Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a
Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentratio...
Uloženo v:
| Vydáno v: | Remote sensing of environment Ročník 266; s. 112685 - 14 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Goddard Space Flight Center
Elsevier Inc
01.12.2021
Elsevier Elsevier BV |
| Témata: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS.
•Timeseries data set was developed of satellite remote sensing of US inland waters.•The dataset includes radiometry and an estimation of cyanobacteria abundance.•The dataset is public and easily modifiable for a variety of end-user applications.•A case study on algorithm development to estimate cyanoHAB chlorophyll is presented.•This case study provides steps for end-user algorithm development. |
|---|---|
| AbstractList | Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS.Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS. Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS. •Timeseries data set was developed of satellite remote sensing of US inland waters.•The dataset includes radiometry and an estimation of cyanobacteria abundance.•The dataset is public and easily modifiable for a variety of end-user applications.•A case study on algorithm development to estimate cyanoHAB chlorophyll is presented.•This case study provides steps for end-user algorithm development. Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS. Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll lgorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, Chl , which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS. |
| ArticleNumber | 112685 |
| Audience | PUBLIC |
| Author | Owens, Tommy J. Seegers, Bridget N. Bailey, Sean W. Werdell, P. Jeremy Vandermeulen, Ryan A. Salls, Wilson Schaeffer, Blake A. Scott, Joel P. Loftin, Keith A. Stumpf, Richard P. |
| AuthorAffiliation | d U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC 27711, USA a NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA c Science Systems and Applications Inc., Lanham, MD 20706, USA f Science Application International Corp., Reston, VA 20190, USA e NOAA, National Ocean Service, Silver Spring, MD 20910,USA g U.S. Geological Survey, Kansas Water Science Center, Lawrence, KS 66049, USA b Universities Space Research Association (USRA), Columbia, MD 21046, USA |
| AuthorAffiliation_xml | – name: g U.S. Geological Survey, Kansas Water Science Center, Lawrence, KS 66049, USA – name: a NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – name: f Science Application International Corp., Reston, VA 20190, USA – name: b Universities Space Research Association (USRA), Columbia, MD 21046, USA – name: c Science Systems and Applications Inc., Lanham, MD 20706, USA – name: d U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC 27711, USA – name: e NOAA, National Ocean Service, Silver Spring, MD 20910,USA |
| Author_xml | – sequence: 1 givenname: Bridget N. surname: Seegers fullname: Seegers, Bridget N. email: bridget.n.seegers@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 2 givenname: P. Jeremy surname: Werdell fullname: Werdell, P. Jeremy email: jeremy.werdell@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 3 givenname: Ryan A. surname: Vandermeulen fullname: Vandermeulen, Ryan A. email: ryan.a.vandermeulen@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 4 givenname: Wilson surname: Salls fullname: Salls, Wilson email: salls.wilson@epa.gov organization: U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC 27711, USA – sequence: 5 givenname: Richard P. surname: Stumpf fullname: Stumpf, Richard P. email: richard.stumpf@noaa.gov organization: NOAA, National Ocean Service, Silver Spring, MD 20910,USA – sequence: 6 givenname: Blake A. surname: Schaeffer fullname: Schaeffer, Blake A. email: Schaeffer.Blake@epa.gov organization: U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC 27711, USA – sequence: 7 givenname: Tommy J. surname: Owens fullname: Owens, Tommy J. email: tommy.owens@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 8 givenname: Sean W. surname: Bailey fullname: Bailey, Sean W. email: sean.w.bailey@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 9 givenname: Joel P. surname: Scott fullname: Scott, Joel P. email: joel.scott@nasa.gov organization: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, MD 20771, USA – sequence: 10 givenname: Keith A. surname: Loftin fullname: Loftin, Keith A. email: kloftin@usgs.gov organization: U.S. Geological Survey, Kansas Water Science Center, Lawrence, KS 66049, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36424983$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl9rFDEUxQep2G31AwgiA774MmP-TZKxIEhptVAR3PY5ZDN3d7Nmkm2SLfTbN7vbivahQiAP95xfbu49R9WBDx6q6i1GLUaYf1q1MUFLEMEtxoTL7kU1wVL0DRKIHVQThChrGOnEYXWU0goh3EmBX1WHlDPCekkn1c1UZ3DOZkj1PMTaBb9oMsSxHoO3OUTrF3WY19Y77Yf6up22tdO_IX2ur5ZQ_zj7dTGtsx2hThBtgWxVer121uhsg99BzdKFGNbLO-ca_bp6OdcuwZuH-7i6Pj-7Ov3eXP78dnH69bIxHaW56ZjEyMiOEJj3jIMwjMmeGjYbsClHi4GyAWuJ-1mPtCYYg8QzQ_mMMzn09Lj6sueuN7MRBgM-R-3UOtpRxzsVtFX_VrxdqkW4VT2XSFJWAB8fADHcbCBlNdpkyrC0h7BJigiGOkz6rv-_lFPeYYbFlvrhiXQVNtGXSRTVdmGSClxU7_9u_k_Xj4srArEXmBhSijBXxubdxMtfrFMYqW1E1EqViKhtRNQ-IsWJnzgf4c953u09XietyhNpV0aIcCF4KZ_sy1D2eWshqmQseAODjWCyGoJ9Bn4PcK_bQA |
| CitedBy_id | crossref_primary_10_1016_j_ecolind_2022_108990 crossref_primary_10_3390_drones7040244 crossref_primary_10_1007_s13157_023_01722_2 crossref_primary_10_1016_j_ecolind_2023_110394 crossref_primary_10_1016_j_ijheh_2023_114272 crossref_primary_10_3390_s21227659 crossref_primary_10_1007_s12524_024_02019_5 crossref_primary_10_1016_j_scitotenv_2025_178881 crossref_primary_10_1029_2024EF004493 crossref_primary_10_1109_TGRS_2022_3220529 crossref_primary_10_3390_resources11020008 crossref_primary_10_1016_j_jhazmat_2025_138701 crossref_primary_10_3390_rs16152798 crossref_primary_10_1016_j_scitotenv_2021_152558 crossref_primary_10_1007_s10668_024_05803_y crossref_primary_10_1016_j_scitotenv_2022_153568 crossref_primary_10_1016_j_hal_2023_102472 crossref_primary_10_1016_j_envsoft_2023_105805 crossref_primary_10_1111_1752_1688_13127 crossref_primary_10_3390_rs17091621 crossref_primary_10_1016_j_envres_2023_117430 crossref_primary_10_1111_1752_1688_70038 crossref_primary_10_3390_rs14194950 crossref_primary_10_1016_j_jhydrol_2024_131545 crossref_primary_10_1061_JHEND8_HYENG_14108 crossref_primary_10_3390_rs17183197 crossref_primary_10_3390_rs15133392 crossref_primary_10_3390_rs16111977 crossref_primary_10_1016_j_jenvman_2023_119518 crossref_primary_10_3390_rs17050918 crossref_primary_10_3390_rs14236175 crossref_primary_10_3390_rs16152761 crossref_primary_10_1016_j_rsase_2024_101387 crossref_primary_10_3389_fenvs_2022_1096843 crossref_primary_10_1016_j_jhydrol_2023_129278 crossref_primary_10_1016_j_marpolbul_2024_116217 crossref_primary_10_3390_w17152346 crossref_primary_10_1016_j_rse_2023_113724 crossref_primary_10_1029_2023JG007574 crossref_primary_10_1016_j_scitotenv_2023_161784 crossref_primary_10_1016_j_techsoc_2022_101994 crossref_primary_10_3390_rs15081983 crossref_primary_10_3390_rs16132444 crossref_primary_10_3390_su151411302 crossref_primary_10_1016_j_jer_2023_10_014 crossref_primary_10_1021_acs_est_5c08910 crossref_primary_10_3390_w16152170 crossref_primary_10_1016_j_scitotenv_2023_167522 crossref_primary_10_3390_w15152843 crossref_primary_10_1021_jacs_2c01424 crossref_primary_10_1016_j_cej_2025_167234 crossref_primary_10_1016_j_jhydrol_2022_128278 crossref_primary_10_3390_rs15225291 crossref_primary_10_1016_j_watres_2023_120076 crossref_primary_10_3390_rs16183416 crossref_primary_10_11922_11_6035_csd_2023_0093_zh crossref_primary_10_1016_j_hal_2024_102747 crossref_primary_10_1155_2022_4643924 crossref_primary_10_3390_rs16244663 crossref_primary_10_1007_s11270_024_06957_1 crossref_primary_10_1117_1_JRS_17_044514 crossref_primary_10_1002_ecs2_4522 crossref_primary_10_1016_j_rse_2022_113295 crossref_primary_10_1016_j_scitotenv_2023_165253 crossref_primary_10_1016_j_ecolecon_2022_107481 |
| Cites_doi | 10.1002/lno.10146 10.1029/2020GH000254 10.1029/2006JC003802 10.1016/j.rse.2017.08.033 10.1364/OE.27.030140 10.1016/j.scitotenv.2021.145462 10.1002/2016JC011720 10.1016/j.rse.2005.07.001 10.1080/2150704X.2015.1117155 10.4319/lo.2009.54.6_part_2.2315 10.1080/01431169208904125 10.1016/j.rse.2019.04.021 10.3389/feart.2019.00145 10.1364/AO.14.000413 10.1080/014311699212470 10.1016/0304-4203(85)90032-5 10.1016/j.pocean.2018.01.001 10.1016/j.jglr.2018.05.001 10.1080/01431160500075857 10.1016/j.ecss.2007.02.015 10.1016/j.jglr.2012.12.007 10.23818/limn.29.02 10.1080/2150704X.2017.1354263 10.1080/0143116021000023899 10.1016/j.rse.2014.10.010 10.4319/lo.2009.54.6_part_2.2298 10.1016/j.jglr.2013.04.005 10.1016/j.jglr.2012.10.003 10.1364/OE.18.024109 10.4319/lo.2010.55.5.2025 10.1038/nature05040 10.1016/j.jmarsys.2008.05.002 10.1057/jors.2014.103 10.1080/01431160802007640 10.1016/j.watres.2003.10.033 10.1016/j.envsoft.2018.08.015 10.1016/j.rse.2015.04.024 10.1016/j.rse.2011.12.018 10.1016/S0048-9697(03)00225-0 10.1080/01431160802562305 10.1214/aos/1176344552 10.1093/plankt/fbq133 10.1029/2019JC014941 10.1029/2015EO038809 10.1016/j.pocean.2017.08.007 10.1007/s10661-020-08631-5 10.1016/j.rse.2012.05.032 10.4319/lo.2006.51.5.2388 10.1016/j.rse.2012.01.024 10.1364/OE.26.007404 10.1038/nature12760 10.1007/s10021-006-9013-8 10.1038/s41467-017-01789-6 10.1016/j.rse.2019.04.027 10.1016/j.hal.2017.06.001 10.1016/j.rse.2014.06.008 10.1038/s41467-019-08457-x 10.1029/2004GB002238 10.1016/j.jglr.2018.11.015 10.1364/AO.53.001523 10.1016/j.ecolind.2017.04.046 10.1016/j.rse.2019.03.018 10.1038/s41598-019-54453-y 10.1016/j.rse.2007.12.013 10.1016/j.rse.2014.07.024 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL Copyright Elsevier BV Dec 1, 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL – notice: Copyright Elsevier BV Dec 1, 2021 |
| DBID | 6I. AAFTH CYE CYI AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 7X8 5PM |
| DOI | 10.1016/j.rse.2021.112685 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access NASA Scientific and Technical Information NASA Technical Reports Server CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 14 |
| ExternalDocumentID | PMC9680834 36424983 10_1016_j_rse_2021_112685 20210026776 S0034425721004053 |
| Genre | Journal Article |
| GeographicLocations | United States--US Alaska |
| GeographicLocations_xml | – name: United States--US – name: Alaska |
| GrantInformation | 389018.02.10.03.68 |
| GrantInformation_xml | – fundername: Intramural EPA grantid: EPA999999 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADVLN AEBSH AEIPS AEKER AENEX AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM AAYWO ABUFD ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CYE CYI EFKBS EFLBG ~HD 29P 41~ 6TJ 9DU AAQXK AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AEGFY AFFNX AFJKZ AGQPQ ASPBG AVWKF AZFZN CITATION EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL AGCQF AGRNS NPM 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c533t-54810c8522ef946e7c44893c4bd1cd1ca7d34d1a819b90aa211e81bc36b648d93 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704353300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Tue Nov 04 02:06:52 EST 2025 Thu Oct 02 06:47:14 EDT 2025 Thu Oct 02 04:59:34 EDT 2025 Wed Aug 13 04:22:43 EDT 2025 Mon Jul 21 06:08:10 EDT 2025 Tue Nov 18 21:16:50 EST 2025 Sat Nov 29 07:29:09 EST 2025 Fri Nov 21 15:49:21 EST 2025 Sun Apr 06 06:54:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MERIS timeseries Algorithm validation Chlorophylla Remote sensing Water quality Inland waters Algorithm Validation Remote Sensing Inland Waters Meris Timeseries Water Quality |
| Language | English |
| License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c533t-54810c8522ef946e7c44893c4bd1cd1ca7d34d1a819b90aa211e81bc36b648d93 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9680834 |
| PMID | 36424983 |
| PQID | 2600348371 |
| PQPubID | 2045405 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9680834 proquest_miscellaneous_2740512959 proquest_miscellaneous_2636514174 proquest_journals_2600348371 pubmed_primary_36424983 crossref_citationtrail_10_1016_j_rse_2021_112685 crossref_primary_10_1016_j_rse_2021_112685 nasa_ntrs_20210026776 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112685 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: United States – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationTitleAlternate | Remote Sens Environ |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
| References | Campbell, Blaisdell, Darzi (bb0045) 1995; Vol. 32 Coffer, Schaeffer, Darling, Urquhart, Salls (bb0055) 2020; 111 Wynne, Stumpf, Tomlinson, Dyble (bb0430) 2010; 55 Olmanson, Bauer, Brezonik (bb0270) 2008; 112 Papenfus, Schaeffer, Pollard, Loftin (bb0300) 2020; 192 Lee, Weidemann, Kindle, Arnone, Carder, Davis (bb0185) 2007; 112 Tranvik, Downing, Cotner, Loiselle, Striegl, Ballatore, Dillon, Finlay, Fortino, Knoll, Kortelainen, Kutser, Larsen, Laurion, Leech, McCallister, McKnight, Melack, Over-holt, Porter, Prairie, Renwick, Roland, Sherman, Schindler, Sobek, Tremblay, Vanni, Verschoor, von Wachenfeldt, Weyhenmeye (bb0350) 2009; 54 Bulgarelli, Kiselev, Zibordi (bb0040) 2014; 53 Fox (bb0105) 2002 Gilerson, Gitelson, Zhou, Gurlin, Moses, Ioannou, Ahmed (bb0115) 2010; 18 Matthews, Odermatt (bb0220) 2015; 156 Clark, Schaeffer, Darling, Urquhart, Johnston, Ignatius, Myer, Loftin, Werdell, Stumpf (bb0050) 2017; 80 IOCCG (bb0160) 2007 Werdell, Bailey (bb0410) 2005; 98 Matthews, Bernard, Robertson (bb0225) 2012; 124 Scott, Werdell (bb0320) 2019; 27 Rowe, Anderson, Wynne, Stumpf, Fanslow, Kijanka, Vanderploeg, Strickler, Davis (bb0310) 2016; 121 Walter, Zimov, Chaton, Verbyla, Chapin (bb0400) 2006; 443 Vos, Hakvoort, Jordans, Ibelings (bb0395) 2003; 312 IOCS (bb0170) 2015 Eslick, Conmy, Donovan, Graham, Lanning-Rush, Loftin, Salls, Schaeffer, Seegers, Stumpf, Werdell (bb0100) 2019 Tofallis (bb0340) 2015; 66 Cole, Prairie, Caraco, McDowell, Tranvik, Striegl, Duarte, Kortelainen, Downing, Middelburg, Melack (bb0060) 2007; 10 Downing, Prairie, Cole, Duarte, Tranvik, Striegl, McDowell, Kortelainen, Caraco, Melack (bb0080) 2006; 51 Hu, Lee, Franz (bb0150) 2012; 117 Schaeffer, Bailey, Conmy, Galvin, Ignatius, Johnston, Keith, Lunetta, Parmar, Stumpf, Urquhart, Werdell, Wolfe (bb0315) 2018; 109 Seppälä, Ylostalo, Kaitala, Hallfors, Raateoja, Maunual (bb0330) 2007; 73 Frouin, Franz, Ibrahim, Knobelspiesse, Ahmad, Cairns (bb0110) 2019 Warren, Simis, Martinez-Vicente, Poser, Besciani, Alikas, Spyrakos, Giardino, Ansper (bb0405) 2019; 225 O'Reilly, Werdell (bb0285) 2019; 229 Downing (bb0075) 2010; 29 Wynne, Meredith, Briggs, Litaker, Stumpf (bb0440) 2018 Mobley, Werdell, Franz, Ahmad, Bailey (bb0245) 2016 IOCCG (bb0165) 2018 Lesht, Barbiero, Warren (bb0195) 2016; 42 New Jersey Department of Environmental Protection. (NJDEP) (bb0265) 2020 Oregon Health Authority (OHA) Public Health Division (bb0280) 2019 Binding, Zastepa, Zeng (bb0030) 2019; 45 Lesht, Barbiero, Warren (bb0190) 2013; 39 Gower, King, Borstad, Brown (bb0135) 2005; 26 U.S. Environmental Protection Agency (bb0365) 2009 Mishra, Stumpf, Schaeffer, Werdell, Loftin, Meredith (bb0240) 2021; 774 Kallio, Koponen, Pulliainen (bb0175) 2003; 24 Davison, Hinkley (bb0065) 1997 Trees, Mahlon, Kennicutt, Brooks (bb0355) 1985; 17 Kutser (bb0180) 2009; 30 Wyoming Department of Environmental Quality (WDEQ) /Water Quality Division (WQD) (bb0445) 2019 Neil, Spyrakos, Hunter, Tyler (bb0260) 2019; 229 Ondrusek, Stengel, Kinkade, Vogel, Keegstra, Hunter, Kim (bb0275) 2012; 119 Downing (bb0070) 2009; 30 Gregor, Maršálek (bb0145) 2004; 38 U.S. Environmental Protection Agency (bb0360) 2000 Dutkiewicz, Hickman, Jahn, Henson, Beaulieu, Monier (bb0085) 2019; 10 Efron (bb0090) 1979; 7 Seegers, Stumpf, Schaeffer, Loftin, Werdell (bb0325) 2018; 26 Urquhart, Schaeffer (bb0385) 2019 Lynch (bb0210) 2009; 76 Brewin, Raitsos, Dall'Olmo, Zarokanellos, Jackson, Racault, Boss, Sathyendranath, Jones, Hoteit (bb0035) 2015; 165 Moses, Gitelson, Berdnikov, Saprygin, Povazhnyi (bb0250) 2012; 121 Lesht, Barbiero, Warren (bb0200) 2018; 44 Gregg, Rousseaux, Franz (bb0140) 2017; 8 NASA JPL (bb0255) 2013 Binding, Greenberg, Jerome, Bukata, Booty (bb0015) 2011; 33 Gower, Doesffer, Borstad (bb0130) 1999; 20 U.S. Environmental Protection Agency (bb0370) 2011 Gitelson (bb0120) 1992; 13 Werdell, McClain (bb0415) 2019; 5 Tomlinson, Stumpf, Wynne, Dupuy, Burks, Hendrickson, Fulton (bb0345) 2016; 7 Schaeffer, Loftin, Stumpf, Werdell (bib451) 2015; 96 Werdell, McKinna, Boss, Ackleson, Craig, Gregg, Lee, Maritorena, Roesler, Rousseaux, Stramski (bb0420) 2018; 160 Pahlevan, Sarkar, Franz, Balasubramanian, He (bb0290) 2017; 201 Urquhart (bb0380) 2018 Hu, Feng, Lee, Franz, Bailey, Werdell, Proctor (bb0155) 2019; 124 Palmer, Hunter, Lankester, Hubbard, Spyrakos, Tyler, Présing (bb0295) 2015; 157 Wynne, Stumpf, Tomlinson, Fahnenstiel, Dyble, Schwab, Joshi (bb0435) 2013; 39 Binding, Greenberg, Bukata (bb0020) 2013; 39 Binding, Greenberg, Watson, Rastin, Gould (bb0025) 2015; 60 MacKay, Neale, Arp, De Senerpont Domis, Fang, Gal, Jöhnk, Kirillin, Lenters, Litchman, MacIntyre, Marsh, Melack, Mooij, Peeters, Quesada, Schladow, Schmid, Spence, Stokes (bb0215) 2009; 54 Mishra, Stumpf, Schaeffer, Werdell, Loftin, Meredith (bb0235) 2019; 9 U.S. Geological Survey (bb0375) 2012 Gordon, McCluney (bb0125) 1975; 14 Zheng, Di Giacomo (bb0450) 2017; 159 Lunetta, Schaeffer, Stumpf, Keith, Jacobs, Murphy (bb0205) 2015; 157 Wynne, Stumpf, Tomlinson, Warner, Tester, Dyble, Fahnenstiel (bb0425) 2008; 29 Stroming, Robertson, Mabee, Kuwayama, Schaeffer (bb0335) 2020; 4 Mendonça, Müller, Clow, Verpoorter, Raymond, Tranvik, Sobek (bb0230) 2017; 8 Efron, Tibshirani (bb0095) 1997; 92 Bi, Li, Liu, Song, Xu, Dong, Cai, Mu, Miao, Lyu (bb0010) 2021 Bastviken, Cole, Pace, Tranvik (bb0005) 2004; 18 Raymond, Hartmann, Lauerwald, Sobek, McDonald, Hoover, Butman, Striegl, Mayorga, Humborg, Kortelainen, Dürr, Meybeck, Ciais, Guth (bb0305) 2013; 503 Urquhart, Schaeffer, Stumpf, Loftin, Werdell (bb0390) 2017; 67 Schaeffer (10.1016/j.rse.2021.112685_bib451) 2015; 96 Binding (10.1016/j.rse.2021.112685_bb0030) 2019; 45 Hu (10.1016/j.rse.2021.112685_bb0150) 2012; 117 Wynne (10.1016/j.rse.2021.112685_bb0435) 2013; 39 Gower (10.1016/j.rse.2021.112685_bb0130) 1999; 20 Tranvik (10.1016/j.rse.2021.112685_bb0350) 2009; 54 New Jersey Department of Environmental Protection. (NJDEP) (10.1016/j.rse.2021.112685_bb0265) Campbell (10.1016/j.rse.2021.112685_bb0045) 1995; Vol. 32 Ondrusek (10.1016/j.rse.2021.112685_bb0275) 2012; 119 Pahlevan (10.1016/j.rse.2021.112685_bb0290) 2017; 201 Binding (10.1016/j.rse.2021.112685_bb0025) 2015; 60 Lesht (10.1016/j.rse.2021.112685_bb0200) 2018; 44 Wynne (10.1016/j.rse.2021.112685_bb0425) 2008; 29 Trees (10.1016/j.rse.2021.112685_bb0355) 1985; 17 Zheng (10.1016/j.rse.2021.112685_bb0450) 2017; 159 Werdell (10.1016/j.rse.2021.112685_bb0410) 2005; 98 Wynne (10.1016/j.rse.2021.112685_bb0430) 2010; 55 Clark (10.1016/j.rse.2021.112685_bb0050) 2017; 80 Lynch (10.1016/j.rse.2021.112685_bb0210) 2009; 76 Efron (10.1016/j.rse.2021.112685_bb0095) 1997; 92 Matthews (10.1016/j.rse.2021.112685_bb0220) 2015; 156 Walter (10.1016/j.rse.2021.112685_bb0400) 2006; 443 Hu (10.1016/j.rse.2021.112685_bb0155) 2019; 124 Mobley (10.1016/j.rse.2021.112685_bb0245) 2016 Gilerson (10.1016/j.rse.2021.112685_bb0115) 2010; 18 Matthews (10.1016/j.rse.2021.112685_bb0225) 2012; 124 Seppälä (10.1016/j.rse.2021.112685_bb0330) 2007; 73 Rowe (10.1016/j.rse.2021.112685_bb0310) 2016; 121 Gitelson (10.1016/j.rse.2021.112685_bb0120) 1992; 13 Efron (10.1016/j.rse.2021.112685_bb0090) 1979; 7 Scott (10.1016/j.rse.2021.112685_bb0320) 2019; 27 NASA JPL (10.1016/j.rse.2021.112685_bb0255) 2013 Lesht (10.1016/j.rse.2021.112685_bb0195) 2016; 42 Lesht (10.1016/j.rse.2021.112685_bb0190) 2013; 39 Werdell (10.1016/j.rse.2021.112685_bb0415) 2019; 5 Raymond (10.1016/j.rse.2021.112685_bb0305) 2013; 503 Mishra (10.1016/j.rse.2021.112685_bb0240) 2021; 774 IOCCG (10.1016/j.rse.2021.112685_bb0165) 2018 Urquhart (10.1016/j.rse.2021.112685_bb0380) 2018 Vos (10.1016/j.rse.2021.112685_bb0395) 2003; 312 Eslick (10.1016/j.rse.2021.112685_bb0100) 2019 Olmanson (10.1016/j.rse.2021.112685_bb0270) 2008; 112 Palmer (10.1016/j.rse.2021.112685_bb0295) 2015; 157 Urquhart (10.1016/j.rse.2021.112685_bb0390) 2017; 67 Gregor (10.1016/j.rse.2021.112685_bb0145) 2004; 38 U.S. Environmental Protection Agency (10.1016/j.rse.2021.112685_bb0365) 2009 Downing (10.1016/j.rse.2021.112685_bb0080) 2006; 51 O'Reilly (10.1016/j.rse.2021.112685_bb0285) 2019; 229 Lunetta (10.1016/j.rse.2021.112685_bb0205) 2015; 157 Moses (10.1016/j.rse.2021.112685_bb0250) 2012; 121 Fox (10.1016/j.rse.2021.112685_bb0105) 2002 Brewin (10.1016/j.rse.2021.112685_bb0035) 2015; 165 Davison (10.1016/j.rse.2021.112685_bb0065) 1997 MacKay (10.1016/j.rse.2021.112685_bb0215) 2009; 54 Werdell (10.1016/j.rse.2021.112685_bb0420) 2018; 160 Wyoming Department of Environmental Quality (WDEQ) /Water Quality Division (WQD) (10.1016/j.rse.2021.112685_bb0445) 2019 Frouin (10.1016/j.rse.2021.112685_bb0110) 2019 Mendonça (10.1016/j.rse.2021.112685_bb0230) 2017; 8 Binding (10.1016/j.rse.2021.112685_bb0015) 2011; 33 U.S. Environmental Protection Agency (10.1016/j.rse.2021.112685_bb0370) 2011 Bi (10.1016/j.rse.2021.112685_bb0010) 2021 Stroming (10.1016/j.rse.2021.112685_bb0335) 2020; 4 Dutkiewicz (10.1016/j.rse.2021.112685_bb0085) 2019; 10 Papenfus (10.1016/j.rse.2021.112685_bb0300) 2020; 192 Gordon (10.1016/j.rse.2021.112685_bb0125) 1975; 14 Neil (10.1016/j.rse.2021.112685_bb0260) 2019; 229 Oregon Health Authority (OHA) Public Health Division (10.1016/j.rse.2021.112685_bb0280) 2019 Tomlinson (10.1016/j.rse.2021.112685_bb0345) 2016; 7 Gower (10.1016/j.rse.2021.112685_bb0135) 2005; 26 Downing (10.1016/j.rse.2021.112685_bb0070) 2009; 30 IOCCG (10.1016/j.rse.2021.112685_bb0160) 2007 Kutser (10.1016/j.rse.2021.112685_bb0180) 2009; 30 Bulgarelli (10.1016/j.rse.2021.112685_bb0040) 2014; 53 Kallio (10.1016/j.rse.2021.112685_bb0175) 2003; 24 Schaeffer (10.1016/j.rse.2021.112685_bb0315) 2018; 109 Coffer (10.1016/j.rse.2021.112685_bb0055) 2020; 111 U.S. Environmental Protection Agency (10.1016/j.rse.2021.112685_bb0360) 2000 Warren (10.1016/j.rse.2021.112685_bb0405) 2019; 225 Lee (10.1016/j.rse.2021.112685_bb0185) 2007; 112 Mishra (10.1016/j.rse.2021.112685_bb0235) 2019; 9 Downing (10.1016/j.rse.2021.112685_bb0075) 2010; 29 U.S. Geological Survey (10.1016/j.rse.2021.112685_bb0375) 2012 Wynne (10.1016/j.rse.2021.112685_bb0440) 2018 Gregg (10.1016/j.rse.2021.112685_bb0140) 2017; 8 Tofallis (10.1016/j.rse.2021.112685_bb0340) 2015; 66 IOCS (10.1016/j.rse.2021.112685_bb0170) 2015 Binding (10.1016/j.rse.2021.112685_bb0020) 2013; 39 Bastviken (10.1016/j.rse.2021.112685_bb0005) 2004; 18 Seegers (10.1016/j.rse.2021.112685_bb0325) 2018; 26 Cole (10.1016/j.rse.2021.112685_bb0060) 2007; 10 Urquhart (10.1016/j.rse.2021.112685_bb0385) 2019 |
| References_xml | – volume: 9 start-page: 18310 year: 2019 ident: bb0235 article-title: Measurement of cyanobacterial bloom magnitude using satellite remote sensing publication-title: Sci. Rep. – volume: 774 start-page: 145462 year: 2021 ident: bb0240 article-title: Evaluation of a satellite-based cyanobacteria bloom detection algorithm using field-measured microcystin data publication-title: Sci. Total Environ. – volume: 20 start-page: 1771 year: 1999 end-page: 1786 ident: bb0130 article-title: Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS publication-title: Int. J. Remote Sens. – volume: 45 start-page: 573 year: 2019 end-page: 586 ident: bb0030 article-title: The impact of phytoplankton community composition on optical properties and satellite observations on optical properties and satellite observations of the 2017 western Lake Erie algal bloom publication-title: J. Great Lakes Res. – year: 2007 ident: bb0160 article-title: Ocean-colour data merging publication-title: Reports of the International Ocean-Colour Coordinating Group – year: 2002 ident: bb0105 article-title: Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression – volume: 54 start-page: 2315 year: 2009 end-page: 2329 ident: bb0215 article-title: Modelling lakes and reservoirs in the climate system publication-title: Limnol. Oceanogr. – volume: 229 start-page: 159 year: 2019 end-page: 178 ident: bb0260 article-title: A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types publication-title: Remote Sens. Environ. – volume: 30 start-page: 4401 year: 2009 end-page: 4425 ident: bb0180 article-title: Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters publication-title: Int. J. Remote Sens. – volume: 124 start-page: 1524 year: 2019 end-page: 1543 ident: bb0155 article-title: Improving satellite global chlorophyll a data products through algorithm refinement and data recovery publication-title: J. Geophys. Res. Oceans. – volume: 54 start-page: 2298 year: 2009 end-page: 2314 ident: bb0350 article-title: Lakes and reservoirs as regulators of carbon cycling and climate publication-title: Limnol. Oceanogr. – volume: 119 start-page: 243 year: 2012 end-page: 254 ident: bb0275 article-title: The development of a new optical total suspended matter algorithm for the Chesapeake Bay publication-title: Remote Sens. Environ. – volume: 26 start-page: 2005 year: 2005 end-page: 2021 ident: bb0135 article-title: Detection of intense plankton blooms using the 709nm band of the MERIS imaging spectrometer publication-title: Int. J. Remote Sens. – year: 2020 ident: bb0265 article-title: Cyanobacterial Harmful Algal Bloom (HAB) Freshwater Recreational Response Strategy – year: 2000 ident: bb0360 article-title: Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs. (EPA 822-B-00-001) – volume: 29 start-page: 3665 year: 2008 end-page: 3672 ident: bb0425 article-title: Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes publication-title: Int. J. Remote Sens. – volume: 109 start-page: 93 year: 2018 end-page: 103 ident: bb0315 article-title: Mobile device application for monitoring cyanobacteria harmful algal blooms using Sentinel-3 satellite ocean and land color instruments publication-title: Environ. Model. Softw. – volume: 10 start-page: 171 year: 2007 end-page: 184 ident: bb0060 article-title: Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget publication-title: Ecosystems. – year: 2013 ident: bb0255 article-title: NASA Shuttle Radar Topography Mission Water Body Data Shapefiles & Raster Files V3.0 [Data set]. NASA LP DAAC – volume: 96 year: 2015 ident: bib451 article-title: Agencies collaborate, develop a Cyanobacteria Assessment Network publication-title: Eos – volume: 29 start-page: 9 year: 2010 end-page: 23 ident: bb0075 article-title: Emerging global role of small lakes and ponds: little things mean a lot publication-title: Limnetica. – year: 2019 ident: bb0280 article-title: Recreational Use Public Health Advisory Guidelines for Cyanobacterial Blooms in Freshwater Bodies – year: 2019 ident: bb0445 article-title: Harmful Cyanobacterial Bloom Action Plan for Publicly Accessible Lakes and Reservoirs of Wyoming – volume: 112 start-page: 4086 year: 2008 end-page: 4097 ident: bb0270 article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes publication-title: Remote Sens. Environ. – volume: 5 start-page: 443 year: 2019 end-page: 455 ident: bb0415 article-title: Satellite remote sensing: ocean color publication-title: Encyclopedia of Ocean Sciences – year: 2019 ident: bb0110 article-title: Atmospheric correction of satellite ocean-color imagery during the PACE era publication-title: Front. Earth Sci. – volume: 121 start-page: 118 year: 2012 end-page: 124 ident: bb0250 article-title: Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — the Azov Sea case study publication-title: Remote Sens. Environ. – volume: 201 start-page: 47 year: 2017 end-page: 56 ident: bb0290 article-title: Sentinel-2 MultiSpectral instrument (MSI) data processing for aquatic science applications: demonstrations and validations publication-title: Remote Sens. Environ. – volume: 4 year: 2020 ident: bb0335 article-title: Quantifying the human health benefits of using satellite information to detect cyanobacterial harmful algal blooms and manage recreational advisories in U.S. lakes publication-title: GeoHealth – year: 2011 ident: bb0370 article-title: 2012 National Lakes Assessment. Field Operations Manual. (EPA 841-B-11-003) – volume: 39 start-page: 100 year: 2013 end-page: 107 ident: bb0020 article-title: The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring publication-title: J. Great Lakes Res. – volume: 156 start-page: 374 year: 2015 end-page: 382 ident: bb0220 article-title: Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters publication-title: Remote Sens. Environ. – volume: 157 start-page: 24 year: 2015 end-page: 34 ident: bb0205 article-title: Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA publication-title: Remote Sens. Environ. – volume: 503 start-page: 355 year: 2013 end-page: 359 ident: bb0305 article-title: Global carbon dioxide emissions from inland waters publication-title: Nature – volume: 111 year: 2020 ident: bb0055 article-title: Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing Ecol publication-title: Indic. – volume: 30 start-page: 1149 year: 2009 end-page: 1166 ident: bb0070 article-title: Global limnology: up-scaling aquatic services and processes to the planet Earth publication-title: Verh. Internat Verein. Limnol. – volume: 18 start-page: 24109 year: 2010 end-page: 24125 ident: bb0115 article-title: Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands publication-title: Opt. Express – year: 2016 ident: bb0245 article-title: Atmospheric Correction for Satellite Ocean Color Radiometry, NASA/Tech. Memorandum-217551, GSFC-E-DAA-TN35509 – volume: 192 start-page: 1 year: 2020 end-page: 22 ident: bb0300 article-title: Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs publication-title: Environ. Monit. Assess. – volume: 117 year: 2012 ident: bb0150 article-title: Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference publication-title: J. Geophys. Res. – volume: 8 start-page: 1694 year: 2017 ident: bb0230 article-title: Organic carbon burial in global lakes and reservoirs publication-title: Nat. Commun. – start-page: 1 year: 2021 end-page: 17 ident: bb0010 article-title: Assessment of algorithms for estimating chlorophyll-a concentration in inland waters: a round-robin scoring method based on the optically fuzzy clustering publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 165 start-page: 64 year: 2015 end-page: 85 ident: bb0035 article-title: Regional ocean-colour chlorophyll algorithms for the Red Sea publication-title: Remote Sens. Environ. – volume: 229 start-page: 32 year: 2019 end-page: 47 ident: bb0285 article-title: Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6 publication-title: Remote Sens. Environ. – volume: 33 start-page: 793 year: 2011 end-page: 806 ident: bb0015 article-title: An assessment of MERIS algal products during an intense bloom in Lake of the Woods publication-title: J. Plankton Res. – volume: 42 year: 2016 ident: bb0195 article-title: Verification of a simple band ratio algorithm for retrieving Great Lakes open water surface chlorophyll concentrations from satellite observations publication-title: J. Great Lakes Res. – volume: 124 start-page: 637 year: 2012 end-page: 652 ident: bb0225 article-title: An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters publication-title: Remote Sens. Environ. – volume: 27 start-page: 30140 year: 2019 end-page: 30157 ident: bb0320 article-title: Comparing level-2 and level-3 satellite ocean color retrieval validation methodologies publication-title: Opt. Express – volume: 51 start-page: 2388 year: 2006 end-page: 2397 ident: bb0080 article-title: The global abundance and size distribution of lakes, ponds, and impoundments publication-title: Limnol. Oceanogr. – year: 2009 ident: bb0365 article-title: National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. (EPA 841-R-09-001) – volume: 24 start-page: 3771 year: 2003 end-page: 3790 ident: bb0175 article-title: Feasibility of airborne imaging spectrometry for lake monitoring - a case study of spatial chlorophyll publication-title: Int. J. Remote Sens. – volume: 160 start-page: 186 year: 2018 end-page: 212 ident: bb0420 article-title: An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing publication-title: Prog. Oceanogr. – volume: 13 start-page: 3367 year: 1992 end-page: 3373 ident: bb0120 article-title: The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration publication-title: Int. J. Remote Sens. – volume: 55 start-page: 2025 year: 2010 end-page: 2036 ident: bb0430 article-title: Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data publication-title: Limnol. Oceanogr. – volume: 73 start-page: 489 year: 2007 end-page: 500 ident: bb0330 article-title: Ship-of opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuar publication-title: Coast. Shelf Sci. – volume: 92 start-page: 548 year: 1997 end-page: 560 ident: bb0095 article-title: Improvements on cross-validation: the 632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 66 start-page: 1352 year: 2015 end-page: 1362 ident: bb0340 article-title: A better measure of relative prediction accuracy for model selection and model estimation publication-title: J. Oper. Res. Soc. – volume: 39 start-page: 138 year: 2013 end-page: 152 ident: bb0190 article-title: A band-ratio algorithm for retrieving open-lake chlorophyll values from satellite observations of the Great Lakes publication-title: J. Great Lakes Res. – volume: 80 start-page: 84 year: 2017 end-page: 95 ident: bb0050 article-title: Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources publication-title: Ecol. Indic. – volume: 18 year: 2004 ident: bb0005 article-title: Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate publication-title: Glob. Biogeochem. Cycles – volume: 8 start-page: 12,1102 year: 2017 end-page: 1111 ident: bb0140 article-title: Global trends in ocean phytoplankton: a new assessment using revised ocean colour data publication-title: Remote Sens. Lett. – year: 2019 ident: bb0100 article-title: CyAN: R Package – year: 2018 ident: bb0380 article-title: NASA Shuttle Radar Topography Mission Water Body Data Shapefiles & Raster Files V4.0 [Data set] – volume: 10 start-page: 578 year: 2019 ident: bb0085 article-title: Ocean colour signature of climate change publication-title: Nat. Commun. – volume: 26 start-page: 7404 year: 2018 end-page: 7422 ident: bb0325 article-title: Performance metrics for the assessment of satellite data products: an ocean color case study publication-title: Opt. Express – volume: 67 start-page: 144 year: 2017 end-page: 152 ident: bb0390 article-title: A method for monitoring cyanobacterial harmful algal bloom spatial extent using satellite remote sensing data publication-title: Harmful Algae – volume: 39 start-page: 90 year: 2013 end-page: 99 ident: bb0435 article-title: Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation publication-title: J. Great Lakes Res. – start-page: 48 year: 2018 ident: bb0440 article-title: Harmful Algal Bloom Forecasting Branch Ocean Color Satellite Imagery Processing Guidelines, NOAA Technical Memorandum NOS NCCOS 252 – volume: 53 start-page: 1523 year: 2014 end-page: 1545 ident: bb0040 article-title: Simulation and analysis of adjacency effects in coastal waters: a case study publication-title: Appl. Opt. – volume: Vol. 32 year: 1995 ident: bb0045 article-title: Level-3 SeaWiFS data products: spatial and temporal binning algorithms publication-title: NASA Tech. Memo. 104566 – volume: 7 start-page: 1 year: 1979 end-page: 26 ident: bb0090 article-title: Bootstrap methods: another look at jackknife publication-title: Ann. Stat. – volume: 44 start-page: 547 year: 2018 end-page: 562 ident: bb0200 article-title: Using satellite observations to assess the spatial representativeness of the GLNPO water quality monitoring program publication-title: J. Great Lakes Res. – volume: 157 start-page: 158 year: 2015 end-page: 169 ident: bb0295 article-title: Validation of envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex Shallow Lake publication-title: Remote Sens. Environ. – volume: 76 start-page: 1 year: 2009 end-page: 3 ident: bb0210 article-title: Skill assessment for coupled biological/physical models of marine systems publication-title: J. Mar. Syst. – volume: 225 start-page: 267 year: 2019 end-page: 289 ident: bb0405 article-title: Assessment of atmospheric correction algorithms for the sentinel-2A MultiSpectral imager over coastal and inland waters publication-title: Remote Sens. Environ. – year: 2018 ident: bb0165 article-title: Earth observations in support of global water quality monitoring publication-title: IOCCG Report Series – year: 1997 ident: bb0065 article-title: Bootstrap Methods and their Application – year: 2015 ident: bb0170 article-title: Proceedings of the 2015 International Ocean Colour Science Meeting – volume: 38 start-page: 517 year: 2004 end-page: 522 ident: bb0145 article-title: Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods publication-title: Water Res. – volume: 443 start-page: 71 year: 2006 end-page: 75 ident: bb0400 article-title: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming publication-title: Nature – volume: 112 year: 2007 ident: bb0185 article-title: Euphotic zone depth: its derivation and implication to ocean-color remote sensing publication-title: J. Geophys. Res. Oceans. – volume: 159 start-page: 45 year: 2017 end-page: 72 ident: bb0450 article-title: Uncertainties and applications of satellite-derived coastal water quality products publication-title: Prog. Oceanogr. – volume: 14 start-page: 413 year: 1975 end-page: 416 ident: bb0125 article-title: Estimation of the depth of sunlight penetration in the sea for remote sensing publication-title: Appl. Opt. – volume: 60 start-page: 1976 year: 2015 end-page: 1995 ident: bb0025 article-title: Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations publication-title: Limnol. Oceanogr. – start-page: 104826 year: 2019 ident: bb0385 article-title: Envisat MERIS and Sentinel-3 OLCI satellite lake biophysical water quality flag dataset for the contiguous United States publication-title: Data Brief – volume: 312 start-page: 221 year: 2003 end-page: 243 ident: bb0395 article-title: Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes publication-title: Sci. Total Environ. – volume: 17 start-page: 1 year: 1985 end-page: 12 ident: bb0355 article-title: Errors associated with the standard fluorimetric determination of chlorophylls and phaeopigments publication-title: Mar. Chem. – volume: 121 year: 2016 ident: bb0310 article-title: Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie publication-title: J. Geophys. Res. Oceans – year: 2012 ident: bb0375 article-title: National Hydrography Dataset Plus, Version 2 – volume: 98 start-page: 122 year: 2005 end-page: 140 ident: bb0410 article-title: An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation publication-title: Remote Sens. Environ. – volume: 7 start-page: 141 year: 2016 end-page: 149 ident: bb0345 article-title: Relating chlorophyll from cyanobacteria-dominated inland waters to a MERIS bloom index publication-title: Remote Sens. Lett. – volume: 60 start-page: 1976 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0025 article-title: Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10146 – volume: 4 year: 2020 ident: 10.1016/j.rse.2021.112685_bb0335 article-title: Quantifying the human health benefits of using satellite information to detect cyanobacterial harmful algal blooms and manage recreational advisories in U.S. lakes publication-title: GeoHealth doi: 10.1029/2020GH000254 – volume: 112 issue: C3 year: 2007 ident: 10.1016/j.rse.2021.112685_bb0185 article-title: Euphotic zone depth: its derivation and implication to ocean-color remote sensing publication-title: J. Geophys. Res. Oceans. doi: 10.1029/2006JC003802 – volume: 201 start-page: 47 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0290 article-title: Sentinel-2 MultiSpectral instrument (MSI) data processing for aquatic science applications: demonstrations and validations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.033 – start-page: 104826 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0385 article-title: Envisat MERIS and Sentinel-3 OLCI satellite lake biophysical water quality flag dataset for the contiguous United States publication-title: Data Brief – year: 2019 ident: 10.1016/j.rse.2021.112685_bb0445 – volume: 27 start-page: 30140 issue: 21 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0320 article-title: Comparing level-2 and level-3 satellite ocean color retrieval validation methodologies publication-title: Opt. Express doi: 10.1364/OE.27.030140 – volume: 774 start-page: 145462 year: 2021 ident: 10.1016/j.rse.2021.112685_bb0240 article-title: Evaluation of a satellite-based cyanobacteria bloom detection algorithm using field-measured microcystin data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145462 – year: 2018 ident: 10.1016/j.rse.2021.112685_bb0380 – volume: 92 start-page: 548 issue: 438 year: 1997 ident: 10.1016/j.rse.2021.112685_bb0095 article-title: Improvements on cross-validation: the 632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 117 issue: C1 year: 2012 ident: 10.1016/j.rse.2021.112685_bb0150 article-title: Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference publication-title: J. Geophys. Res. – year: 2011 ident: 10.1016/j.rse.2021.112685_bb0370 – volume: 121 year: 2016 ident: 10.1016/j.rse.2021.112685_bb0310 article-title: Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie publication-title: J. Geophys. Res. Oceans doi: 10.1002/2016JC011720 – volume: 98 start-page: 122 year: 2005 ident: 10.1016/j.rse.2021.112685_bb0410 article-title: An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.07.001 – volume: 7 start-page: 141 issue: 2 year: 2016 ident: 10.1016/j.rse.2021.112685_bb0345 article-title: Relating chlorophyll from cyanobacteria-dominated inland waters to a MERIS bloom index publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2015.1117155 – volume: 54 start-page: 2315 year: 2009 ident: 10.1016/j.rse.2021.112685_bb0215 article-title: Modelling lakes and reservoirs in the climate system publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6_part_2.2315 – year: 1997 ident: 10.1016/j.rse.2021.112685_bb0065 – volume: 13 start-page: 3367 year: 1992 ident: 10.1016/j.rse.2021.112685_bb0120 article-title: The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904125 – volume: 229 start-page: 32 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0285 article-title: Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.021 – year: 2019 ident: 10.1016/j.rse.2021.112685_bb0110 article-title: Atmospheric correction of satellite ocean-color imagery during the PACE era publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00145 – volume: 14 start-page: 413 issue: 2 year: 1975 ident: 10.1016/j.rse.2021.112685_bb0125 article-title: Estimation of the depth of sunlight penetration in the sea for remote sensing publication-title: Appl. Opt. doi: 10.1364/AO.14.000413 – volume: 20 start-page: 1771 year: 1999 ident: 10.1016/j.rse.2021.112685_bb0130 article-title: Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS publication-title: Int. J. Remote Sens. doi: 10.1080/014311699212470 – volume: 17 start-page: 1 issue: 1 year: 1985 ident: 10.1016/j.rse.2021.112685_bb0355 article-title: Errors associated with the standard fluorimetric determination of chlorophylls and phaeopigments publication-title: Mar. Chem. doi: 10.1016/0304-4203(85)90032-5 – volume: 160 start-page: 186 year: 2018 ident: 10.1016/j.rse.2021.112685_bb0420 article-title: An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2018.01.001 – volume: 44 start-page: 547 issue: 4 year: 2018 ident: 10.1016/j.rse.2021.112685_bb0200 article-title: Using satellite observations to assess the spatial representativeness of the GLNPO water quality monitoring program publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2018.05.001 – volume: 26 start-page: 2005 year: 2005 ident: 10.1016/j.rse.2021.112685_bb0135 article-title: Detection of intense plankton blooms using the 709nm band of the MERIS imaging spectrometer publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500075857 – volume: 73 start-page: 489 year: 2007 ident: 10.1016/j.rse.2021.112685_bb0330 article-title: Ship-of opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuar publication-title: Coast. Shelf Sci. doi: 10.1016/j.ecss.2007.02.015 – volume: 39 start-page: 138 issue: 1 year: 2013 ident: 10.1016/j.rse.2021.112685_bb0190 article-title: A band-ratio algorithm for retrieving open-lake chlorophyll values from satellite observations of the Great Lakes publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2012.12.007 – volume: 29 start-page: 9 year: 2010 ident: 10.1016/j.rse.2021.112685_bb0075 article-title: Emerging global role of small lakes and ponds: little things mean a lot publication-title: Limnetica. doi: 10.23818/limn.29.02 – volume: 42 issue: 448–454 year: 2016 ident: 10.1016/j.rse.2021.112685_bb0195 article-title: Verification of a simple band ratio algorithm for retrieving Great Lakes open water surface chlorophyll concentrations from satellite observations publication-title: J. Great Lakes Res. – volume: 8 start-page: 12,1102 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0140 article-title: Global trends in ocean phytoplankton: a new assessment using revised ocean colour data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1354263 – volume: 24 start-page: 3771 year: 2003 ident: 10.1016/j.rse.2021.112685_bb0175 article-title: Feasibility of airborne imaging spectrometry for lake monitoring - a case study of spatial chlorophyll a distribution in two mesoeutrophic lakes publication-title: Int. J. Remote Sens. doi: 10.1080/0143116021000023899 – year: 2012 ident: 10.1016/j.rse.2021.112685_bb0375 – volume: 156 start-page: 374 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0220 article-title: Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.010 – volume: 54 start-page: 2298 year: 2009 ident: 10.1016/j.rse.2021.112685_bb0350 article-title: Lakes and reservoirs as regulators of carbon cycling and climate publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6_part_2.2298 – year: 2019 ident: 10.1016/j.rse.2021.112685_bb0100 – volume: 39 start-page: 100 issue: S1 year: 2013 ident: 10.1016/j.rse.2021.112685_bb0020 article-title: The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2013.04.005 – volume: Vol. 32 year: 1995 ident: 10.1016/j.rse.2021.112685_bb0045 article-title: Level-3 SeaWiFS data products: spatial and temporal binning algorithms – year: 2000 ident: 10.1016/j.rse.2021.112685_bb0360 – volume: 30 start-page: 1149 year: 2009 ident: 10.1016/j.rse.2021.112685_bb0070 article-title: Global limnology: up-scaling aquatic services and processes to the planet Earth publication-title: Verh. Internat Verein. Limnol. – year: 2013 ident: 10.1016/j.rse.2021.112685_bb0255 – volume: 39 start-page: 90 issue: Supplement 1 year: 2013 ident: 10.1016/j.rse.2021.112685_bb0435 article-title: Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2012.10.003 – volume: 18 start-page: 24109 issue: 23 year: 2010 ident: 10.1016/j.rse.2021.112685_bb0115 article-title: Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands publication-title: Opt. Express doi: 10.1364/OE.18.024109 – volume: 55 start-page: 2025 issue: 5 year: 2010 ident: 10.1016/j.rse.2021.112685_bb0430 article-title: Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.5.2025 – volume: 443 start-page: 71 year: 2006 ident: 10.1016/j.rse.2021.112685_bb0400 article-title: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming publication-title: Nature doi: 10.1038/nature05040 – year: 2018 ident: 10.1016/j.rse.2021.112685_bb0165 article-title: Earth observations in support of global water quality monitoring – year: 2002 ident: 10.1016/j.rse.2021.112685_bb0105 – volume: 76 start-page: 1 year: 2009 ident: 10.1016/j.rse.2021.112685_bb0210 article-title: Skill assessment for coupled biological/physical models of marine systems publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2008.05.002 – volume: 66 start-page: 1352 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0340 article-title: A better measure of relative prediction accuracy for model selection and model estimation publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2014.103 – volume: 29 start-page: 3665 issue: 12 year: 2008 ident: 10.1016/j.rse.2021.112685_bb0425 article-title: Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802007640 – volume: 38 start-page: 517 issue: 3 year: 2004 ident: 10.1016/j.rse.2021.112685_bb0145 article-title: Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods publication-title: Water Res. doi: 10.1016/j.watres.2003.10.033 – volume: 109 start-page: 93 year: 2018 ident: 10.1016/j.rse.2021.112685_bb0315 article-title: Mobile device application for monitoring cyanobacteria harmful algal blooms using Sentinel-3 satellite ocean and land color instruments publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.08.015 – start-page: 1 year: 2021 ident: 10.1016/j.rse.2021.112685_bb0010 article-title: Assessment of algorithms for estimating chlorophyll-a concentration in inland waters: a round-robin scoring method based on the optically fuzzy clustering publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2007 ident: 10.1016/j.rse.2021.112685_bb0160 article-title: Ocean-colour data merging – volume: 165 start-page: 64 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0035 article-title: Regional ocean-colour chlorophyll algorithms for the Red Sea publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.024 – volume: 119 start-page: 243 year: 2012 ident: 10.1016/j.rse.2021.112685_bb0275 article-title: The development of a new optical total suspended matter algorithm for the Chesapeake Bay publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.018 – volume: 312 start-page: 221 year: 2003 ident: 10.1016/j.rse.2021.112685_bb0395 article-title: Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(03)00225-0 – volume: 30 start-page: 4401 issue: 17 year: 2009 ident: 10.1016/j.rse.2021.112685_bb0180 article-title: Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802562305 – volume: 7 start-page: 1 year: 1979 ident: 10.1016/j.rse.2021.112685_bb0090 article-title: Bootstrap methods: another look at jackknife publication-title: Ann. Stat. doi: 10.1214/aos/1176344552 – start-page: 48 year: 2018 ident: 10.1016/j.rse.2021.112685_bb0440 – volume: 33 start-page: 793 issue: 5 year: 2011 ident: 10.1016/j.rse.2021.112685_bb0015 article-title: An assessment of MERIS algal products during an intense bloom in Lake of the Woods publication-title: J. Plankton Res. doi: 10.1093/plankt/fbq133 – year: 2016 ident: 10.1016/j.rse.2021.112685_bb0245 – volume: 124 start-page: 1524 issue: 3 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0155 article-title: Improving satellite global chlorophyll a data products through algorithm refinement and data recovery publication-title: J. Geophys. Res. Oceans. doi: 10.1029/2019JC014941 – volume: 5 start-page: 443 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0415 article-title: Satellite remote sensing: ocean color – volume: 96 year: 2015 ident: 10.1016/j.rse.2021.112685_bib451 article-title: Agencies collaborate, develop a Cyanobacteria Assessment Network publication-title: Eos doi: 10.1029/2015EO038809 – volume: 159 start-page: 45 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0450 article-title: Uncertainties and applications of satellite-derived coastal water quality products publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2017.08.007 – volume: 192 start-page: 1 issue: 12 year: 2020 ident: 10.1016/j.rse.2021.112685_bb0300 article-title: Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08631-5 – volume: 124 start-page: 637 year: 2012 ident: 10.1016/j.rse.2021.112685_bb0225 article-title: An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.032 – volume: 51 start-page: 2388 issue: 5 year: 2006 ident: 10.1016/j.rse.2021.112685_bb0080 article-title: The global abundance and size distribution of lakes, ponds, and impoundments publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2006.51.5.2388 – volume: 121 start-page: 118 year: 2012 ident: 10.1016/j.rse.2021.112685_bb0250 article-title: Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — the Azov Sea case study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.024 – volume: 26 start-page: 7404 issue: 6 year: 2018 ident: 10.1016/j.rse.2021.112685_bb0325 article-title: Performance metrics for the assessment of satellite data products: an ocean color case study publication-title: Opt. Express doi: 10.1364/OE.26.007404 – volume: 503 start-page: 355 year: 2013 ident: 10.1016/j.rse.2021.112685_bb0305 article-title: Global carbon dioxide emissions from inland waters publication-title: Nature doi: 10.1038/nature12760 – volume: 10 start-page: 171 year: 2007 ident: 10.1016/j.rse.2021.112685_bb0060 article-title: Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget publication-title: Ecosystems. doi: 10.1007/s10021-006-9013-8 – volume: 8 start-page: 1694 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0230 article-title: Organic carbon burial in global lakes and reservoirs publication-title: Nat. Commun. doi: 10.1038/s41467-017-01789-6 – volume: 229 start-page: 159 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0260 article-title: A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.027 – year: 2019 ident: 10.1016/j.rse.2021.112685_bb0280 – volume: 67 start-page: 144 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0390 article-title: A method for monitoring cyanobacterial harmful algal bloom spatial extent using satellite remote sensing data publication-title: Harmful Algae doi: 10.1016/j.hal.2017.06.001 – volume: 157 start-page: 24 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0205 article-title: Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.008 – volume: 10 start-page: 578 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0085 article-title: Ocean colour signature of climate change publication-title: Nat. Commun. doi: 10.1038/s41467-019-08457-x – volume: 111 year: 2020 ident: 10.1016/j.rse.2021.112685_bb0055 article-title: Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing Ecol publication-title: Indic. – volume: 18 year: 2004 ident: 10.1016/j.rse.2021.112685_bb0005 article-title: Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2004GB002238 – year: 2009 ident: 10.1016/j.rse.2021.112685_bb0365 – volume: 45 start-page: 573 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0030 article-title: The impact of phytoplankton community composition on optical properties and satellite observations on optical properties and satellite observations of the 2017 western Lake Erie algal bloom publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2018.11.015 – volume: 53 start-page: 1523 issue: 8 year: 2014 ident: 10.1016/j.rse.2021.112685_bb0040 article-title: Simulation and analysis of adjacency effects in coastal waters: a case study publication-title: Appl. Opt. doi: 10.1364/AO.53.001523 – year: 2015 ident: 10.1016/j.rse.2021.112685_bb0170 – volume: 80 start-page: 84 year: 2017 ident: 10.1016/j.rse.2021.112685_bb0050 article-title: Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.04.046 – volume: 225 start-page: 267 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0405 article-title: Assessment of atmospheric correction algorithms for the sentinel-2A MultiSpectral imager over coastal and inland waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.018 – volume: 9 start-page: 18310 year: 2019 ident: 10.1016/j.rse.2021.112685_bb0235 article-title: Measurement of cyanobacterial bloom magnitude using satellite remote sensing publication-title: Sci. Rep. doi: 10.1038/s41598-019-54453-y – volume: 112 start-page: 4086 year: 2008 ident: 10.1016/j.rse.2021.112685_bb0270 article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.013 – volume: 157 start-page: 158 year: 2015 ident: 10.1016/j.rse.2021.112685_bb0295 article-title: Validation of envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex Shallow Lake publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.07.024 – ident: 10.1016/j.rse.2021.112685_bb0265 |
| SSID | ssj0015871 |
| Score | 2.602743 |
| Snippet | Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic... |
| SourceID | pubmedcentral proquest pubmed crossref nasa elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 112685 |
| SubjectTerms | Abbreviations Alaska Algorithm validation Algorithms Aquatic ecosystems Aquatic organisms Case studies Chlorophyll Chlorophylla Cyanobacteria Drinking water Earth Resources And Remote Sensing environment environmental health Imaging spectrometers Inland waters Lakes MERIS timeseries Phytoplankton radiometry Remote sensing Satellites spectrometers stakeholders surface water Time series time series analysis Water monitoring Water quality Water quality management Water quality monitoring |
| Title | Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a |
| URI | https://dx.doi.org/10.1016/j.rse.2021.112685 https://ntrs.nasa.gov/citations/20210026776 https://www.ncbi.nlm.nih.gov/pubmed/36424983 https://www.proquest.com/docview/2600348371 https://www.proquest.com/docview/2636514174 https://www.proquest.com/docview/2740512959 https://pubmed.ncbi.nlm.nih.gov/PMC9680834 |
| Volume | 266 |
| WOSCitedRecordID | wos000704353300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgQvCMoGhTEZiSeqVLm4ccJbmcpgDxVaN1SeItdxt44sHU07bT-E_8s5dpKmZavgAamqqtjOpd-X43PscyHkXWxz4cvABiOHcYuJ2LGEb0tLuVLAjMh8O451sQne7wfDYfi1VvtVxMJcJzxNg5ub8Oq_Qg3HAGwMnf0HuMuTwgH4DaDDN8AO338F_EDoJJu4noouhMk0PbNQ_rYu9es7y92cJyn6NLZO24N2KxE_jGsckgbLQA50zfkW3q8ySZwrG936tPIcDP0pYJQklqhquMcKwMehaZZfqRJLV67nKHWWF2f7qCPG5q1-e7lJNIuL0srt1pGaqWXUxTcdjHOpFokRl8e3IJ-65dCBSBLjNqizUFaXNFxnzT2kiLWpym2PWShdqnLbNeVa_pgDzHLERXuWYRpU19FRUqYu0Gq-7YPvd-XbxiFomXLub5Ftl3fCoE62u196w6Nye6oTcFOKMb-tYrtcOw6uXfc-haeeikzcZdesu-dW9J2Tp-RJbqjQriHYM1JTaYPs9pZYQmM-MWQN8uhQ5bnPG-Thoa4Wffuc_FxykQJpaMlFuuQinY6p4SJFLlLNxQ8UmEg1EykykRomUuxVYaI-6QoTd8jpp97JwWcrr_FhSTA05hYYzI4tA7AC1DhkvuKSYTokyUaxI-EjeOyx2BGguI5CWwjXcRRYWtLzRz4L4tDbhT9ymqqXhMoxCCRb8aADQ-yRH3a4AH1W-jCRjmLFm8QugIhkngAf67AkUeHpeBEBdhFiFxnsmuR9OeTKZH_Z1JkV6Ea5-mrU0giYuWnYDjIhgnvJogr5mmSvoEaUixdo95FzgcedJnlbNsOMgNt8IlXTBfbxfDCDHM429OFgqIGq3wmb5IVhW_mAns9cFgZek_AVHpYdMCP9aks6OdeZ6UMs5OOxV_c80mvyePm675H6fLZQb8gDeT2fZLN9ssWHwX7-qv0GdI768Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellites+for+long-term+monitoring+of+inland+U.S.+lakes%3A+The+MERIS+time+series+and+application+for+chlorophyll-a&rft.jtitle=Remote+sensing+of+environment&rft.au=Seegers%2C+Bridget+N.&rft.au=Werdell%2C+P.+Jeremy&rft.au=Vandermeulen%2C+Ryan+A.&rft.au=Salls%2C+Wilson&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=0034-4257&rft.volume=266&rft_id=info:doi/10.1016%2Fj.rse.2021.112685&rft.externalDBID=CYI&rft.externalDocID=20210026776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |