Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder

This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model uti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced modeling and simulation in engineering sciences Ročník 12; číslo 1; s. 22 - 23
Hlavní autoři: Chaudhry, Shubham, Abdedou, Azzedine, Soulaïmani, Azzeddine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2213-7467, 2213-7467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.
AbstractList This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.
This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.
Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then combined with an artificial neural network to establish a surrogate model linking the snapshot matrix to the input parameters. This approach effectively reduces the dimensionality of the high-fidelity snapshot matrix and constructs a regression framework for accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations. The compressed latent space is then projected onto the input variables using a multilayer perceptron (MLP) regression model. This method leverages deep learning techniques to handle the complexity of the data and improve prediction accuracy. The accuracy and efficiency of both models are evaluated through thermo-mechanical analysis of an AM-built part. The comparison of statistical moments from high-fidelity simulation results with ROM predictions reveals a strong correlation. Furthermore, the predictions are validated against experimental results at various locations. While both models demonstrate good agreement with experimental data, the CAE-MLP model outperforms the POD-ANN model in terms of prediction accuracy and performance. The findings highlight the potential of integrating reduced-order modeling techniques with machine learning algorithms to enhance the analysis of complex AM processes. The proposed models offer a robust framework for future research and applications in the field of additive manufacturing, providing high precision and efficiency.
ArticleNumber 22
Author Abdedou, Azzedine
Chaudhry, Shubham
Soulaïmani, Azzeddine
Author_xml – sequence: 1
  givenname: Shubham
  surname: Chaudhry
  fullname: Chaudhry, Shubham
  organization: Department of Mechanical Engineering, École de Technologie Supérieure
– sequence: 2
  givenname: Azzedine
  surname: Abdedou
  fullname: Abdedou, Azzedine
  organization: Department of Mechanical Engineering, École de Technologie Supérieure
– sequence: 3
  givenname: Azzeddine
  surname: Soulaïmani
  fullname: Soulaïmani, Azzeddine
  email: Azzeddine.soulaimani@etsmtl.ca
  organization: Department of Mechanical Engineering, École de Technologie Supérieure
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40777044$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQjVARLaU_wAJFYsMm4FfsZIVQeVWqxAbW1sR2bnPleIKdXKlfxS_i3JTSsmBlz8w5Z0Yz53lxEjC4onhJyVtKG_kuCcIZrwirK0I4qSv5pDhjjPJKCalOHvxPi4uU9oQQKrmgSj4rTgVRShEhzopfH2GGysbh4EKZW1RDmOOSclhGZxfjbInRuliOaJ33Q9iV2JfJeWfmFeQhrUXn57UE1g7H9Ahh6cHMS1zTU0TjUiqz7hZNmYNxvsEdBvCldQbHCVPmYigh2NJgOKBf1jjXYZnRBZMniC-Kpz345C7u3vPix-dP3y-_VtffvlxdfriuTM35XDEmuJTcmr7rZdNJpoCApETRnipqeC9bVnMjiekN7WsDpG2Ypa2QQDKo4-fF1aZrEfZ6isMI8VYjDPqYwLjTEOfBeKcpmK61hHVC1oKYrquhk41qFLXOKkOy1vtNa1q60Vnj8orBPxJ9XAnDjd7hQVPGWS14mxXe3ClE_Lm4NOtxSCbfA4LDJensBKVyT1Fn6Ot_oHtcYt7iESVV03BOM-rVw5HuZ_ljjAxgG8BETCm6_h5CiV4NqDcD6mxAfTSglpnEN1Ka1ru7-Lf3f1i_Ae_w4oI
Cites_doi 10.3390/app11178010
10.1016/j.ress.2019.106733
10.1016/j.cma.2018.10.047
10.1016/j.mtcomm.2021.102796
10.3390/app12052324
10.1016/j.engappai.2023.105908
10.1080/10407790590935920
10.1007/s40192-019-00149-0
10.1007/s11837-019-03792-2
10.1016/j.camwa.2021.01.015
10.1007/s11837-020-04155-y
10.21203/rs.3.rs-2443614/v1
10.1109/ICMLA.2019.00171
10.1002/cjce.23669
10.1063/5.0039986
10.1016/j.jtice.2021.04.062
10.48550/arXiv.2202.12653
10.1016/j.rcim.2019.01.004
10.55092/am20250001
10.1007/s00138-021-01226-1
10.1016/j.camwa.2021.10.006
10.48550/arXiv.2412.18786
10.1016/j.jprocont.2020.08.002
10.1016/j.mfglet.2019.02.001
10.1007/s10845-021-01879-9
10.1016/j.mfglet.2018.10.002
10.2514/6.2019-3333
10.1007/s00466-022-02257-9
10.1016/j.addma.2020.101538
10.1016/j.jcp.2020.109854
10.1002/nme.1205
10.7302/23070
10.1109/ACCESS.2018.2836917
10.1016/j.cma.2016.12.033
10.1080/14786440109462720
10.1109/WSC.2002.1166440
10.1007/s00170-008-1669-0
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.1186/s40323-025-00305-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-7467
EndPage 23
ExternalDocumentID oai_doaj_org_article_1acb9d02b46540cbb5ab687871ded7c0
PMC12325439
40777044
10_1186_s40323_025_00305_6
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN/2693-2021
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID 0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
SOJ
TUS
AAYXX
AFFHD
CITATION
AHSBF
EJD
H13
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c533t-2243663dcfbf68b627a0a61071f171c3f69253c60cfc1f5ca0982d1946a0071b3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544693800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-7467
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 04 02:03:37 EST 2025
Fri Sep 05 15:16:16 EDT 2025
Tue Sep 30 19:05:40 EDT 2025
Mon Aug 11 01:33:22 EDT 2025
Sat Nov 29 07:34:57 EST 2025
Wed Aug 06 16:36:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Proper orthogonal decomposition
Additive manufacturing
Convolutional autoencoder
Reduced-order model
Language English
License The Author(s) 2025.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-2243663dcfbf68b627a0a61071f171c3f69253c60cfc1f5ca0982d1946a0071b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3236788331?pq-origsite=%requestingapplication%
PMID 40777044
PQID 3236788331
PQPubID 2034555
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_1acb9d02b46540cbb5ab687871ded7c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12325439
proquest_miscellaneous_3237768745
proquest_journals_3236788331
pubmed_primary_40777044
crossref_primary_10_1186_s40323_025_00305_6
springer_journals_10_1186_s40323_025_00305_6
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Heidelberg
PublicationTitle Advanced modeling and simulation in engineering sciences
PublicationTitleAbbrev Adv. Model. and Simul. in Eng. Sci
PublicationTitleAlternate Adv Model Simul Eng Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References 305_CR3
305_CR40
305_CR2
305_CR41
305_CR5
A Chatterjee (305_CR12) 2000; 78
305_CR22
305_CR44
305_CR23
305_CR45
305_CR1
305_CR20
305_CR42
HMD Kabir (305_CR43) 2018; 6
305_CR21
305_CR26
305_CR27
305_CR24
305_CR25
305_CR28
305_CR29
R Siddalingappa (305_CR33) 2021; 12
X Zhao (305_CR18) 2021; 29
305_CR30
305_CR11
305_CR34
305_CR31
305_CR10
305_CR32
305_CR15
305_CR37
305_CR16
305_CR38
S Chaudhry (305_CR4) 2022; 12
305_CR13
305_CR35
305_CR14
305_CR36
305_CR19
305_CR17
305_CR39
305_CR7
305_CR6
305_CR9
305_CR8
References_xml – ident: 305_CR3
  doi: 10.3390/app11178010
– ident: 305_CR13
  doi: 10.1016/j.ress.2019.106733
– ident: 305_CR37
– ident: 305_CR17
  doi: 10.1016/j.cma.2018.10.047
– ident: 305_CR35
– volume: 29
  start-page: 102796
  year: 2021
  ident: 305_CR18
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.102796
– volume: 12
  start-page: 2324
  issue: 5
  year: 2022
  ident: 305_CR4
  publication-title: Appl Sci
  doi: 10.3390/app12052324
– ident: 305_CR24
  doi: 10.1016/j.engappai.2023.105908
– ident: 305_CR20
  doi: 10.1080/10407790590935920
– ident: 305_CR36
  doi: 10.1007/s40192-019-00149-0
– ident: 305_CR9
  doi: 10.1007/s11837-019-03792-2
– ident: 305_CR16
  doi: 10.1016/j.camwa.2021.01.015
– ident: 305_CR1
  doi: 10.1007/s11837-020-04155-y
– ident: 305_CR26
  doi: 10.21203/rs.3.rs-2443614/v1
– ident: 305_CR29
  doi: 10.1109/ICMLA.2019.00171
– ident: 305_CR28
  doi: 10.1002/cjce.23669
– ident: 305_CR31
– volume: 12
  start-page: 10
  issue: 7
  year: 2021
  ident: 305_CR33
  publication-title: Int J Adv Comput Sci Appl
– ident: 305_CR39
  doi: 10.1063/5.0039986
– ident: 305_CR30
  doi: 10.1016/j.jtice.2021.04.062
– ident: 305_CR45
  doi: 10.48550/arXiv.2202.12653
– ident: 305_CR8
  doi: 10.1016/j.rcim.2019.01.004
– ident: 305_CR25
  doi: 10.55092/am20250001
– ident: 305_CR34
  doi: 10.1007/s00138-021-01226-1
– ident: 305_CR14
  doi: 10.1016/j.camwa.2021.10.006
– ident: 305_CR19
  doi: 10.48550/arXiv.2412.18786
– ident: 305_CR40
– ident: 305_CR27
  doi: 10.1016/j.jprocont.2020.08.002
– ident: 305_CR5
  doi: 10.1016/j.mfglet.2019.02.001
– ident: 305_CR42
– ident: 305_CR32
  doi: 10.1007/s10845-021-01879-9
– ident: 305_CR6
  doi: 10.1016/j.mfglet.2018.10.002
– ident: 305_CR38
  doi: 10.2514/6.2019-3333
– ident: 305_CR23
  doi: 10.1007/s00466-022-02257-9
– ident: 305_CR2
  doi: 10.1016/j.addma.2020.101538
– volume: 78
  start-page: 808
  issue: 7
  year: 2000
  ident: 305_CR12
  publication-title: Curr Sci
– ident: 305_CR15
  doi: 10.1016/j.jcp.2020.109854
– ident: 305_CR21
  doi: 10.1002/nme.1205
– ident: 305_CR44
  doi: 10.7302/23070
– volume: 6
  start-page: 36218
  year: 2018
  ident: 305_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2836917
– ident: 305_CR11
  doi: 10.1016/j.cma.2016.12.033
– ident: 305_CR22
– ident: 305_CR10
  doi: 10.1080/14786440109462720
– ident: 305_CR41
  doi: 10.1109/WSC.2002.1166440
– ident: 305_CR7
  doi: 10.1007/s00170-008-1669-0
SSID ssj0001634176
Score 2.3105502
Snippet This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper...
Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms Accuracy
Additive manufacturing
Artificial neural networks
Classical and Continuum Physics
Complexity
Computational Science and Engineering
Convolutional autoencoder
Costs
Datasets
Decomposition
Deep learning
Engineering
Laser beam melting
Lasers
Machine learning
Manufacturing
Mechanical analysis
Model reduction
Multilayer perceptrons
Neural networks
Optimization
Proper Orthogonal Decomposition
Reduced order models
Reduced-order model
Regression models
Simulation
Statistical analysis
Temperature
Theoretical and Applied Mechanics
Thermomechanical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwEC2hEQc4IIY1MIOMxA2iiZN4yREGRpxGHECam-Ut0BKkW73Mb_GLVFXSTTeLuHBM7ERuVzl-1X71CuAFBjhtjIo4TzGUrbKyDHXwlCujumTrPmjPxSbM5aW9uuo-7JX6Ik7YKA88TtyZ9DF0qaoDCX_h-4LyQVt0M5lyMpGj9cp0e8EU_7ui8ets9DZLxuqzVVs1NR1ZqpJxc6kPdiIW7P8TyvydLPnLiSlvRBd34c6EIMXrceTHcCMP9-D2nq7gffj-1q99mZb0JRMY35ezgXIr8FIsSao1J8GSm4Lr4FBCupj3YsUlcagTImpqzF-JEy2IcsS3v_lhQ4kQnNkoFmOKgSDmPF8t8Bk6BZp_JnQvUia6-sQJE35Ighjuk6dju9-s56SiieN4AJ8u3n08f19OlRlKNGuzLnHfbxCqpNiHXtuga-Mrj0DMyF4aGZted7Vqoq5iH2Wvoq86WyfZtdoTpgnNQzjCX58fg8D9MSQddYOhGoKLYGOfZZeUqnOH0CUX8HJrJbcYBTgcBy5Wu9GmDm3q2KZOF_CGDLnrSeLZfANdyk0u5f7lUgWcbN3ATSt65RqSuqPKzLKA57tmXIt0wOKHPN9wH4Phm2lVAY9Gr9mNBANnY6q2LcAe-NPBUA9bhtkX1vsm1KsQOBbwaut6P8f197l48j_m4incqmnNMIHnBI7QW_Mp3IzX69lq-YwX3Q_OxDUn
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDLZg4QAH3o_CgoLEDSqatknTIyysOK04gLS3KK8uI0E7ms7wt_Yvru1pBwaWAxzbpFJa28nn-rMN8BIdnDoERZyn4PNaGZn70jvKlVFtNGXnteNmE83JiTk9bT9NSWHjzHafQ5K8U7NZG_1mrIuqpJijyhn45voqXFPStETkO5pyHPjPisadudFzhsylj-6dQlys_zKE-SdR8rdoKR9Cx7f_b_l34NYEOsXbrZbchSupvwc3fylFeB_O37u1y-OKNj_RD32-6CkdAy_Fiqq7pii4Sqfg1jmUwy6GTozcRYcmIQinwfSNaNSCWEp8-7vrN5Q7wcmQYrnNShBEtuerJT5DgaPhjBwCERMx3CcamXB9FESKn4wDx91mPVDhTVzHA_hy_OHz0cd8auaQoyZU6xyhQoXoJobOd9p4XTaucIjdGtnJRoaq022pqqCL0AXZqeCK1pRRtrV2BIN89RAO8O3TYxB4pPqog67Qu0M84k3okmyjUmVqEe2kDF7NwrXLbc0Oy76O0XYrBotisCwGqzN4R_LfzaR623xjWJ3ZyXytdMG3sSg9lZ9DrfbKeW1ws5MxxSYUGRzO2mOnTWC0FVXHo2bOMoMXu2E0X4rJuD4NG57ToMfX1CqDR1tl260Efe2mKeo6A7OnhntL3R_pF1-5RDgBZYVYM4PXszb-XNffv8WTf5v-FG6UpNDM7jmEA9TL9Ayuhx_rxbh6zlZ5Acl3N8s
  priority: 102
  providerName: Springer Nature
Title Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder
URI https://link.springer.com/article/10.1186/s40323-025-00305-6
https://www.ncbi.nlm.nih.gov/pubmed/40777044
https://www.proquest.com/docview/3236788331
https://www.proquest.com/docview/3237768745
https://pubmed.ncbi.nlm.nih.gov/PMC12325439
https://doaj.org/article/1acb9d02b46540cbb5ab687871ded7c0
Volume 12
WOSCitedRecordID wos001544693800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: P5Z
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: M7S
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2213-7467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001634176
  issn: 2213-7467
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH5iZjjAgX0gMFRG4gbRxEm85ISYYUZwoKpYpMIl8pahEiSlC3-Lv8h7btpStguXSs5zK7v5_Pw9-y0Aj9HAKZ0T5PPkbFoKzVObW0OxMqLyOm-sNLHYhBoO9XhcjfoDt3nvVrnWiVFR-87RGflxQanGqDIufzb9mlLVKLpd7Uto7MEBZUng0XXv7faMRaKOVnIdK6Pl8bzM8IdSquEa2XMqd_ajmLb_T1zzd5fJX-5N43Z0fv1_J3IDrvVElD1fIecmXArtLbj6U3rC2_D9hVmY1M9IIbK2a9NJSyEa2GQzyvgaPIuZO1ksp0Nx7axr2DxW1qFOSMxJGD6TazUjz6X4-ItplxRPEQMk2XQVqcDIAT-2pvgdukzqLshIYD6Q13vvWsZM6xk5yvcLBuVmuegoGSeO4w68Pz97d_oy7Qs8pIiOYpEifSiQ8XjX2EZqK3NlMoN8TvGGK-6KRla5KJzMXON4I5zJKp17XpXSEDWyxSHs4-zDPWC4zVovnSzQ4kOOYrVrAq-8EHmokAGFBJ6sX3M9XeXxqKP9o2W9AkWNoKgjKGqZwAkhYdOTcnDHB93sou6XdM2Ns5XPcksp6RDpVhgrNSpA7oNXLkvgaA2AulcM83r79hN4tBHjkqZ7GtOGbhn7KLQCVSkSuLuC3WYkaH8rlZVlAnoHkDtD3ZW0k08xbTiRZ4H8M4Gna-xux_X3_-L-v6fxAK7ktJyih88R7CMOw0O47L4tJvPZAPbUWA_g4ORsOHqDrdO8HMRjj0Fcqfg5Eh9RPnr1evThB2zrSXU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRJwYF8MBQYJTmDV64x9QAgoVaO2UQ5FKid3NpdIYIc4AfGn4C_y3thOCNutB472jK3n8fe2mbcAPEYHJ9E6pZgnrfwkzUJfRUpSrkyamywqFZeu2YQYjbLj43y8Ad_6XBgKq-xlohPUpta0R74dU6kx6owbvph-8qlrFJ2u9i00Wljs269f0GVrng938P8-iaLdN0ev9_yuq4CPJMVzH3VWjGrW6FKVPFM8EjKQaESIsAxFqOOS51Eaax7oUodlqmWQZ5FBX59L0scqxveeg82EwD6AzfHwcPxutavDUSsI3mfnZHy7SQIk3aeusc5e9_maBnSNAv5k3f4epPnLSa1TgLtX_reluwqXO1ObvWx54xps2Oo6XPqpAOMN-L4j59I3MxL5rKorf1JREgpeshnVtLWGudqkzDUMosx9Vpescb2DaBK6HjRoP1DwOKPYLHf7o6wWlDHiUkDZtM3FYJRi4K6m-Awdl9Wn5AYxYymuvwueY7IyjFIBOpGA43Ixr6ncKNJxE96eyYrdggF-vb0DDA0JZbjmMfq0aIWpTJc2zE2aRjZHG8968LSHVTFtK5UUzsPLeNGCsEAQFg6EBffgFSFvOZOqjLsb9ey06IRWEUqtchNEioruIS-rVCqeoYgPjTVCBx5s9YArOtHXFCu0efBoOYxCi06iZGXrhZsj0M8VSerB7RbmS0qSQAgRJIkH2RoDrJG6PlJN3rvC6OQepGhhe_Cs55UVXX9fi7v__oyHcGHv6PCgOBiO9u_BxYhY2cUzbcEAMWnvw3n9eT5pZg86acDg5Ky56AeAnp6j
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOvB-BAkbiBlHzsuMcoWUFAq16AKk3y892JUhWu1n-Fn-RGSdZulAOiGNiR3Lib-zPmZlvAF7iAaeyllPMkzVpxWWemsJoypXhjZNFMELHYhP1fC5PTprjc1n8Mdp9ckkOOQ2k0tT2B0sXBhOX4mBdZWVB_keeRhKcistwhTxShPHDMd8h_mURuErXYsqWufDRnR0pCvdfxDb_DJr8zXMaN6TZrf9_ldtwcySj7M2Anjtwybd34cY5icJ78ONI9zp1K1oUWdu16aKlNA28ZCtSffWORfVOFkvqUG476wJbx-o61AnJOTX6rxRezSh6Kd7-ptsN5VTEJEm2HLIVGAXhx6slPkMOpe6UDgrMeYp8H8PLmG4do2D50WiwXW_6jgQ5cRz34cvs3efD9-lY5CFFhJR9ihSiRNbjbDBBSCOKWmcaOV2dh7zObRlEU_DSiswGmwduddbIwuVNJTTRI1M-gD18e_8IGG61xgkrSjz1IU8x0gafN47zwjfIgnwCr6aJVstBy0PFM5AUapgGhdOg4jQokcBbwsK2J-lwxxvd6lSNZq1ybU3jssKQLB2i3XBthMRFMHfe1TZLYH9CkhoXh7UqSTWPijznCbzYNqNZk69Gt77bxD41ngTriifwcADediQI9LrOqioBuQPJnaHutrSLsygdTgSaIwdN4PWEzF_j-vu3ePxv3Z_DteOjmfr0Yf7xCVwvCNsxAGgf9hCi_ilctd_7xXr1LBrrT4N2Q5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+non-intrusive+reduced+order+modelling+of+selective+laser+melting+additive+manufacturing+process+using+proper+orthogonal+decomposition+and+convolutional+autoencoder&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Chaudhry%2C+Shubham&rft.au=Abdedou%2C+Azzedine&rft.au=Soula%C3%AFmani%2C+Azzeddine&rft.date=2025-12-01&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=12&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs40323-025-00305-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon