Integrating language models into classifiers for BCI communication: a review
The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing fie...
Gespeichert in:
| Veröffentlicht in: | Journal of neural engineering Jg. 13; H. 3; S. 031002 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
01.06.2016
|
| Schlagworte: | |
| ISSN: | 1741-2552, 1741-2552 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems.
The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models.
Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation.
Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population. |
|---|---|
| AbstractList | The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems.OBJECTIVEThe present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems.The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models.APPROACHThe domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models.Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation.MAIN RESULTSAlthough this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation.Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.SIGNIFICANCEEach of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population. |
| Author | Arnold, C Speier, W Pouratian, N |
| Author_xml | – sequence: 1 givenname: W surname: Speier fullname: Speier, W organization: Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA. Medical Imaging Informatics Group, University of California, Los Angeles, CA 90095, USA – sequence: 2 givenname: C surname: Arnold fullname: Arnold, C – sequence: 3 givenname: N surname: Pouratian fullname: Pouratian, N |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27153565$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA_9CUqWbmrzaB51p4OPgQE3ui5pclsibTI2reK_t-AIrs7h8J3L5azRIsQACF1SckOJ1jlVBc2YkCSnPOc54ZQQdoJWx1ywxT-_ROuU3skMqZKcoSVTVHAhxQrtd2GEdjCjDy3uTGgn0wLuo4MuYR_GiG1nUvKNhyHhJg74frvDNvb9FLydazHcYoMH-PTwdY5OG9MluDjqBr09Prxun7P9y9Nue7fPrOB8zIQrnSLOlEzy2jElDQhZU6EdrYUyWhpqpbKiJlI6WlgQRUM5V5xoTqV1bIOuf-8ehvgxQRqr3icL3fw_xClVVOmSFEpzOaNXR3Sqe3DVYfC9Gb6rvwXYD2_bX0A |
| CitedBy_id | crossref_primary_10_1007_s11517_024_03070_7 crossref_primary_10_1186_s42490_024_00080_2 crossref_primary_10_1371_journal_pone_0218177 crossref_primary_10_1371_journal_pone_0175382 crossref_primary_10_1111_isj_12337 crossref_primary_10_1080_2326263X_2019_1697163 crossref_primary_10_1080_2326263X_2016_1252143 crossref_primary_10_1109_ACCESS_2021_3050545 crossref_primary_10_3389_fnhum_2017_00581 crossref_primary_10_3390_app15010392 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_1088_1741_2552_aa7525 crossref_primary_10_1080_2326263X_2018_1504662 crossref_primary_10_1002_adfm_202008936 crossref_primary_10_1038_s41467_024_48576_8 crossref_primary_10_3389_fnhum_2024_1305445 crossref_primary_10_1088_2057_1976_aa99f3 crossref_primary_10_1088_1741_2552_ab386d crossref_primary_10_1080_17483107_2022_2146217 crossref_primary_10_1109_TNSRE_2018_2810332 crossref_primary_10_3390_computers8020033 crossref_primary_10_1016_j_neuroimage_2020_116999 crossref_primary_10_1080_2326263X_2024_2413214 crossref_primary_10_1016_j_neures_2024_06_003 crossref_primary_10_3390_s25133987 crossref_primary_10_1038_s41598_019_55166_y crossref_primary_10_3390_brainsci8040057 crossref_primary_10_1145_3167902_3167904 crossref_primary_10_1080_13607863_2018_1426718 crossref_primary_10_1080_2326263X_2017_1330611 crossref_primary_10_1109_ACCESS_2019_2941642 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2560/13/3/031002 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 27153565 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: K23 EB014326 |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACARI ACGFS ACHIP ADEQX AEFHF AENEX AERVB AFYNE AGQPQ AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ARNYC ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CGR CJUJL CRLBU CS3 CUY CVF DU5 EBS ECM EDWGO EIF EJD EMSAF EPQRW EQZZN F5P FEDTE HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP 7X8 AEINN |
| ID | FETCH-LOGICAL-c533t-5d9d70da9263bd276ae56b158d1b57a86a1c67c5b066d14ce54f1337308316cd2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375701200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-2552 |
| IngestDate | Thu Sep 04 17:50:48 EDT 2025 Mon Jul 21 05:47:18 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-5d9d70da9263bd276ae56b158d1b57a86a1c67c5b066d14ce54f1337308316cd2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | http://doi.org/10.1088/1741-2560/13/3/031002 |
| PMID | 27153565 |
| PQID | 1789047836 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1789047836 pubmed_primary_27153565 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2016 |
| References | 23674419 - IEEE Trans Biomed Eng. 2013 Oct;60(10):2696-705 24808413 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):837-46 23465430 - Clin Neurophysiol. 2013 Jul;124(7):1321-8 22510955 - IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):584-94 24760927 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):678-84 25068464 - PLoS One. 2014 Jul 28;9(7):e102504 24167623 - PLoS One. 2013 Oct 22;8(10):e78432 23366267 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1827-30 15813410 - IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):89-98 23366432 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2497-500 20457551 - IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):6-14 24370570 - Neurorehabil Neural Repair. 2014 May;28(4):387-94 23369924 - J Neural Eng. 2013 Apr;10(2):026001 20071274 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):127-33 22156110 - J Neural Eng. 2012 Feb;9(1):016004 26061188 - J Neural Eng. 2015 Aug;12(4):046018 25588137 - J Neural Eng. 2015 Feb;12(1):016013 20347387 - Clin Neurophysiol. 2010 Jul;121(7):1109-20 22833713 - Front Neurosci. 2012 May 23;6:72 25775495 - IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):910-20 20921326 - Neurorehabil Neural Repair. 2011 May;25(4):323-31 15188880 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1067-72 24500542 - Proc IEEE Int Conf Acoust Speech Signal Process. 2012;:null 21278858 - Int J Hum Comput Interact. 2011 Jan 1;27(1):69-84 21067970 - Clin Neurophysiol. 2011 Apr;122(4):731-7 23466266 - Clin Neurophysiol. 2013 May;124(5):901-8 23429035 - J Neural Eng. 2013 Apr;10(2):026012 21934188 - J Neural Eng. 2011 Oct;8(5):056016 15188881 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1073-6 16860920 - Biol Psychol. 2006 Oct;73(3):242-52 24675760 - Sensors (Basel). 2014 Mar 26;14(4):5967-93 22016719 - Front Neurosci. 2011 Oct 14;5:112 17124334 - J Neural Eng. 2006 Dec;3(4):299-305 22496763 - PLoS One. 2012;7(4):e33758 22939456 - Clin Neurophysiol. 2013 Feb;124(2):306-14 17271271 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4363-6 24244070 - Comput Speech Lang. 2013 Sep 1;27(6):null 10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9 21369351 - Front Neurosci. 2011 Feb 07;5:5 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 24099944 - J Neural Eng. 2013 Dec;10(6):066003 21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24 20569051 - Biomed Tech (Berl). 2010 Aug;55(4):203-10 21909321 - Front Neurosci. 2011 Aug 22;5:99 25686293 - J Neural Eng. 2015 Apr;12(2):026007 2461285 - Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23 9865889 - IEEE Trans Rehabil Eng. 1998 Dec;6(4):415-23 |
| References_xml | – reference: 22016719 - Front Neurosci. 2011 Oct 14;5:112 – reference: 21534845 - Amyotroph Lateral Scler. 2011 Sep;12(5):318-24 – reference: 23465430 - Clin Neurophysiol. 2013 Jul;124(7):1321-8 – reference: 2461285 - Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23 – reference: 24244070 - Comput Speech Lang. 2013 Sep 1;27(6):null – reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 – reference: 20347387 - Clin Neurophysiol. 2010 Jul;121(7):1109-20 – reference: 24675760 - Sensors (Basel). 2014 Mar 26;14(4):5967-93 – reference: 23674419 - IEEE Trans Biomed Eng. 2013 Oct;60(10):2696-705 – reference: 16860920 - Biol Psychol. 2006 Oct;73(3):242-52 – reference: 20457551 - IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):6-14 – reference: 17124334 - J Neural Eng. 2006 Dec;3(4):299-305 – reference: 20569051 - Biomed Tech (Berl). 2010 Aug;55(4):203-10 – reference: 21067970 - Clin Neurophysiol. 2011 Apr;122(4):731-7 – reference: 22156110 - J Neural Eng. 2012 Feb;9(1):016004 – reference: 9865889 - IEEE Trans Rehabil Eng. 1998 Dec;6(4):415-23 – reference: 21369351 - Front Neurosci. 2011 Feb 07;5:5 – reference: 24099944 - J Neural Eng. 2013 Dec;10(6):066003 – reference: 25588137 - J Neural Eng. 2015 Feb;12(1):016013 – reference: 22833713 - Front Neurosci. 2012 May 23;6:72 – reference: 23369924 - J Neural Eng. 2013 Apr;10(2):026001 – reference: 21934188 - J Neural Eng. 2011 Oct;8(5):056016 – reference: 24808413 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):837-46 – reference: 23366432 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2497-500 – reference: 15813410 - IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):89-98 – reference: 15188881 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1073-6 – reference: 15188880 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1067-72 – reference: 23466266 - Clin Neurophysiol. 2013 May;124(5):901-8 – reference: 20071274 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):127-33 – reference: 23366267 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1827-30 – reference: 22496763 - PLoS One. 2012;7(4):e33758 – reference: 20921326 - Neurorehabil Neural Repair. 2011 May;25(4):323-31 – reference: 24370570 - Neurorehabil Neural Repair. 2014 May;28(4):387-94 – reference: 21909321 - Front Neurosci. 2011 Aug 22;5:99 – reference: 26061188 - J Neural Eng. 2015 Aug;12(4):046018 – reference: 25775495 - IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):910-20 – reference: 25068464 - PLoS One. 2014 Jul 28;9(7):e102504 – reference: 17271271 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4363-6 – reference: 22939456 - Clin Neurophysiol. 2013 Feb;124(2):306-14 – reference: 24167623 - PLoS One. 2013 Oct 22;8(10):e78432 – reference: 10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9 – reference: 24500542 - Proc IEEE Int Conf Acoust Speech Signal Process. 2012;:null – reference: 21278858 - Int J Hum Comput Interact. 2011 Jan 1;27(1):69-84 – reference: 23429035 - J Neural Eng. 2013 Apr;10(2):026012 – reference: 24760927 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):678-84 – reference: 22510955 - IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):584-94 – reference: 25686293 - J Neural Eng. 2015 Apr;12(2):026007 |
| SSID | ssj0031790 |
| Score | 2.3459644 |
| SecondaryResourceType | review_article |
| Snippet | The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 031002 |
| SubjectTerms | Algorithms Brain-Computer Interfaces - classification Communication Aids for Disabled Electroencephalography Humans Language Models, Theoretical Natural Language Processing |
| Title | Integrating language models into classifiers for BCI communication: a review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27153565 https://www.proquest.com/docview/1789047836 |
| Volume | 13 |
| WOSCitedRecordID | wos000375701200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDia32sLyKIt9BNm6SpF1kXFxd02YPC3kqapLAH29Wugv_eSdqqF0Hw0kOhpQzTyTePbz6ELqjOZGL7hgjGDWHGQhykkSFhoizVfSNkrrzYRDyZyNksmTYFt6oZq2xjog_UptSuRh5Qx9hkjnNwvXghTjXKdVcbCY1V1IkAyjivjmdfXYTIbZ-qCZGUAHQOWwYPJH3NPdEPaBREgVuQ6Ssrv6BMf9qMtv77ndtos8GZeFA7xg5ascUu6g4KyLGfP_Al9pOfvqTeRffjZmcEHGO4LWBir5FT4XmxLLF2GHueO9lsDCgX3wzHWP-kllxhhWsWzB56Gt0-Du9Io7JANEC9JeEmMXHfqCQUUWbCWCjLRUa5NDTjsZJCUS1izTMAJ4YybTnLIbGFyCAjKrQJ99FaURb2EGGquMkTCi9hmlErpTUy1CZnUmVMJ6qHzlubpeDFrjWhClu-Vem31XrooDZ8uqjXbaRhDFEZcOfRH54-RhuAaEQ9y3WCOjn8w_YUrev35bx6PfPuAdfJ9OETq1TD4Q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+language+models+into+classifiers+for+BCI+communication%3A+a+review&rft.jtitle=Journal+of+neural+engineering&rft.au=Speier%2C+W&rft.au=Arnold%2C+C&rft.au=Pouratian%2C+N&rft.date=2016-06-01&rft.eissn=1741-2552&rft.volume=13&rft.issue=3&rft.spage=031002&rft_id=info:doi/10.1088%2F1741-2560%2F13%2F3%2F031002&rft_id=info%3Apmid%2F27153565&rft_id=info%3Apmid%2F27153565&rft.externalDocID=27153565 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |