Advanced Microarrays as Heterogeneous Force‐Remodeling Coordinator to Orchestrate Nuclear Configuration and Force‐Sensing Mechanotransduction in Stem Cells
Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration and force‐sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kin...
Uložené v:
| Vydané v: | Advanced science Ročník 12; číslo 14; s. e2416482 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.04.2025
John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration and force‐sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force‐sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force‐related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force‐sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells.
Engineered microarrays are prepared by the photolithography and further decorated via fibronectin protein to determine the morphogenesis of stem cells. Heterogeneous integrin expression and focal adhesion formation are regulated in microarrayed cells. Polar remodeling of cytoskeleton nanomechanics happens in the heterogeneous cells. Nuclear configuration circulation is explained through force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU analysis. |
|---|---|
| AbstractList | Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin-related force remodeling and play an important role in nuclear configuration and force-sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force-sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force-related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force-sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force-sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells.Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin-related force remodeling and play an important role in nuclear configuration and force-sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force-sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force-related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force-sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force-sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells. Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin-related force remodeling and play an important role in nuclear configuration and force-sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force-sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force-related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force-sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force-sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells. Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration and force‐sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force‐sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force‐related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force‐sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells. Engineered microarrays are prepared by the photolithography and further decorated via fibronectin protein to determine the morphogenesis of stem cells. Heterogeneous integrin expression and focal adhesion formation are regulated in microarrayed cells. Polar remodeling of cytoskeleton nanomechanics happens in the heterogeneous cells. Nuclear configuration circulation is explained through force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU analysis. Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration and force‐sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force‐sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force‐related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force‐sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells. Engineered microarrays are prepared by the photolithography and further decorated via fibronectin protein to determine the morphogenesis of stem cells. Heterogeneous integrin expression and focal adhesion formation are regulated in microarrayed cells. Polar remodeling of cytoskeleton nanomechanics happens in the heterogeneous cells. Nuclear configuration circulation is explained through force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU analysis. Abstract Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration and force‐sensing mechanotransduction of stem cells. However, further exploration of the interaction between actinin complex and myosin, kinetics, and molecular mechanism of cytoskeleton structures to nucleate within the engineered stem cells is vague. An extensive comprehension of cell morphogenesis, force remodeling, and nuclear force‐sensing mechanotransduction is essential to reveal the basic physical principles of cytoskeleton polymerization and force‐related signaling delivery. Advanced microarrays are designed to determine heterogeneous cell morphology and cell adhesion behaviors in stem cells. The heterogeneity from the engineered microarrays is transferred into nuclei to regulate nuclear configuration and force‐sensing mechanotransduction by the evaluation of Lamins, YAP, and BrdU expression. Tuning the activation of adhesion proteins and cytoskeleton nucleators to adjust heterogeneous cell mechanics may be the underlying mechanism to change nuclear force‐sensing configuration in response to its physiological mechanotransduction in microarrayed stem cells. |
| Author | Xu, Shihui Li, Yachun Wang, Yongtao Lin, Lili Yang, Yingjun Chen, Tao Lee, Kyubae Chen, Yazhou Wang, Xiuhui Wang, Nana Hou, Yan |
| AuthorAffiliation | 6 Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450003 China 4 Department of Biomedical Materials Konyang University Daejeon 35365 Republic of Korea 2 Department of Pediatrics Shanghai General Hospital Shanghai Jiao Tong University Shanghai 200080 China 7 Institute of Translational Medicine Shanghai University Shanghai 200444 China 5 Materials Institute of Atomic and Molecular Science Shaanxi University of Science and Technology Xi'an 710021 China 3 School of Medicine Shanghai University Shanghai 200444 China 1 Department of Orthopedic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China |
| AuthorAffiliation_xml | – name: 4 Department of Biomedical Materials Konyang University Daejeon 35365 Republic of Korea – name: 1 Department of Orthopedic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China – name: 5 Materials Institute of Atomic and Molecular Science Shaanxi University of Science and Technology Xi'an 710021 China – name: 6 Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450003 China – name: 3 School of Medicine Shanghai University Shanghai 200444 China – name: 2 Department of Pediatrics Shanghai General Hospital Shanghai Jiao Tong University Shanghai 200080 China – name: 7 Institute of Translational Medicine Shanghai University Shanghai 200444 China |
| Author_xml | – sequence: 1 givenname: Nana surname: Wang fullname: Wang, Nana organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yan surname: Hou fullname: Hou, Yan organization: Shanghai University – sequence: 3 givenname: Lili surname: Lin fullname: Lin, Lili organization: Shanghai Jiao Tong University – sequence: 4 givenname: Shihui surname: Xu fullname: Xu, Shihui organization: Shanghai University – sequence: 5 givenname: Kyubae surname: Lee fullname: Lee, Kyubae organization: Konyang University – sequence: 6 givenname: Yingjun surname: Yang fullname: Yang, Yingjun organization: Shaanxi University of Science and Technology – sequence: 7 givenname: Yazhou surname: Chen fullname: Chen, Yazhou organization: Zhengzhou University – sequence: 8 givenname: Yachun surname: Li fullname: Li, Yachun email: yachunli@126.com organization: Shanghai Jiao Tong University – sequence: 9 givenname: Xiuhui surname: Wang fullname: Wang, Xiuhui email: blackrabbit@shu.edu.cn organization: Shanghai University – sequence: 10 givenname: Yongtao orcidid: 0000-0001-5148-9393 surname: Wang fullname: Wang, Yongtao email: yongtao_wang@shu.edu.cn organization: Shanghai University – sequence: 11 givenname: Tao surname: Chen fullname: Chen, Tao email: zzuchentao@yahoo.com organization: The First Affiliated Hospital of Zhengzhou University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39951286$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUstuEzEUHaEiWkq3LNFIbNgk-DUPr1AUKK3UUokAW8tzfZM4mtjFngnKrp_QP-Df-BKcpI3aSoiNbV2fc3TvPedlduC8wyx7TcmQEsLea7OKQ0aYoKWo2bPsiFFZD3gtxMGD92F2EuOCEEILXglav8gOuZQFZXV5lP0emZV2gCa_tBC8DkGvY65jfoYdBj9Dh76P-akPgH9ubr_i0htsrZvlY--DsU53PuSdz68CzDF2QXeYf-mhRR0SxE3trE81612undnrTNDFjcglwlw7n2gumh62OOvySYfLfIxtG19lz6e6jXhydx9n308_fRufDS6uPp-PRxcDKDivBukAyXRZNUAoZcCp4VQ3khhWyYYDVlKKQtcADVDCC2nKhjdcA8PKpAc_zs53usbrhboOdqnDWnlt1bbgw0zp0Nk0l0KY0poVrDANCi1BI4OSIi8piKnkIml92Gld980SDaBL87WPRB__ODtXM79SNFkmal4lhXd3CsH_7NNa1dJGSPvQWzsUp2VZlVKWJEHfPoEufB9c2lVC1cl-IXiRUG8etrTv5T4ICSB2gBSCGANOFdhu61vq0LaKErWJnNpETu0jl2jDJ7R75X8Sih3hl21x_R-0Gn38MUl2po38BTex7lo |
| CitedBy_id | crossref_primary_10_1186_s12951_025_03623_4 |
| Cites_doi | 10.1186/s11658-025-00692-z 10.1039/D2TB01774A 10.1016/j.biomaterials.2016.04.024 10.1242/jcs.100115 10.1038/s41598-019-43362-9 10.1002/bmm2.12059 10.1126/scitranslmed.adk9811 10.1186/s12951-024-02412-9 10.1088/1758-5082/6/3/035012 10.1002/advs.202302855 10.1016/j.cell.2024.04.049 10.1016/j.jconrel.2025.01.065 10.1038/s41580-024-00719-x 10.1039/D2TB00729K 10.1002/admi.202101978 10.3390/nano12101656 10.1016/j.ceb.2020.01.016 10.1021/acs.nanolett.2c00667 10.1039/D4TB00065J 10.1126/sciimmunol.add4132 10.1038/s41586-024-07086-9 10.1002/adma.202309875 10.1038/s41556-023-01332-4 10.1016/j.actbio.2024.05.017 10.1126/sciadv.1700318 10.1007/s40820-019-0331-8 10.1038/s41580-023-00583-1 10.1021/acsnano.3c07088 10.1038/s41540-023-00302-8 10.1126/sciadv.adk6906 10.1038/s41576-022-00493-6 10.1038/s41580-023-00682-z 10.1016/j.ijbiomac.2023.124324 10.1021/acsnano.4c03743 10.1038/nrm.2017.16 10.3390/ijms231911884 10.1016/j.biomaterials.2019.119720 10.1016/j.cell.2024.05.057 10.1016/j.biomaterials.2022.121408 10.1038/ncomms8254 10.1038/s41467-018-05902-1 10.1002/adhm.201500229 10.1016/j.bios.2021.113086 10.1186/s12951-022-01713-1 10.1038/s41467-021-25212-3 10.1126/scitranslmed.abn1128 10.1073/pnas.2208536120 10.1126/scitranslmed.abo5715 10.1016/j.tcb.2022.02.006 10.1038/s41467-023-40203-2 10.1021/acsami.3c11188 10.1186/s12951-025-03101-x 10.1016/j.actbio.2021.01.042 10.1038/nrm.2015.3 10.1038/s41467-024-48088-5 10.1016/j.biomaterials.2021.120751 10.1038/s41586-022-05622-z 10.1016/j.ceb.2020.03.001 10.1038/s41467-020-20563-9 10.1039/D1TB00815C 10.1002/advs.202304124 10.1016/j.celrep.2019.12.075 10.1016/j.actbio.2023.07.048 10.1038/s41580-022-00508-4 10.1002/smll.202006596 10.1186/s12951-024-02580-8 10.1016/j.cell.2015.12.034 10.1038/nprot.2016.131 10.1002/advs.202307830 10.1016/j.addr.2010.11.001 10.1002/smll.202007347 10.1016/j.ebiom.2024.105412 10.1038/s41580-022-00472-z 10.1038/s41580-018-0086-y |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202416482 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central - New (Subscription) ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_ecf182525dbe4a9cae2c61e361c4f934 PMC11984837 39951286 10_1002_advs_202416482 ADVS11237 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82302401 – fundername: Science and Technology Research Project of Songjiang District funderid: 2024SJKJGG064 – fundername: Medicine‐Engineering Cross Research Foundation of Shanghai Jiaotong University funderid: YG2024QNA33 – fundername: Shanghai Overseas High‐Level Talent Project and High‐End Foreign Experts Introduction Plan of Ministry of Science and Technology funderid: G2023013020L – fundername: National Natural Science Foundation of China grantid: 82302401 – fundername: Shanghai Overseas High-Level Talent Project and High-End Foreign Experts Introduction Plan of Ministry of Science and Technology grantid: G2023013020L – fundername: Science and Technology Research Project of Songjiang District grantid: 2024SJKJGG064 – fundername: Medicine-Engineering Cross Research Foundation of Shanghai Jiaotong University grantid: YG2024QNA33 – fundername: Shanghai Overseas High‐Level Talent Project and High‐End Foreign Experts Introduction Plan of Ministry of Science and Technology grantid: G2023013020L – fundername: Medicine‐Engineering Cross Research Foundation of Shanghai Jiaotong University grantid: YG2024QNA33 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZT PIMPY PQQKQ PROAC ROL RPM AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION EJD PHGZM WIN CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5337-533c92a67bc0112c31d31ab90d279b3ce79945a8ccbc10359d6b3b3ac2e7d3b33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420739300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Nov 04 02:03:49 EST 2025 Fri Sep 05 06:43:00 EDT 2025 Tue Oct 28 02:24:28 EDT 2025 Tue Apr 15 01:22:53 EDT 2025 Tue Nov 18 21:13:51 EST 2025 Thu Nov 20 00:53:47 EST 2025 Fri Apr 11 09:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | heterogeneous focal adhesion advanced microarrays mechanical remodeling force‐sensing mechanotransduction nuclear configuration |
| Language | English |
| License | Attribution 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5337-533c92a67bc0112c31d31ab90d279b3ce79945a8ccbc10359d6b3b3ac2e7d3b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Correction added on 18 February 2025, after first online publication: affiliation of author Yongtao Wang is updated. |
| ORCID | 0000-0001-5148-9393 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202416482 |
| PMID | 39951286 |
| PQID | 3188444435 |
| PQPubID | 4365299 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ecf182525dbe4a9cae2c61e361c4f934 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11984837 proquest_miscellaneous_3166769960 proquest_journals_3188444435 pubmed_primary_39951286 crossref_citationtrail_10_1002_advs_202416482 crossref_primary_10_1002_advs_202416482 wiley_primary_10_1002_advs_202416482_ADVS11237 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2016 2021 2023 2024; 11 17 17 12 2014 2021; 6 17 2015 2019 2024 2024; 4 11 11 22 2015 2022; 6 282 2022 2022; 23 9 2011 2023; 63 240 2023; 120 2022 2023 2024 2024; 12 34 110 2 2022 2024; 20 18 2017 2023 2023; 18 8 10 2023; 9 2023 2025; 169 23 2021 2022 2024; 125 23 187 2023 2024; 15 10 2020 2024; 63 5 2016; 164 2024 2025 2025; 627 30 379 2016 2021; 98 271 2019 2023 2024; 20 14 182 2018 2022; 9 11 2023; 24 2021; 12 2020 2022; 63 32 2021; 179 2020; 30 2017 2021; 3 12 2022 2023 2024; 23 24 11 2019 2022; 9 10 2022; 14 2024 2024 2024; 15 25 16 2020; 232 2022 2016 2024; 23 17 22 2013 2023 2024; 126 614 187 2024; 25 2024; 26 2021 2022 2022; 9 14 22 2024 2024; 10 36 e_1_2_9_31_1 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_2 e_1_2_9_12_3 e_1_2_9_14_1 e_1_2_9_37_3 e_1_2_9_35_2 e_1_2_9_14_3 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_2 e_1_2_9_18_1 e_1_2_9_37_4 e_1_2_9_18_3 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_6_3 e_1_2_9_8_1 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_2 e_1_2_9_2_1 Wang Y. (e_1_2_9_31_2) 2024; 5 e_1_2_9_8_4 e_1_2_9_8_3 e_1_2_9_8_2 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_26_2 e_1_2_9_30_1 e_1_2_9_30_2 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_34_2 e_1_2_9_11_3 e_1_2_9_13_1 e_1_2_9_30_3 e_1_2_9_32_1 e_1_2_9_11_2 Wang F. (e_1_2_9_37_2) 2023; 34 e_1_2_9_15_1 e_1_2_9_36_3 e_1_2_9_11_4 e_1_2_9_13_2 e_1_2_9_17_1 e_1_2_9_34_3 e_1_2_9_36_1 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_19_1 e_1_2_9_19_2 e_1_2_9_21_1 e_1_2_9_23_2 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_5_2 e_1_2_9_3_3 e_1_2_9_5_1 e_1_2_9_3_2 e_1_2_9_1_3 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_2 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 15 25 16 start-page: 3812 654 year: 2024 2024 2024 publication-title: Nat. Commun. Nat. Rev. Mol. Cell Biol. Sci. Transl. Med. – volume: 11 17 17 12 start-page: 2223 3249 year: 2016 2021 2023 2024 publication-title: Nat. Protoc. Small ACS Nano J. Mater. Chem. B – volume: 9 start-page: 43 year: 2023 publication-title: npj Syst. Biol. Appl. – volume: 23 24 11 start-page: 624 495 year: 2022 2023 2024 publication-title: Nat. Rev. Genet. Nat. Rev. Mol. Cell Biol. Adv. Sci. – volume: 10 36 year: 2024 2024 publication-title: Sci. Adv. Adv. Mater. – volume: 125 23 187 start-page: 100 836 4289 year: 2021 2022 2024 publication-title: Acta Biomater. Nat. Rev. Mol. Cell Biol. Cell – volume: 4 11 11 22 start-page: 2456 98 376 year: 2015 2019 2024 2024 publication-title: Adv. Healthcare Mater. Nanomicro. Lett. Adv. Sci. J. Nanobiotech. – volume: 63 5 start-page: 174 337 year: 2020 2024 publication-title: Curr. Opin. Cell Biol. Biomater. Transl. – volume: 9 10 start-page: 6891 3989 year: 2019 2022 publication-title: Sci. Rep. J. Mater. Chem. B – volume: 24 start-page: 495 year: 2023 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 164 start-page: 681 year: 2016 publication-title: Cell – volume: 20 18 start-page: 499 year: 2022 2024 publication-title: J. Nanobiotech. ACS Nano – volume: 179 year: 2021 publication-title: Biosens. Bioelectron. – volume: 23 9 start-page: 465 year: 2022 2022 publication-title: Nat. Rev. Mol. Cell Biol. Adv. Mater. Interfaces – volume: 20 14 182 start-page: 211 4716 81 year: 2019 2023 2024 publication-title: Nat. Rev. Mol. Cell Biol. Nat. Commun. Acta Biomater. – volume: 14 year: 2022 publication-title: Sci. Transl. Med. – volume: 25 start-page: 290 year: 2024 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 15 10 year: 2023 2024 publication-title: ACS Appl. Mater. Interfaces Sci. Adv. – volume: 9 14 22 start-page: 4329 3400 year: 2021 2022 2022 publication-title: J. Mater. Chem. B Sci. Transl. Med. Nano Lett. – volume: 126 614 187 start-page: 393 144 2990 year: 2013 2023 2024 publication-title: J. Cell Sci. Nature Cell – volume: 12 start-page: 397 year: 2021 publication-title: Nat. Commun. – volume: 98 271 start-page: 103 year: 2016 2021 publication-title: Biomaterials Biomaterials – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 12 start-page: 4969 year: 2017 2021 publication-title: Sci. Adv. Nat. Commun. – volume: 6 17 year: 2014 2021 publication-title: Biofabrication Small – volume: 30 start-page: 793 year: 2020 publication-title: Cell Rep. – volume: 6 282 start-page: 7254 year: 2015 2022 publication-title: Nat. Commun. Biomaterials – volume: 26 start-page: 207 year: 2024 publication-title: Nat. Cell Biol. – volume: 63 32 start-page: 204 669 year: 2020 2022 publication-title: Curr. Opin. Cell Biol. Trends Cell Biol. – volume: 9 11 start-page: 3584 99 year: 2018 2022 publication-title: Nat. Commun. J. Mater. Chem. B – volume: 23 17 22 start-page: 55 153 year: 2022 2016 2024 publication-title: Int. J. Mol. Sci. Nat. Rev. Mol. Cell Biol. J. Nanobiotech. – volume: 63 240 start-page: 610 year: 2011 2023 publication-title: Adv. Drug Delivery Rev. Int. J. Biol. Macromol. – volume: 232 year: 2020 publication-title: Biomaterials – volume: 169 23 start-page: 19 22 year: 2023 2025 publication-title: Acta Biomater. J. Nanobiotech. – volume: 18 8 10 start-page: 361 year: 2017 2023 2023 publication-title: Nat. Rev. Mol. Cell Biol. Sci. Immunol. Adv. Sci. – volume: 627 30 379 start-page: 196 10 850 year: 2024 2025 2025 publication-title: Nature Cell. Mol. Biol. Lett. J. Control. Release – volume: 12 34 110 2 start-page: 1656 595 year: 2022 2023 2024 2024 publication-title: Nanomaterials Bioconjug. Chem. eBioMedicine BMEMat – ident: e_1_2_9_34_2 doi: 10.1186/s11658-025-00692-z – ident: e_1_2_9_7_2 doi: 10.1039/D2TB01774A – ident: e_1_2_9_19_1 doi: 10.1016/j.biomaterials.2016.04.024 – ident: e_1_2_9_14_1 doi: 10.1242/jcs.100115 – ident: e_1_2_9_9_1 doi: 10.1038/s41598-019-43362-9 – ident: e_1_2_9_37_4 doi: 10.1002/bmm2.12059 – ident: e_1_2_9_3_3 doi: 10.1126/scitranslmed.adk9811 – ident: e_1_2_9_30_3 doi: 10.1186/s12951-024-02412-9 – ident: e_1_2_9_13_1 doi: 10.1088/1758-5082/6/3/035012 – ident: e_1_2_9_18_3 doi: 10.1002/advs.202302855 – ident: e_1_2_9_14_3 doi: 10.1016/j.cell.2024.04.049 – ident: e_1_2_9_34_3 doi: 10.1016/j.jconrel.2025.01.065 – ident: e_1_2_9_3_2 doi: 10.1038/s41580-024-00719-x – ident: e_1_2_9_9_2 doi: 10.1039/D2TB00729K – ident: e_1_2_9_27_2 doi: 10.1002/admi.202101978 – ident: e_1_2_9_37_1 doi: 10.3390/nano12101656 – ident: e_1_2_9_31_1 doi: 10.1016/j.ceb.2020.01.016 – ident: e_1_2_9_12_3 doi: 10.1021/acs.nanolett.2c00667 – ident: e_1_2_9_8_4 doi: 10.1039/D4TB00065J – ident: e_1_2_9_18_2 doi: 10.1126/sciimmunol.add4132 – ident: e_1_2_9_34_1 doi: 10.1038/s41586-024-07086-9 – ident: e_1_2_9_2_2 doi: 10.1002/adma.202309875 – ident: e_1_2_9_16_1 doi: 10.1038/s41556-023-01332-4 – ident: e_1_2_9_36_3 doi: 10.1016/j.actbio.2024.05.017 – ident: e_1_2_9_10_1 doi: 10.1126/sciadv.1700318 – ident: e_1_2_9_11_2 doi: 10.1007/s40820-019-0331-8 – volume: 5 start-page: 337 year: 2024 ident: e_1_2_9_31_2 publication-title: Biomater. Transl. – ident: e_1_2_9_1_2 doi: 10.1038/s41580-023-00583-1 – ident: e_1_2_9_8_3 doi: 10.1021/acsnano.3c07088 – ident: e_1_2_9_24_1 doi: 10.1038/s41540-023-00302-8 – ident: e_1_2_9_15_2 doi: 10.1126/sciadv.adk6906 – ident: e_1_2_9_1_1 doi: 10.1038/s41576-022-00493-6 – ident: e_1_2_9_29_1 doi: 10.1038/s41580-023-00682-z – ident: e_1_2_9_23_2 doi: 10.1016/j.ijbiomac.2023.124324 – ident: e_1_2_9_5_2 doi: 10.1021/acsnano.4c03743 – ident: e_1_2_9_18_1 doi: 10.1038/nrm.2017.16 – ident: e_1_2_9_30_1 doi: 10.3390/ijms231911884 – ident: e_1_2_9_22_1 doi: 10.1016/j.biomaterials.2019.119720 – volume: 34 start-page: 595 year: 2023 ident: e_1_2_9_37_2 publication-title: Bioconjug. Chem. – ident: e_1_2_9_6_3 doi: 10.1016/j.cell.2024.05.057 – ident: e_1_2_9_26_2 doi: 10.1016/j.biomaterials.2022.121408 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms8254 – ident: e_1_2_9_7_1 doi: 10.1038/s41467-018-05902-1 – ident: e_1_2_9_11_1 doi: 10.1002/adhm.201500229 – ident: e_1_2_9_4_1 doi: 10.1016/j.bios.2021.113086 – ident: e_1_2_9_5_1 doi: 10.1186/s12951-022-01713-1 – ident: e_1_2_9_10_2 doi: 10.1038/s41467-021-25212-3 – ident: e_1_2_9_12_2 doi: 10.1126/scitranslmed.abn1128 – ident: e_1_2_9_32_1 doi: 10.1073/pnas.2208536120 – ident: e_1_2_9_2_1 doi: 10.1126/sciadv.adk6906 – ident: e_1_2_9_17_1 doi: 10.1126/scitranslmed.abo5715 – ident: e_1_2_9_33_2 doi: 10.1016/j.tcb.2022.02.006 – ident: e_1_2_9_36_2 doi: 10.1038/s41467-023-40203-2 – ident: e_1_2_9_15_1 doi: 10.1021/acsami.3c11188 – ident: e_1_2_9_35_2 doi: 10.1186/s12951-025-03101-x – ident: e_1_2_9_6_1 doi: 10.1016/j.actbio.2021.01.042 – ident: e_1_2_9_30_2 doi: 10.1038/nrm.2015.3 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-024-48088-5 – ident: e_1_2_9_19_2 doi: 10.1016/j.biomaterials.2021.120751 – ident: e_1_2_9_14_2 doi: 10.1038/s41586-022-05622-z – ident: e_1_2_9_33_1 doi: 10.1016/j.ceb.2020.03.001 – ident: e_1_2_9_20_1 doi: 10.1038/s41467-020-20563-9 – ident: e_1_2_9_12_1 doi: 10.1039/D1TB00815C – ident: e_1_2_9_1_3 doi: 10.1002/advs.202304124 – ident: e_1_2_9_28_1 doi: 10.1016/j.celrep.2019.12.075 – ident: e_1_2_9_35_1 doi: 10.1016/j.actbio.2023.07.048 – ident: e_1_2_9_21_1 doi: 10.1038/s41580-023-00583-1 – ident: e_1_2_9_6_2 doi: 10.1038/s41580-022-00508-4 – ident: e_1_2_9_13_2 doi: 10.1002/smll.202006596 – ident: e_1_2_9_11_4 doi: 10.1186/s12951-024-02580-8 – ident: e_1_2_9_25_1 doi: 10.1016/j.cell.2015.12.034 – ident: e_1_2_9_8_1 doi: 10.1038/nprot.2016.131 – ident: e_1_2_9_11_3 doi: 10.1002/advs.202307830 – ident: e_1_2_9_23_1 doi: 10.1016/j.addr.2010.11.001 – ident: e_1_2_9_8_2 doi: 10.1002/smll.202007347 – ident: e_1_2_9_37_3 doi: 10.1016/j.ebiom.2024.105412 – ident: e_1_2_9_27_1 doi: 10.1038/s41580-022-00472-z – ident: e_1_2_9_36_1 doi: 10.1038/s41580-018-0086-y |
| SSID | ssj0001537418 |
| Score | 2.3310761 |
| Snippet | Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear configuration... Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin-related force remodeling and play an important role in nuclear configuration... Abstract Integrin and focal adhesion can regulate cytoskeleton distribution to govern actin‐related force remodeling and play an important role in nuclear... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2416482 |
| SubjectTerms | advanced microarrays Animals Cell adhesion & migration Cell Adhesion - physiology Cell Nucleus - metabolism Cytoskeleton Cytoskeleton - metabolism Design force‐sensing mechanotransduction heterogeneous focal adhesion Humans Interdisciplinary subjects Mechanical properties mechanical remodeling Mechanics Mechanotransduction, Cellular - physiology Medical diagnosis Morphogenesis Morphology nuclear configuration Silicon wafers Stem cells Stem Cells - cytology Stem Cells - metabolism Stem Cells - physiology Viscosity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxYELovwGCjISEnAIbWzHsY9lxaoHuiAKqLfImTgQaUlQsq3UWx-BN-DdeBJmnGy0K0C9kEMUJZZleT5nvpHH3zD2TINNlTdFDErrWFVSxw5sFUvvlXBeSRWyfD-_zRYLc3pq32-U-qKcsEEeeJi4fQ8VUuBUpGXhlbPgvACdeKkTUJWVQQkUWc9GMDWcD5Yky7JWaTwQ-648J3VudFhaGbHlhYJY_98Y5p-JkpsENnig-S12c6SO_HAY8i675pvbbHdcnD1_MSpIv7zDfh6OO_v8mPLtXNe5i567nh9R8kuLmPEY8PN524H_dfnjgw_1cNCJ8VmLwWjdUCTOVy1_14V6WiQnwRekfOw6TmcE6y9nA3K4a8qpnxNKhsdOjj0dJ25X5AbLQZ2W1w0_WflvfOaXy_4u-zR_83F2FI-VGGJAOpjFeAMrnM4KwP-BAJmUMnGFPShFZgsJPrNWpc4AFJCQKGCpC1lIB8JnJT7Ie2ynaRv_gHH0hqbSRldgnQKduspgV0jx8RWSlSxi8doyOYwy5VQtY5kPAssiJ0vmkyUj9nxq_30Q6Phny9dk6KkVCWuHFwi3fIRbfhXcIra3hkk-rvY-x_-iUXjJNGJPp8-4TmnzxQWTYpuQTYwBY8TuD6iaRkLHi5En6IiZLbxtDXX7S1N_DVrgSWINFQWI2KsAzSvmIEeygw5MyOzh_5iNR-yGoHrIIZNpj-2sujP_mF2H81Xdd0_CkvwNfg9AJg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central - New (Subscription) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgy4ELUH5KSkFGQgIOoV3bcZITaldd9UCXqgXUW-RMnLLSkrTJbiVuPAJvwLvxJMw43pQVfwdyiKLEsvLzjWfG-fwNY880pJGySR6C0jpUpdShgbQMpbVKGKukcizfD2_iySQ5PU2P_IRb62mVyzHRDdRFDTRHvo3YSxRuMnp9fhFS1Sj6u-pLaFxna6RUpgZsbW9_cnR8NcsSSZJnWao17ohtU1ySSjc6Lq0SseKNnGj_7yLNXwmTPweyzhONb__vM9xht3wMync70Kyza7a6y9a9lbf8hZeifnmPfdv1FAF-SMQ90zTmc8tNyw-IRVMj-Gy9aPm4bsB-__L12LrCOugN-ajGrHZaUUrP5zV_27jCXKRLwSckoWwaTosNp2eLDoLcVEXfzwmx6rGTQ0vrkus5-dOik7nl04qfzO0nPrKzWXufvR_vvxsdhL6kQwgYV8Yh7iAVRsc54MAiQA4LOTR5ulOIOM0l2DhNVWQSgByGpC5Y6Fzm0oCwcYEH8gEbVHVlHzKObjUpdaJLSI0CHZkywa4wV8BTGPXEAQuXnzYDr3dOZTdmWafULDKCQtZDIWDP-_bnndLHH1vuEVL6VqTQ7U7UzVnmDT6zUGLqFomoyK0yKRgrQA-t1ENQZSpVwLaWGMn8sNFmVwAJ2NP-Mho8_cUx7pNiG0dLxswzYBsdLPs7oXXKGHDogCUrgF251dUr1fSjExVH80moukDAXjls_-MdZBg1oScUMt78-4M8YjcFlUx2ZKctNpg3C_uY3YDL-bRtnnh7_QFWlk7C priority: 102 providerName: ProQuest |
| Title | Advanced Microarrays as Heterogeneous Force‐Remodeling Coordinator to Orchestrate Nuclear Configuration and Force‐Sensing Mechanotransduction in Stem Cells |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202416482 https://www.ncbi.nlm.nih.gov/pubmed/39951286 https://www.proquest.com/docview/3188444435 https://www.proquest.com/docview/3166769960 https://pubmed.ncbi.nlm.nih.gov/PMC11984837 https://doaj.org/article/ecf182525dbe4a9cae2c61e361c4f934 |
| Volume | 12 |
| WOSCitedRecordID | wos001420739300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (subscription) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQygU3wPhbYFRGQgIuoi2248SXW7Vqk2hXbfyUq8hxnFGpJChJJ3HHI_AGvBtPwjlOmq0ChBA3Vhu7Vup85885_g4hz6VRobBx6hshpS9yLn1tVO5zawXTVnDhsnzfvY6m03g-V7Nrp_hbfoh-ww0lw-lrFHCd1ntXpKE6u0S6bbBAUsSghAdBwGMs3sDE7GqXJeRIz4IV5iC69nksxJq5cZ_tbU6xYZkcgf_vvM5fkyevO7XOKo3v_P__uUtudx4pPWghtE1u2OIe2e5kvqYvO2LqV_fJ94MuYYBOMI1PV5X-UlNd02PMqSkBirZc1XRcVsb--PrtzLoyO2Ab6aiEGHdRYIBPm5KeVq5MF7JU0CkSKuuK4tHDxcWqBSTVRdbPc4459jDJxOIp5bJB65q1pLd0UdDzxn6iI7tc1g_I2_HRm9Gx3xV48A14mZEPjVFMyyg1oGaY4UHGA52q_YxFKuXGRkqJUMfGpCZArsFMpjzl2jAbZfCBPyRbRVnYHULByMa5jGVulBZGhjqPYSqIHOAS-ECRR_z1w01Mx36ORTiWScvbzBJc_6Rff4-86Md_bnk__jjyELHSj0K-bnehrC6STvwTa3II5EIWZqkVWhltmZGB5TIwIldceGR3jbSkUyJ1AuoW8CrAofXIs74bxB_f6Wj3SGGMS1KGONQjj1pg9neCp5bB_ZAeiTcgu3Grmz3F4qOjGA9AWrDWgEdazP5lDRLwocAuMh49_tcfPCG3GJZUdslQu2SrqVb2KblpLptFXQ2dNEMbzeMhGRweTWdnQ7dtAu2EnboW-gezk8nsA3x7fzL9CU7hWJI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFAk2QHkGChgJBCxCG9tx4gVCZWA0o84MI9qisgqO45SRhqQkM0Xd8Qn8AX_AR_ElXDuPMuK16oIsoiixLMc592Hn3nMRus-V8JkOY1cxzl2WUu5KJVKXas2I1IwyG-X7ZhiMx-H-vpisoG9NLowJq2x0olXUSa7MHvkGYC9kcFD_2eFH11SNMn9XmxIaFSy29fEnWLKVTwcv4Ps-IKT3crfbd-uqAq4C1yZw4aQEkTyIFWCbKOol1JOx2ExIIGKqdCAE82WoVKw8Q3CX8JjGVCqigwQuKPR7Bq0yAHvYQauTwWjy9mRXx6eGDqZhh9wkGzI5MqzgYCg5C8mS9bNFAn7n2f4aoPmz42wtX-_i_zZnl9CF2sfGW5VQrKEVnV1Ga7UWK_Gjmmr78RX0dasOgcAjE5goi0Iel1iWuG-ihHIQLp0vStzLC6W_f_7yWtvCQWDtcTeH15lmZssCz3P8qrCFxwzvBh4bimhZYJNMOT1YVCKGZZa0_eyYrAHoZKRN3nU-N_5CUtH44mmGd-b6A-7q2ay8ivZOZaKuoU6WZ_oGwuA2hCkPeaqEZIr7Mg2hK1gLwS3w6gIHuQ2UIlXzuZuyIrOoYqImkYFe1ELPQQ_b9ocVk8kfWz43yGxbGQZyeyMvDqJaoUVapbA09YmfxJpJoaQminuack-xVFDmoPUGk1GtFsvoBJAOutc-BoVm_lJJ-0mhjQ27hpW1g65XYtCOxORhg0PFHRQuCcjSUJefZNP3ljTd80Roqic46ImVpX_MQQReIVh6QoObf3-Ru-hcf3c0jIaD8fYtdJ6Y8tA2sGsddebFQt9GZ9XRfFoWd2pdgdG70xa1H6O5qxA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYgLUH4DBYwEAg5hG9txkgNCZcuqVbvLihbUW3Acp6y0JCXZLeqNR-ANeA8ehydhxvkpK_5OPbCHaJVYVuLMjD87M99HyAOpI1-YMHG1kNIVGZeu0lHmcmMEU0ZwYbN83-4Eo1G4vx-Nl8i3thYG0yrbmGgDdVpo3CPvge2FAn7c72VNWsR4Y_D88KOLClL4pbWV06hNZNscf4LlW_VsawPe9UPGBi_3-ptuozDgaoA5gQsHHTElg0SDnTPNvZR7KonWUhZECdcmiCLhq1DrRHtIdpfKhCdcaWaCFP5w6PcMORsI30fvGrLxyf6Oz5EYpuWJXGM9lR4hPzhMmVKEbGEetHIBv8O4v6Zq_gyh7Rw4uPQ_j95lcrFB3nS9dpUVsmTyK2SliW0VfdwQcD-5Sr6uN4kRdIjpiqos1XFFVUU3MXeoAJczxbyig6LU5vvnL6-NlRMCDED7BTzOJMeNDDor6KvSypEhGwcdIXG0KimWWE4O5rXjUZWnXT-7WEsAnQwNVmMXM0QRaU3uSyc53Z2ZD7RvptPqGnlzKgN1nSznRW5uEgpgIsxkKDMdKaGlr7IQuoIVEpwCrBc4xG3NKtYNyzuKjUzjmp-axWiGcWeGDnnUtT-s-U3-2PIFWmnXCnnJ7YmiPIibMBcbncGC1Wd-mhihIq0M09IzXHpaZBEXDllt7TNugmUVnxinQ-53lyHM4bcrZV8ptLHJ2LDedsiN2iW6O8HqbIBZ0iHhgrMs3OrilXzy3lKpe14UoqaCQ55av_rHGMSAFWH-Zzy49fcHuUfOg3_FO1uj7dvkAkPNaJvttUqWZ-Xc3CHn9NFsUpV3bdCg5N1p-9kPu9SyTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Microarrays+as+Heterogeneous+Force%E2%80%90Remodeling+Coordinator+to+Orchestrate+Nuclear+Configuration+and+Force%E2%80%90Sensing+Mechanotransduction+in+Stem+Cells&rft.jtitle=Advanced+science&rft.au=Wang%2C+Nana&rft.au=Hou%2C+Yan&rft.au=Lin%2C+Lili&rft.au=Xu%2C+Shihui&rft.date=2025-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=12&rft.issue=14&rft_id=info:doi/10.1002%2Fadvs.202416482&rft_id=info%3Apmid%2F39951286&rft.externalDocID=PMC11984837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |