All‐Electrical Control of Spin Synapses for Neuromorphic Computing: Bridging Multi‐State Memory with Quantization for Efficient Neural Networks

The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science Jg. 12; H. 22; S. e2417735 - n/a
Hauptverfasser: Hsin, Tzu‐Chuan, Lin, Chun‐Yi, Wang, Po‐Chuan, Yang, Chun, Pai, Chi‐Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany John Wiley & Sons, Inc 01.06.2025
John Wiley and Sons Inc
Wiley
Schlagworte:
ISSN:2198-3844, 2198-3844
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique spintronic structures presented: the Néel orange‐peel effect, interlayer Dzyaloshinskii‐Moriya interaction (i‐DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle‐to‐cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11‐state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi‐state device in convolutional neural networks (CNNs) using post‐training quantization is implemented. Results indicate that per‐channel quantization, particularly with the min‐max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR‐10 dataset, achieving up to 81.51% and 81.12% in ResNet‐18—values that closely approach the baseline accuracy. This evaluation underscores the potential of field‐free spintronic synapses in neuromorphic architectures, offering an area‐efficient solution that integrates multi‐state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy‐efficient, high‐performance systems inspired by neural processes. This study develops three all‐electrically controlled, field‐free spintronic synapse devices for neuromorphic computing. The tilted anisotropy device achieves an 11‐state memory with minimal cycle‐to‐cycle variation (2%), enabling high‐accuracy neural network quantization (81.51% in ResNet‐18). These findings position spintronic synapses as a promising solution for energy‐efficient AI hardware.
AbstractList Abstract The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique spintronic structures presented: the Néel orange‐peel effect, interlayer Dzyaloshinskii‐Moriya interaction (i‐DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle‐to‐cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11‐state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi‐state device in convolutional neural networks (CNNs) using post‐training quantization is implemented. Results indicate that per‐channel quantization, particularly with the min‐max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR‐10 dataset, achieving up to 81.51% and 81.12% in ResNet‐18—values that closely approach the baseline accuracy. This evaluation underscores the potential of field‐free spintronic synapses in neuromorphic architectures, offering an area‐efficient solution that integrates multi‐state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy‐efficient, high‐performance systems inspired by neural processes.
The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique spintronic structures presented: the Néel orange‐peel effect, interlayer Dzyaloshinskii‐Moriya interaction (i‐DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle‐to‐cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11‐state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi‐state device in convolutional neural networks (CNNs) using post‐training quantization is implemented. Results indicate that per‐channel quantization, particularly with the min‐max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR‐10 dataset, achieving up to 81.51% and 81.12% in ResNet‐18—values that closely approach the baseline accuracy. This evaluation underscores the potential of field‐free spintronic synapses in neuromorphic architectures, offering an area‐efficient solution that integrates multi‐state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy‐efficient, high‐performance systems inspired by neural processes.
The development of energy-efficient, brain-inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all-electrically controlled, field-free spin synapse devices designed with unique spintronic structures presented: the Néel orange-peel effect, interlayer Dzyaloshinskii-Moriya interaction (i-DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle-to-cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11-state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi-state device in convolutional neural networks (CNNs) using post-training quantization is implemented. Results indicate that per-channel quantization, particularly with the min-max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR-10 dataset, achieving up to 81.51% and 81.12% in ResNet-18-values that closely approach the baseline accuracy. This evaluation underscores the potential of field-free spintronic synapses in neuromorphic architectures, offering an area-efficient solution that integrates multi-state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy-efficient, high-performance systems inspired by neural processes.The development of energy-efficient, brain-inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all-electrically controlled, field-free spin synapse devices designed with unique spintronic structures presented: the Néel orange-peel effect, interlayer Dzyaloshinskii-Moriya interaction (i-DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle-to-cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11-state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi-state device in convolutional neural networks (CNNs) using post-training quantization is implemented. Results indicate that per-channel quantization, particularly with the min-max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR-10 dataset, achieving up to 81.51% and 81.12% in ResNet-18-values that closely approach the baseline accuracy. This evaluation underscores the potential of field-free spintronic synapses in neuromorphic architectures, offering an area-efficient solution that integrates multi-state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy-efficient, high-performance systems inspired by neural processes.
The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique spintronic structures presented: the Néel orange‐peel effect, interlayer Dzyaloshinskii‐Moriya interaction (i‐DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle‐to‐cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11‐state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi‐state device in convolutional neural networks (CNNs) using post‐training quantization is implemented. Results indicate that per‐channel quantization, particularly with the min‐max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR‐10 dataset, achieving up to 81.51% and 81.12% in ResNet‐18—values that closely approach the baseline accuracy. This evaluation underscores the potential of field‐free spintronic synapses in neuromorphic architectures, offering an area‐efficient solution that integrates multi‐state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy‐efficient, high‐performance systems inspired by neural processes. This study develops three all‐electrically controlled, field‐free spintronic synapse devices for neuromorphic computing. The tilted anisotropy device achieves an 11‐state memory with minimal cycle‐to‐cycle variation (2%), enabling high‐accuracy neural network quantization (81.51% in ResNet‐18). These findings position spintronic synapses as a promising solution for energy‐efficient AI hardware.
The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve high accuracy and adaptability. In this study, three types of all‐electrically controlled, field‐free spin synapse devices designed with unique spintronic structures presented: the Néel orange‐peel effect, interlayer Dzyaloshinskii‐Moriya interaction (i‐DMI), and tilted anisotropy. To systematically evaluate their neuromorphic potential, a benchmarking framework is introduced that characterizes cycle‐to‐cycle (CTC) variation, a critical factor for reliable synaptic weight updates. Among these designs, the tilted anisotropy device achieves an 11‐state memory with minimal CTC variation (2%), making it particularly suited for complex synaptic emulation. Through comprehensive benchmarking, this multi‐state device in convolutional neural networks (CNNs) using post‐training quantization is implemented. Results indicate that per‐channel quantization, particularly with the min‐max and mean squared error (MSE) observers, enhances classification accuracy on the CIFAR‐10 dataset, achieving up to 81.51% and 81.12% in ResNet‐18—values that closely approach the baseline accuracy. This evaluation underscores the potential of field‐free spintronic synapses in neuromorphic architectures, offering an area‐efficient solution that integrates multi‐state functionality with robust switching performance. The findings highlight the promise of these devices in advancing neuromorphic computing, contributing to energy‐efficient, high‐performance systems inspired by neural processes. This study develops three all‐electrically controlled, field‐free spintronic synapse devices for neuromorphic computing. The tilted anisotropy device achieves an 11‐state memory with minimal cycle‐to‐cycle variation (2%), enabling high‐accuracy neural network quantization (81.51% in ResNet‐18). These findings position spintronic synapses as a promising solution for energy‐efficient AI hardware.
Author Yang, Chun
Pai, Chi‐Feng
Lin, Chun‐Yi
Wang, Po‐Chuan
Hsin, Tzu‐Chuan
AuthorAffiliation 1 Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan
AuthorAffiliation_xml – name: 1 Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan
Author_xml – sequence: 1
  givenname: Tzu‐Chuan
  orcidid: 0009-0007-5483-7163
  surname: Hsin
  fullname: Hsin, Tzu‐Chuan
  organization: National Taiwan University
– sequence: 2
  givenname: Chun‐Yi
  orcidid: 0009-0005-7246-3535
  surname: Lin
  fullname: Lin, Chun‐Yi
  organization: National Taiwan University
– sequence: 3
  givenname: Po‐Chuan
  orcidid: 0009-0002-4353-2974
  surname: Wang
  fullname: Wang, Po‐Chuan
  organization: National Taiwan University
– sequence: 4
  givenname: Chun
  surname: Yang
  fullname: Yang, Chun
  organization: National Taiwan University
– sequence: 5
  givenname: Chi‐Feng
  orcidid: 0000-0001-6723-8302
  surname: Pai
  fullname: Pai, Chi‐Feng
  email: cfpai@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285600$$D View this record in MEDLINE/PubMed
BookMark eNqFksFuEzEURUeoiJbSLUs0Ehs2CbbH45lhg0IIUKktQgG2lsfznLg49mB7GoUVn4DEH_IluElbtZUQK1v2vcfv-b7H2Z51FrLsKUZjjBB5KbqLMCaIUFxVRfkgOyC4qUdFTenerf1-dhTCOUIIl0VFcf0o26eI1CVD6CD7PTHmz89fMwMyei2FyafORu9M7lQ-77XN5xsr-gAhV87nZzB4t3K-X2qZlKt-iNouXuVvvO4WaZefDibqBJxHESE_haTd5Gsdl_mnQdiof4iond2yZkppqcHGLTW9fAZx7fy38CR7qIQJcHS1HmZf3s0-Tz-MTj6-P55OTkayLIpyRNqSALSoZUwyoA0TlQIqCekaUXWIKYIkCGBdq1TZtEh2tFEFFYgq1FYlKg6z4x23c-Kc916vhN9wJzTfHji_4MJHLQ1wResOkKirtpJU1FJQVkNRg2gZVKxpEuv1jtUP7Qo6mdpKLd2B3r2xeskX7oJjglmZIkyEF1cE774PECJf6SDBGGHBDYEXuCmrmqYQk_T5Pem5G7xNf8ULgus0GrhhSfXsdkk3tVyHnwR0J5DeheBBcanjNp9UoTYcI345ZvxyzPjNmCXb-J7tmvxPQ7kzrLWBzX_UfPL26xzjpimLvwtj6jk
CitedBy_id crossref_primary_10_1063_5_0282764
Cites_doi 10.1109/TED.2021.3111846
10.1002/aelm.202300885
10.1063/5.0226135
10.1002/adma.202103672
10.1038/nnano.2015.29
10.1109/JPROC.2020.3003007
10.1002/adfm.202404679
10.1063/5.0079400
10.1002/adma.202300107
10.1109/TNNLS.2024.3369969
10.1116/1.4936261
10.1103/PhysRevB.91.214434
10.1021/acsaelm.2c01488
10.1063/1.5042408
10.1038/s41598-018-26586-z
10.1103/PhysRevApplied.18.034046
10.1103/PhysRevB.93.144409
10.1063/5.0145873
10.1021/acsami.3c13775
10.1002/advs.202004645
10.1109/85.238389
10.1002/advs.202203006
10.1002/aelm.202300889
10.1007/s11432-020-3227-1
10.1038/s41427-023-00521-9
10.1109/TCAD.2018.2789723
10.1103/PhysRevB.96.104412
10.1109/ACCESS.2022.3196688
10.1109/TED.2025.3537592
10.1109/JETCAS.2019.2933148
10.1080/23746149.2016.1259585
10.1103/PhysRevLett.127.167202
10.1103/PhysRevApplied.19.024034
10.1038/s41467-024-48631-4
10.1063/5.0174903
10.1038/nnano.2016.29
10.1016/j.jmmm.2024.172726
10.1088/2634-4386/ac4a83
10.1088/1361-6528/ab967d
10.1038/s41563-019-0370-z
10.1063/5.0009482
10.1038/s41928-019-0360-9
10.1063/1.1315633
10.1063/1.4919867
10.1088/2634-4386/ac62db
10.1002/adma.201900636
10.1038/s41467-023-36728-1
10.1002/aelm.202300472
10.1063/5.0221776
10.1038/s41467-024-45670-9
10.1038/s41565-022-01213-1
10.1021/acsmaterialslett.3c01376
10.1103/PhysRevB.90.184427
10.1038/s41586-021-04196-6
10.1103/PhysRevB.100.104441
10.1038/s41427-021-00282-3
10.1063/1.4902443
10.1038/s41586-020-1942-4
10.1063/1.370376
10.1109/TED.2023.3327031
10.1038/nmat4566
10.1021/acsanm.2c04094
10.1021/acs.nanolett.4c01712
10.3390/electronics10091084
10.1002/aelm.201800782
10.1038/s41928-017-0002-z
10.1038/s41563-019-0386-4
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202417735
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f48de0a87b7c4a8ca468e38eab6e7699
PMC12165024
40285600
10_1002_advs_202417735
ADVS11995
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: NSTC 113‐2112‐M002‐015
– fundername: Center of Atomic Initiative for New Materials (AI‐Mat)
  funderid: NTU‐113L9008
– fundername: Nano‐Electro‐Mechanical‐System Research Center
– fundername: Semiconductor Fabrication Lab of the Consortia of Key Technologies
– fundername: Nano-Electro-Mechanical-System Research Center
– fundername: National Science and Technology Council
  grantid: NSTC 113-2112-M002-015
– fundername: Center of Atomic Initiative for New Materials (AI-Mat)
  grantid: NTU-113L9008
– fundername: Center of Atomic Initiative for New Materials (AI‐Mat)
  grantid: NTU‐113L9008
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
EJD
WIN
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5335-2b52eeb0b66c6e496a7fe4c22d9a7d06f20ceae6dbff59b0cd49f34a04f0b7503
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001475942900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Mon Nov 03 22:06:18 EST 2025
Tue Nov 04 02:03:06 EST 2025
Fri Sep 05 17:23:32 EDT 2025
Tue Oct 28 02:22:45 EDT 2025
Mon Jul 21 05:36:06 EDT 2025
Thu Nov 20 00:49:51 EST 2025
Tue Nov 18 21:44:08 EST 2025
Fri Jun 13 09:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords spin‐orbit torques
field‐free switching
perpendicular magnetic anisotropy
neural network
neuromorphic computing
Language English
License Attribution
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5335-2b52eeb0b66c6e496a7fe4c22d9a7d06f20ceae6dbff59b0cd49f34a04f0b7503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-7246-3535
0009-0007-5483-7163
0009-0002-4353-2974
0000-0001-6723-8302
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417735
PMID 40285600
PQID 3218002196
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f48de0a87b7c4a8ca468e38eab6e7699
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12165024
proquest_miscellaneous_3195784153
proquest_journals_3218002196
pubmed_primary_40285600
crossref_citationtrail_10_1002_advs_202417735
crossref_primary_10_1002_advs_202417735
wiley_primary_10_1002_advs_202417735_ADVS11995
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 69
2021; 68
2023; 35
2021; 64
2017; 2
2023; 5
2023; 6
2018; 124
2023; 9
2021; 127
2020; 128
2019; 18
1999; 85
2024; 34
2015; 106
2024
2024; 36
2016; 34
2025; 72
2022; 120
2018; 8
2020; 3
2021; 33
2018; 1
2020; 577
2024; 2
2015; 91
2024; 24
2022; 601
2018; 37
2023; 70
2021; 8
2019; 9
2023; 14
2023; 11
2014; 90
2019; 5
2019; 31
2011
2018; 107
2023; 19
2023; 122
2015; 10
2024; 10
2016; 93
2024; 12
2024; 15
2024; 16
2016; 15
2020; 108
2019; 100
2025; 614
2016; 11
1993; 15
2021; 13
2014; 105
2017; 96
2021; 10
2020; 31
2021
2000; 77
2022; 9
2019
2017
2016
2022; 10
2022; 2
2022; 17
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Dieny B. (e_1_2_8_66_1) 2016
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
Nagel M. (e_1_2_8_44_1) 2021
e_1_2_8_17_1
Zhang Y. (e_1_2_8_43_1) 2021; 68
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Aly M. M. S. (e_1_2_8_4_1) 2018; 107
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– volume: 6
  start-page: 875
  year: 2023
  publication-title: ACS Appl. Nano Mater
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 19
  year: 2023
  publication-title: Phys. Rev. Appl.
– volume: 15
  start-page: 1974
  year: 2024
  publication-title: Nat. Commun.
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 68
  start-page: 1193
  year: 2021
  publication-title: IEEE Trans. Circ. Syst. I
– volume: 2
  year: 2022
  publication-title: Neuromorph. Comput. Eng.
– year: 2021
– volume: 577
  start-page: 641
  year: 2020
  publication-title: Nature
– year: 2024
– volume: 37
  start-page: 3067
  year: 2018
  publication-title: IEEE Trans. on CAD
– volume: 9
  start-page: 570
  year: 2019
  publication-title: IEEE J. Emerg. Selected Topics Circ. Syst.
– volume: 107
  start-page: 19
  year: 2018
  publication-title: Proc. IEEE
– volume: 2
  start-page: 89
  year: 2017
  publication-title: Adv. Phys.: X
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 1084
  year: 2021
  publication-title: Electronics
– volume: 2
  year: 2024
  publication-title: APL Mach. Learn.
– volume: 15
  start-page: 4534
  year: 2024
  publication-title: Nat. Commun.
– volume: 15
  start-page: 27
  year: 1993
  publication-title: IEEE Ann. History Comput.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 77
  start-page: 2373
  year: 2000
  publication-title: P. Rice. Appl.Phys. Lett.
– volume: 2
  year: 2022
  publication-title: Neur. Comp. Eng.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 52
  year: 2018
  publication-title: Nat. Electron
– volume: 70
  start-page: 6336
  year: 2023
  publication-title: IEEE Trans. Electron Devices
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– year: 2019
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 614
  year: 2025
  publication-title: J. Magn. Magn. Mater.
– volume: 14
  start-page: 1068
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 108
  start-page: 2276
  year: 2020
  publication-title: Proc. IEEE
– volume: 72
  start-page: 1772
  year: 2025
  publication-title: IEEE Trans. Electron Devices
– volume: 10
  year: 2022
  publication-title: J. Atulasimha. IEEE Access
– volume: 64
  year: 2021
  publication-title: Sci. China Inf. Sci.
– volume: 10
  year: 2024
  publication-title: Adv. Electron. Mater.
– volume: 16
  start-page: 1
  year: 2024
  publication-title: NPG Asia Mater
– volume: 13
  start-page: 11
  year: 2021
  publication-title: NPG Asia Mater
– volume: 6
  start-page: 400
  year: 2023
  publication-title: ACS Mater. Lett.
– volume: 11
  start-page: 621
  year: 2016
  publication-title: Nat. Nanotech
– volume: 36
  start-page: 4996
  year: 2024
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 601
  start-page: 211
  year: 2022
  publication-title: Nature
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– year: 2016
– volume: 85
  start-page: 4466
  year: 1999
  publication-title: J. Appl. Phys.
– volume: 17
  start-page: 1065
  year: 2022
  publication-title: Nat. Nanotech
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 18
  start-page: 703
  year: 2019
  publication-title: Nat. Mater.
– year: 2021
  publication-title: arXiv
– volume: 34
  year: 2016
  publication-title: J. Vac. Sci. Technol.
– volume: 18
  start-page: 679
  year: 2019
  publication-title: Nat. Mater.
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 7706
  year: 2024
  publication-title: Nano Lett.
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 484
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 11
  year: 2023
  publication-title: APL Mater.
– volume: 12
  year: 2024
  publication-title: APL Mater.
– volume: 15
  start-page: 535
  year: 2016
  publication-title: Nat. Mater.
– volume: 8
  start-page: 8144
  year: 2018
  publication-title: Sci. Rep.
– year: 2017
– volume: 16
  start-page: 1054
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– volume: 69
  start-page: 1658
  year: 2021
  publication-title: IEEE Trans. Electron Devices
– volume: 128
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 191
  year: 2015
  publication-title: Nat. Nanotech
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 360
  year: 2020
  publication-title: Nat. Electron
– ident: e_1_2_8_70_1
– ident: e_1_2_8_22_1
  doi: 10.1109/TED.2021.3111846
– ident: e_1_2_8_28_1
  doi: 10.1002/aelm.202300885
– ident: e_1_2_8_60_1
  doi: 10.1063/5.0226135
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202103672
– ident: e_1_2_8_10_1
  doi: 10.1038/nnano.2015.29
– ident: e_1_2_8_16_1
  doi: 10.1109/JPROC.2020.3003007
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202404679
– ident: e_1_2_8_49_1
  doi: 10.1063/5.0079400
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202300107
– ident: e_1_2_8_39_1
  doi: 10.1109/TNNLS.2024.3369969
– ident: e_1_2_8_55_1
  doi: 10.1116/1.4936261
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevB.91.214434
– ident: e_1_2_8_13_1
– ident: e_1_2_8_36_1
  doi: 10.1021/acsaelm.2c01488
– ident: e_1_2_8_14_1
  doi: 10.1063/1.5042408
– ident: e_1_2_8_51_1
  doi: 10.1038/s41598-018-26586-z
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevApplied.18.034046
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.93.144409
– ident: e_1_2_8_65_1
  doi: 10.1063/5.0145873
– ident: e_1_2_8_68_1
  doi: 10.1021/acsami.3c13775
– ident: e_1_2_8_7_1
  doi: 10.1002/advs.202004645
– ident: e_1_2_8_1_1
  doi: 10.1109/85.238389
– ident: e_1_2_8_77_1
  doi: 10.1002/advs.202203006
– ident: e_1_2_8_37_1
  doi: 10.1002/aelm.202300889
– volume: 68
  start-page: 1193
  year: 2021
  ident: e_1_2_8_43_1
  publication-title: IEEE Trans. Circ. Syst. I
– ident: e_1_2_8_12_1
– ident: e_1_2_8_3_1
  doi: 10.1007/s11432-020-3227-1
– ident: e_1_2_8_63_1
  doi: 10.1038/s41427-023-00521-9
– ident: e_1_2_8_9_1
– ident: e_1_2_8_29_1
  doi: 10.1109/TCAD.2018.2789723
– ident: e_1_2_8_61_1
  doi: 10.1103/PhysRevB.96.104412
– ident: e_1_2_8_74_1
  doi: 10.1109/ACCESS.2022.3196688
– ident: e_1_2_8_38_1
  doi: 10.1109/TED.2025.3537592
– ident: e_1_2_8_64_1
  doi: 10.1109/JETCAS.2019.2933148
– ident: e_1_2_8_11_1
  doi: 10.1080/23746149.2016.1259585
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevLett.127.167202
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevApplied.19.024034
– ident: e_1_2_8_72_1
  doi: 10.1038/s41467-024-48631-4
– ident: e_1_2_8_46_1
  doi: 10.1063/5.0174903
– ident: e_1_2_8_73_1
– ident: e_1_2_8_23_1
  doi: 10.1038/nnano.2016.29
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jmmm.2024.172726
– ident: e_1_2_8_6_1
  doi: 10.1088/2634-4386/ac4a83
– ident: e_1_2_8_75_1
  doi: 10.1088/1361-6528/ab967d
– ident: e_1_2_8_57_1
  doi: 10.1038/s41563-019-0370-z
– volume: 107
  start-page: 19
  year: 2018
  ident: e_1_2_8_4_1
  publication-title: Proc. IEEE
– ident: e_1_2_8_8_1
  doi: 10.1063/5.0009482
– ident: e_1_2_8_5_1
  doi: 10.1038/s41928-019-0360-9
– year: 2021
  ident: e_1_2_8_44_1
  publication-title: arXiv
– ident: e_1_2_8_47_1
  doi: 10.1063/1.1315633
– ident: e_1_2_8_54_1
  doi: 10.1063/1.4919867
– ident: e_1_2_8_40_1
  doi: 10.1088/2634-4386/ac62db
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201900636
– ident: e_1_2_8_76_1
  doi: 10.1038/s41467-023-36728-1
– ident: e_1_2_8_27_1
  doi: 10.1002/aelm.202300472
– ident: e_1_2_8_53_1
  doi: 10.1063/5.0221776
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-024-45670-9
– ident: e_1_2_8_2_1
  doi: 10.1038/s41565-022-01213-1
– ident: e_1_2_8_45_1
  doi: 10.1021/acsmaterialslett.3c01376
– volume-title: Introduction to Magnetic Random‐Access Memory
  year: 2016
  ident: e_1_2_8_66_1
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevB.90.184427
– ident: e_1_2_8_71_1
  doi: 10.1038/s41586-021-04196-6
– ident: e_1_2_8_30_1
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevB.100.104441
– ident: e_1_2_8_25_1
  doi: 10.1038/s41427-021-00282-3
– ident: e_1_2_8_18_1
  doi: 10.1063/1.4902443
– ident: e_1_2_8_67_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_8_48_1
  doi: 10.1063/1.370376
– ident: e_1_2_8_69_1
  doi: 10.1109/TED.2023.3327031
– ident: e_1_2_8_21_1
  doi: 10.1038/nmat4566
– ident: e_1_2_8_31_1
  doi: 10.1021/acsanm.2c04094
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.nanolett.4c01712
– ident: e_1_2_8_33_1
  doi: 10.3390/electronics10091084
– ident: e_1_2_8_17_1
  doi: 10.1002/aelm.201800782
– ident: e_1_2_8_41_1
  doi: 10.1038/s41928-017-0002-z
– ident: e_1_2_8_56_1
  doi: 10.1038/s41563-019-0386-4
SSID ssj0001537418
Score 2.3357897
Snippet The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve...
The development of energy-efficient, brain-inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to achieve...
Abstract The development of energy‐efficient, brain‐inspired neuromorphic computing demands advanced memory devices capable of mimicking synaptic behavior to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2417735
SubjectTerms Anisotropy
Artificial intelligence
field‐free switching
neural network
Neural networks
neuromorphic computing
perpendicular magnetic anisotropy
Phase transitions
Software
spin‐orbit torques
Symmetry
Synapses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxYELovwGCjISEnAIdRzHjrm11VYcYAUqoN4i27HFSkt21XQr9cYjIPGGPAkzdjbsClAv3KL4J45nrPmSmfmGkGdKM1G26NUta58LsMi58cbmBsEBGh0bHe2f36rptD491e83Sn1hTFiiB04btx9E3XpmamWVE6Z2Rsjaw7zGSq-kjql7TOmNj6mUH1wiLcuapZHxfdNeIDs3GCylYm2331YokvX_DWH-GSi5CWCjBTq-RW4O0JEepCXvkmu-u012h8PZ0xcDg_TLO-THwXz-89v3SSxxg1KgRykinS4CPVnOOnpy2ZllD6MAs9JI0PF1ATs-czSVeQCD9poeYjIXXNGYpQsTRmRK32Fw7iXFP7j0wwokM6RyxrkmkZICXiTOCk-epjjz_i75dDz5ePQmH6ov5A4gYJVzW3HvLbNSOumFlkYFLxznrTaqZTJw5rzxsrUhVNoy1wodSmGYCMyid_Qe2ekWnX9AaNXqggdldNUGAUbZVEUAWOm5gxFW6ozka2k0bqAmxwoZ8yaRKvMGpdeM0svI87H_MpFy_LPnIQp37IVk2vEGqFgzqFhzlYplZG-tGs1wwvumBGyEAEnLjDwdm-FsosPFdH6xgj6FrtCvW5UZuZ80aVwJfLfXiDYzUm_p2NZSt1u62ZfI_13wAnA1Fxl5FdXxij1oAOCA0dK6evg_duMRucGxBnL8E7VHds7PVv4xue4uzmf92ZN4DH8Bfdw8Ww
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagcOBSKL-BgoyEBBxCE8dxYi6orbbiQFdFBdRbZDs2rLRNlk23Um88AhJvyJMw43izrPg7cFttHK-TmfF8OzP-hpAnhUx4VmNWNyttzMEjx8oqHSsEB-h0tE-0f3hTjMflyYk8CgG3LpRVLvdEv1HXrcEY-U4GvggdkhSvZp9j7BqF2dXQQuMyuQLIJsWSrkN2tIqx5BmSsyy5GhO2o-pz5OgGt1UUvsPbyhd5yv7f4cxfyyV_hrHeDx1c_98nuEE2AwKlu73KbJFLtrlJtoKNd_RZIKJ-fot8251Ov3_5OvKdclCYdL8vbKeto8ezSUOPLxo16-AugL7U83yctiC4iaF9twjwiy_pHp4Jg0_UH_aFCT3ApYdY43tBMRBM3y5AwOFEqJ9r5Jkt4E34WeGXx325enebvD8Yvdt_HYcmDrEBJJnHTOfMWp1oIYywXApVOMsNY7VURZ0IxxJjlRW1di6XOjE1ly7jKuEu0ZhkvUM2mrax9wjNa5kyVyiZ146Db1d56gCdWmbgDi1kROKlOCsTGM6x0ca06rmZWYXirwbxR-TpMH7Wc3v8ceQeascwCjm5_Rft_GMVTLxyvKxtospCF4ar0iguSgsWoLSwhZCwvO2lXlRho-iqlVJE5PFwGUwc8zaqse0CxqQyx_RwnkXkbq-Kw0rg73-JoDUi5ZqSri11_Uoz-eRpxFOWAjxnPCIvvD7_4x1UgJPA90mZ3__7gzwg1xg2Sfahqm2ycTZf2Ifkqjk_m3TzR95CfwA8CEk8
  priority: 102
  providerName: ProQuest
Title All‐Electrical Control of Spin Synapses for Neuromorphic Computing: Bridging Multi‐State Memory with Quantization for Efficient Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417735
https://www.ncbi.nlm.nih.gov/pubmed/40285600
https://www.proquest.com/docview/3218002196
https://www.proquest.com/docview/3195784153
https://pubmed.ncbi.nlm.nih.gov/PMC12165024
https://doaj.org/article/f48de0a87b7c4a8ca468e38eab6e7699
Volume 12
WOSCitedRecordID wos001475942900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgy4ELsDwDS2UkJOAQbeI4dsxtu-qKlWgpLI_lFNmOA5VKWjXblfbGT0DiH_JLmHHS7FaAEOJitfWjrj2T-Tpjf0PIY6kinhQY1U0yF3KwyKF22oQawQEaHeMD7e9fyvE4Oz5Wkwu3-Bt-iM7hhprhn9eo4NrUu-ekobo4RbptsEBSJull0ovjRKJcMz4597KkCdKzYIY5-HcdJhnna-bGiO1uDrFhmTyB_-9Q56-HJy-CWm-VDq7__--5Qa61iJTuNSK0TS656ibZbnW-pk9bYupnt8j3vdnsx9dvQ585BzeX7jcH3em8pEeLaUWPziq9qKEXQGHqeT--zGEjp5Y22SPATj6nA7wjBq-ov_wLA3rAS0d45veMomOYvl7Bhrc3RP1YQ890AWvhR4VvHjfH1-vb5N3B8O3-i7BN6hBaQJZpyEzKnDOREcIKx5XQsnTcMlYoLYtIlCyyTjtRmLJMlYlswVWZcB3xMjIYdL1Dtqp55e4RmhYqZqXUKi1KDrZep3EJaNUxCz2MUAEJ1xua25bxHBNvzPKGq5nluOZ5t-YBedK1XzRcH39sOUD56FohR7f_YL78lLcqn5c8K1ykM2mk5TqzmovMgUZoI5wUCqa3s5auvH1w1HkCkAtxlxIBedRVg8pjHEdXbr6CNrFKMVycJgG52whjNxMOeBFBbECyDTHdmOpmTTX97GnFYxYDXGc8II2c_mUNcsBNYAuVSu__a4cH5CrDNMrembVDtk6WK_eQXLGnJ9N62fcaDKU8zvqkNxiOJ2_63lUC5Yi98iXU9yaHo8lHePfhcPwTGE9Ung
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLbGQIIbYPwGBhgJBFyEpY7jxEgIbaPTpnXV0AbaXbAdByqVpDTrUO94BCTeg4fiSTjHSVoq_q52wV3VOK7jfj7ni8_xdwh5EMuAhxlGdcPE-hw8sq-s0r5CcoBOR7tA-5te3O8nR0dyf4l8a8_CYFplaxOdoc5Kg3vkayH4InRIUrwYffSxahRGV9sSGjUsdu30E7yyVc93XsL_-5Cxre7h5rbfVBXwDVCbyGc6YtbqQAthhOVSqDi33DCWSRVngchZYKyyItN5HkkdmIzLPOQq4HmgMeoH_Z4hZzkqi2GqINuf7-lEIYrBtNqQAVtT2QlqgoObjGNXUW7u-1yJgN_x2l_TM3-mzc7vbV3632bsMrnYMGy6Xi-JFbJkiytkpbFhFX3cCG0_uUq-rg-H3z9_6bpKQAhWulkn7tMypwejQUEPpoUaVXAXUHvqdEw-lADMgaF1NQzw-8_oBp55g0_UHWaGDh2Bp3uYwzyluNFNX00AwM2JV9dX1yl3wMy7XuGX-3U6fnWNvD6VyblOlouysDcJjTLZYXmsZJTlHLiLijo5sG_LDNyhhfSI38InNY2COxYSGaa19jRLEW7pDG4eeTRrP6q1S_7YcgPROGuFmuPui3L8Lm1MWJrzJLOBSmIdG64So7hILKxwpYWNhYThrbY4TBtDWKVzEHrk_uwymDCMS6nClhNo05ERhr-j0CM3aujPRsKB_yIp90iysCgWhrp4pRi8dzLpHdaB1w_GPfLUrZ9_zEEKPBB8u5TRrb8_yD1yfvtwr5f2dvq7t8kFhgWh3bbcKlk-Hk_sHXLOnBwPqvFdZx0oeXvai-sHbAmoWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAvwLgGBhgJBDyEpo5zMRJCu7Si2lYVbaDxFBzHhkolKc021Dd-AhL_hp_DL-EcJ2mpuD3tgbcocRzHOZcvPsffIeR-JDzuZxjV9WPtcvDIrtQydSWCA3Q6qQ20v96NBoP48FAMV8i3Zi8MplU2NtEa6qxQuEbe9sEXoUMSYdvUaRHD7d7zyUcXK0hhpLUpp1GJyI6efYLft_JZfxu-9QPGet2DrRduXWHAVQBzApelAdM69dIwVKHmIpSR0VwxlgkZZV5omKe01GGWGhOI1FMZF8bn0uPGSzECCP2eIasAyTlrkdVhf2_4ZrHCE_hIDdMwRXqsLbMTZAgHpxlFtr7cwhPaggG_Q7m_Jmv-DKKtF-xd_J_n7xK5UGNvulEpyxpZ0fllslZbt5I-qim4H18hXzfG4--fv3RtjSAUY7pVpfTTwtD9ySin-7NcTkq4C0A_tQwnHwoQ2ZGiVZ0MQARP6SbuhoMjarc5Q4cW2tM9zG6eUVwCpy-PQbTrvbC2r67l9ICvYHuFJw-qRP3yKnl1KpNzjbTyItc3CA0y0WEmkiLIDAdUI4OOAVyumYI70lA4xG1EKVE1tzuWGBknFSs1S1D0krnoOeThvP2kYjX5Y8tNlMx5K2QjtyeK6bukNm6J4XGmPRlHaaS4jJXkYaxB92Ua6igUMLz1RiaT2kSWyUIgHXJvfhmMG0asZK6LY2jTEQEGxgPfIdcrNZiPhAMyRrjukHhJQZaGunwlH723BOod1oEfE8Yd8sTq0j_mIAGECF5fiODm31_kLjkHOpXs9gc7t8h5hpWi7XrdOmkdTY_1bXJWnRyNyumd2lRQ8va0tesHCkKyoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-Electrical+Control+of+Spin+Synapses+for+Neuromorphic+Computing%3A+Bridging+Multi-State+Memory+with+Quantization+for+Efficient+Neural+Networks&rft.jtitle=Advanced+science&rft.au=Hsin%2C+Tzu-Chuan&rft.au=Lin%2C+Chun-Yi&rft.au=Wang%2C+Po-Chuan&rft.au=Yang%2C+Chun&rft.date=2025-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.spage=e2417735&rft_id=info:doi/10.1002%2Fadvs.202417735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon