A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo
Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they...
Saved in:
| Published in: | Neuron (Cambridge, Mass.) Vol. 73; no. 4; p. 729 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
23.02.2012
|
| Subjects: | |
| ISSN: | 1097-4199, 1097-4199 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer. |
|---|---|
| AbstractList | Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer. Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer. |
| Author | Collins, Melissa J Lloyd, Alison C Ribeiro, Sara Kerai, Ajay P Napoli, Ilaria Parrinello, Simona Rosenberg, Laura H White, Ian J Woodhoo, Ashwin Harrisingh, Marie C Noon, Luke A |
| Author_xml | – sequence: 1 givenname: Ilaria surname: Napoli fullname: Napoli, Ilaria organization: MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK – sequence: 2 givenname: Luke A surname: Noon fullname: Noon, Luke A – sequence: 3 givenname: Sara surname: Ribeiro fullname: Ribeiro, Sara – sequence: 4 givenname: Ajay P surname: Kerai fullname: Kerai, Ajay P – sequence: 5 givenname: Simona surname: Parrinello fullname: Parrinello, Simona – sequence: 6 givenname: Laura H surname: Rosenberg fullname: Rosenberg, Laura H – sequence: 7 givenname: Melissa J surname: Collins fullname: Collins, Melissa J – sequence: 8 givenname: Marie C surname: Harrisingh fullname: Harrisingh, Marie C – sequence: 9 givenname: Ian J surname: White fullname: White, Ian J – sequence: 10 givenname: Ashwin surname: Woodhoo fullname: Woodhoo, Ashwin – sequence: 11 givenname: Alison C surname: Lloyd fullname: Lloyd, Alison C |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22365547$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkN1LwzAUxYNMnJv-ByJ586k1aZp2eRxjfuBA8OO53La3W0aW1LSb7MH_3UwnCBfO4cfhcO8dkYF1Fgm54izmjGe369ji1jsbJ4zzOAwT_IScc6byKOVKDf75IRl13ZoxnkrFz8gwSUQmZZqfk68prdD2Hgz1ziBtnKf9Cun85Snq9NKC0XZJW-hXn7Cn2tLKhbQzP_i1CtQGhsbQ1kDX60r3ewq2pi163a7wUGzR75B6XGJw0GtnD0U7vXMX5LQB0-HlUcfk_W7-NnuIFs_3j7PpIqqkEH00AV7ndaagzBUkSpYsz0EgkyhqqSa8FpBiWYWjgipWNU0jIa0bxaAOhCdjcvPb23r3scWuLza6O2wNFt22K1QilJSZmoTk9TG5LTdYF63XG_D74u9jyTePcnQ- |
| CitedBy_id | crossref_primary_10_1016_j_biomaterials_2014_04_064 crossref_primary_10_1016_j_ydbio_2018_05_011 crossref_primary_10_4103_1673_5374_324830 crossref_primary_10_1016_j_neuroscience_2018_04_018 crossref_primary_10_1007_s12035_022_02782_x crossref_primary_10_1016_j_expneurol_2013_05_007 crossref_primary_10_1038_s41467_018_05420_0 crossref_primary_10_3390_biomedicines10123186 crossref_primary_10_1523_JNEUROSCI_3619_17_2018 crossref_primary_10_1016_j_ejcb_2021_151179 crossref_primary_10_3390_brainsci3031182 crossref_primary_10_1007_s11060_017_2653_z crossref_primary_10_1007_s00262_016_1929_z crossref_primary_10_1038_s41467_019_09385_6 crossref_primary_10_3389_fnmol_2025_1617976 crossref_primary_10_4103_1673_5374_205103 crossref_primary_10_1111_jnc_13911 crossref_primary_10_3389_fneur_2022_908148 crossref_primary_10_1016_j_expneurol_2015_05_002 crossref_primary_10_1007_s11064_017_2399_1 crossref_primary_10_1111_jnc_13929 crossref_primary_10_1523_JNEUROSCI_4403_12_2013 crossref_primary_10_3892_etm_2016_3525 crossref_primary_10_1002_jnr_24067 crossref_primary_10_1097_NEN_0000000000000081 crossref_primary_10_1007_s00401_024_02840_9 crossref_primary_10_1186_s12974_022_02462_6 crossref_primary_10_1038_s41536_020_00099_8 crossref_primary_10_1016_j_reth_2025_07_011 crossref_primary_10_1155_2017_1479137 crossref_primary_10_1016_j_expneurol_2015_09_018 crossref_primary_10_1016_j_ccell_2025_06_020 crossref_primary_10_1113_JP270874 crossref_primary_10_1002_glia_23532 crossref_primary_10_1016_j_phrs_2022_106173 crossref_primary_10_1083_jcb_201606052 crossref_primary_10_32604_biocell_2021_011756 crossref_primary_10_4103_1673_5374_167768 crossref_primary_10_1007_s10735_019_09832_0 crossref_primary_10_3389_fphar_2025_1506552 crossref_primary_10_3389_fncel_2022_865266 crossref_primary_10_1096_fj_201701391R crossref_primary_10_3389_fncel_2015_00298 crossref_primary_10_4103_1673_5374_205000 crossref_primary_10_1155_2023_8818561 crossref_primary_10_1002_glia_22796 crossref_primary_10_1002_glia_23643 crossref_primary_10_1007_s12565_019_00486_2 crossref_primary_10_1038_nn_3809 crossref_primary_10_1007_s00018_022_04683_7 crossref_primary_10_1016_j_devcel_2023_01_002 crossref_primary_10_4103_1673_5374_243718 crossref_primary_10_1016_j_nbd_2016_07_023 crossref_primary_10_1038_s41467_017_01488_2 crossref_primary_10_1021_acschemneuro_4c00310 crossref_primary_10_3389_fnmol_2017_00038 crossref_primary_10_1038_s41467_020_17955_2 crossref_primary_10_1016_j_biocel_2017_03_002 crossref_primary_10_1016_j_conb_2017_08_007 crossref_primary_10_1177_20417314231220396 crossref_primary_10_1002_stem_3045 crossref_primary_10_1002_stem_3287 crossref_primary_10_1186_s12974_016_0732_2 crossref_primary_10_1002_glia_23516 crossref_primary_10_3390_ijms21228542 crossref_primary_10_3389_fcell_2020_00809 crossref_primary_10_34133_bmr_0160 crossref_primary_10_1016_j_biopha_2018_02_138 crossref_primary_10_1523_JNEUROSCI_0957_20_2020 crossref_primary_10_1016_j_expneurol_2014_06_012 crossref_primary_10_1186_s12974_019_1476_6 crossref_primary_10_3390_jcm12041555 crossref_primary_10_1111_ejn_13250 crossref_primary_10_3389_fphys_2022_814754 crossref_primary_10_1002_glia_23509 crossref_primary_10_1016_j_neuroscience_2014_09_027 crossref_primary_10_1073_pnas_1612136114 crossref_primary_10_1016_j_bioactmat_2021_03_034 crossref_primary_10_1038_s41401_019_0338_1 crossref_primary_10_1016_j_jinf_2016_08_006 crossref_primary_10_1016_j_neuron_2017_09_008 crossref_primary_10_1002_glia_23500 crossref_primary_10_1016_j_intimp_2019_105746 crossref_primary_10_1002_glia_22899 crossref_primary_10_1038_s41467_021_23552_8 crossref_primary_10_1172_JCI141964 crossref_primary_10_1111_ejn_12974 crossref_primary_10_1111_joa_13484 crossref_primary_10_1002_glia_23188 crossref_primary_10_1186_s12967_023_04609_2 crossref_primary_10_1093_bja_aet128 crossref_primary_10_1111_acel_12833 crossref_primary_10_1016_j_mib_2014_11_021 crossref_primary_10_1155_2016_5140823 crossref_primary_10_1016_j_npep_2024_102438 crossref_primary_10_1016_j_celrep_2025_115322 crossref_primary_10_3390_biom12081128 crossref_primary_10_1016_j_bios_2022_115055 crossref_primary_10_1159_000370324 crossref_primary_10_1016_j_jss_2013_10_023 crossref_primary_10_4103_1673_5374_322473 crossref_primary_10_1016_j_devcel_2013_12_002 crossref_primary_10_1002_jnr_24757 crossref_primary_10_1002_ar_24126 crossref_primary_10_4103_1673_5374_332152 crossref_primary_10_3389_fphar_2021_681532 crossref_primary_10_1002_glia_23606 crossref_primary_10_1007_s10561_015_9495_8 crossref_primary_10_1242_jcs_222059 crossref_primary_10_1146_annurev_neuro_110920_030610 crossref_primary_10_1073_pnas_1417108112 crossref_primary_10_1016_j_expneurol_2015_04_014 crossref_primary_10_1007_s11302_015_9445_8 crossref_primary_10_1007_s10561_022_10006_8 crossref_primary_10_1096_fj_13_239533 crossref_primary_10_1002_mc_22591 crossref_primary_10_1111_pcmr_12134 crossref_primary_10_1016_j_neuroscience_2018_02_015 crossref_primary_10_1016_j_nbd_2025_106892 crossref_primary_10_3390_biom11121887 crossref_primary_10_1242_dev_170316 crossref_primary_10_1007_s13311_021_01125_3 crossref_primary_10_1515_revneuro_2017_0060 crossref_primary_10_5966_sctm_2013_0011 crossref_primary_10_3390_ijms222011169 crossref_primary_10_1242_jcs_113928 crossref_primary_10_1002_brb3_1792 crossref_primary_10_2217_rme_2020_0096 crossref_primary_10_1016_j_conb_2017_10_003 crossref_primary_10_1038_s41467_025_60474_1 crossref_primary_10_1002_glia_22625 crossref_primary_10_1002_glia_23273 crossref_primary_10_1016_j_nbd_2016_09_005 crossref_primary_10_1016_j_neulet_2021_136440 crossref_primary_10_1242_dmm_027870 crossref_primary_10_1523_JNEUROSCI_4893_12_2013 crossref_primary_10_1007_s10875_012_9786_9 crossref_primary_10_3390_biomedicines10061447 crossref_primary_10_1002_glia_23705 crossref_primary_10_1002_mus_26797 crossref_primary_10_4103_1673_5374_344842 crossref_primary_10_1038_s41467_020_15915_4 crossref_primary_10_1083_jcb_201404154 crossref_primary_10_1002_glia_22852 crossref_primary_10_3390_cells14090671 crossref_primary_10_1016_j_brainres_2015_11_033 crossref_primary_10_1111_joa_13606 crossref_primary_10_3390_ijms26189082 crossref_primary_10_1292_jvms_14_0555 crossref_primary_10_1080_14728222_2025_2489540 crossref_primary_10_1080_2331205X_2018_1466404 crossref_primary_10_1038_srep43315 crossref_primary_10_1523_ENEURO_0410_20_2025 crossref_primary_10_3389_fncel_2019_00033 crossref_primary_10_1038_cddis_2017_489 crossref_primary_10_1016_j_cell_2015_07_021 crossref_primary_10_1097_WCO_0000000000000334 crossref_primary_10_3389_fnmol_2020_608442 crossref_primary_10_1093_brain_awt148 crossref_primary_10_1155_2017_5393268 crossref_primary_10_4103_1673_5374_211172 crossref_primary_10_1016_j_biopha_2023_116024 crossref_primary_10_1523_JNEUROSCI_4079_14_2015 crossref_primary_10_1016_j_expneurol_2014_10_012 crossref_primary_10_1093_hmg_ddy420 crossref_primary_10_1523_JNEUROSCI_2255_17_2017 crossref_primary_10_1074_jbc_M115_636407 crossref_primary_10_3389_fnmol_2022_1087550 crossref_primary_10_3390_ijms25010665 crossref_primary_10_1186_s40478_022_01495_5 crossref_primary_10_1177_1759091414548916 crossref_primary_10_1186_s13619_021_00079_3 crossref_primary_10_1002_glia_22957 crossref_primary_10_1038_s41598_017_06051_z crossref_primary_10_1097_TP_0000000000001625 crossref_primary_10_3390_cells10020425 crossref_primary_10_1523_JNEUROSCI_0198_24_2024 crossref_primary_10_1007_s00401_015_1482_4 crossref_primary_10_1038_nm_3684 crossref_primary_10_3389_fncel_2022_856734 crossref_primary_10_1083_jcb_201205025 crossref_primary_10_1016_j_conb_2013_06_010 crossref_primary_10_1089_cell_2013_0064 crossref_primary_10_1016_j_freeradbiomed_2025_01_053 crossref_primary_10_1007_s11064_017_2432_4 crossref_primary_10_1242_dev_150656 crossref_primary_10_1016_j_bbrc_2012_06_101 crossref_primary_10_1016_j_jep_2020_113063 crossref_primary_10_1016_j_phrs_2020_104923 crossref_primary_10_1016_j_pneurobio_2019_101643 crossref_primary_10_1016_j_canlet_2025_217451 crossref_primary_10_4103_1673_5374_228732 crossref_primary_10_1111_jnc_15724 crossref_primary_10_1016_j_neuron_2012_06_021 crossref_primary_10_1074_jbc_M114_622878 crossref_primary_10_1021_acsbiomaterials_6b00500 crossref_primary_10_1523_JNEUROSCI_0903_17_2017 crossref_primary_10_1146_annurev_genet_071819_103917 crossref_primary_10_3389_fncel_2020_00185 crossref_primary_10_1016_j_conb_2016_04_005 crossref_primary_10_1073_pnas_1710566114 crossref_primary_10_1016_j_cell_2012_12_014 crossref_primary_10_1042_AN20130031 crossref_primary_10_1016_j_neuron_2012_02_002 crossref_primary_10_1073_pnas_1700755114 crossref_primary_10_1016_j_expneurol_2020_113511 crossref_primary_10_1158_0008_5472_CAN_18_3872 crossref_primary_10_1002_dneu_22771 crossref_primary_10_3390_ijms251910785 crossref_primary_10_1111_jpi_12695 crossref_primary_10_1016_j_jss_2022_03_029 crossref_primary_10_1007_s00262_018_02296_3 crossref_primary_10_1038_nrneurol_2016_201 crossref_primary_10_1038_s41467_020_18291_1 crossref_primary_10_3390_cells9081768 crossref_primary_10_1016_j_ajpath_2013_06_002 crossref_primary_10_1016_j_neuron_2014_06_016 crossref_primary_10_1038_nn_3281 crossref_primary_10_1016_j_brainresbull_2019_06_011 crossref_primary_10_1016_j_ydbio_2018_02_003 crossref_primary_10_1126_scitranslmed_adj1597 crossref_primary_10_1016_j_ibneur_2022_12_007 crossref_primary_10_1523_JNEUROSCI_4947_13_2014 crossref_primary_10_7554_eLife_80881 crossref_primary_10_1016_j_brainres_2018_07_019 crossref_primary_10_1038_nm_3664 crossref_primary_10_1038_s41593_020_0689_4 crossref_primary_10_1371_journal_pone_0060028 crossref_primary_10_3389_fncel_2016_00238 crossref_primary_10_1371_journal_pone_0148726 crossref_primary_10_1002_adfm_202004272 crossref_primary_10_1016_j_neuroscience_2013_02_059 crossref_primary_10_1042_20120047 crossref_primary_10_1074_jbc_M114_605931 crossref_primary_10_7554_eLife_66278 crossref_primary_10_7554_eLife_68457 crossref_primary_10_1158_0008_5472_CAN_18_3995 crossref_primary_10_3389_fnmol_2022_984529 crossref_primary_10_1097_NEN_0b013e3182a5f96e crossref_primary_10_1016_j_neuroscience_2020_03_007 crossref_primary_10_3390_gels8010043 crossref_primary_10_1007_s10735_019_09815_1 crossref_primary_10_1113_EP090751 crossref_primary_10_1002_glia_22482 crossref_primary_10_1186_2051_5960_1_39 crossref_primary_10_3389_fcell_2021_660259 crossref_primary_10_1007_s00018_020_03516_9 crossref_primary_10_2217_nnm_2017_0389 crossref_primary_10_1016_j_pneurobio_2023_102544 crossref_primary_10_1093_brain_awt130 crossref_primary_10_3390_biom12081059 crossref_primary_10_1016_j_preteyeres_2022_101148 crossref_primary_10_1186_s13041_014_0086_6 crossref_primary_10_1007_s12035_015_9668_2 crossref_primary_10_1007_s11064_015_1824_6 crossref_primary_10_1083_jcb_201506039 crossref_primary_10_1007_s10856_014_5224_2 crossref_primary_10_1002_bit_27601 crossref_primary_10_3389_fncel_2016_00134 crossref_primary_10_3389_fphys_2021_688626 crossref_primary_10_1016_j_sjbs_2017_11_027 crossref_primary_10_3390_pharmaceutics15010210 crossref_primary_10_1007_s00018_017_2565_2 crossref_primary_10_1124_pr_111_005314 crossref_primary_10_1007_s11655_020_2721_7 crossref_primary_10_1016_j_jep_2017_10_036 crossref_primary_10_3390_biomedicines10061218 crossref_primary_10_1007_s13311_021_01145_z crossref_primary_10_1016_j_jams_2012_12_004 crossref_primary_10_1111_jnc_15764 crossref_primary_10_3390_ijms23031464 crossref_primary_10_1007_s11064_018_2535_6 crossref_primary_10_1007_s11684_015_0415_x crossref_primary_10_1002_adbi_202000157 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2012 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2011.11.031 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 22365547 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 11244 – fundername: Wellcome Trust – fundername: Worldwide Cancer Research grantid: 08-0106 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 5VS 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAIKJ AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c533t-8a1d7d69ab79a295b077a3e05e3d5981d3a4ebc236a4e90cfff5a4df90ada4e12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 323 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300815400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Wed Oct 01 14:42:15 EDT 2025 Mon Jul 21 06:06:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Copyright © 2012 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-8a1d7d69ab79a295b077a3e05e3d5981d3a4ebc236a4e90cfff5a4df90ada4e12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neuron.2011.11.031 |
| PMID | 22365547 |
| PQID | 923955698 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_923955698 pubmed_primary_22365547 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-02-23 |
| PublicationDateYYYYMMDD | 2012-02-23 |
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2012 |
| References | 22365537 - Neuron. 2012 Feb 23;73(4):623-6. doi: 10.1016/j.neuron.2012.02.002. |
| References_xml | – reference: 22365537 - Neuron. 2012 Feb 23;73(4):623-6. doi: 10.1016/j.neuron.2012.02.002. |
| SSID | ssj0014591 |
| Score | 2.543374 |
| Snippet | Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 729 |
| SubjectTerms | Animals Animals, Newborn Benzamides - pharmacology Cell Movement - drug effects Cyclin D1 - metabolism Cytokines - metabolism Diphenylamine - analogs & derivatives Diphenylamine - pharmacology Estrogen Antagonists - pharmacology Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Leukocytes - pathology Male MAP Kinase Signaling System - drug effects MAP Kinase Signaling System - genetics MAP Kinase Signaling System - physiology Mast Cells - pathology Mice Mice, Inbred C57BL Mice, Transgenic Microscopy, Confocal Microscopy, Electron, Transmission Microscopy, Immunoelectron Motor Activity - drug effects Motor Activity - genetics Myelin Sheath - genetics Myelin Sheath - metabolism Nerve Regeneration - drug effects Nerve Regeneration - genetics Neutrophils - metabolism Neutrophils - pathology Peripheral Nerve Injuries - pathology Peripheral Nerve Injuries - physiopathology Proto-Oncogene Proteins c-raf - genetics Proto-Oncogene Proteins c-raf - metabolism Reaction Time - drug effects Reaction Time - genetics Receptor, Nerve Growth Factor - genetics Receptor, Nerve Growth Factor - metabolism Receptors, Estrogen - genetics Recovery of Function - drug effects Recovery of Function - genetics Schwann Cells - physiology Schwann Cells - ultrastructure T-Lymphocytes - metabolism T-Lymphocytes - pathology Tamoxifen - pharmacology Time Factors |
| Title | A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22365547 https://www.proquest.com/docview/923955698 |
| Volume | 73 |
| WOSCitedRecordID | wos000300815400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5cwYv7vvAO4m2wTTJJ5iRFKoJYigv0VmaLFOq0trXSg__d9yapXgQPXhJ4kG3yZfLNvG_ex9h5rpHzpzrhxqqCYy8puVRWc20Sk2ub4z_SBLOJrNXKOx3ZrrQ540pWOe8TQ0dtB4bmyC-RiEghUplfDd84mUZRcrVy0FhkyzFehUCddX6SCIkIhnmUY6Vkp5yvnAvyrlAu0pc1PKmMZ-Uy9yvHDP-am41_3uUmW69IJjRKVGyxBee32U7D4wD7dQYXEGSfYT59m62WbpSzHfbZgEqqCaQ5BKSzgPQQmg93nGQeilauA1kYf6gZ9DxUMvcQfjQY9Rhz_T4MkZKTWnsyA-UtUDHlUL2gD54EljByL6HaNYGCTjTtTQe77Pmm-XR9yyt3Bm6QIk54ruo2s6lUOpMqkkLXskzFriZcbIVEGhyrxGkTxSnuZc0URSFUYgtZUxYj9WiPLfmBdwcMVOQQGpHRWSwSUxfK4MhQiwLJnImS1BwymLd2F9FPT6K8G7yPu9_tfcj2yzfWHZZVOrrIe1LkStnR3wcfszXEQRRWqscnbLnAL9-dshUznfTGo7OAKty22vdfWxXa7Q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+central+role+for+the+ERK-signaling+pathway+in+controlling+Schwann+cell+plasticity+and+peripheral+nerve+regeneration+in+vivo&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Napoli%2C+Ilaria&rft.au=Noon%2C+Luke+A&rft.au=Ribeiro%2C+Sara&rft.au=Kerai%2C+Ajay+P&rft.date=2012-02-23&rft.eissn=1097-4199&rft.volume=73&rft.issue=4&rft.spage=729&rft_id=info:doi/10.1016%2Fj.neuron.2011.11.031&rft_id=info%3Apmid%2F22365547&rft_id=info%3Apmid%2F22365547&rft.externalDocID=22365547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |