Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder
This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model uti...
Uloženo v:
| Vydáno v: | Advanced modeling and simulation in engineering sciences Ročník 12; číslo 1; s. 22 - 23 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2213-7467, 2213-7467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency. |
|---|---|
| AbstractList | This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency. This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency. Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency. |
| ArticleNumber | 22 |
| Author | Abdedou, Azzedine Chaudhry, Shubham Soulaïmani, Azzeddine |
| Author_xml | – sequence: 1 givenname: Shubham surname: Chaudhry fullname: Chaudhry, Shubham organization: Department of Mechanical Engineering, École de Technologie Supérieure – sequence: 2 givenname: Azzedine surname: Abdedou fullname: Abdedou, Azzedine organization: Department of Mechanical Engineering, École de Technologie Supérieure – sequence: 3 givenname: Azzeddine surname: Soulaïmani fullname: Soulaïmani, Azzeddine email: Azzeddine.soulaimani@etsmtl.ca organization: Department of Mechanical Engineering, École de Technologie Supérieure |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40777044$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAQjVARLaU_wAJFYsMm4FfsZIVQeVWqxAbW1sR2bnPleIKdXKlfxS_i3JTSsmBlz8w5Z0Yz53lxEjC4onhJyVtKG_kuCcIZrwirK0I4qSv5pDhjjPJKCalOHvxPi4uU9oQQKrmgSj4rTgVRShEhzopfH2GGysbh4EKZW1RDmOOSclhGZxfjbInRuliOaJ33Q9iV2JfJeWfmFeQhrUXn57UE1g7H9Ahh6cHMS1zTU0TjUiqz7hZNmYNxvsEdBvCldQbHCVPmYigh2NJgOKBf1jjXYZnRBZMniC-Kpz345C7u3vPix-dP3y-_VtffvlxdfriuTM35XDEmuJTcmr7rZdNJpoCApETRnipqeC9bVnMjiekN7WsDpG2Ypa2QQDKo4-fF1aZrEfZ6isMI8VYjDPqYwLjTEOfBeKcpmK61hHVC1oKYrquhk41qFLXOKkOy1vtNa1q60Vnj8orBPxJ9XAnDjd7hQVPGWS14mxXe3ClE_Lm4NOtxSCbfA4LDJensBKVyT1Fn6Ot_oHtcYt7iESVV03BOM-rVw5HuZ_ljjAxgG8BETCm6_h5CiV4NqDcD6mxAfTSglpnEN1Ka1ru7-Lf3f1i_Ae_w4oI |
| Cites_doi | 10.3390/app11178010 10.1016/j.ress.2019.106733 10.1016/j.cma.2018.10.047 10.1016/j.mtcomm.2021.102796 10.3390/app12052324 10.1016/j.engappai.2023.105908 10.1080/10407790590935920 10.1007/s40192-019-00149-0 10.1007/s11837-019-03792-2 10.1016/j.camwa.2021.01.015 10.1007/s11837-020-04155-y 10.21203/rs.3.rs-2443614/v1 10.1109/ICMLA.2019.00171 10.1002/cjce.23669 10.1063/5.0039986 10.1016/j.jtice.2021.04.062 10.48550/arXiv.2202.12653 10.1016/j.rcim.2019.01.004 10.55092/am20250001 10.1007/s00138-021-01226-1 10.1016/j.camwa.2021.10.006 10.48550/arXiv.2412.18786 10.1016/j.jprocont.2020.08.002 10.1016/j.mfglet.2019.02.001 10.1007/s10845-021-01879-9 10.1016/j.mfglet.2018.10.002 10.2514/6.2019-3333 10.1007/s00466-022-02257-9 10.1016/j.addma.2020.101538 10.1016/j.jcp.2020.109854 10.1002/nme.1205 10.7302/23070 10.1109/ACCESS.2018.2836917 10.1016/j.cma.2016.12.033 10.1080/14786440109462720 10.1109/WSC.2002.1166440 10.1007/s00170-008-1669-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
| DOI | 10.1186/s40323-025-00305-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2213-7467 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_1acb9d02b46540cbb5ab687871ded7c0 PMC12325439 40777044 10_1186_s40323_025_00305_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN/2693-2021 funderid: https://doi.org/10.13039/501100000038 |
| GroupedDBID | 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN AASML ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS SOJ TUS AAYXX AFFHD CITATION AHSBF EJD H13 NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO 7X8 5PM |
| ID | FETCH-LOGICAL-c533t-2243663dcfbf68b627a0a61071f171c3f69253c60cfc1f5ca0982d1946a0071b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544693800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-7467 |
| IngestDate | Fri Oct 03 12:51:54 EDT 2025 Tue Nov 04 02:03:37 EST 2025 Fri Sep 05 15:16:16 EDT 2025 Tue Sep 30 19:05:40 EDT 2025 Mon Aug 11 01:33:22 EDT 2025 Sat Nov 29 07:34:57 EST 2025 Wed Aug 06 16:36:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Proper orthogonal decomposition Additive manufacturing Convolutional autoencoder Reduced-order model |
| Language | English |
| License | The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c533t-2243663dcfbf68b627a0a61071f171c3f69253c60cfc1f5ca0982d1946a0071b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3236788331?pq-origsite=%requestingapplication% |
| PMID | 40777044 |
| PQID | 3236788331 |
| PQPubID | 2034555 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1acb9d02b46540cbb5ab687871ded7c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12325439 proquest_miscellaneous_3237768745 proquest_journals_3236788331 pubmed_primary_40777044 crossref_primary_10_1186_s40323_025_00305_6 springer_journals_10_1186_s40323_025_00305_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Heidelberg |
| PublicationTitle | Advanced modeling and simulation in engineering sciences |
| PublicationTitleAbbrev | Adv. Model. and Simul. in Eng. Sci |
| PublicationTitleAlternate | Adv Model Simul Eng Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | 305_CR3 305_CR40 305_CR2 305_CR41 305_CR5 A Chatterjee (305_CR12) 2000; 78 305_CR22 305_CR44 305_CR23 305_CR45 305_CR1 305_CR20 305_CR42 HMD Kabir (305_CR43) 2018; 6 305_CR21 305_CR26 305_CR27 305_CR24 305_CR25 305_CR28 305_CR29 R Siddalingappa (305_CR33) 2021; 12 X Zhao (305_CR18) 2021; 29 305_CR30 305_CR11 305_CR34 305_CR31 305_CR10 305_CR32 305_CR15 305_CR37 305_CR16 305_CR38 S Chaudhry (305_CR4) 2022; 12 305_CR13 305_CR35 305_CR14 305_CR36 305_CR19 305_CR17 305_CR39 305_CR7 305_CR6 305_CR9 305_CR8 |
| References_xml | – ident: 305_CR3 doi: 10.3390/app11178010 – ident: 305_CR13 doi: 10.1016/j.ress.2019.106733 – ident: 305_CR37 – ident: 305_CR17 doi: 10.1016/j.cma.2018.10.047 – ident: 305_CR35 – volume: 29 start-page: 102796 year: 2021 ident: 305_CR18 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102796 – volume: 12 start-page: 2324 issue: 5 year: 2022 ident: 305_CR4 publication-title: Appl Sci doi: 10.3390/app12052324 – ident: 305_CR24 doi: 10.1016/j.engappai.2023.105908 – ident: 305_CR20 doi: 10.1080/10407790590935920 – ident: 305_CR36 doi: 10.1007/s40192-019-00149-0 – ident: 305_CR9 doi: 10.1007/s11837-019-03792-2 – ident: 305_CR16 doi: 10.1016/j.camwa.2021.01.015 – ident: 305_CR1 doi: 10.1007/s11837-020-04155-y – ident: 305_CR26 doi: 10.21203/rs.3.rs-2443614/v1 – ident: 305_CR29 doi: 10.1109/ICMLA.2019.00171 – ident: 305_CR28 doi: 10.1002/cjce.23669 – ident: 305_CR31 – volume: 12 start-page: 10 issue: 7 year: 2021 ident: 305_CR33 publication-title: Int J Adv Comput Sci Appl – ident: 305_CR39 doi: 10.1063/5.0039986 – ident: 305_CR30 doi: 10.1016/j.jtice.2021.04.062 – ident: 305_CR45 doi: 10.48550/arXiv.2202.12653 – ident: 305_CR8 doi: 10.1016/j.rcim.2019.01.004 – ident: 305_CR25 doi: 10.55092/am20250001 – ident: 305_CR34 doi: 10.1007/s00138-021-01226-1 – ident: 305_CR14 doi: 10.1016/j.camwa.2021.10.006 – ident: 305_CR19 doi: 10.48550/arXiv.2412.18786 – ident: 305_CR40 – ident: 305_CR27 doi: 10.1016/j.jprocont.2020.08.002 – ident: 305_CR5 doi: 10.1016/j.mfglet.2019.02.001 – ident: 305_CR42 – ident: 305_CR32 doi: 10.1007/s10845-021-01879-9 – ident: 305_CR6 doi: 10.1016/j.mfglet.2018.10.002 – ident: 305_CR38 doi: 10.2514/6.2019-3333 – ident: 305_CR23 doi: 10.1007/s00466-022-02257-9 – ident: 305_CR2 doi: 10.1016/j.addma.2020.101538 – volume: 78 start-page: 808 issue: 7 year: 2000 ident: 305_CR12 publication-title: Curr Sci – ident: 305_CR15 doi: 10.1016/j.jcp.2020.109854 – ident: 305_CR21 doi: 10.1002/nme.1205 – ident: 305_CR44 doi: 10.7302/23070 – volume: 6 start-page: 36218 year: 2018 ident: 305_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2836917 – ident: 305_CR11 doi: 10.1016/j.cma.2016.12.033 – ident: 305_CR22 – ident: 305_CR10 doi: 10.1080/14786440109462720 – ident: 305_CR41 doi: 10.1109/WSC.2002.1166440 – ident: 305_CR7 doi: 10.1007/s00170-008-1669-0 |
| SSID | ssj0001634176 |
| Score | 2.3105502 |
| Snippet | This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper... Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Accuracy Additive manufacturing Artificial neural networks Classical and Continuum Physics Complexity Computational Science and Engineering Convolutional autoencoder Costs Datasets Decomposition Deep learning Engineering Laser beam melting Lasers Machine learning Manufacturing Mechanical analysis Model reduction Multilayer perceptrons Neural networks Optimization Proper Orthogonal Decomposition Reduced order models Reduced-order model Regression models Simulation Statistical analysis Temperature Theoretical and Applied Mechanics Thermomechanical analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwEC2hEQc4IIY1MIOMxA2iiZN4yREGRpxGHECam-Ut0BKkW73Mb_GLVFXSTTeLuHBM7ERuVzl-1X71CuAFBjhtjIo4TzGUrbKyDHXwlCujumTrPmjPxSbM5aW9uuo-7JX6Ik7YKA88TtyZ9DF0qaoDCX_h-4LyQVt0M5lyMpGj9cp0e8EU_7ui8ets9DZLxuqzVVs1NR1ZqpJxc6kPdiIW7P8TyvydLPnLiSlvRBd34c6EIMXrceTHcCMP9-D2nq7gffj-1q99mZb0JRMY35ezgXIr8FIsSao1J8GSm4Lr4FBCupj3YsUlcagTImpqzF-JEy2IcsS3v_lhQ4kQnNkoFmOKgSDmPF8t8Bk6BZp_JnQvUia6-sQJE35Ighjuk6dju9-s56SiieN4AJ8u3n08f19OlRlKNGuzLnHfbxCqpNiHXtuga-Mrj0DMyF4aGZted7Vqoq5iH2Wvoq86WyfZtdoTpgnNQzjCX58fg8D9MSQddYOhGoKLYGOfZZeUqnOH0CUX8HJrJbcYBTgcBy5Wu9GmDm3q2KZOF_CGDLnrSeLZfANdyk0u5f7lUgWcbN3ATSt65RqSuqPKzLKA57tmXIt0wOKHPN9wH4Phm2lVAY9Gr9mNBANnY6q2LcAe-NPBUA9bhtkX1vsm1KsQOBbwaut6P8f197l48j_m4incqmnNMIHnBI7QW_Mp3IzX69lq-YwX3Q_OxDUn priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDLZg4QAH3o_CgoLEDSqatknTIyysOK04gLS3KK8uI0E7ms7wt_Yvru1pBwaWAxzbpFJa28nn-rMN8BIdnDoERZyn4PNaGZn70jvKlVFtNGXnteNmE83JiTk9bT9NSWHjzHafQ5K8U7NZG_1mrIuqpJijyhn45voqXFPStETkO5pyHPjPisadudFzhsylj-6dQlys_zKE-SdR8rdoKR9Cx7f_b_l34NYEOsXbrZbchSupvwc3fylFeB_O37u1y-OKNj_RD32-6CkdAy_Fiqq7pii4Sqfg1jmUwy6GTozcRYcmIQinwfSNaNSCWEp8-7vrN5Q7wcmQYrnNShBEtuerJT5DgaPhjBwCERMx3CcamXB9FESKn4wDx91mPVDhTVzHA_hy_OHz0cd8auaQoyZU6xyhQoXoJobOd9p4XTaucIjdGtnJRoaq022pqqCL0AXZqeCK1pRRtrV2BIN89RAO8O3TYxB4pPqog67Qu0M84k3okmyjUmVqEe2kDF7NwrXLbc0Oy76O0XYrBotisCwGqzN4R_LfzaR623xjWJ3ZyXytdMG3sSg9lZ9DrfbKeW1ws5MxxSYUGRzO2mOnTWC0FVXHo2bOMoMXu2E0X4rJuD4NG57ToMfX1CqDR1tl260Efe2mKeo6A7OnhntL3R_pF1-5RDgBZYVYM4PXszb-XNffv8WTf5v-FG6UpNDM7jmEA9TL9Ayuhx_rxbh6zlZ5Acl3N8s priority: 102 providerName: Springer Nature |
| Title | Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder |
| URI | https://link.springer.com/article/10.1186/s40323-025-00305-6 https://www.ncbi.nlm.nih.gov/pubmed/40777044 https://www.proquest.com/docview/3236788331 https://www.proquest.com/docview/3237768745 https://pubmed.ncbi.nlm.nih.gov/PMC12325439 https://doaj.org/article/1acb9d02b46540cbb5ab687871ded7c0 |
| Volume | 12 |
| WOSCitedRecordID | wos001544693800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: P5Z dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M7S dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH5iZjjAgX0gMFRG4gbRxEm85ISYYUZwoKpYpMIl8pahEiSlC3-Lv8h7btpStguXSs5zK7v5_Pw9-y0Aj9HAKZ0T5PPkbFoKzVObW0OxMqLyOm-sNLHYhBoO9XhcjfoDt3nvVrnWiVFR-87RGflxQanGqDIufzb9mlLVKLpd7Uto7MEBZUng0XXv7faMRaKOVnIdK6Pl8bzM8IdSquEa2XMqd_ajmLb_T1zzd5fJX-5N43Z0fv1_J3IDrvVElD1fIecmXArtLbj6U3rC2_D9hVmY1M9IIbK2a9NJSyEa2GQzyvgaPIuZO1ksp0Nx7axr2DxW1qFOSMxJGD6TazUjz6X4-ItplxRPEQMk2XQVqcDIAT-2pvgdukzqLshIYD6Q13vvWsZM6xk5yvcLBuVmuegoGSeO4w68Pz97d_oy7Qs8pIiOYpEifSiQ8XjX2EZqK3NlMoN8TvGGK-6KRla5KJzMXON4I5zJKp17XpXSEDWyxSHs4-zDPWC4zVovnSzQ4kOOYrVrAq-8EHmokAGFBJ6sX3M9XeXxqKP9o2W9AkWNoKgjKGqZwAkhYdOTcnDHB93sou6XdM2Ns5XPcksp6RDpVhgrNSpA7oNXLkvgaA2AulcM83r79hN4tBHjkqZ7GtOGbhn7KLQCVSkSuLuC3WYkaH8rlZVlAnoHkDtD3ZW0k08xbTiRZ4H8M4Gna-xux_X3_-L-v6fxAK7ktJyih88R7CMOw0O47L4tJvPZAPbUWA_g4ORsOHqDrdO8HMRjj0Fcqfg5Eh9RPnr1evThB2zrSXU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRJwYF8MBQYJTmDV64x9QAgoVaO2UQ5FKid3NpdIYIc4AfGn4C_y3thOCNutB472jK3n8fe2mbcAPEYHJ9E6pZgnrfwkzUJfRUpSrkyamywqFZeu2YQYjbLj43y8Ad_6XBgKq-xlohPUpta0R74dU6kx6owbvph-8qlrFJ2u9i00Wljs269f0GVrng938P8-iaLdN0ev9_yuq4CPJMVzH3VWjGrW6FKVPFM8EjKQaESIsAxFqOOS51Eaax7oUodlqmWQZ5FBX59L0scqxveeg82EwD6AzfHwcPxutavDUSsI3mfnZHy7SQIk3aeusc5e9_maBnSNAv5k3f4epPnLSa1TgLtX_reluwqXO1ObvWx54xps2Oo6XPqpAOMN-L4j59I3MxL5rKorf1JREgpeshnVtLWGudqkzDUMosx9Vpescb2DaBK6HjRoP1DwOKPYLHf7o6wWlDHiUkDZtM3FYJRi4K6m-Awdl9Wn5AYxYymuvwueY7IyjFIBOpGA43Ixr6ncKNJxE96eyYrdggF-vb0DDA0JZbjmMfq0aIWpTJc2zE2aRjZHG8968LSHVTFtK5UUzsPLeNGCsEAQFg6EBffgFSFvOZOqjLsb9ey06IRWEUqtchNEioruIS-rVCqeoYgPjTVCBx5s9YArOtHXFCu0efBoOYxCi06iZGXrhZsj0M8VSerB7RbmS0qSQAgRJIkH2RoDrJG6PlJN3rvC6OQepGhhe_Cs55UVXX9fi7v__oyHcGHv6PCgOBiO9u_BxYhY2cUzbcEAMWnvw3n9eT5pZg86acDg5Ky56AeAnp6j |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOvB-BAkbiBlHzsuMcoWUFAq16AKk3y892JUhWu1n-Fn-RGSdZulAOiGNiR3Lib-zPmZlvAF7iAaeyllPMkzVpxWWemsJoypXhjZNFMELHYhP1fC5PTprjc1n8Mdp9ckkOOQ2k0tT2B0sXBhOX4mBdZWVB_keeRhKcistwhTxShPHDMd8h_mURuErXYsqWufDRnR0pCvdfxDb_DJr8zXMaN6TZrf9_ldtwcySj7M2Anjtwybd34cY5icJ78ONI9zp1K1oUWdu16aKlNA28ZCtSffWORfVOFkvqUG476wJbx-o61AnJOTX6rxRezSh6Kd7-ptsN5VTEJEm2HLIVGAXhx6slPkMOpe6UDgrMeYp8H8PLmG4do2D50WiwXW_6jgQ5cRz34cvs3efD9-lY5CFFhJR9ihSiRNbjbDBBSCOKWmcaOV2dh7zObRlEU_DSiswGmwduddbIwuVNJTTRI1M-gD18e_8IGG61xgkrSjz1IU8x0gafN47zwjfIgnwCr6aJVstBy0PFM5AUapgGhdOg4jQokcBbwsK2J-lwxxvd6lSNZq1ybU3jssKQLB2i3XBthMRFMHfe1TZLYH9CkhoXh7UqSTWPijznCbzYNqNZk69Gt77bxD41ngTriifwcADediQI9LrOqioBuQPJnaHutrSLsygdTgSaIwdN4PWEzF_j-vu3ePxv3Z_DteOjmfr0Yf7xCVwvCNsxAGgf9hCi_ilctd_7xXr1LBrrT4N2Q5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+non-intrusive+reduced+order+modelling+of+selective+laser+melting+additive+manufacturing+process+using+proper+orthogonal+decomposition+and+convolutional+autoencoder&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Chaudhry%2C+Shubham&rft.au=Abdedou%2C+Azzedine&rft.au=Soula%C3%AFmani%2C+Azzeddine&rft.date=2025-12-01&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=12&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs40323-025-00305-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon |