Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration
Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average...
Uloženo v:
| Vydáno v: | Global change biology Ročník 12; číslo 2; s. 217 - 229 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Oxford, UK : Blackwell Science Ltd
01.02.2006
Blackwell Science Ltd Blackwell Publishing Ltd |
| Témata: | |
| ISSN: | 1354-1013, 1365-2486 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of ¹⁴C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High [Delta]¹⁴C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using ¹⁴C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the ¹⁴C values in soil pore space CO₂, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time. |
|---|---|
| AbstractList | Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil.
Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time. Radiocarbon ( super(14)C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of super(14)C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High Delta super(14)C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using super(14)C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the super(14)C values in soil pore space CO sub(2), in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time. Radiocarbon ( 14 C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14 C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ 14 C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14 C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14 C values in soil pore space CO 2 , in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time. Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High delta14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.[PUBLICATION ABSTRACT] Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4-11 years (ranging from <1 to >40 years). Measurements of ¹⁴C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2-year-old) photosynthetic products. High [Delta]¹⁴C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1-3 years) than the age of standing fine root C stocks obtained from radiocarbon (4-11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using ¹⁴C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the ¹⁴C values in soil pore space CO₂, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time. |
| Author | Nepstad, Daniel C. Barbosa De Camargo, Plínio Restom, Teresa Martinelli, Luiz A. Trumbore, Susan Da Costa, Enir Salazar Ray, David Silver, Whendee |
| Author_xml | – sequence: 1 fullname: Trumbore, Susan – sequence: 2 fullname: Costa, Enir Salazar Da – sequence: 3 fullname: Nepstad, Daniel C – sequence: 4 fullname: Barbosa De Camargo, Plínio – sequence: 5 fullname: Martinelli, Luiz A – sequence: 6 fullname: Ray, David – sequence: 7 fullname: Restom, Teresa – sequence: 8 fullname: Silver, Whendee |
| BookMark | eNqNkkFv1DAQhSNUJNrCb8Bw4JZgx7GTvYDKAgtSVQ4UlZs1cSbgJbEX2yt2-fXYBPXQC_XFY817nzTzfFacWGexKJ4xWrF0Xm4rxqUo66aTVU2pqChlVPLq8KA4ve2c5Fo0JaOMPyrOQthSSnlN5Wnh3h4tzEYH4kYyGovEOxeJBt87S4wlFzP8dtaAJdG7ndEwEdQuHEPEORCwA4nfkWhnozf9PprkSqQMCSQ6EpyZiMewMx5y83HxcIQp4JN_93lx_f7d9fpDeflp83F9cVlqwTkvu1o3tOfNMKLmfY9U9hrTS4zYQIOc6W7sQLN2tVohS7oBAHBgSAcmAfh58WLB7rz7uccQ1WyCxmkCi24fVCO7RqT1_FfIWtYIybPw-R3h1u29TTOomgrW8pbWSfR6EWnvQvA4Km3i37mjBzMpRlVOTW1VzkblbFROTS2pqUMirO4Qdt7M4I_38r5avL_MhMf7G9Vm_SZXCVAuAJPSPdwCwP9QMg0o1M3VRrU3or5qZau-Jv3TRT-CU_DNm6C-fK7TJ0tg0fG0kD_F1swD |
| CitedBy_id | crossref_primary_10_1016_j_foreco_2007_10_039 crossref_primary_10_1007_s11442_007_0101_2 crossref_primary_10_1111_nph_17985 crossref_primary_10_1007_s11676_014_0523_5 crossref_primary_10_1016_j_scitotenv_2024_173147 crossref_primary_10_1016_j_foreco_2007_09_026 crossref_primary_10_1890_ES15_00259_1 crossref_primary_10_1007_s10021_024_00941_w crossref_primary_10_1016_j_envres_2022_114392 crossref_primary_10_1016_j_agrformet_2014_03_006 crossref_primary_10_1139_X07_057 crossref_primary_10_1016_j_ecoleng_2009_03_022 crossref_primary_10_1111_j_1469_8137_2009_02789_x crossref_primary_10_1007_s11027_010_9240_3 crossref_primary_10_5194_bg_22_455_2025 crossref_primary_10_1016_j_foreco_2017_05_033 crossref_primary_10_3389_ffgc_2023_1228145 crossref_primary_10_1111_j_1744_7429_2009_00494_x crossref_primary_10_1007_s11104_008_9688_z crossref_primary_10_1111_nph_12979 crossref_primary_10_1093_treephys_tpt049 crossref_primary_10_1007_s10533_013_9920_7 crossref_primary_10_1007_s10533_010_9501_y crossref_primary_10_1007_s11252_016_0572_y crossref_primary_10_1029_2019JG005353 crossref_primary_10_1111_j_1469_8137_2007_02242_x crossref_primary_10_1007_s11104_010_0391_5 crossref_primary_10_1007_s11104_008_9759_1 crossref_primary_10_1111_gcb_13226 crossref_primary_10_1111_j_1365_2486_2008_01736_x crossref_primary_10_1146_annurev_earth_36_031207_124300 crossref_primary_10_1007_s10533_010_9485_7 crossref_primary_10_1016_j_rhisph_2022_100474 crossref_primary_10_1111_j_1469_8137_2006_01847_x crossref_primary_10_1007_s10533_020_00743_x crossref_primary_10_1016_j_agee_2017_05_011 crossref_primary_10_1007_s10533_010_9417_6 crossref_primary_10_1111_j_1365_2486_2012_02761_x crossref_primary_10_1111_j_1469_8137_2009_02980_x crossref_primary_10_1002_ldr_3761 crossref_primary_10_1007_s11104_012_1438_6 crossref_primary_10_5194_bg_13_341_2016 crossref_primary_10_1111_j_1365_2486_2009_02131_x crossref_primary_10_1139_A08_003 crossref_primary_10_1007_s00442_015_3410_7 crossref_primary_10_1007_s11104_017_3460_1 crossref_primary_10_1111_j_1469_8137_2007_02335_x crossref_primary_10_1111_j_1469_8137_2010_03423_x crossref_primary_10_1007_s11676_008_0002_y crossref_primary_10_1111_pce_70154 crossref_primary_10_1007_s10457_015_9859_x crossref_primary_10_1007_s11252_013_0294_3 crossref_primary_10_3390_f15071155 crossref_primary_10_1007_s00468_021_02166_z crossref_primary_10_1002_jpln_201300110 crossref_primary_10_1016_S1002_0160_17_60455_7 crossref_primary_10_1002_agj2_20210 crossref_primary_10_1111_nph_12271 crossref_primary_10_1371_journal_pone_0119184 crossref_primary_10_1016_j_catena_2014_07_012 crossref_primary_10_1016_j_geoderma_2022_115849 crossref_primary_10_1016_j_scitotenv_2019_135319 crossref_primary_10_1007_s11284_012_1013_x crossref_primary_10_1007_s11104_010_0562_4 crossref_primary_10_1111_j_1469_8137_2007_02153_x crossref_primary_10_1007_s11104_012_1294_4 crossref_primary_10_1111_nph_13203 crossref_primary_10_1016_j_envexpbot_2010_03_003 crossref_primary_10_1007_s10021_009_9300_2 crossref_primary_10_1016_j_apgeochem_2011_03_048 crossref_primary_10_1017_S0033822200042910 crossref_primary_10_1007_s11104_016_2951_9 crossref_primary_10_1111_gcb_15351 crossref_primary_10_1007_s11104_013_1778_x crossref_primary_10_1016_j_soilbio_2008_11_020 crossref_primary_10_1007_s10310_009_0176_y crossref_primary_10_1007_s11707_020_0828_y crossref_primary_10_1038_srep29478 crossref_primary_10_1890_08_0074_1 crossref_primary_10_1038_s41598_024_67307_z crossref_primary_10_1111_nph_13111 crossref_primary_10_1007_s11104_006_0047_7 crossref_primary_10_1080_11263504_2012_742471 crossref_primary_10_1111_j_1365_2486_2011_02629_x crossref_primary_10_1111_j_1365_2486_2008_01610_x crossref_primary_10_1111_j_1365_2745_2009_01547_x crossref_primary_10_1111_j_1755_0238_2012_00193_x crossref_primary_10_1016_j_agrformet_2009_05_007 crossref_primary_10_1002_2013JG002379 crossref_primary_10_1007_s12155_012_9250_y crossref_primary_10_1002_2017JG004103 crossref_primary_10_1890_08_1516_1 crossref_primary_10_3389_fpls_2015_01022 crossref_primary_10_1371_journal_pone_0095321 crossref_primary_10_1007_s11104_011_0745_7 crossref_primary_10_1007_s11104_015_2755_3 |
| Cites_doi | 10.1046/j.1469-8137.2003.00766.x 10.1017/S0033822200063529 10.1034/j.1600-0889.47.issue5.3.x 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 10.1046/j.1469-8137.2000.00686.x 10.1046/j.1365-2486.1999.00259.x 10.1126/science.1091841 10.1007/s004420100746 10.1007/BF00378292 10.1007/BF00017088 10.1007/s100210000019 10.1139/x93-149 10.1029/2002GB001953 10.1029/95GB02148 10.1126/science.1089543 10.1038/372666a0 10.1023/A:1005880031579 10.1046/j.1469-8137.2000.00681.x 10.1046/j.1469-8137.2002.00413_1.x 10.1111/j.1365-2486.2005.00903.x 10.1016/0012-821X(84)90089-X 10.1029/2001JD000360 10.2307/1940664 10.1023/A:1004313515294 10.1023/A:1005308930871 10.1139/x02-123 |
| ContentType | Journal Article |
| Copyright | 2005 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2005 Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7ST 7U6 7S9 L.6 |
| DOI | 10.1111/j.1365-2486.2005.001063.x |
| DatabaseName | AGRIS Istex CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Ecology Abstracts CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 229 |
| ExternalDocumentID | 978659691 10_1111_j_1365_2486_2005_001063_x GCB1063 ark_67375_WNG_7W52N767_X US201301058302 |
| Genre | article Feature |
| GeographicLocations | Brazil Amazonia |
| GeographicLocations_xml | – name: Amazonia – name: Brazil |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AEUQT AFPWT ESX WRC WUP AAYXX CITATION O8X 7SN 7UA C1K F1W H97 L.G 7ST 7U6 7S9 L.6 |
| ID | FETCH-LOGICAL-c5333-82c40b34dfec3bbe06bce4df5fe4a4e31c8f8ac17999e134ddaaaed1e0d16aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234974900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Thu Jul 10 19:22:11 EDT 2025 Tue Oct 07 09:09:11 EDT 2025 Mon Nov 10 02:51:15 EST 2025 Sat Nov 29 06:02:07 EST 2025 Tue Nov 18 22:30:41 EST 2025 Wed Jan 22 16:23:27 EST 2025 Tue Nov 11 03:32:21 EST 2025 Thu Apr 03 09:46:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5333-82c40b34dfec3bbe06bce4df5fe4a4e31c8f8ac17999e134ddaaaed1e0d16aa3 |
| Notes | http://dx.doi.org/10.1111/j.1365-2486.2005.001063.x ArticleID:GCB1063 istex:A0EEDD9D596EC0FF8AA0307B23C51AEB99329695 ark:/67375/WNG-7W52N767-X SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 205173702 |
| PQPubID | 30327 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_46845365 proquest_miscellaneous_17145635 proquest_journals_205173702 crossref_citationtrail_10_1111_j_1365_2486_2005_001063_x crossref_primary_10_1111_j_1365_2486_2005_001063_x wiley_primary_10_1111_j_1365_2486_2005_001063_x_GCB1063 istex_primary_ark_67375_WNG_7W52N767_X fao_agris_US201301058302 |
| PublicationCentury | 2000 |
| PublicationDate | February 2006 |
| PublicationDateYYYYMMDD | 2006-02-01 |
| PublicationDate_xml | – month: 02 year: 2006 text: February 2006 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2006 |
| Publisher | Oxford, UK : Blackwell Science Ltd Blackwell Science Ltd Blackwell Publishing Ltd |
| Publisher_xml | – name: Oxford, UK : Blackwell Science Ltd – name: Blackwell Science Ltd – name: Blackwell Publishing Ltd |
| References | Matamala R, Gonzàlez-Meler MA, Jastrow JD et al. (2003) Impacts of fine root turnover on forest NPP and Soil C sequestration potential. Science, 302, 1385. Telles EDC, Camargo PB, Martinelli LA et al. (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia - art. no. 1040. Global Biogeochemical Cycles, 17, 1040. Vogt KA, Vogt DJ, Bloomfield J et al. (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil, 200, 71-89. Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science, 302, 1344-1345. Aber JD, Melillo JM, Nadelhoffer K et al. (1985) Fine-root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 32, 317-321. Cerling TE (1984) The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240. Pregitzer KS, DeForest JL, Burton AJ et al. (2002) Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 34, 344-350. Jipp PH, Nepstad DC, Cassel DK et al. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazônia. Climatic Change, 39, 395-412. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. Nepstad DC, Moutinho P, Dias-Filho MB et al. (2002) The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107, 1-18. Silver WL, Thompson AW, McGroddy M et al. (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290-306. Pregitzer KS (2002) Fine roots of trees - a new perspective. New Phytologist, 154, 267-270. Camargo PB, Trumbore SE, Martinelli LA et al. (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5, 693-670. Vogt KA, Vogt DJ, Palmiotto PA et al. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219. Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Series B - Chemical and Physical Meteorology, 47, 550-565. Vandam D, Veldkamp E, Vanbreemen N et al. (1997) Soil organic carbon dynamics - variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry, 39, 343-375. Eissenstat DM, Wells CE, Yanai RD et al. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-34. Publicover DA, Vogt KA (1993) A comparison of methods for estimating forest fine root production with respect to sources of error. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere., 23, 1179-1186. Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere, 32, 1692-1697. Pregitzer KS (2003) Woody plants, carbon allocation and fine roots. New Phytologist, 158, 421-423. Nepstad DC, Decarvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures. Nature, 372, 666-669. Silver WL, Neff J, McGroddy M et al. (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3, 193-209. Gaudinski JB, Trumbore SE, Davidson EA et al. (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 129, 420-429. Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139-1147. Trumbore SE, Davidson EA, Camargo PB et al. (1995) Belowground cycling of carbon in forests and pastures of eastern Amazônia. Global Biogeochemical Cycles, 9, 515-528. 1995; 9 1993; 23 2002; 154 2002; 72 2000; 3 1994; 372 2002; 32 2003; 17 1996; 187 2004 2001; 129 2003; 158 1999; 5 1992; 34 1992; 73 1998; 39 1984; 71 2000; 147 2000 1995; 47 2002; 107 1997; 39 2003; 302 1985; 32 1998; 200 2005; 11 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Levin I (e_1_2_7_10_1) 2000 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – reference: Silver WL, Thompson AW, McGroddy M et al. (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290-306. – reference: Pregitzer KS (2003) Woody plants, carbon allocation and fine roots. New Phytologist, 158, 421-423. – reference: Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139-1147. – reference: Publicover DA, Vogt KA (1993) A comparison of methods for estimating forest fine root production with respect to sources of error. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere., 23, 1179-1186. – reference: Vogt KA, Vogt DJ, Bloomfield J et al. (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil, 200, 71-89. – reference: Vandam D, Veldkamp E, Vanbreemen N et al. (1997) Soil organic carbon dynamics - variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry, 39, 343-375. – reference: Jipp PH, Nepstad DC, Cassel DK et al. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazônia. Climatic Change, 39, 395-412. – reference: Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science, 302, 1344-1345. – reference: Aber JD, Melillo JM, Nadelhoffer K et al. (1985) Fine-root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 32, 317-321. – reference: Pregitzer KS, DeForest JL, Burton AJ et al. (2002) Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. – reference: Nepstad DC, Moutinho P, Dias-Filho MB et al. (2002) The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107, 1-18. – reference: Pregitzer KS (2002) Fine roots of trees - a new perspective. New Phytologist, 154, 267-270. – reference: Matamala R, Gonzàlez-Meler MA, Jastrow JD et al. (2003) Impacts of fine root turnover on forest NPP and Soil C sequestration potential. Science, 302, 1385. – reference: Vogt KA, Vogt DJ, Palmiotto PA et al. (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219. – reference: Nepstad DC, Decarvalho CR, Davidson EA et al. (1994) The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures. Nature, 372, 666-669. – reference: Eissenstat DM, Wells CE, Yanai RD et al. (2000) Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-34. – reference: Silver WL, Neff J, McGroddy M et al. (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3, 193-209. – reference: Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. – reference: Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research - Journal Canadien de la Recherche Forestiere, 32, 1692-1697. – reference: Trumbore SE, Davidson EA, Camargo PB et al. (1995) Belowground cycling of carbon in forests and pastures of eastern Amazônia. Global Biogeochemical Cycles, 9, 515-528. – reference: Gaudinski JB, Trumbore SE, Davidson EA et al. (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 129, 420-429. – reference: Vogel JS (1992) Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 34, 344-350. – reference: Cerling TE (1984) The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240. – reference: Telles EDC, Camargo PB, Martinelli LA et al. (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia - art. no. 1040. Global Biogeochemical Cycles, 17, 1040. – reference: Camargo PB, Trumbore SE, Martinelli LA et al. (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5, 693-670. – reference: Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Series B - Chemical and Physical Meteorology, 47, 550-565. – volume: 17 start-page: 1040 year: 2003 article-title: Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia – art. no. 1040 publication-title: Global Biogeochemical Cycles – volume: 187 start-page: 159 year: 1996 end-page: 219 article-title: Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species publication-title: Plant and Soil – volume: 39 start-page: 343 year: 1997 end-page: 375 article-title: Soil organic carbon dynamics – variability with depth in forested and deforested soils under pasture in Costa Rica publication-title: Biogeochemistry – volume: 32 start-page: 1692 year: 2002 end-page: 1697 article-title: Fine root turnover in a northern hardwood forest publication-title: Canadian Journal of Forest Research – Journal Canadien de la Recherche Forestiere – volume: 147 start-page: 13 year: 2000 end-page: 31 article-title: Global patterns of root turnover for terrestrial ecosystems publication-title: New Phytologist – volume: 154 start-page: 267 year: 2002 end-page: 270 article-title: Fine roots of trees – a new perspective publication-title: New Phytologist – volume: 11 start-page: 290 year: 2005 end-page: 306 article-title: Fine root dynamics and trace gas fluxes in two lowland tropical forest soils publication-title: Global Change Biology – volume: 3 start-page: 193 year: 2000 end-page: 209 article-title: Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem publication-title: Ecosystems – volume: 9 start-page: 515 year: 1995 end-page: 528 article-title: Belowground cycling of carbon in forests and pastures of eastern Amazônia publication-title: Global Biogeochemical Cycles – volume: 71 start-page: 229 year: 1984 end-page: 240 article-title: The stable isotopic composition of soil carbonate and its relationship to climate publication-title: Earth and Planetary Science Letters – volume: 107 start-page: 1 year: 2002 end-page: 18 article-title: The effect of partial throughfall exclusion on canopy processes and biogeochemistry of an Amazon forest publication-title: Journal of Geophysical Research – start-page: 503 year: 2000 end-page: 518 – volume: 302 start-page: 1385 year: 2003 article-title: Impacts of fine root turnover on forest NPP and Soil C sequestration potential publication-title: Science – volume: 200 start-page: 71 year: 1998 end-page: 89 article-title: Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level publication-title: Plant and Soil – volume: 73 start-page: 1139 year: 1992 end-page: 1147 article-title: Fine root production estimates and belowground carbon allocation in forest ecosystems publication-title: Ecology – volume: 47 start-page: 550 year: 1995 end-page: 565 article-title: Gas diffusivity and production of CO in deep soils of the eastern Amazon publication-title: Tellus Series B – Chemical and Physical Meteorology – volume: 158 start-page: 421 year: 2003 end-page: 423 article-title: Woody plants, carbon allocation and fine roots publication-title: New Phytologist – volume: 5 start-page: 693 year: 1999 end-page: 670 article-title: Soil carbon dynamics in regrowing forest of eastern Amazonia publication-title: Global Change Biology – volume: 39 start-page: 395 year: 1998 end-page: 412 article-title: Deep soil moisture storage and transpiration in forests and pastures of seasonally‐dry Amazônia publication-title: Climatic Change – volume: 72 start-page: 293 year: 2002 end-page: 309 article-title: Fine root architecture of nine North American trees publication-title: Ecological Monographs – year: 2004 – volume: 23 start-page: 1179 year: 1993 end-page: 1186 article-title: A comparison of methods for estimating forest fine root production with respect to sources of error publication-title: Canadian Journal of Forest Research – Journal Canadien de la Recherche Forestiere. – volume: 302 start-page: 1344 year: 2003 end-page: 1345 article-title: The secret lives of roots publication-title: Science – volume: 32 start-page: 317 year: 1985 end-page: 321 article-title: Fine‐root turnover in forest ecosystems in relation to quantity and form of nitrogen availability publication-title: Oecologia – volume: 34 start-page: 344 year: 1992 end-page: 350 article-title: Rapid production of graphite without contamination for biomedical AMS publication-title: Radiocarbon – volume: 147 start-page: 33 year: 2000 end-page: 34 article-title: Building roots in a changing environment publication-title: New Phytologist – volume: 372 start-page: 666 year: 1994 end-page: 669 article-title: The role of deep roots in the hydrological and carbon cycle of Amazonian forests and pastures publication-title: Nature – volume: 129 start-page: 420 year: 2001 end-page: 429 article-title: The age of fine‐root carbon in three forests of the eastern United States measured by radiocarbon publication-title: Oecologia – ident: e_1_2_7_16_1 doi: 10.1046/j.1469-8137.2003.00766.x – ident: e_1_2_7_26_1 doi: 10.1017/S0033822200063529 – ident: e_1_2_7_5_1 doi: 10.1034/j.1600-0889.47.issue5.3.x – ident: e_1_2_7_17_1 doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.1046/j.1469-8137.2000.00686.x – ident: e_1_2_7_3_1 doi: 10.1046/j.1365-2486.1999.00259.x – ident: e_1_2_7_29_1 – start-page: 503 volume-title: Radiocarbon after Four Decades year: 2000 ident: e_1_2_7_10_1 – ident: e_1_2_7_24_1 doi: 10.1126/science.1091841 – ident: e_1_2_7_7_1 doi: 10.1007/s004420100746 – ident: e_1_2_7_2_1 doi: 10.1007/BF00378292 – ident: e_1_2_7_28_1 doi: 10.1007/BF00017088 – ident: e_1_2_7_19_1 doi: 10.1007/s100210000019 – ident: e_1_2_7_18_1 doi: 10.1139/x93-149 – ident: e_1_2_7_21_1 doi: 10.1029/2002GB001953 – ident: e_1_2_7_23_1 doi: 10.1029/95GB02148 – ident: e_1_2_7_11_1 doi: 10.1126/science.1089543 – ident: e_1_2_7_13_1 doi: 10.1038/372666a0 – ident: e_1_2_7_25_1 doi: 10.1023/A:1005880031579 – ident: e_1_2_7_8_1 doi: 10.1046/j.1469-8137.2000.00681.x – ident: e_1_2_7_15_1 doi: 10.1046/j.1469-8137.2002.00413_1.x – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2486.2005.00903.x – ident: e_1_2_7_4_1 doi: 10.1016/0012-821X(84)90089-X – ident: e_1_2_7_14_1 doi: 10.1029/2001JD000360 – ident: e_1_2_7_12_1 doi: 10.2307/1940664 – ident: e_1_2_7_27_1 doi: 10.1023/A:1004313515294 – ident: e_1_2_7_9_1 doi: 10.1023/A:1005308930871 – ident: e_1_2_7_22_1 doi: 10.1139/x02-123 |
| SSID | ssj0003206 |
| Score | 2.2239966 |
| Snippet | Radiocarbon (¹⁴C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the... Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the... Radiocarbon ( 14 C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the... Radiocarbon ( super(14)C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the... |
| SourceID | proquest crossref wiley istex fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 217 |
| SubjectTerms | Amazonia belowground biodegradation biogeochemical cycles biological activity in soil Brazil carbon carbon cycle Carbon dioxide decomposition Ecosystems fine root forest litter forest soils gas emissions Organic matter Plant tissues radiocarbon radiolabeling radionuclides Rainforests rhizosphere root respiration Roots soil microorganisms Soil organic matter soil respiration Soils tropical forest Tropical forests tropical soils turnover Turnover time |
| Title | Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration |
| URI | https://api.istex.fr/ark:/67375/WNG-7W52N767-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2005.001063.x https://www.proquest.com/docview/205173702 https://www.proquest.com/docview/17145635 https://www.proquest.com/docview/46845365 |
| Volume | 12 |
| WOSCitedRecordID | wos000234974900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BCogLj0BVUx6LhHoziu3161jSphwgQtCqua3Gu-sqItiV7aLCr2fGdkwigVQhbrE8O7G9s5-_Xc_OB_DG5nlqI1-6htDflVIaN-WdXDoOI8xTjE0uW7GJeD5PFov0Uy8HxHthuvoQw4Ibj4wWr3mAY1ZvD_I2Q0sm0XpphKY3wVsilDs-xbEcwc7R59nZhwGYA7-V2vSCUBL6eME9eL2R2PNnZ1uvq9s5lkRi-flfbzHSTV7bvphmD__rLT2CBz0_FYddQD2GW7YYw91OsfLHGHaPf2-MI7MeGeoxOB-JfZdVayYOxHS1JCrcHj2B8qiTva9FmYucrlIQXW-ExiorC7EsxOE3_EnYgoVoqvKSw0bQrLgrMl0LLIwgmirarPpenos9sZNaNKWoy-VKVH3OAJ18Cqez49Ppe7cXenA1sc3ATXwtJ1kgTW51kGV2EmXa0lGYW4nSBp5O8gQ1F69LrUd2BhGt8ezEeBFisAujoizsHghNrSJjTeRFWkofM8tCIkmWYJxN0IQOJOvuVLovgs5aHCu1MRmiPlDcByzRGaquD9S1A_7Q9LKrBHKTRnsUMwovCLHV2RefvxMTo-Wiaw4ctIE0OMPqK2fZxaE6n5-o-Dz053EUq4UD--tIUz3A1PQvoUe27ObVcJaQgT_3YGHLq1qxtH1IfPLvFjJKZEgX7kDchuXN70udTN_xr2f_3HIf7nerWZwZ9BxGTXVlX8Ad_b1Z1tXLfuj-AnhJQK8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4MXPgrTwoAZCe0tqEnsfDyObt0QXYWg0_pmObaDqpVkSjI0-Ou5S9LSSiBNiLdYOV9i3fnys3O-H8Bbm2WJDX3uGoz-LufcuAmd5NKRCFWWqMhkvCGbiCaTeDZLPnXHo-ksTFsfYrXhRjOjidc0wWlDenOWNylaPA6XeyO4vgneIaLc4uhWogdbR59H5-NVZA78hmvTCwTH8OMF2_BmLbPnz8o2vld3M1UgiiUD3GxA0nVg23yZRo__75iewKMOobLD1qWewh2b9-F-y1n5ow87x7-PxqFYFxuqPjhniL-LshFjB2y4mCMYblrPoDhqie8rVmQsw9dkCNhrplWZFjmb5-zwm_qJ0UXlrC6LK3Ichuvitsx0xVRuGAJV1uTVdwRdpImUVKwuWFXMF6zssgbw5nOYjo6nw1O3o3pwNeLNwI19zQdpwE1mdZCmdhCm2mJLZJYrbgNPx1msNJWvS6yHckYpZY1nB8YLlQp2oJcXud0FprFXaKwJvVBz7qvUEpVInMYqSgfKCAfipT2l7sqgExvHQq4th9AGkmxAJJ1CtjaQNw74q65XbS2Q23TaRaeR6ivGbHn-xac_xYhpqeyaAweNJ62UqfKS8uwiIS8mJzK6EP4kCiM5c2Bv6WqyCzEVPkV4KEtq9ld3MTbQDx-V2-K6kkRuLxBR_l2ChzEX-OIORI1f3n5c8mT4nq5e_HPPfXhwOj0by_GHycc9eNjubVGe0Evo1eW1fQX39Pd6XpWvu3n8C665RJ8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5RAEN9oq40vfpxtilW7JqZvmAN2F3isd71qrJdG2_TeNst-mIsnXICa6l_vDHB4l2jSGN8gzA6Q-eC3y-z8CHltnUutCJlvIPv7jDHjp7iTS8dcKJeq2DjWkE3E02kym6Xn3fZo3AvT9ofoF9wwMpp8jQFul8ZtRnlTosUSsVobgflN9AYQ5TbjqYAw3R5_mlye9Zk5ChuuzSDiDNJPEO2QV2uVPX9WtvG9uutUASgWDXCzAUnXgW3zZZo8-r_v9Jg87BAqPW5d6gm5Y_MBud9yVv4YkL2T31vjQKzLDdWAeB8BfxdlI0aP6GgxBzDcnD0lxbglvq9o4aiDx6QA2GuqVZkVOZ3n9Pib-gnZReW0LoslOg6FeXHbZrqiKjcUgCpt6uo7gi7UhEoqWhe0KuYLWnZVA3Bxl1xMTi5G7_yO6sHXgDcjPwk1G2YRM87qKMvsUGTawhl3lilmo0AnLlEa29elNgA5o5SyJrBDEwiloj2ylRe53SdUwyhhrBGB0IyFKrNIJZJkiYqzoTLcI8nKnlJ3bdCRjWMh16ZDYAOJNkCSTi5bG8gbj4T90GXbC-Q2g_bBaaT6AjlbXn4O8U8xYFpsu-aRo8aTemWq_Ip1djGXV9NTGV_xcBqLWM48crByNdmlmAruwgOQRTWH_VXIDfjDR-W2uK4kkttzQJR_l2AiYRwe3CNx45e3fy95OnqLR8_-eeQh2TkfT-TZ--mHA_KgXdrCMqHnZKsur-0Lck9_r-dV-bIL41_R8kQa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+fine+root+carbon+in+Amazonian+tropical+ecosystems+and+the+contribution+of+roots+to+soil+respiration&rft.jtitle=Global+change+biology&rft.au=Trumbore%2C+Susan&rft.au=Da+Costa%2C+Enir+Salazar&rft.au=Nepstad%2C+Daniel+C.&rft.au=Barbosa+De+Camargo%2C+Pl%C3%ADnio&rft.date=2006-02-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=12&rft.issue=2&rft.spage=217&rft.epage=229&rft_id=info:doi/10.1111%2Fj.1365-2486.2005.001063.x&rft.externalDBID=10.1111%252Fj.1365-2486.2005.001063.x&rft.externalDocID=GCB1063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |