A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo

Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Vol. 73; no. 4; p. 729
Main Authors: Napoli, Ilaria, Noon, Luke A, Ribeiro, Sara, Kerai, Ajay P, Parrinello, Simona, Rosenberg, Laura H, Collins, Melissa J, Harrisingh, Marie C, White, Ian J, Woodhoo, Ashwin, Lloyd, Alison C
Format: Journal Article
Language:English
Published: United States 23.02.2012
Subjects:
ISSN:1097-4199, 1097-4199
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.
AbstractList Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.
Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.
Author Collins, Melissa J
Lloyd, Alison C
Ribeiro, Sara
Kerai, Ajay P
Napoli, Ilaria
Parrinello, Simona
Rosenberg, Laura H
White, Ian J
Woodhoo, Ashwin
Harrisingh, Marie C
Noon, Luke A
Author_xml – sequence: 1
  givenname: Ilaria
  surname: Napoli
  fullname: Napoli, Ilaria
  organization: MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
– sequence: 2
  givenname: Luke A
  surname: Noon
  fullname: Noon, Luke A
– sequence: 3
  givenname: Sara
  surname: Ribeiro
  fullname: Ribeiro, Sara
– sequence: 4
  givenname: Ajay P
  surname: Kerai
  fullname: Kerai, Ajay P
– sequence: 5
  givenname: Simona
  surname: Parrinello
  fullname: Parrinello, Simona
– sequence: 6
  givenname: Laura H
  surname: Rosenberg
  fullname: Rosenberg, Laura H
– sequence: 7
  givenname: Melissa J
  surname: Collins
  fullname: Collins, Melissa J
– sequence: 8
  givenname: Marie C
  surname: Harrisingh
  fullname: Harrisingh, Marie C
– sequence: 9
  givenname: Ian J
  surname: White
  fullname: White, Ian J
– sequence: 10
  givenname: Ashwin
  surname: Woodhoo
  fullname: Woodhoo, Ashwin
– sequence: 11
  givenname: Alison C
  surname: Lloyd
  fullname: Lloyd, Alison C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22365547$$D View this record in MEDLINE/PubMed
BookMark eNpNkN1LwzAUxYNMnJv-ByJ586k1aZp2eRxjfuBA8OO53La3W0aW1LSb7MH_3UwnCBfO4cfhcO8dkYF1Fgm54izmjGe369ji1jsbJ4zzOAwT_IScc6byKOVKDf75IRl13ZoxnkrFz8gwSUQmZZqfk68prdD2Hgz1ziBtnKf9Cun85Snq9NKC0XZJW-hXn7Cn2tLKhbQzP_i1CtQGhsbQ1kDX60r3ewq2pi163a7wUGzR75B6XGJw0GtnD0U7vXMX5LQB0-HlUcfk_W7-NnuIFs_3j7PpIqqkEH00AV7ndaagzBUkSpYsz0EgkyhqqSa8FpBiWYWjgipWNU0jIa0bxaAOhCdjcvPb23r3scWuLza6O2wNFt22K1QilJSZmoTk9TG5LTdYF63XG_D74u9jyTePcnQ-
CitedBy_id crossref_primary_10_1016_j_biomaterials_2014_04_064
crossref_primary_10_1016_j_ydbio_2018_05_011
crossref_primary_10_4103_1673_5374_324830
crossref_primary_10_1016_j_neuroscience_2018_04_018
crossref_primary_10_1007_s12035_022_02782_x
crossref_primary_10_1016_j_expneurol_2013_05_007
crossref_primary_10_1038_s41467_018_05420_0
crossref_primary_10_3390_biomedicines10123186
crossref_primary_10_1523_JNEUROSCI_3619_17_2018
crossref_primary_10_1016_j_ejcb_2021_151179
crossref_primary_10_3390_brainsci3031182
crossref_primary_10_1007_s11060_017_2653_z
crossref_primary_10_1007_s00262_016_1929_z
crossref_primary_10_1038_s41467_019_09385_6
crossref_primary_10_3389_fnmol_2025_1617976
crossref_primary_10_4103_1673_5374_205103
crossref_primary_10_1111_jnc_13911
crossref_primary_10_3389_fneur_2022_908148
crossref_primary_10_1016_j_expneurol_2015_05_002
crossref_primary_10_1007_s11064_017_2399_1
crossref_primary_10_1111_jnc_13929
crossref_primary_10_1523_JNEUROSCI_4403_12_2013
crossref_primary_10_3892_etm_2016_3525
crossref_primary_10_1002_jnr_24067
crossref_primary_10_1097_NEN_0000000000000081
crossref_primary_10_1007_s00401_024_02840_9
crossref_primary_10_1186_s12974_022_02462_6
crossref_primary_10_1038_s41536_020_00099_8
crossref_primary_10_1016_j_reth_2025_07_011
crossref_primary_10_1155_2017_1479137
crossref_primary_10_1016_j_expneurol_2015_09_018
crossref_primary_10_1016_j_ccell_2025_06_020
crossref_primary_10_1113_JP270874
crossref_primary_10_1002_glia_23532
crossref_primary_10_1016_j_phrs_2022_106173
crossref_primary_10_1083_jcb_201606052
crossref_primary_10_32604_biocell_2021_011756
crossref_primary_10_4103_1673_5374_167768
crossref_primary_10_1007_s10735_019_09832_0
crossref_primary_10_3389_fphar_2025_1506552
crossref_primary_10_3389_fncel_2022_865266
crossref_primary_10_1096_fj_201701391R
crossref_primary_10_3389_fncel_2015_00298
crossref_primary_10_4103_1673_5374_205000
crossref_primary_10_1155_2023_8818561
crossref_primary_10_1002_glia_22796
crossref_primary_10_1002_glia_23643
crossref_primary_10_1007_s12565_019_00486_2
crossref_primary_10_1038_nn_3809
crossref_primary_10_1007_s00018_022_04683_7
crossref_primary_10_1016_j_devcel_2023_01_002
crossref_primary_10_4103_1673_5374_243718
crossref_primary_10_1016_j_nbd_2016_07_023
crossref_primary_10_1038_s41467_017_01488_2
crossref_primary_10_1021_acschemneuro_4c00310
crossref_primary_10_3389_fnmol_2017_00038
crossref_primary_10_1038_s41467_020_17955_2
crossref_primary_10_1016_j_biocel_2017_03_002
crossref_primary_10_1016_j_conb_2017_08_007
crossref_primary_10_1177_20417314231220396
crossref_primary_10_1002_stem_3045
crossref_primary_10_1002_stem_3287
crossref_primary_10_1186_s12974_016_0732_2
crossref_primary_10_1002_glia_23516
crossref_primary_10_3390_ijms21228542
crossref_primary_10_3389_fcell_2020_00809
crossref_primary_10_34133_bmr_0160
crossref_primary_10_1016_j_biopha_2018_02_138
crossref_primary_10_1523_JNEUROSCI_0957_20_2020
crossref_primary_10_1016_j_expneurol_2014_06_012
crossref_primary_10_1186_s12974_019_1476_6
crossref_primary_10_3390_jcm12041555
crossref_primary_10_1111_ejn_13250
crossref_primary_10_3389_fphys_2022_814754
crossref_primary_10_1002_glia_23509
crossref_primary_10_1016_j_neuroscience_2014_09_027
crossref_primary_10_1073_pnas_1612136114
crossref_primary_10_1016_j_bioactmat_2021_03_034
crossref_primary_10_1038_s41401_019_0338_1
crossref_primary_10_1016_j_jinf_2016_08_006
crossref_primary_10_1016_j_neuron_2017_09_008
crossref_primary_10_1002_glia_23500
crossref_primary_10_1016_j_intimp_2019_105746
crossref_primary_10_1002_glia_22899
crossref_primary_10_1038_s41467_021_23552_8
crossref_primary_10_1172_JCI141964
crossref_primary_10_1111_ejn_12974
crossref_primary_10_1111_joa_13484
crossref_primary_10_1002_glia_23188
crossref_primary_10_1186_s12967_023_04609_2
crossref_primary_10_1093_bja_aet128
crossref_primary_10_1111_acel_12833
crossref_primary_10_1016_j_mib_2014_11_021
crossref_primary_10_1155_2016_5140823
crossref_primary_10_1016_j_npep_2024_102438
crossref_primary_10_1016_j_celrep_2025_115322
crossref_primary_10_3390_biom12081128
crossref_primary_10_1016_j_bios_2022_115055
crossref_primary_10_1159_000370324
crossref_primary_10_1016_j_jss_2013_10_023
crossref_primary_10_4103_1673_5374_322473
crossref_primary_10_1016_j_devcel_2013_12_002
crossref_primary_10_1002_jnr_24757
crossref_primary_10_1002_ar_24126
crossref_primary_10_4103_1673_5374_332152
crossref_primary_10_3389_fphar_2021_681532
crossref_primary_10_1002_glia_23606
crossref_primary_10_1007_s10561_015_9495_8
crossref_primary_10_1242_jcs_222059
crossref_primary_10_1146_annurev_neuro_110920_030610
crossref_primary_10_1073_pnas_1417108112
crossref_primary_10_1016_j_expneurol_2015_04_014
crossref_primary_10_1007_s11302_015_9445_8
crossref_primary_10_1007_s10561_022_10006_8
crossref_primary_10_1096_fj_13_239533
crossref_primary_10_1002_mc_22591
crossref_primary_10_1111_pcmr_12134
crossref_primary_10_1016_j_neuroscience_2018_02_015
crossref_primary_10_1016_j_nbd_2025_106892
crossref_primary_10_3390_biom11121887
crossref_primary_10_1242_dev_170316
crossref_primary_10_1007_s13311_021_01125_3
crossref_primary_10_1515_revneuro_2017_0060
crossref_primary_10_5966_sctm_2013_0011
crossref_primary_10_3390_ijms222011169
crossref_primary_10_1242_jcs_113928
crossref_primary_10_1002_brb3_1792
crossref_primary_10_2217_rme_2020_0096
crossref_primary_10_1016_j_conb_2017_10_003
crossref_primary_10_1038_s41467_025_60474_1
crossref_primary_10_1002_glia_22625
crossref_primary_10_1002_glia_23273
crossref_primary_10_1016_j_nbd_2016_09_005
crossref_primary_10_1016_j_neulet_2021_136440
crossref_primary_10_1242_dmm_027870
crossref_primary_10_1523_JNEUROSCI_4893_12_2013
crossref_primary_10_1007_s10875_012_9786_9
crossref_primary_10_3390_biomedicines10061447
crossref_primary_10_1002_glia_23705
crossref_primary_10_1002_mus_26797
crossref_primary_10_4103_1673_5374_344842
crossref_primary_10_1038_s41467_020_15915_4
crossref_primary_10_1083_jcb_201404154
crossref_primary_10_1002_glia_22852
crossref_primary_10_3390_cells14090671
crossref_primary_10_1016_j_brainres_2015_11_033
crossref_primary_10_1111_joa_13606
crossref_primary_10_3390_ijms26189082
crossref_primary_10_1292_jvms_14_0555
crossref_primary_10_1080_14728222_2025_2489540
crossref_primary_10_1080_2331205X_2018_1466404
crossref_primary_10_1038_srep43315
crossref_primary_10_1523_ENEURO_0410_20_2025
crossref_primary_10_3389_fncel_2019_00033
crossref_primary_10_1038_cddis_2017_489
crossref_primary_10_1016_j_cell_2015_07_021
crossref_primary_10_1097_WCO_0000000000000334
crossref_primary_10_3389_fnmol_2020_608442
crossref_primary_10_1093_brain_awt148
crossref_primary_10_1155_2017_5393268
crossref_primary_10_4103_1673_5374_211172
crossref_primary_10_1016_j_biopha_2023_116024
crossref_primary_10_1523_JNEUROSCI_4079_14_2015
crossref_primary_10_1016_j_expneurol_2014_10_012
crossref_primary_10_1093_hmg_ddy420
crossref_primary_10_1523_JNEUROSCI_2255_17_2017
crossref_primary_10_1074_jbc_M115_636407
crossref_primary_10_3389_fnmol_2022_1087550
crossref_primary_10_3390_ijms25010665
crossref_primary_10_1186_s40478_022_01495_5
crossref_primary_10_1177_1759091414548916
crossref_primary_10_1186_s13619_021_00079_3
crossref_primary_10_1002_glia_22957
crossref_primary_10_1038_s41598_017_06051_z
crossref_primary_10_1097_TP_0000000000001625
crossref_primary_10_3390_cells10020425
crossref_primary_10_1523_JNEUROSCI_0198_24_2024
crossref_primary_10_1007_s00401_015_1482_4
crossref_primary_10_1038_nm_3684
crossref_primary_10_3389_fncel_2022_856734
crossref_primary_10_1083_jcb_201205025
crossref_primary_10_1016_j_conb_2013_06_010
crossref_primary_10_1089_cell_2013_0064
crossref_primary_10_1016_j_freeradbiomed_2025_01_053
crossref_primary_10_1007_s11064_017_2432_4
crossref_primary_10_1242_dev_150656
crossref_primary_10_1016_j_bbrc_2012_06_101
crossref_primary_10_1016_j_jep_2020_113063
crossref_primary_10_1016_j_phrs_2020_104923
crossref_primary_10_1016_j_pneurobio_2019_101643
crossref_primary_10_1016_j_canlet_2025_217451
crossref_primary_10_4103_1673_5374_228732
crossref_primary_10_1111_jnc_15724
crossref_primary_10_1016_j_neuron_2012_06_021
crossref_primary_10_1074_jbc_M114_622878
crossref_primary_10_1021_acsbiomaterials_6b00500
crossref_primary_10_1523_JNEUROSCI_0903_17_2017
crossref_primary_10_1146_annurev_genet_071819_103917
crossref_primary_10_3389_fncel_2020_00185
crossref_primary_10_1016_j_conb_2016_04_005
crossref_primary_10_1073_pnas_1710566114
crossref_primary_10_1016_j_cell_2012_12_014
crossref_primary_10_1042_AN20130031
crossref_primary_10_1016_j_neuron_2012_02_002
crossref_primary_10_1073_pnas_1700755114
crossref_primary_10_1016_j_expneurol_2020_113511
crossref_primary_10_1158_0008_5472_CAN_18_3872
crossref_primary_10_1002_dneu_22771
crossref_primary_10_3390_ijms251910785
crossref_primary_10_1111_jpi_12695
crossref_primary_10_1016_j_jss_2022_03_029
crossref_primary_10_1007_s00262_018_02296_3
crossref_primary_10_1038_nrneurol_2016_201
crossref_primary_10_1038_s41467_020_18291_1
crossref_primary_10_3390_cells9081768
crossref_primary_10_1016_j_ajpath_2013_06_002
crossref_primary_10_1016_j_neuron_2014_06_016
crossref_primary_10_1038_nn_3281
crossref_primary_10_1016_j_brainresbull_2019_06_011
crossref_primary_10_1016_j_ydbio_2018_02_003
crossref_primary_10_1126_scitranslmed_adj1597
crossref_primary_10_1016_j_ibneur_2022_12_007
crossref_primary_10_1523_JNEUROSCI_4947_13_2014
crossref_primary_10_7554_eLife_80881
crossref_primary_10_1016_j_brainres_2018_07_019
crossref_primary_10_1038_nm_3664
crossref_primary_10_1038_s41593_020_0689_4
crossref_primary_10_1371_journal_pone_0060028
crossref_primary_10_3389_fncel_2016_00238
crossref_primary_10_1371_journal_pone_0148726
crossref_primary_10_1002_adfm_202004272
crossref_primary_10_1016_j_neuroscience_2013_02_059
crossref_primary_10_1042_20120047
crossref_primary_10_1074_jbc_M114_605931
crossref_primary_10_7554_eLife_66278
crossref_primary_10_7554_eLife_68457
crossref_primary_10_1158_0008_5472_CAN_18_3995
crossref_primary_10_3389_fnmol_2022_984529
crossref_primary_10_1097_NEN_0b013e3182a5f96e
crossref_primary_10_1016_j_neuroscience_2020_03_007
crossref_primary_10_3390_gels8010043
crossref_primary_10_1007_s10735_019_09815_1
crossref_primary_10_1113_EP090751
crossref_primary_10_1002_glia_22482
crossref_primary_10_1186_2051_5960_1_39
crossref_primary_10_3389_fcell_2021_660259
crossref_primary_10_1007_s00018_020_03516_9
crossref_primary_10_2217_nnm_2017_0389
crossref_primary_10_1016_j_pneurobio_2023_102544
crossref_primary_10_1093_brain_awt130
crossref_primary_10_3390_biom12081059
crossref_primary_10_1016_j_preteyeres_2022_101148
crossref_primary_10_1186_s13041_014_0086_6
crossref_primary_10_1007_s12035_015_9668_2
crossref_primary_10_1007_s11064_015_1824_6
crossref_primary_10_1083_jcb_201506039
crossref_primary_10_1007_s10856_014_5224_2
crossref_primary_10_1002_bit_27601
crossref_primary_10_3389_fncel_2016_00134
crossref_primary_10_3389_fphys_2021_688626
crossref_primary_10_1016_j_sjbs_2017_11_027
crossref_primary_10_3390_pharmaceutics15010210
crossref_primary_10_1007_s00018_017_2565_2
crossref_primary_10_1124_pr_111_005314
crossref_primary_10_1007_s11655_020_2721_7
crossref_primary_10_1016_j_jep_2017_10_036
crossref_primary_10_3390_biomedicines10061218
crossref_primary_10_1007_s13311_021_01145_z
crossref_primary_10_1016_j_jams_2012_12_004
crossref_primary_10_1111_jnc_15764
crossref_primary_10_3390_ijms23031464
crossref_primary_10_1007_s11064_018_2535_6
crossref_primary_10_1007_s11684_015_0415_x
crossref_primary_10_1002_adbi_202000157
ContentType Journal Article
Copyright Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2011.11.031
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 22365547
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 11244
– fundername: Wellcome Trust
– fundername: Worldwide Cancer Research
  grantid: 08-0106
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
5VS
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AHHHB
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
ID FETCH-LOGICAL-c533t-8a1d7d69ab79a295b077a3e05e3d5981d3a4ebc236a4e90cfff5a4df90ada4e12
IEDL.DBID 7X8
ISICitedReferencesCount 323
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300815400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Wed Oct 01 14:42:15 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-8a1d7d69ab79a295b077a3e05e3d5981d3a4ebc236a4e90cfff5a4df90ada4e12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuron.2011.11.031
PMID 22365547
PQID 923955698
PQPubID 23479
ParticipantIDs proquest_miscellaneous_923955698
pubmed_primary_22365547
PublicationCentury 2000
PublicationDate 2012-02-23
PublicationDateYYYYMMDD 2012-02-23
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2012
References 22365537 - Neuron. 2012 Feb 23;73(4):623-6. doi: 10.1016/j.neuron.2012.02.002.
References_xml – reference: 22365537 - Neuron. 2012 Feb 23;73(4):623-6. doi: 10.1016/j.neuron.2012.02.002.
SSID ssj0014591
Score 2.543374
Snippet Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 729
SubjectTerms Animals
Animals, Newborn
Benzamides - pharmacology
Cell Movement - drug effects
Cyclin D1 - metabolism
Cytokines - metabolism
Diphenylamine - analogs & derivatives
Diphenylamine - pharmacology
Estrogen Antagonists - pharmacology
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Leukocytes - pathology
Male
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - genetics
MAP Kinase Signaling System - physiology
Mast Cells - pathology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal
Microscopy, Electron, Transmission
Microscopy, Immunoelectron
Motor Activity - drug effects
Motor Activity - genetics
Myelin Sheath - genetics
Myelin Sheath - metabolism
Nerve Regeneration - drug effects
Nerve Regeneration - genetics
Neutrophils - metabolism
Neutrophils - pathology
Peripheral Nerve Injuries - pathology
Peripheral Nerve Injuries - physiopathology
Proto-Oncogene Proteins c-raf - genetics
Proto-Oncogene Proteins c-raf - metabolism
Reaction Time - drug effects
Reaction Time - genetics
Receptor, Nerve Growth Factor - genetics
Receptor, Nerve Growth Factor - metabolism
Receptors, Estrogen - genetics
Recovery of Function - drug effects
Recovery of Function - genetics
Schwann Cells - physiology
Schwann Cells - ultrastructure
T-Lymphocytes - metabolism
T-Lymphocytes - pathology
Tamoxifen - pharmacology
Time Factors
Title A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/22365547
https://www.proquest.com/docview/923955698
Volume 73
WOSCitedRecordID wos000300815400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBbd0sEuXdd2W9q1vMPoTcyxLcs6jVBSBqUh7AfkZmT9GIFUyZIsw4f9731PdtpLoYddbHhgY0vP0me9T9_H2CdXF8LgtMVLP1A8d4OaK6s0LxBdE0CvVW6j2YQcj8vpVE06bs66o1XuxsQ4UNuFoTXyzwhElBCFKr8sf3MyjaLiaueg8YL1MkQylNRy-lhEyEU0zKMaKxU71W7nXKR3RbnI0Gp4koxn5zL3JMaMc831m_98ykN20IFMGLZZ8ZbtuXDEjocBf7DvGriESPuM6-lH7FXrRtkcs39D6KiaQJxDQDgLCA9h9O2GE81D0851IAvjv7qBWYCO5h7D3w1GA8bcfA5LhOTE1t40oIMFElOO6gVzCESwhJX7FdWuKSnoRtvZdnHCfl6Pflx95Z07AzcIETe81AMrbaF0LZVOlagTKXXmEuEyKxTC4EznrjZpVuBZJcZ7L3RuvUq0xcggfcdehkVwHxh4nZnSeClNrnNfJ7VzXqaJSKy1GkfjPoNda1eY_fQmOrjFn3X10N599r7tsWrZqnRUiHsKxEry9PmLz9hrzIM07lTPPrKexy_fnbN9s93M1quLmFV4HE9u7wFuX9rb
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+central+role+for+the+ERK-signaling+pathway+in+controlling+Schwann+cell+plasticity+and+peripheral+nerve+regeneration+in+vivo&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Napoli%2C+Ilaria&rft.au=Noon%2C+Luke+A&rft.au=Ribeiro%2C+Sara&rft.au=Kerai%2C+Ajay+P&rft.date=2012-02-23&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=73&rft.issue=4&rft.spage=729&rft_id=info:doi/10.1016%2Fj.neuron.2011.11.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon