nov 04 18:10:36 EST 2025 Thu Sep 04 05:03:00 EDT 2025 Sat Nov 29 07:31:55 EST 2025 Sat Sep 06 07:23:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gelatin Bone regeneration Blueberry Polylactic acid Hydroxyapatite Scaffold 3D printing |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-a7a0a25e857ca1a57c045da04205ea667f4bd86b1c59af7ce57d1447260fcbc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/283c93441c734af79531505b6c005679 |
| PMID | 40847359 |
| PQID | 3246326648 |
| PQPubID | 23479 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_283c93441c734af79531505b6c005679 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12374351 proquest_miscellaneous_3246326648 gale_infotracmisc_A852945598 gale_infotracacademiconefile_A852945598 pubmed_primary_40847359 crossref_primary_10_1186_s13018_025_06166_4 springer_journals_10_1186_s13018_025_06166_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-22 |
| PublicationDateYYYYMMDD | 2025-08-22 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of orthopaedic surgery and research |
| PublicationTitleAbbrev | J Orthop Surg Res |
| PublicationTitleAlternate | J Orthop Surg Res |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | Z Dai (6166_CR91) 2007; 14 6166_CR100 S-H Woo (6166_CR75) 2024; 223 A Nauth (6166_CR2) 2018; 32 N Celikkin (6166_CR66) 2018; 106 M Cai (6166_CR96) 2021; 11 DD Herrera-Balandrano (6166_CR69) 2021; 118 CM Kaneto (6166_CR99) 2014; 15 X Lin (6166_CR98) 2020; 11 M Bahraminasab (6166_CR18) 2020; 19 S Castañeda-Rodríguez (6166_CR95) 2023; 17 M Bahraminasab (6166_CR29) 2021; 18 M Oliveira (6166_CR82) 2016; 51 A Scalbert (6166_CR35) 2005; 45 X Liu (6166_CR55) 2009; 30 Z Wang (6166_CR94) 2021; 128 M Shahrezaie (6166_CR24) 2018; 12 6166_CR86 DM Zaher (6166_CR89) 2020; 353 M Schneider (6166_CR53) 2020; 12 C Guo (6166_CR52) 2015; 140 B Chen (6166_CR105) 2016; 38 C-L Shen (6166_CR107) 2012; 32 W Yi (6166_CR72) 2005; 53 6166_CR83 M Alonzo (6166_CR12) 2021; 17 6166_CR97 6166_CR11 6166_CR10 6166_CR13 AB Baba (6166_CR71) 2017; 109 A Bharadwaz (6166_CR59) 2020; 110 NC Keramaris (6166_CR93) 2012; 7 T Ariga (6166_CR108) 2004; 21 W Wang (6166_CR3) 2021; 224 M Bahraminasab (6166_CR19) 2022; 17 M Giacalone (6166_CR68) 2011; 14 A Samadikuchaksaraei (6166_CR80) 2016; 104 M Alizadeh-Osgouei (6166_CR25) 2021; 2 G Chen (6166_CR20) 2019; 172 G Percoco (6166_CR21) 2020; 13 S Vimalraj (6166_CR101) 2015; 78 6166_CR26 J Liu (6166_CR47) 2023; 240 N Xue (6166_CR1) 2022; 15 S Mondal (6166_CR28) 2020; 46 M Govoni (6166_CR14) 2017; 23 F-L Jin (6166_CR50) 2019; 164 M Janmohammadi (6166_CR40) 2023; 23 6166_CR38 PC Bickford (6166_CR73) 2006; 15 S Vimalraj (6166_CR88) 2020; 754 J Shi (6166_CR103) 2022; 15 S Ranganathan (6166_CR33) 2019; 133 F Migliorini (6166_CR16) 2021; 140 P de Martinez (6166_CR54) 2011; 100 6166_CR31 J Zhang (6166_CR37) 2011; 6 E Trucillo (6166_CR17) 2019; 116 R Neuendorf (6166_CR48) 2008; 4 R Papalia (6166_CR5) 2013; 107 S Swetha (6166_CR30) 2021; 16 J-A Kim (6166_CR76) 2016; 44 Z-C Xiong (6166_CR85) 2017; 5 D Clark (6166_CR102) 2015; 103 MSF Hussin (6166_CR60) 2021; 13 M Bahraminasab (6166_CR43) 2020; 64 U Sharma (6166_CR45) 2014; 29 6166_CR41 JP Furia (6166_CR63) 2010; 15 M Wang (6166_CR84) 2008; 85 Z Orafa (6166_CR6) 2021; 29 S Khajavi (6166_CR44) 2024; 48 X Bai (6166_CR34) 2023; 28 M Motskin (6166_CR87) 2009; 30 Y Gu (6166_CR92) 2018; 106 H Tan (6166_CR65) 2009; 91B L Devareddy (6166_CR36) 2008; 19 MC Chang (6166_CR77) 2008; 19 J Khotib (6166_CR104) 2021; 14 I Gendviliene (6166_CR27) 2020; 104 M Čolnik (6166_CR78) 2025; 146 VS Kattimani (6166_CR58) 2016; 7 AB Bello (6166_CR62) 2020; 26 H Zhang (6166_CR106) 2018; 77 E Salmerón-Manzano (6166_CR67) 2020; 17 6166_CR56 JG Dellinger (6166_CR79) 2006; 77A P Sotiropoulou (6166_CR46) 2015; 31 E Vey (6166_CR74) 2008; 93 L Cipollaro (6166_CR8) 2019; 132 6166_CR51 M Bahraminasab (6166_CR7) 2021; 7 J Venkatesan (6166_CR57) 2014; 10 Z Moradi (6166_CR42) 2021; 35 AB Kutikov (6166_CR49) 2013; 9 6166_CR64 LR Yadav (6166_CR32) 2022; 299 J Zhang (6166_CR90) 2013; 35 VB Nidagundi (6166_CR22) 2015; 2 L Zhang (6166_CR15) 2019; 84 M Janmohammadi (6166_CR39) 2024; 270 MA Elsawy (6166_CR81) 2017; 79 S Hassanajili (6166_CR23) 2019; 104 6166_CR61 6166_CR4 6166_CR9 KK Mak (6166_CR70) 2013; 57 |
| References_xml | – volume: 107 start-page: 19 year: 2013 ident: 6166_CR5 publication-title: Br Med Bull doi: 10.1093/bmb/ldt007 – volume: 104 start-page: 103616 year: 2020 ident: 6166_CR27 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2020.103616 – volume: 6 start-page: e24486 year: 2011 ident: 6166_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0024486 – volume: 32 start-page: S7 year: 2018 ident: 6166_CR2 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001115 – volume: 223 start-page: 110726 year: 2024 ident: 6166_CR75 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2024.110726 – volume: 17 start-page: 320 year: 2022 ident: 6166_CR19 publication-title: J Orthop Surg Res doi: 10.1186/s13018-022-03213-2 – volume: 23 start-page: 811 year: 2017 ident: 6166_CR14 publication-title: Tissue Eng Part A doi: 10.1089/ten.TEA.2016.0407 – volume: 19 start-page: 69 year: 2020 ident: 6166_CR18 publication-title: Biomed Eng Online doi: 10.1186/s12938-020-00810-2 – volume: 132 start-page: 53 year: 2019 ident: 6166_CR8 publication-title: Br Med Bull doi: 10.1093/bmb/ldz034 – ident: 6166_CR56 doi: 10.1007/s10856-018-6064-2 – volume: 12 start-page: 1711 year: 2020 ident: 6166_CR53 publication-title: Polymers doi: 10.3390/polym12081711 – volume: 10 start-page: 3124 year: 2014 ident: 6166_CR57 publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2014.1893 – volume: 104 start-page: 109960 year: 2019 ident: 6166_CR23 publication-title: Mater Sci Engineering: C doi: 10.1016/j.msec.2019.109960 – volume: 15 start-page: 118 year: 2006 ident: 6166_CR73 publication-title: Stem Cells Dev doi: 10.1089/scd.2006.15.118 – volume: 106 start-page: 1851 year: 2018 ident: 6166_CR92 publication-title: J Biomedical Mater Res Part A doi: 10.1002/jbm.a.36388 – volume: 5 start-page: 17482 year: 2017 ident: 6166_CR85 publication-title: J Mater Chem A doi: 10.1039/C7TA03870D – volume: 9 start-page: 8354 year: 2013 ident: 6166_CR49 publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.06.013 – volume: 116 start-page: 1777 year: 2019 ident: 6166_CR17 publication-title: Biotechnol Bioeng doi: 10.1002/bit.26975 – volume: 28 start-page: 3610 year: 2023 ident: 6166_CR34 publication-title: Molecules doi: 10.3390/molecules28083610 – volume: 15 start-page: 651 year: 2010 ident: 6166_CR63 publication-title: Foot Ankle Clin doi: 10.1016/j.fcl.2010.07.002 – volume: 7 start-page: 293 year: 2012 ident: 6166_CR93 publication-title: Curr Stem Cell Res Ther doi: 10.2174/157488812800793081 – volume: 21 start-page: 197 year: 2004 ident: 6166_CR108 publication-title: BioFactors doi: 10.1002/biof.552210140 – ident: 6166_CR10 doi: 10.3390/pharmaceutics14091752 – volume: 270 start-page: 132361 year: 2024 ident: 6166_CR39 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2024.132361 – volume: 106 start-page: 201 year: 2018 ident: 6166_CR66 publication-title: J Biomedical Mater Res Part A doi: 10.1002/jbm.a.36226 – volume: 17 start-page: 100248 year: 2021 ident: 6166_CR12 publication-title: Curr Opin Biomedical Eng doi: 10.1016/j.cobme.2020.100248 – volume: 128 start-page: 112287 year: 2021 ident: 6166_CR94 publication-title: Mater Sci Engineering: C doi: 10.1016/j.msec.2021.112287 – ident: 6166_CR86 doi: 10.1371/journal.pone.0188352 – volume: 91B start-page: 228 year: 2009 ident: 6166_CR65 publication-title: J Biomedical Mater Res Part B: Appl Biomaterials doi: 10.1002/jbm.b.31394 – volume: 17 start-page: 3376 year: 2020 ident: 6166_CR67 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17103376 – volume: 29 start-page: 191 year: 2021 ident: 6166_CR6 publication-title: Macromol Res doi: 10.1007/s13233-021-9028-1 – volume: 353 start-page: e2000011 year: 2020 ident: 6166_CR89 publication-title: Arch Pharm doi: 10.1002/ardp.202000011 – volume: 110 start-page: 110698 year: 2020 ident: 6166_CR59 publication-title: Mater Sci Engineering: C doi: 10.1016/j.msec.2020.110698 – volume: 77 start-page: 212 year: 2018 ident: 6166_CR106 publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.07.024 – volume: 19 start-page: 694 year: 2008 ident: 6166_CR36 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2007.09.004 – volume: 11 start-page: 200 year: 2021 ident: 6166_CR96 publication-title: Membranes doi: 10.3390/membranes11030200 – volume: 14 start-page: 806 year: 2007 ident: 6166_CR91 publication-title: Phytomedicine doi: 10.1016/j.phymed.2007.04.003 – volume: 30 start-page: 3307 year: 2009 ident: 6166_CR87 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.044 – ident: 6166_CR38 doi: 10.1186/s12938-022-01056-w – ident: 6166_CR97 doi: 10.1088/1758-5090/acb6b7 – volume: 15 start-page: 8475 year: 2022 ident: 6166_CR103 publication-title: Materials doi: 10.3390/ma15238475 – volume: 15 start-page: 1 year: 2014 ident: 6166_CR99 publication-title: BMC Med Genet doi: 10.1186/1471-2350-15-45 – volume: 26 start-page: 164 year: 2020 ident: 6166_CR62 publication-title: Tissue Eng Part B: Reviews doi: 10.1089/ten.teb.2019.0256 – volume: 14 start-page: 615 year: 2021 ident: 6166_CR104 publication-title: Pharmaceuticals doi: 10.3390/ph14070615 – volume: 79 start-page: 1346 year: 2017 ident: 6166_CR81 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.143 – volume: 754 start-page: 144855 year: 2020 ident: 6166_CR88 publication-title: Gene doi: 10.1016/j.gene.2020.144855 – volume: 299 start-page: 120559 year: 2022 ident: 6166_CR32 publication-title: Life Sci doi: 10.1016/j.lfs.2022.120559 – volume: 53 start-page: 7320 year: 2005 ident: 6166_CR72 publication-title: J Agric Food Chem doi: 10.1021/jf051333o – volume: 103 start-page: 639 year: 2015 ident: 6166_CR102 publication-title: J Biomedical Mater Res Part A doi: 10.1002/jbm.a.35215 – volume: 118 start-page: 808 year: 2021 ident: 6166_CR69 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2021.11.006 – ident: 6166_CR26 doi: 10.1080/03008207.2018.1499732 – volume: 240 start-page: 124406 year: 2023 ident: 6166_CR47 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2023.124406 – volume: 18 start-page: 573 year: 2021 ident: 6166_CR29 publication-title: Int J Appl Ceram Technol doi: 10.1111/ijac.13678 – volume: 2 start-page: 1691 year: 2015 ident: 6166_CR22 publication-title: Mater Today: Proc doi: 10.1016/j.matpr.2015.07.097 – volume: 2 start-page: 15 year: 2021 ident: 6166_CR25 publication-title: Smart Mater Med doi: 10.1016/j.smaim.2020.10.003 – volume: 64 start-page: 101341 year: 2020 ident: 6166_CR43 publication-title: Tissue Cell doi: 10.1016/j.tice.2020.101341 – volume: 19 start-page: 3411 year: 2008 ident: 6166_CR77 publication-title: J Mater Science: Mater Med doi: 10.1007/s10856-008-3488-0 – volume: 17 start-page: 21 year: 2023 ident: 6166_CR95 publication-title: J Biol Eng doi: 10.1186/s13036-023-00338-8 – ident: 6166_CR31 doi: 10.1016/j.ijbiomac.2020.06.157 – volume: 133 start-page: 354 year: 2019 ident: 6166_CR33 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.04.115 – volume: 51 start-page: 109 year: 2016 ident: 6166_CR82 publication-title: Polym Test doi: 10.1016/j.polymertesting.2016.03.005 – volume: 14 start-page: 119 year: 2011 ident: 6166_CR68 publication-title: Nutr Neurosci doi: 10.1179/1476830511Y.0000000007 – volume: 48 start-page: 6977 year: 2024 ident: 6166_CR44 publication-title: New J Chem doi: 10.1039/D3NJ04951E – volume: 15 start-page: 879 year: 2022 ident: 6166_CR1 publication-title: Pharmaceuticals doi: 10.3390/ph15070879 – volume: 104 start-page: 2001 year: 2016 ident: 6166_CR80 publication-title: J Biomedical Mater Res Part A doi: 10.1002/jbm.a.35731 – ident: 6166_CR41 doi: 10.1016/j.ijbiomac.2025.141114 – ident: 6166_CR64 doi: 10.1016/j.matpr.2020.12.922 – volume: 85 start-page: 418 year: 2008 ident: 6166_CR84 publication-title: J Biomedical Mater Res Part A: Official J Soc Biomaterials Japanese Soc Biomaterials Australian Soc Biomaterials Korean Soc Biomaterials doi: 10.1002/jbm.a.31585 – volume: 93 start-page: 1869 year: 2008 ident: 6166_CR74 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2008.07.018 – ident: 6166_CR11 doi: 10.1186/1749-799x-9-18 – ident: 6166_CR51 doi: 10.3390/cells9051268 – volume: 23 start-page: 100872 year: 2023 ident: 6166_CR40 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2023.100872 – volume: 84 start-page: 16 year: 2019 ident: 6166_CR15 publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.11.039 – volume: 4 start-page: 1288 year: 2008 ident: 6166_CR48 publication-title: Acta Biomater doi: 10.1016/j.actbio.2008.04.006 – volume: 100 start-page: 39 year: 2011 ident: 6166_CR54 publication-title: Br Med Bull doi: 10.1093/bmb/ldr006 – volume: 35 start-page: 807 year: 2013 ident: 6166_CR90 publication-title: Age doi: 10.1007/s11357-012-9412-z – ident: 6166_CR9 doi: 10.1016/j.injury.2024.111976 – volume: 13 start-page: 647 year: 2021 ident: 6166_CR60 publication-title: Polymers doi: 10.3390/polym13040647 – volume: 12 start-page: 936 year: 2018 ident: 6166_CR24 publication-title: J Tissue Eng Regen Med doi: 10.1002/term.2510 – volume: 164 start-page: 287 year: 2019 ident: 6166_CR50 publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2018.10.078 – ident: 6166_CR83 doi: 10.3144/expresspolymlett.2015.42 – volume: 7 start-page: 5397 year: 2021 ident: 6166_CR7 publication-title: ACS Biomaterials Sci Eng doi: 10.1021/acsbiomaterials.1c00920 – volume: 224 start-page: 109192 year: 2021 ident: 6166_CR3 publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2021.109192 – volume: 13 start-page: 648 year: 2020 ident: 6166_CR21 publication-title: Materials doi: 10.3390/ma13030648 – ident: 6166_CR61 doi: 10.1016/j.bone.2023.116965 – volume: 77A start-page: 563 year: 2006 ident: 6166_CR79 publication-title: J Biomedical Mater Res Part A doi: 10.1002/jbm.a.30658 – volume: 45 start-page: 287 year: 2005 ident: 6166_CR35 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/1040869059096 – volume: 38 start-page: 1531 year: 2016 ident: 6166_CR105 publication-title: Int J Mol Med doi: 10.3892/ijmm.2016.2757 – volume: 7 start-page: S36138 year: 2016 ident: 6166_CR58 publication-title: Bone Tissue Regeneration Insights doi: 10.4137/BTRI.S36138 – volume: 30 start-page: 2252 year: 2009 ident: 6166_CR55 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.068 – volume: 32 start-page: 897 year: 2012 ident: 6166_CR107 publication-title: Nutr Res doi: 10.1016/j.nutres.2012.09.018 – volume: 11 start-page: 521497 year: 2020 ident: 6166_CR98 publication-title: Bone Extracell Matrix Bone Formation Regeneration Front Pharmacol doi: 10.3389/fphar.2020.00757 – volume: 109 start-page: 534 year: 2017 ident: 6166_CR71 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2017.09.054 – volume: 31 start-page: 307 year: 2015 ident: 6166_CR46 publication-title: Physica Med doi: 10.1016/j.ejmp.2015.01.019 – volume: 140 start-page: 50 year: 2021 ident: 6166_CR16 publication-title: Br Med Bull doi: 10.1093/bmb/ldab024 – volume: 172 start-page: 17 year: 2019 ident: 6166_CR20 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2019.01.004 – volume: 46 start-page: 3443 year: 2020 ident: 6166_CR28 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.10.057 – volume: 57 start-page: 1123 year: 2013 ident: 6166_CR70 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201200549 – ident: 6166_CR100 doi: 10.3390/pharmaceutics13030399 – ident: 6166_CR13 doi: 10.3390/pharmaceutics13091448 – volume: 35 start-page: 6428 year: 2021 ident: 6166_CR42 publication-title: Phytother Res doi: 10.1002/ptr.7296 – volume: 16 start-page: 2100282 year: 2021 ident: 6166_CR30 publication-title: Biotechnol J doi: 10.1002/biot.202100282 – volume: 29 start-page: 269 year: 2014 ident: 6166_CR45 publication-title: Indian J Clin Biochem doi: 10.1007/s12291-013-0408-y – volume: 78 start-page: 202 year: 2015 ident: 6166_CR101 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2015.04.008 – ident: 6166_CR4 doi: 10.3390/life12111718 – volume: 140 start-page: 144 year: 2015 ident: 6166_CR52 publication-title: Mater Lett doi: 10.1016/j.matlet.2014.10.099 – volume: 44 start-page: 155 year: 2016 ident: 6166_CR76 publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.08.039 – volume: 146 start-page: 108783 year: 2025 ident: 6166_CR78 publication-title: Polym Test doi: 10.1016/j.polymertesting.2025.108783 |
| SSID | ssj0050584 |
| Score | 2.365753 |
| Snippet | Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest scaffold model... Abstract Bone tissue engineering aims to produce bone substitutes that are crucial for tissue repair. In this study, a three-dimensional (3D) host-guest... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 788 |
| SubjectTerms | 3D printing Biopolymers Blueberry Ethylenediaminetetraacetic acid Gelatin Gene expression Hydroxyapatite Medicine Medicine & Public Health Orthopedics Polylactic acid Scaffold Surgical Orthopedics Tissue engineering Vascular endothelial growth factor |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagIMSFfRkoyEhIHCBqkvGWY0GMuFAhNvVmeYmnlUZJlcwgDb-ez56kkIKQ4JJD7CTPz2_5HL_3TMhzA8gPt5tnRcByFYiAZ1VZyiwU3FVwX0FZlw6bkEdH6vi4-jAkhfVjtPu4JZksdVJrJQ56WNtCZfH4VfgggRdfJlfg7lRUx4-fvo72Fy5dsTE95o_PTVxQqtT_uz3-xSFdDJa8sGOaHNHi5v8N4Ra5MQBPeriTlNvkUt3cIdfeD1vrd8n3hbHd8AOPmsbTn3XAaRuooTEdJFtGqulZu9quUnYVNQ7SvEwRdU12svUxKsbEKO11ndnVBpPXdVvaOxNCu_IUEJnatqlpVy9Twev4_nvky-Lt5zfvsuFghswBHa4zI01uSl4rLp0pDK4Aht5A_3NeGyFkYNYrYQvHKxOkq7n0WLhJrJ2Csy6f3yd7Db71kFBf-NKzIOaeV8zaXDFT5F5Y7yIWK6sZeTnOlT7b1d_Qad2ihN6xU4OdOrFTsxl5HafzvGesnZ1utN1SD6qoAahcNQcMdHLOQF4FMwShscLFuqgSn3wRhUFHDceMOzMkKoDgWCtLHypeViwWtp-R_UlPaKabND8bxUnHphjO1tTtptdAsQK4WTD0ebATr3OaGXgg5xxkqIngTQY1bWlOT1JhcKAQAEJezMirUf70YJL6v3Dt0b91f0yul0mEYWLLfbK37jb1E3LVfVuf9t3TpIs_ACznMDY priority: 102 providerName: Springer Nature |
| Title | Fabrication and evaluation of a host-guest polylactic acid/gelatin-hydroxyapatite-blueberry scaffold for bone regeneration |
| URI | https://link.springer.com/article/10.1186/s13018-025-06166-4 https://www.ncbi.nlm.nih.gov/pubmed/40847359 https://www.proquest.com/docview/3246326648 https://pubmed.ncbi.nlm.nih.gov/PMC12374351 https://doaj.org/article/283c93441c734af79531505b6c005679 |
| Volume | 20 |
| WOSCitedRecordID | wos001559333800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: RBZ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1749-799X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0050584 issn: 1749-799X databaseCode: RSV dateStart: 20061201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cAFgXgZSrRISBxgVT_25WOLGsGBKCoPhdNqH960UmRXdoIUfj2za7vURYILF0vOruLJPL9xZmYReq0B8kPYTUnmIV0FRMBImeeC-IzZEsKXl8bGwybEYiFXq3J57aivUBPWjwfuGXcE4c-WBQRtKwqqvShBaSBqG27DFEsRW_cA9YzJVO-DYYOkY4uM5EcdeOpMknB0K8QvDkRNwlCc1v-nT74WlG4WTN741zQGo_kDdH9Akfi4p_4hulXVj9DPuTbt8AoO69rh35O8ceOxxqGhg6zDM_Fls9lvYn8U1hb0cR1r4mpyvnehrkWHOuttRcxmB-xv2z3urPa-2TgMIBebpq5wW63jyOrw_Y_R1_npl_cfyHC0ArGA77ZEC53qnFWSCaszDVeAdk6DBaes0pwLT42T3GSWlcB0WzHhIPUSkP14a2xaPEEHNTzrGcIuc7mjnheOldSYVFKdpY4bZwOayssEvR05rS77CRoqZh6Sq14uCuSiolwUTdBJEMbVzjD9On4AOqEGnVD_0okEvQmiVMFGQV5WD60GQHCYdqWOJctLGkbTJ-hwshNsy06WX43KoMJSKEirq2bXKcChHJAvp7Dnaa8cVzRT4IEoGJAhJ2oz-VHTlfriPI72BhwBkI5lCXo3apganEr3F649_x9ce4Hu5dFCwHXmh-hg2-6ql-iu_bG96NoZui1WIl7lDN05OV0sz2bR5uBu-fHT8jvcnX3-9gvPxSzr |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMqFN2WhgJGQOIBFHn7lWBCrItoVgoJ6s_zcVlolVbKLtPx6xt6kkIKQ4JJD7CTj8Tw-xzNjhJ5rgPzgdjOSB1iuAiJgpCoKQULObAXuK0hj02ETYjaTx8fVxz4prBui3YctyWSpk1pL_roDa5tLEo9fBR_E4cWX0RUKHisG8n36_HWwv-DSJR3SY_743MgFpUr9v9vjXxzSxWDJCzumyRFNb_7fEG6hGz3wxHsbSbmNLvn6Drp22G-t30Xfp9q0_Q88rGuHf9YBx03AGsd0EDKPVOOzZrFepOwqrC1I8zxF1NXkZO1iVIyOUdpLT8xiBZPXtmvcWR1Cs3AYIDI2Te1x6-ep4HV8_z30Zfru6O0-6Q9mIBbQ4ZJooTNdMC-ZsDrXcAVg6DTof8a85lwEapzkJres0kFYz4SDhZuAtVOwxmblfbRVw7ceIOxyVzgaeOlYRY3JJNV55rhxNmKxopqgl8NcqbNN_Q2V1i2Sqw07FbBTJXYqOkFv4nSe94y1s9ONpp2rXhUVACpblQADrSgpkFeBGQKhMdzGuqgCPvkiCoOKGg4zbnWfqAAEx1pZak-yoqKxsP0E7Y56gmbaUfOzQZxUbIrhbLVvVp0CFMsBN3MKfXY24nVOMwUeiJIBGXIkeKNBjVvq05NUGBxQCABClk_Qq0H-VG-Sur9w7eG_dX-KtvePDg_UwfvZh0foepHEGcxtsYu2lu3KP0ZX7bfladc-SXr5A3G-Mxo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagoIoX7sJCASMh8QBWc_jKYzlWIGBViUN9s3zE20qrZJVkkZZfz9hJSlMQEuIlD2tvbI_n-CaeGSP0TAPkB7ObkNSDuwqIgJEiywTxKbMFmC8vjY2XTYjFQh4fF0fnsvhjtPt4JNnnNIQqTVV3sHa-F3HJD1rQvKkk4SpWsEccBrmMrtBwaVDw1z9_G3UxmHdJx1SZP_5vYo5i1f7fdfM543QxcPLC6Wk0SvMb_7-cm-j6AEjxYc9Bt9ClsrqNdj8NR-530I-5Ns3wYQ_ryuFf9cFx7bHGIU2ELMMK8LpebVcx6wprC1y-jJF2FTnZuhAto0P0dlcSs9rApjbNFrdWe1-vHAbojE1dlbgpl7EQdnj_XfR1_vbL63dkuLCBWECNHdFCJzpjpWTC6lTDEwCj06AXElZqzoWnxkluUssK7YUtmXDg0Anwqbw1Nsn30E4FY91H2KUuc9Tz3LGCGpNIqtPEceNswGhZMUMvxn1T674uh4r-jOSqJ6cCcqpITkVn6FXY2rOeoaZ2_KFulmoQUQVAyxY5wEMrcgrTK0A9AQMZbkO9VAFDPg-MoYLkw-5bPSQwwIRDDS11KFlW0FDwfob2Jz1BYu2k-enIWio0hTC3qqw3rQJ0ywFPcwp97vWsdjZnCjQQOYNpyAkTThY1balOT2LBcEAnABRZOkMvR15Ug6pq_0K1B__W_QnaPXozVx_fLz48RNeyyM2ghbN9tNM1m_IRumq_d6dt8ziK6E8fDTv- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+and+evaluation+of+a+host-guest+polylactic+acid%2Fgelatin-hydroxyapatite-blueberry+scaffold+for+bone+regeneration&rft.jtitle=Journal+of+orthopaedic+surgery+and+research&rft.au=Sistani%2C+Someyra&rft.au=Asgharzade%2C+Samira&rft.au=Arab%2C+Samaneh&rft.au=Bahraminasab%2C+Marjan&rft.date=2025-08-22&rft.issn=1749-799X&rft.eissn=1749-799X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13018-025-06166-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13018_025_06166_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-799X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-799X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-799X&client=summon |