Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration

Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Global change biology Ročník 12; číslo 2; s. 217 - 229
Hlavní autoři: Trumbore, Susan, Costa, Enir Salazar Da, Nepstad, Daniel C, Barbosa De Camargo, Plínio, Martinelli, Luiz A, Ray, David, Restom, Teresa, Silver, Whendee
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Oxford, UK : Blackwell Science Ltd 01.02.2006
Blackwell Science Ltd
Blackwell Publishing Ltd
Témata:
ISSN:1354-1013, 1365-2486
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of ¹⁴C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High [Delta]¹⁴C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using ¹⁴C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the ¹⁴C values in soil pore space CO₂, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.
AbstractList Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.
Radiocarbon ( super(14)C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of super(14)C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High Delta super(14)C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using super(14)C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the super(14)C values in soil pore space CO sub(2), in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.
Radiocarbon ( 14 C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14 C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ 14 C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14 C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14 C values in soil pore space CO 2 , in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High delta14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.[PUBLICATION ABSTRACT]
Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of ¹⁴C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High [Delta]¹⁴C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using ¹⁴C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the ¹⁴C values in soil pore space CO₂, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.
Author Nepstad, Daniel C.
Barbosa De Camargo, Plínio
Restom, Teresa
Martinelli, Luiz A.
Trumbore, Susan
Da Costa, Enir Salazar
Ray, David
Silver, Whendee
Author_xml – sequence: 1
  fullname: Trumbore, Susan
– sequence: 2
  fullname: Costa, Enir Salazar Da
– sequence: 3
  fullname: Nepstad, Daniel C
– sequence: 4
  fullname: Barbosa De Camargo, Plínio
– sequence: 5
  fullname: Martinelli, Luiz A
– sequence: 6
  fullname: Ray, David
– sequence: 7
  fullname: Restom, Teresa
– sequence: 8
  fullname: Silver, Whendee
BookMark eNqNkkFv1DAQhSNUJNrCb8Bw4JZgx7GTvYDKAgtSVQ4UlZs1cSbgJbEX2yt2-fXYBPXQC_XFY817nzTzfFacWGexKJ4xWrF0Xm4rxqUo66aTVU2pqChlVPLq8KA4ve2c5Fo0JaOMPyrOQthSSnlN5Wnh3h4tzEYH4kYyGovEOxeJBt87S4wlFzP8dtaAJdG7ndEwEdQuHEPEORCwA4nfkWhnozf9PprkSqQMCSQ6EpyZiMewMx5y83HxcIQp4JN_93lx_f7d9fpDeflp83F9cVlqwTkvu1o3tOfNMKLmfY9U9hrTS4zYQIOc6W7sQLN2tVohS7oBAHBgSAcmAfh58WLB7rz7uccQ1WyCxmkCi24fVCO7RqT1_FfIWtYIybPw-R3h1u29TTOomgrW8pbWSfR6EWnvQvA4Km3i37mjBzMpRlVOTW1VzkblbFROTS2pqUMirO4Qdt7M4I_38r5avL_MhMf7G9Vm_SZXCVAuAJPSPdwCwP9QMg0o1M3VRrU3or5qZau-Jv3TRT-CU_DNm6C-fK7TJ0tg0fG0kD_F1swD
CitedBy_id crossref_primary_10_1016_j_foreco_2007_10_039
crossref_primary_10_1007_s11442_007_0101_2
crossref_primary_10_1111_nph_17985
crossref_primary_10_1007_s11676_014_0523_5
crossref_primary_10_1016_j_scitotenv_2024_173147
crossref_primary_10_1016_j_foreco_2007_09_026
crossref_primary_10_1890_ES15_00259_1
crossref_primary_10_1007_s10021_024_00941_w
crossref_primary_10_1016_j_envres_2022_114392
crossref_primary_10_1016_j_agrformet_2014_03_006
crossref_primary_10_1139_X07_057
crossref_primary_10_1016_j_ecoleng_2009_03_022
crossref_primary_10_1111_j_1469_8137_2009_02789_x
crossref_primary_10_1007_s11027_010_9240_3
crossref_primary_10_5194_bg_22_455_2025
crossref_primary_10_1016_j_foreco_2017_05_033
crossref_primary_10_3389_ffgc_2023_1228145
crossref_primary_10_1111_j_1744_7429_2009_00494_x
crossref_primary_10_1007_s11104_008_9688_z
crossref_primary_10_1111_nph_12979
crossref_primary_10_1093_treephys_tpt049
crossref_primary_10_1007_s10533_013_9920_7
crossref_primary_10_1007_s10533_010_9501_y
crossref_primary_10_1007_s11252_016_0572_y
crossref_primary_10_1029_2019JG005353
crossref_primary_10_1111_j_1469_8137_2007_02242_x
crossref_primary_10_1007_s11104_010_0391_5
crossref_primary_10_1007_s11104_008_9759_1
crossref_primary_10_1111_gcb_13226
crossref_primary_10_1111_j_1365_2486_2008_01736_x
crossref_primary_10_1146_annurev_earth_36_031207_124300
crossref_primary_10_1007_s10533_010_9485_7
crossref_primary_10_1016_j_rhisph_2022_100474
crossref_primary_10_1111_j_1469_8137_2006_01847_x
crossref_primary_10_1007_s10533_020_00743_x
crossref_primary_10_1016_j_agee_2017_05_011
crossref_primary_10_1007_s10533_010_9417_6
crossref_primary_10_1111_j_1365_2486_2012_02761_x
crossref_primary_10_1111_j_1469_8137_2009_02980_x
crossref_primary_10_1002_ldr_3761
crossref_primary_10_1007_s11104_012_1438_6
crossref_primary_10_5194_bg_13_341_2016
crossref_primary_10_1111_j_1365_2486_2009_02131_x
crossref_primary_10_1139_A08_003
crossref_primary_10_1007_s00442_015_3410_7
crossref_primary_10_1007_s11104_017_3460_1
crossref_primary_10_1111_j_1469_8137_2007_02335_x
crossref_primary_10_1111_j_1469_8137_2010_03423_x
crossref_primary_10_1007_s11676_008_0002_y
crossref_primary_10_1111_pce_70154
crossref_primary_10_1007_s10457_015_9859_x
crossref_primary_10_1007_s11252_013_0294_3
crossref_primary_10_3390_f15071155
crossref_primary_10_1007_s00468_021_02166_z
crossref_primary_10_1002_jpln_201300110
crossref_primary_10_1016_S1002_0160_17_60455_7
crossref_primary_10_1002_agj2_20210
crossref_primary_10_1111_nph_12271
crossref_primary_10_1371_journal_pone_0119184
crossref_primary_10_1016_j_catena_2014_07_012
crossref_primary_10_1016_j_geoderma_2022_115849
crossref_primary_10_1016_j_scitotenv_2019_135319
crossref_primary_10_1007_s11284_012_1013_x
crossref_primary_10_1007_s11104_010_0562_4
crossref_primary_10_1111_j_1469_8137_2007_02153_x
crossref_primary_10_1007_s11104_012_1294_4
crossref_primary_10_1111_nph_13203
crossref_primary_10_1016_j_envexpbot_2010_03_003
crossref_primary_10_1007_s10021_009_9300_2
crossref_primary_10_1016_j_apgeochem_2011_03_048
crossref_primary_10_1017_S0033822200042910
crossref_primary_10_1007_s11104_016_2951_9
crossref_primary_10_1111_gcb_15351
crossref_primary_10_1007_s11104_013_1778_x
crossref_primary_10_1016_j_soilbio_2008_11_020
crossref_primary_10_1007_s10310_009_0176_y
crossref_primary_10_1007_s11707_020_0828_y
crossref_primary_10_1038_srep29478
crossref_primary_10_1890_08_0074_1
crossref_primary_10_1038_s41598_024_67307_z
crossref_primary_10_1111_nph_13111
crossref_primary_10_1007_s11104_006_0047_7
crossref_primary_10_1080_11263504_2012_742471
crossref_primary_10_1111_j_1365_2486_2011_02629_x
crossref_primary_10_1111_j_1365_2486_2008_01610_x
crossref_primary_10_1111_j_1365_2745_2009_01547_x
crossref_primary_10_1111_j_1755_0238_2012_00193_x
crossref_primary_10_1016_j_agrformet_2009_05_007
crossref_primary_10_1002_2013JG002379
crossref_primary_10_1007_s12155_012_9250_y
crossref_primary_10_1002_2017JG004103
crossref_primary_10_1890_08_1516_1
crossref_primary_10_3389_fpls_2015_01022
crossref_primary_10_1371_journal_pone_0095321
crossref_primary_10_1007_s11104_011_0745_7
crossref_primary_10_1007_s11104_015_2755_3
Cites_doi 10.1046/j.1469-8137.2003.00766.x
10.1017/S0033822200063529
10.1034/j.1600-0889.47.issue5.3.x
10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
10.1046/j.1469-8137.2000.00686.x
10.1046/j.1365-2486.1999.00259.x
10.1126/science.1091841
10.1007/s004420100746
10.1007/BF00378292
10.1007/BF00017088
10.1007/s100210000019
10.1139/x93-149
10.1029/2002GB001953
10.1029/95GB02148
10.1126/science.1089543
10.1038/372666a0
10.1023/A:1005880031579
10.1046/j.1469-8137.2000.00681.x
10.1046/j.1469-8137.2002.00413_1.x
10.1111/j.1365-2486.2005.00903.x
10.1016/0012-821X(84)90089-X
10.1029/2001JD000360
10.2307/1940664
10.1023/A:1004313515294
10.1023/A:1005308930871
10.1139/x02-123
ContentType Journal Article
Copyright 2005 Blackwell Publishing Ltd
Copyright_xml – notice: 2005 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7ST
7U6
7S9
L.6
DOI 10.1111/j.1365-2486.2005.001063.x
DatabaseName AGRIS
Istex
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Ecology Abstracts
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 229
ExternalDocumentID 978659691
10_1111_j_1365_2486_2005_001063_x
GCB1063
ark_67375_WNG_7W52N767_X
US201301058302
Genre article
Feature
GeographicLocations Brazil
Amazonia
GeographicLocations_xml – name: Amazonia
– name: Brazil
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AEUQT
AFPWT
ESX
WRC
WUP
AAYXX
CITATION
O8X
7SN
7UA
C1K
F1W
H97
L.G
7ST
7U6
7S9
L.6
ID FETCH-LOGICAL-c5333-82c40b34dfec3bbe06bce4df5fe4a4e31c8f8ac17999e134ddaaaed1e0d16aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234974900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Thu Jul 10 19:22:11 EDT 2025
Tue Oct 07 09:09:11 EDT 2025
Mon Nov 10 02:51:15 EST 2025
Sat Nov 29 06:02:07 EST 2025
Tue Nov 18 22:30:41 EST 2025
Wed Jan 22 16:23:27 EST 2025
Tue Nov 11 03:32:21 EST 2025
Thu Apr 03 09:46:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5333-82c40b34dfec3bbe06bce4df5fe4a4e31c8f8ac17999e134ddaaaed1e0d16aa3
Notes http://dx.doi.org/10.1111/j.1365-2486.2005.001063.x
ArticleID:GCB1063
istex:A0EEDD9D596EC0FF8AA0307B23C51AEB99329695
ark:/67375/WNG-7W52N767-X
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 205173702
PQPubID 30327
PageCount 13
ParticipantIDs proquest_miscellaneous_46845365
proquest_miscellaneous_17145635
proquest_journals_205173702
crossref_citationtrail_10_1111_j_1365_2486_2005_001063_x
crossref_primary_10_1111_j_1365_2486_2005_001063_x
wiley_primary_10_1111_j_1365_2486_2005_001063_x_GCB1063
istex_primary_ark_67375_WNG_7W52N767_X
fao_agris_US201301058302
PublicationCentury 2000
PublicationDate February 2006
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: February 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2006
Publisher Oxford, UK : Blackwell Science Ltd
Blackwell Science Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Science Ltd
– name: Blackwell Science Ltd
– name: Blackwell Publishing Ltd
References Matamala R, Gonzàlez-Meler MA, Jastrow JD et al. (2003) Impacts of fine root turnover on forest NPP and Soil C sequestration potential. Science, 302, 1385.
Telles EDC, Camargo PB, Martinelli LA et al. (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia - art. no. 1040. Global Biogeochemical Cycles, 17, 1040.
Vogt KA, Vogt DJ, Bloomfield J et al. (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil, 200, 71-89.
Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science, 302, 1344-1345.
Aber JD, Melillo JM, Nadelhoffer K et al. (1985) Fine-root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 32, 317-321.
Cerling TE (1984) The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240.
Pregitzer KS, DeForest JL, Burton AJ et al. (2002) Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 34, 344-350.
Jipp PH, Nepstad DC, Cassel DK et al. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazônia. Climatic Change, 39, 395-412.
Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
Nepstad DC, Moutinho P, Dias-Filho MB et al. (2002) The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107, 1-18.
Silver WL, Thompson AW, McGroddy M et al. (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290-306.
Pregitzer KS (2002) Fine roots of trees - a new perspective. New Phytologist, 154, 267-270.
Camargo PB, Trumbore SE, Martinelli LA et al. (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5, 693-670.
Vogt KA, Vogt DJ, Palmiotto PA et al. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219.
Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Series B - Chemical and Physical Meteorology, 47, 550-565.
Vandam D, Veldkamp E, Vanbreemen N et al. (1997) Soil organic carbon dynamics - variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry, 39, 343-375.
Eissenstat DM, Wells CE, Yanai RD et al. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-34.
Publicover DA, Vogt KA (1993) A comparison of methods for estimating forest fine root production with respect to sources of error. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere., 23, 1179-1186.
Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere, 32, 1692-1697.
Pregitzer KS (2003) Woody plants, carbon allocation and fine roots. New Phytologist, 158, 421-423.
Nepstad DC, Decarvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures. Nature, 372, 666-669.
Silver WL, Neff J, McGroddy M et al. (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3, 193-209.
Gaudinski JB, Trumbore SE, Davidson EA et al. (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 129, 420-429.
Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139-1147.
Trumbore SE, Davidson EA, Camargo PB et al. (1995) Belowground cycling of carbon in forests and pastures of eastern Amazônia. Global Biogeochemical Cycles, 9, 515-528.
1995; 9
1993; 23
2002; 154
2002; 72
2000; 3
1994; 372
2002; 32
2003; 17
1996; 187
2004
2001; 129
2003; 158
1999; 5
1992; 34
1992; 73
1998; 39
1984; 71
2000; 147
2000
1995; 47
2002; 107
1997; 39
2003; 302
1985; 32
1998; 200
2005; 11
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Levin I (e_1_2_7_10_1) 2000
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Silver WL, Thompson AW, McGroddy M et al. (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290-306.
– reference: Pregitzer KS (2003) Woody plants, carbon allocation and fine roots. New Phytologist, 158, 421-423.
– reference: Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139-1147.
– reference: Publicover DA, Vogt KA (1993) A comparison of methods for estimating forest fine root production with respect to sources of error. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere., 23, 1179-1186.
– reference: Vogt KA, Vogt DJ, Bloomfield J et al. (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil, 200, 71-89.
– reference: Vandam D, Veldkamp E, Vanbreemen N et al. (1997) Soil organic carbon dynamics - variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry, 39, 343-375.
– reference: Jipp PH, Nepstad DC, Cassel DK et al. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazônia. Climatic Change, 39, 395-412.
– reference: Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science, 302, 1344-1345.
– reference: Aber JD, Melillo JM, Nadelhoffer K et al. (1985) Fine-root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 32, 317-321.
– reference: Pregitzer KS, DeForest JL, Burton AJ et al. (2002) Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
– reference: Nepstad DC, Moutinho P, Dias-Filho MB et al. (2002) The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107, 1-18.
– reference: Pregitzer KS (2002) Fine roots of trees - a new perspective. New Phytologist, 154, 267-270.
– reference: Matamala R, Gonzàlez-Meler MA, Jastrow JD et al. (2003) Impacts of fine root turnover on forest NPP and Soil C sequestration potential. Science, 302, 1385.
– reference: Vogt KA, Vogt DJ, Palmiotto PA et al. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219.
– reference: Nepstad DC, Decarvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures. Nature, 372, 666-669.
– reference: Eissenstat DM, Wells CE, Yanai RD et al. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-34.
– reference: Silver WL, Neff J, McGroddy M et al. (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3, 193-209.
– reference: Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
– reference: Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere, 32, 1692-1697.
– reference: Trumbore SE, Davidson EA, Camargo PB et al. (1995) Belowground cycling of carbon in forests and pastures of eastern Amazônia. Global Biogeochemical Cycles, 9, 515-528.
– reference: Gaudinski JB, Trumbore SE, Davidson EA et al. (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 129, 420-429.
– reference: Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 34, 344-350.
– reference: Cerling TE (1984) The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240.
– reference: Telles EDC, Camargo PB, Martinelli LA et al. (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia - art. no. 1040. Global Biogeochemical Cycles, 17, 1040.
– reference: Camargo PB, Trumbore SE, Martinelli LA et al. (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5, 693-670.
– reference: Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Series B - Chemical and Physical Meteorology, 47, 550-565.
– volume: 17
  start-page: 1040
  year: 2003
  article-title: Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia – art. no. 1040
  publication-title: Global Biogeochemical Cycles
– volume: 187
  start-page: 159
  year: 1996
  end-page: 219
  article-title: Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species
  publication-title: Plant and Soil
– volume: 39
  start-page: 343
  year: 1997
  end-page: 375
  article-title: Soil organic carbon dynamics – variability with depth in forested and deforested soils under pasture in Costa Rica
  publication-title: Biogeochemistry
– volume: 32
  start-page: 1692
  year: 2002
  end-page: 1697
  article-title: Fine root turnover in a northern hardwood forest
  publication-title: Canadian Journal of Forest Research – Journal Canadien de la Recherche Forestiere
– volume: 147
  start-page: 13
  year: 2000
  end-page: 31
  article-title: Global patterns of root turnover for terrestrial ecosystems
  publication-title: New Phytologist
– volume: 154
  start-page: 267
  year: 2002
  end-page: 270
  article-title: Fine roots of trees – a new perspective
  publication-title: New Phytologist
– volume: 11
  start-page: 290
  year: 2005
  end-page: 306
  article-title: Fine root dynamics and trace gas fluxes in two lowland tropical forest soils
  publication-title: Global Change Biology
– volume: 3
  start-page: 193
  year: 2000
  end-page: 209
  article-title: Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem
  publication-title: Ecosystems
– volume: 9
  start-page: 515
  year: 1995
  end-page: 528
  article-title: Belowground cycling of carbon in forests and pastures of eastern Amazônia
  publication-title: Global Biogeochemical Cycles
– volume: 71
  start-page: 229
  year: 1984
  end-page: 240
  article-title: The stable isotopic composition of soil carbonate and its relationship to climate
  publication-title: Earth and Planetary Science Letters
– volume: 107
  start-page: 1
  year: 2002
  end-page: 18
  article-title: The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest
  publication-title: Journal of Geophysical Research
– start-page: 503
  year: 2000
  end-page: 518
– volume: 302
  start-page: 1385
  year: 2003
  article-title: Impacts of fine root turnover on forest NPP and Soil C sequestration potential
  publication-title: Science
– volume: 200
  start-page: 71
  year: 1998
  end-page: 89
  article-title: Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level
  publication-title: Plant and Soil
– volume: 73
  start-page: 1139
  year: 1992
  end-page: 1147
  article-title: Fine root production estimates and belowground carbon allocation in forest ecosystems
  publication-title: Ecology
– volume: 47
  start-page: 550
  year: 1995
  end-page: 565
  article-title: Gas diffusivity and production of CO in deep soils of the eastern Amazon
  publication-title: Tellus Series B – Chemical and Physical Meteorology
– volume: 158
  start-page: 421
  year: 2003
  end-page: 423
  article-title: Woody plants, carbon allocation and fine roots
  publication-title: New Phytologist
– volume: 5
  start-page: 693
  year: 1999
  end-page: 670
  article-title: Soil carbon dynamics in regrowing forest of eastern Amazonia
  publication-title: Global Change Biology
– volume: 39
  start-page: 395
  year: 1998
  end-page: 412
  article-title: Deep soil moisture storage and transpiration in forests and pastures of seasonally‐dry Amazônia
  publication-title: Climatic Change
– volume: 72
  start-page: 293
  year: 2002
  end-page: 309
  article-title: Fine root architecture of nine North American trees
  publication-title: Ecological Monographs
– year: 2004
– volume: 23
  start-page: 1179
  year: 1993
  end-page: 1186
  article-title: A comparison of methods for estimating forest fine root production with respect to sources of error
  publication-title: Canadian Journal of Forest Research – Journal Canadien de la Recherche Forestiere.
– volume: 302
  start-page: 1344
  year: 2003
  end-page: 1345
  article-title: The secret lives of roots
  publication-title: Science
– volume: 32
  start-page: 317
  year: 1985
  end-page: 321
  article-title: Fine‐root turnover in forest ecosystems in relation to quantity and form of nitrogen availability
  publication-title: Oecologia
– volume: 34
  start-page: 344
  year: 1992
  end-page: 350
  article-title: Rapid production of graphite without contamination for biomedical AMS
  publication-title: Radiocarbon
– volume: 147
  start-page: 33
  year: 2000
  end-page: 34
  article-title: Building roots in a changing environment
  publication-title: New Phytologist
– volume: 372
  start-page: 666
  year: 1994
  end-page: 669
  article-title: The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures
  publication-title: Nature
– volume: 129
  start-page: 420
  year: 2001
  end-page: 429
  article-title: The age of fine‐root carbon in three forests of the eastern United States measured by radiocarbon
  publication-title: Oecologia
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1469-8137.2003.00766.x
– ident: e_1_2_7_26_1
  doi: 10.1017/S0033822200063529
– ident: e_1_2_7_5_1
  doi: 10.1034/j.1600-0889.47.issue5.3.x
– ident: e_1_2_7_17_1
  doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1469-8137.2000.00686.x
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365-2486.1999.00259.x
– ident: e_1_2_7_29_1
– start-page: 503
  volume-title: Radiocarbon after Four Decades
  year: 2000
  ident: e_1_2_7_10_1
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1091841
– ident: e_1_2_7_7_1
  doi: 10.1007/s004420100746
– ident: e_1_2_7_2_1
  doi: 10.1007/BF00378292
– ident: e_1_2_7_28_1
  doi: 10.1007/BF00017088
– ident: e_1_2_7_19_1
  doi: 10.1007/s100210000019
– ident: e_1_2_7_18_1
  doi: 10.1139/x93-149
– ident: e_1_2_7_21_1
  doi: 10.1029/2002GB001953
– ident: e_1_2_7_23_1
  doi: 10.1029/95GB02148
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1089543
– ident: e_1_2_7_13_1
  doi: 10.1038/372666a0
– ident: e_1_2_7_25_1
  doi: 10.1023/A:1005880031579
– ident: e_1_2_7_8_1
  doi: 10.1046/j.1469-8137.2000.00681.x
– ident: e_1_2_7_15_1
  doi: 10.1046/j.1469-8137.2002.00413_1.x
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2486.2005.00903.x
– ident: e_1_2_7_4_1
  doi: 10.1016/0012-821X(84)90089-X
– ident: e_1_2_7_14_1
  doi: 10.1029/2001JD000360
– ident: e_1_2_7_12_1
  doi: 10.2307/1940664
– ident: e_1_2_7_27_1
  doi: 10.1023/A:1004313515294
– ident: e_1_2_7_9_1
  doi: 10.1023/A:1005308930871
– ident: e_1_2_7_22_1
  doi: 10.1139/x02-123
SSID ssj0003206
Score 2.2239966
Snippet Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the...
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the...
Radiocarbon ( 14 C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the...
Radiocarbon ( super(14)C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Amazonia
belowground
biodegradation
biogeochemical cycles
biological activity in soil
Brazil
carbon
carbon cycle
Carbon dioxide
decomposition
Ecosystems
fine root
forest litter
forest soils
gas emissions
Organic matter
Plant tissues
radiocarbon
radiolabeling
radionuclides
Rainforests
rhizosphere
root respiration
Roots
soil microorganisms
Soil organic matter
soil respiration
Soils
tropical forest
Tropical forests
tropical soils
turnover
Turnover time
Title Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration
URI https://api.istex.fr/ark:/67375/WNG-7W52N767-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2005.001063.x
https://www.proquest.com/docview/205173702
https://www.proquest.com/docview/17145635
https://www.proquest.com/docview/46845365
Volume 12
WOSCitedRecordID wos000234974900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BCogLj0BVUx6LhHoziu3161jSphwgQtCqua3Gu-sqItiV7aLCr2fGdkwigVQhbrE8O7G9s5-_Xc_OB_DG5nlqI1-6htDflVIaN-WdXDoOI8xTjE0uW7GJeD5PFov0Uy8HxHthuvoQw4Ibj4wWr3mAY1ZvD_I2Q0sm0XpphKY3wVsilDs-xbEcwc7R59nZhwGYA7-V2vSCUBL6eME9eL2R2PNnZ1uvq9s5lkRi-flfbzHSTV7bvphmD__rLT2CBz0_FYddQD2GW7YYw91OsfLHGHaPf2-MI7MeGeoxOB-JfZdVayYOxHS1JCrcHj2B8qiTva9FmYucrlIQXW-ExiorC7EsxOE3_EnYgoVoqvKSw0bQrLgrMl0LLIwgmirarPpenos9sZNaNKWoy-VKVH3OAJ18Cqez49Ppe7cXenA1sc3ATXwtJ1kgTW51kGV2EmXa0lGYW4nSBp5O8gQ1F69LrUd2BhGt8ezEeBFisAujoizsHghNrSJjTeRFWkofM8tCIkmWYJxN0IQOJOvuVLovgs5aHCu1MRmiPlDcByzRGaquD9S1A_7Q9LKrBHKTRnsUMwovCLHV2RefvxMTo-Wiaw4ctIE0OMPqK2fZxaE6n5-o-Dz053EUq4UD--tIUz3A1PQvoUe27ObVcJaQgT_3YGHLq1qxtH1IfPLvFjJKZEgX7kDchuXN70udTN_xr2f_3HIf7nerWZwZ9BxGTXVlX8Ad_b1Z1tXLfuj-AnhJQK8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4MXPgrTwoAZCe0tqEnsfDyObt0QXYWg0_pmObaDqpVkSjI0-Ou5S9LSSiBNiLdYOV9i3fnys3O-H8Bbm2WJDX3uGoz-LufcuAmd5NKRCFWWqMhkvCGbiCaTeDZLPnXHo-ksTFsfYrXhRjOjidc0wWlDenOWNylaPA6XeyO4vgneIaLc4uhWogdbR59H5-NVZA78hmvTCwTH8OMF2_BmLbPnz8o2vld3M1UgiiUD3GxA0nVg23yZRo__75iewKMOobLD1qWewh2b9-F-y1n5ow87x7-PxqFYFxuqPjhniL-LshFjB2y4mCMYblrPoDhqie8rVmQsw9dkCNhrplWZFjmb5-zwm_qJ0UXlrC6LK3Ichuvitsx0xVRuGAJV1uTVdwRdpImUVKwuWFXMF6zssgbw5nOYjo6nw1O3o3pwNeLNwI19zQdpwE1mdZCmdhCm2mJLZJYrbgNPx1msNJWvS6yHckYpZY1nB8YLlQp2oJcXud0FprFXaKwJvVBz7qvUEpVInMYqSgfKCAfipT2l7sqgExvHQq4th9AGkmxAJJ1CtjaQNw74q65XbS2Q23TaRaeR6ivGbHn-xac_xYhpqeyaAweNJ62UqfKS8uwiIS8mJzK6EP4kCiM5c2Bv6WqyCzEVPkV4KEtq9ld3MTbQDx-V2-K6kkRuLxBR_l2ChzEX-OIORI1f3n5c8mT4nq5e_HPPfXhwOj0by_GHycc9eNjubVGe0Evo1eW1fQX39Pd6XpWvu3n8C665RJ8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5RAEN9oq40vfpxtilW7JqZvmAN2F3isd71qrJdG2_TeNst-mIsnXICa6l_vDHB4l2jSGN8gzA6Q-eC3y-z8CHltnUutCJlvIPv7jDHjp7iTS8dcKJeq2DjWkE3E02kym6Xn3fZo3AvT9ofoF9wwMpp8jQFul8ZtRnlTosUSsVobgflN9AYQ5TbjqYAw3R5_mlye9Zk5ChuuzSDiDNJPEO2QV2uVPX9WtvG9uutUASgWDXCzAUnXgW3zZZo8-r_v9Jg87BAqPW5d6gm5Y_MBud9yVv4YkL2T31vjQKzLDdWAeB8BfxdlI0aP6GgxBzDcnD0lxbglvq9o4aiDx6QA2GuqVZkVOZ3n9Pib-gnZReW0LoslOg6FeXHbZrqiKjcUgCpt6uo7gi7UhEoqWhe0KuYLWnZVA3Bxl1xMTi5G7_yO6sHXgDcjPwk1G2YRM87qKMvsUGTawhl3lilmo0AnLlEa29elNgA5o5SyJrBDEwiloj2ylRe53SdUwyhhrBGB0IyFKrNIJZJkiYqzoTLcI8nKnlJ3bdCRjWMh16ZDYAOJNkCSTi5bG8gbj4T90GXbC-Q2g_bBaaT6AjlbXn4O8U8xYFpsu-aRo8aTemWq_Ip1djGXV9NTGV_xcBqLWM48crByNdmlmAruwgOQRTWH_VXIDfjDR-W2uK4kkttzQJR_l2AiYRwe3CNx45e3fy95OnqLR8_-eeQh2TkfT-TZ--mHA_KgXdrCMqHnZKsur-0Lck9_r-dV-bIL41_R8kQa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+fine+root+carbon+in+Amazonian+tropical+ecosystems+and+the+contribution+of+roots+to+soil+respiration&rft.jtitle=Global+change+biology&rft.au=Trumbore%2C+Susan&rft.au=Da+Costa%2C+Enir+Salazar&rft.au=Nepstad%2C+Daniel+C.&rft.au=Barbosa+De+Camargo%2C+Pl%C3%ADnio&rft.date=2006-02-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=12&rft.issue=2&rft.spage=217&rft.epage=229&rft_id=info:doi/10.1111%2Fj.1365-2486.2005.001063.x&rft.externalDBID=10.1111%252Fj.1365-2486.2005.001063.x&rft.externalDocID=GCB1063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon