Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with b...
Uloženo v:
| Vydáno v: | Psychiatry and clinical neurosciences Ročník 73; číslo 10; s. 613 - 627 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Melbourne
John Wiley & Sons Australia, Ltd
01.10.2019
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1323-1316, 1440-1819, 1440-1819 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)‐ketamine (or arketamine) and (S)‐ketamine (or esketamine). Because (S)‐ketamine has higher affinity for NMDAR than (R)‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)‐ketamine exerts greater potency and longer‐lasting antidepressant effects than (S)‐ketamine in animal models of depression and that (R)‐ketamine has less detrimental side‐effects than (R,S)‐ketamine or (S)‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABAA] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed. |
|---|---|
| AbstractList | Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)‐ketamine (or arketamine) and (S)‐ketamine (or esketamine). Because (S)‐ketamine has higher affinity for NMDAR than (R)‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)‐ketamine exerts greater potency and longer‐lasting antidepressant effects than (S)‐ketamine in animal models of depression and that (R)‐ketamine has less detrimental side‐effects than (R,S)‐ketamine or (S)‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABAA] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed. Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed. Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed. Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N ‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of ( R )‐ketamine (or arketamine) and ( S )‐ketamine (or esketamine). Because ( S )‐ketamine has higher affinity for NMDAR than ( R )‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that ( R )‐ketamine exerts greater potency and longer‐lasting antidepressant effects than ( S )‐ketamine in animal models of depression and that ( R )‐ketamine has less detrimental side‐effects than ( R,S )‐ketamine or ( S )‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABA A ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed. |
| Author | Hashimoto, Kenji |
| AuthorAffiliation | 1 Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan |
| AuthorAffiliation_xml | – name: 1 Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan |
| Author_xml | – sequence: 1 givenname: Kenji orcidid: 0000-0002-8892-0439 surname: Hashimoto fullname: Hashimoto, Kenji email: hashimoto@faculty.chiba-u.jp organization: Chiba University Center for Forensic Mental Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31215725$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kd1qFTEQx4NU7Ide-AIS8EbBbZNJ9ssLoRzqBxQV0euQzc7pSd1N1iR7Sr3qI_iMPok5PbVoQXOTmeQ3_5nhv092nHdIyGPODnk-R5NxhxxaBvfIHpeSFbzh7U6OBYiCC17tkv0YzxljQlT8AdkVHHhZQ7lHvn_Sk-1_Xv3QJll3RrVLtscpYIw5pF8x6dE6fEFtinTMWecHmzBmsKc-rTBQk0Pb6_z4kh7TlY3JB2v0QP0aw9rixTW7nNMckE4Y4oS51xofkvtLPUR8dHMfkC-vTz4v3hanH968WxyfFqYUAgoEMFJyCUKIUnYcJKvbppRN1XOjZc8biaLuoBHcSF0hdMZ0AIBd3tG0TByQV1vdae5G7A26FPSgpmBHHS6V11b9_ePsSp35taqaktcNZIFnNwLBf5sxJjXaaHAYtEM_RwUghWxZBZteT--g534OLq-nQDBeV2UePVNP_pzodpTftmTg-RYwwccYcHmLcKY2lqtsubq2PLNHd1hjk07Wb5axw_8qLuyAl_-WVh8X77cVvwAAr77o |
| CitedBy_id | crossref_primary_10_1007_s00406_019_01092_z crossref_primary_10_1002_chir_23698 crossref_primary_10_1080_13543776_2020_1811234 crossref_primary_10_1016_j_neuropharm_2021_108619 crossref_primary_10_1016_j_pbb_2020_172927 crossref_primary_10_1016_j_euroneuro_2022_11_007 crossref_primary_10_1002_med_21671 crossref_primary_10_1016_j_neuropharm_2022_109305 crossref_primary_10_1002_jmv_26681 crossref_primary_10_1016_j_jad_2020_12_069 crossref_primary_10_1016_j_bbr_2021_113651 crossref_primary_10_1038_s41398_022_01803_6 crossref_primary_10_3390_ph16050742 crossref_primary_10_1080_14728214_2021_1898588 crossref_primary_10_1016_j_pharma_2023_10_008 crossref_primary_10_2174_0929867327666200907141452 crossref_primary_10_1016_j_bcp_2020_113935 crossref_primary_10_3390_pharmaceutics14040846 crossref_primary_10_1016_j_ejphar_2025_177470 crossref_primary_10_1016_j_euroneuro_2021_01_005 crossref_primary_10_3390_biom10070990 crossref_primary_10_1007_s11126_025_10121_1 crossref_primary_10_1038_s41380_021_01377_7 crossref_primary_10_1016_j_neuint_2025_105961 crossref_primary_10_1016_j_jad_2023_04_122 crossref_primary_10_1016_j_nbd_2024_106573 crossref_primary_10_1111_cpr_12804 crossref_primary_10_1016_j_psychres_2021_114058 crossref_primary_10_1007_s00406_020_01103_4 crossref_primary_10_1016_j_drugalcdep_2023_110987 crossref_primary_10_1016_j_bbrc_2019_08_061 crossref_primary_10_1002_npr2_12132 crossref_primary_10_3389_fnins_2021_656921 crossref_primary_10_1016_j_pharmthera_2021_107875 crossref_primary_10_3390_ijms20246235 crossref_primary_10_1016_j_pbb_2020_172904 crossref_primary_10_34133_research_0782 crossref_primary_10_1038_s41398_022_02192_6 crossref_primary_10_1080_14740338_2022_2071422 crossref_primary_10_1016_j_neuropharm_2022_109207 crossref_primary_10_1016_j_brainresbull_2020_07_022 crossref_primary_10_2147_NDT_S451930 crossref_primary_10_1097_JCP_0000000000001941 crossref_primary_10_3390_jcm13061727 crossref_primary_10_1038_s41398_022_02227_y crossref_primary_10_1016_j_jad_2020_03_040 crossref_primary_10_1017_S0033291722003750 crossref_primary_10_1097_YIC_0000000000000527 crossref_primary_10_1111_pcn_13379 crossref_primary_10_1186_s12974_023_02696_y crossref_primary_10_1016_j_neuropharm_2022_109219 crossref_primary_10_52965_001c_25091 crossref_primary_10_1097_MS9_0000000000003232 crossref_primary_10_12677_acm_2025_1551503 crossref_primary_10_1016_j_neuropharm_2022_109345 crossref_primary_10_1038_s41380_022_01673_w crossref_primary_10_1016_j_euroneuro_2020_11_017 crossref_primary_10_1016_j_neuropharm_2024_110088 crossref_primary_10_1007_s00406_024_01920_x crossref_primary_10_1016_j_neuroscience_2022_05_014 crossref_primary_10_1186_s13063_025_08836_4 crossref_primary_10_1016_j_pbb_2021_173170 crossref_primary_10_3389_fnint_2022_949162 crossref_primary_10_3389_fnins_2021_584649 crossref_primary_10_1007_s00401_021_02371_7 crossref_primary_10_1016_j_ajp_2024_104246 crossref_primary_10_1016_j_jad_2024_08_176 crossref_primary_10_1016_j_phymed_2023_155332 crossref_primary_10_1016_j_jpet_2025_103710 crossref_primary_10_1007_s12035_023_03860_4 crossref_primary_10_1152_jn_00326_2023 crossref_primary_10_1213_ANE_0000000000006925 crossref_primary_10_1016_j_ejphar_2024_177096 crossref_primary_10_1002_EXP_20220133 crossref_primary_10_3390_ph16040568 crossref_primary_10_1080_14740338_2022_2100883 crossref_primary_10_1186_s10020_024_01013_4 crossref_primary_10_1093_ijnp_pyz048 crossref_primary_10_3390_ph16040565 crossref_primary_10_1016_j_jatmed_2025_06_001 crossref_primary_10_1038_s41380_021_01121_1 crossref_primary_10_1007_s00406_024_01809_9 crossref_primary_10_1016_j_neuropharm_2023_109466 crossref_primary_10_1097_MD_0000000000037123 crossref_primary_10_3389_fnbeh_2022_938044 crossref_primary_10_1016_j_heliyon_2024_e35469 crossref_primary_10_1016_j_neuropharm_2020_107947 crossref_primary_10_1016_j_psc_2020_02_008 crossref_primary_10_1007_s00406_020_01208_w crossref_primary_10_12788_acp_0048 crossref_primary_10_1155_2021_1156031 crossref_primary_10_3389_fgene_2023_1158028 crossref_primary_10_1016_j_neuropharm_2022_109250 crossref_primary_10_1016_j_jpsychires_2022_12_010 crossref_primary_10_3389_fnbeh_2022_845491 crossref_primary_10_1016_j_tins_2020_11_008 crossref_primary_10_1080_14740338_2022_2047928 crossref_primary_10_3390_ani13203161 crossref_primary_10_1016_j_pbb_2024_173906 crossref_primary_10_1038_s41386_020_0622_2 crossref_primary_10_1016_j_neuropharm_2022_109139 crossref_primary_10_1080_19490976_2024_2310603 crossref_primary_10_1038_s41398_019_0624_1 crossref_primary_10_1016_j_jpsychires_2020_03_020 crossref_primary_10_1016_j_bbr_2019_112153 crossref_primary_10_1016_j_bbr_2019_112397 crossref_primary_10_3390_ph16071013 crossref_primary_10_1002_ab_22022 crossref_primary_10_1016_j_nbd_2022_105635 crossref_primary_10_1016_j_jad_2024_06_080 crossref_primary_10_18863_pgy_1524106 crossref_primary_10_31083_j_jin2105144 crossref_primary_10_1016_j_ejphar_2020_173531 crossref_primary_10_3390_ijms222313070 crossref_primary_10_1016_j_pbb_2024_173736 crossref_primary_10_1124_pr_119_018697 crossref_primary_10_3389_fpsyt_2021_673443 crossref_primary_10_1016_j_neuropharm_2022_109153 crossref_primary_10_1016_j_neuropharm_2022_109272 crossref_primary_10_1016_j_ajp_2024_103997 crossref_primary_10_1007_s00406_020_01231_x crossref_primary_10_2174_0929867328666210623144658 crossref_primary_10_1186_s12991_021_00365_z crossref_primary_10_1016_j_pbb_2020_172870 crossref_primary_10_1002_etc_4955 crossref_primary_10_1007_s00406_020_01110_5 crossref_primary_10_1016_j_pbb_2020_172876 crossref_primary_10_3390_molecules29112459 crossref_primary_10_1016_j_jpsychires_2024_04_008 crossref_primary_10_1016_j_neuropharm_2022_108984 crossref_primary_10_1007_s00406_019_01084_z crossref_primary_10_1016_j_pbb_2021_173226 crossref_primary_10_1124_jpet_123_001823 crossref_primary_10_3390_ijms22179338 crossref_primary_10_1016_j_neuropharm_2023_109422 crossref_primary_10_3389_fnbeh_2022_901425 crossref_primary_10_1016_j_addicn_2022_100025 crossref_primary_10_3390_ph16040634 crossref_primary_10_1111_fcp_12745 crossref_primary_10_1016_j_taap_2023_116800 crossref_primary_10_1016_j_heliyon_2023_e19383 crossref_primary_10_1016_j_ejphar_2021_173954 crossref_primary_10_1038_s41398_023_02564_6 crossref_primary_10_1007_s00406_021_01365_6 crossref_primary_10_1016_j_ejphar_2022_175171 crossref_primary_10_1002_ibra_12094 crossref_primary_10_1007_s00406_019_01061_6 crossref_primary_10_1016_j_neubiorev_2025_106209 crossref_primary_10_1016_j_pnpbp_2020_110060 crossref_primary_10_1016_j_bbr_2020_112548 crossref_primary_10_1007_s00406_023_01570_5 crossref_primary_10_1016_j_disamonth_2024_101725 crossref_primary_10_1016_j_jad_2019_11_086 crossref_primary_10_1016_j_brainresbull_2024_110882 crossref_primary_10_1016_j_pnpbp_2024_111151 crossref_primary_10_1016_j_lfs_2021_119882 crossref_primary_10_1016_j_pbb_2022_173500 crossref_primary_10_1016_j_jad_2024_08_222 crossref_primary_10_3390_ph12040149 crossref_primary_10_1038_s41398_024_03176_4 crossref_primary_10_3389_fphar_2021_740996 crossref_primary_10_1093_ijnp_pyac049 crossref_primary_10_1016_j_pnpbp_2021_110403 crossref_primary_10_1016_j_euroneuro_2021_04_010 crossref_primary_10_3389_fncel_2019_00499 crossref_primary_10_3390_biom9110746 crossref_primary_10_1371_journal_pone_0310751 crossref_primary_10_1002_mco2_156 crossref_primary_10_3389_fnins_2021_657714 crossref_primary_10_1007_s00406_020_01095_1 crossref_primary_10_1038_s41398_021_01261_6 crossref_primary_10_1038_s41598_020_65300_w crossref_primary_10_1016_j_jad_2023_07_007 crossref_primary_10_1016_j_pbb_2023_173659 crossref_primary_10_1111_jcmm_17975 crossref_primary_10_1016_j_jpsychires_2021_02_028 crossref_primary_10_1016_j_phrs_2023_106917 crossref_primary_10_1016_j_jpsychires_2020_12_038 crossref_primary_10_1016_j_brainresbull_2021_10_013 crossref_primary_10_1016_j_intimp_2023_109792 crossref_primary_10_1016_j_neubiorev_2022_104762 crossref_primary_10_1038_s41401_021_00727_z crossref_primary_10_1177_2045125320916657 crossref_primary_10_1016_j_neuroscience_2024_12_062 crossref_primary_10_1080_00952990_2024_2394963 crossref_primary_10_1002_hbm_26670 crossref_primary_10_3390_genes11091089 crossref_primary_10_3389_fphar_2021_782457 crossref_primary_10_1007_s11696_023_02993_z crossref_primary_10_1017_S1092852921000791 crossref_primary_10_1002_tox_24227 crossref_primary_10_1016_j_brainresbull_2022_02_004 crossref_primary_10_1016_j_pbb_2024_173773 crossref_primary_10_1177_02698811211026426 crossref_primary_10_1016_j_pbb_2019_172839 crossref_primary_10_1016_j_pbb_2020_173011 crossref_primary_10_1126_sciadv_adv5986 crossref_primary_10_1093_ijnp_pyaa087 crossref_primary_10_1038_s41467_023_43150_0 crossref_primary_10_1016_j_neubiorev_2022_104635 crossref_primary_10_1053_j_jvca_2025_04_013 crossref_primary_10_1016_j_jad_2020_09_071 crossref_primary_10_1007_s00406_020_01226_8 crossref_primary_10_1016_j_pnpbp_2024_111228 crossref_primary_10_1515_revneuro_2022_0096 crossref_primary_10_1002_brb3_2986 crossref_primary_10_1097_JAN_0000000000000315 crossref_primary_10_1016_j_jpsychires_2023_06_028 crossref_primary_10_1097_FBP_0000000000000727 crossref_primary_10_3390_cells14110831 crossref_primary_10_1016_j_euroneuro_2020_01_017 crossref_primary_10_1016_j_jatmed_2024_07_001 crossref_primary_10_1002_anse_202100026 crossref_primary_10_1016_j_drudis_2023_103518 crossref_primary_10_1016_j_jpsychires_2025_05_029 crossref_primary_10_1038_s41380_023_01945_z crossref_primary_10_1017_erm_2025_10011 crossref_primary_10_1136_gpsych_2023_101374 crossref_primary_10_1111_cns_14598 crossref_primary_10_1016_j_bbr_2020_112508 crossref_primary_10_1073_pnas_2001264117 crossref_primary_10_3389_fnbeh_2021_749180 crossref_primary_10_1016_j_bbr_2020_112631 crossref_primary_10_1007_s40263_022_00897_2 crossref_primary_10_1016_j_bbr_2023_114594 crossref_primary_10_1007_s40263_024_01114_y crossref_primary_10_1038_s41398_020_0733_x crossref_primary_10_1007_s00406_024_01770_7 |
| Cites_doi | 10.1007/s00406-016-0692-7 10.1017/S0033291716000969 10.1016/j.biopsych.2016.12.031 10.1176/appi.ajp.2018.17060720 10.1523/JNEUROSCI.17-08-02921.1997 10.1038/npp.2017.49 10.1007/s00213-018-5017-2 10.1097/00000539-200007000-00042 10.3389/fpsyt.2018.00386 10.1007/s40262-016-0383-6 10.1038/npp.2013.128 10.1146/annurev-pharmtox-010617-052811 10.4103/1673-5374.230355 10.1093/ijnp/pyy101 10.1038/srep45942 10.1016/j.drudis.2018.11.007 10.1001/archpsyc.63.8.856 10.1016/j.biopsych.2012.05.003 10.9758/cpn.2012.10.1.59 10.1176/appi.ajp.163.1.153 10.1038/mp.2017.241 10.1038/npp.2016.202 10.1017/S1461145713000448 10.1016/j.biopsych.2017.05.016 10.1093/schbul/sbs011 10.3109/03009734.2012.724118 10.1016/S0924-977X(96)00042-9 10.1016/j.talanta.2010.08.005 10.1124/jpet.116.239228 10.1016/j.biopsych.2012.03.004 10.1126/science.1117571 10.1080/00952990.2016.1278449 10.1176/appi.ajp.2017.17060647 10.1001/jamapsychiatry.2019.0763 10.1007/s00213-014-3543-0 10.1016/j.biopsych.2012.10.019 10.1007/s00406-018-0922-2 10.1016/j.pbb.2018.07.003 10.1176/appi.ajp.2018.18111231r 10.1016/S0006-8993(96)00842-6 10.1017/S0033291715001506 10.1038/s12276-018-0164-4 10.1007/s00213-018-4992-7 10.1038/mp.2010.120 10.1016/j.biopsych.2015.10.018 10.1007/s00213-018-4832-9 10.1093/bja/57.2.197 10.1192/bjp.bp.110.086983 10.1038/nature10130 10.1002/cpt196563279 10.3389/fnhum.2016.00612 10.4103/0253-7613.161277 10.1038/tp.2015.157 10.1001/jamapsychiatry.2018.3990 10.1016/j.biopsych.2012.05.031 10.1016/0304-3959(94)00170-J 10.1016/j.biopsych.2017.10.020 10.1093/ijnp/pyu033 10.1038/mp.2011.47 10.1016/j.euroneuro.2015.04.012 10.1176/appi.ajp.2018.18111231 10.1016/j.psychres.2018.08.078 10.1017/S1461145711000629 10.1016/j.biopsych.2012.07.022 10.3389/fpsyt.2018.00277 10.1176/appi.ajp.2018.18091061r 10.1093/ijnp/pyx108 10.1080/15622975.2016.1224927 10.1080/1355621961000124696 10.1093/bja/77.4.441 10.1093/ijnp/pyx100 10.1016/j.jad.2016.05.076 10.1016/j.pbb.2018.11.010 10.1007/s00213-018-4828-5 10.1007/s00213-015-4062-3 10.1001/jamapsychiatry.2019.0766 10.1016/j.pharep.2018.02.011 10.1038/nrd3502 10.1038/mp.2016.44 10.1038/nrn3564 10.1038/s41380-018-0083-8 10.1126/science.1190287 10.1016/j.biopsych.2015.07.003 10.1038/mp.2017.239 10.1002/da.22536 10.1016/j.biopsych.2018.05.007 10.1080/14737175.2019.1554434 10.1016/j.biopsych.2014.06.021 10.1038/npp.2017.94 10.1073/pnas.1814709116 10.1016/j.jad.2018.11.016 10.1038/npp.2015.112 10.1001/archneurpsyc.1959.02340150095011 10.1089/jpm.2012.0617 10.1016/j.biopsych.2009.04.029 10.1097/WNR.0000000000001131 10.1176/appi.ajp.2017.17020239 10.1111/bph.14683 10.1016/j.biopsych.2018.11.006 10.1016/S2215-0366(17)30102-5 10.1016/S2215-0366(17)30272-9 10.1016/j.pbb.2018.10.005 10.1192/bjp.2018.257 10.1016/j.drugalcdep.2008.01.024 10.1213/00000539-199811000-00039 10.1177/2470547018796102 10.1016/S0028-3908(99)00019-2 10.1038/mp.2017.28 10.1038/tp.2016.21 10.1093/ijnp/pyw080 10.1038/nrd.2018.168 10.2174/1570159X14666160119094646 10.1371/journal.pone.0056053 10.1016/j.jpsychires.2018.09.013 10.1176/appi.ajp.2016.16040411 10.1016/j.pbb.2018.09.005 10.1016/j.jad.2018.02.056 10.1038/nrd.2017.16 10.1097/ALN.0b013e3181ed09a2 10.1080/14728222.2016.1238899 10.1016/j.pharmthera.2018.05.010 10.1016/j.neuron.2019.02.005 10.1523/ENEURO.0285-16.2017 10.1002/ana.410300609 10.1007/978-3-319-49795-2_4 10.1016/j.jpsychires.2013.04.008 10.1176/appi.ajp.2016.16010037 10.1038/npp.2015.233 10.1038/nature17998 10.1016/j.neuropharm.2018.06.033 10.1038/s41598-018-22449-9 10.2174/1381612824666180730104707 10.1176/appi.ajp.2019.19010044 10.1016/j.pscychresns.2018.09.001 10.2174/1570159X14666160321122703 10.1586/ern.10.176 10.1038/s41398-019-0379-8 10.1038/mp.2016.46 10.1126/science.2660263 10.1176/appi.ajp.2013.13030392 10.1007/s00406-016-0718-1 10.1177/1179069518815445 10.1016/j.biopsych.2017.12.007 10.1007/s00213-016-4399-2 10.1176/appi.ajp.2018.17121368 10.1176/appi.ajp.2018.18020138 10.1038/npp.2012.246 10.1016/j.biopsych.2015.03.010 10.1093/ijnp/pyy053 10.1007/s12017-014-8312-z 10.1038/s41380-018-0028-2 10.1016/j.biopsych.2016.12.018 10.1016/S0896-6273(02)00653-0 10.1001/archpsyc.1994.03950030035004 10.1038/mp.2013.130 10.1093/schbul/sbs069 10.1111/j.1440-1819.2010.02113.x 10.1038/tp.2017.31 10.1016/j.eurpsy.2013.10.005 10.1016/j.biopsych.2007.05.028 10.1016/j.biopsych.2006.02.013 10.1176/appi.ajp.2018.18091061 10.1016/j.ejphar.2012.11.023 10.1021/acschemneuro.7b00074 10.1016/j.pbb.2019.04.008 10.1016/j.neuropharm.2011.08.034 10.1038/nrd.2018.187 10.1016/j.biopsych.2016.12.020 10.1016/j.jpsychires.2016.09.025 10.1038/s41398-017-0031-4 10.1038/npp.2013.71 10.1016/j.biopsych.2013.01.038 10.1007/s40473-018-0139-8 10.1073/pnas.1414728112 10.1038/nature25752 10.1016/j.psychres.2015.10.032 10.1016/j.biopsych.2012.06.022 10.1016/0014-2999(78)90217-0 10.1073/pnas.1323920111 10.1007/s00213-015-4128-2 10.1093/ijnp/pyx003 10.1176/ajp.148.10.1301 10.1038/s41598-017-16060-7 10.1001/jamapsychiatry.2017.3739 10.1126/scisignal.aai7884 10.12688/f1000research.14344.1 10.1016/j.brainresrev.2004.02.003 10.3390/ijms16047796 10.1176/appi.ajp.2015.15040465 10.1016/j.jad.2016.09.012 10.1124/pr.117.015198 10.1016/j.bbi.2015.03.016 10.1176/appi.ajp.2017.17040472 10.1126/science.1222939 10.1038/s41386-018-0084-y 10.1176/appi.ajp.2014.13111501 10.9758/cpn.2014.12.1.72 10.1176/appi.ajp.163.1.28 10.1016/j.pbb.2013.11.033 10.1016/S0014-2999(97)01116-3 10.1016/j.bbr.2011.05.035 10.1038/nature25509 10.1017/S0033291716000064 10.1038/tp.2015.136 10.1186/s12866-018-1373-7 10.1038/ncomms2295 10.1176/appi.ajp.2017.17090972 10.1016/j.tins.2018.12.002 10.1016/j.nbd.2013.09.004 10.1007/s00213-016-4203-3 10.1016/j.pbb.2018.12.001 10.1016/j.biopsych.2011.12.010 10.1097/01.pra.0000462606.17725.93 10.1016/j.urology.2007.01.038 10.1016/S0006-3223(99)00230-9 10.1007/s00213-017-4706-6 10.1038/mp.2017.109 10.1016/j.bbr.2019.111904 10.1111/j.1399-5618.2007.00467.x 10.1016/j.cll.2016.07.008 10.1038/tp.2017.112 10.1177/0269881118812095 10.1001/archgenpsychiatry.2010.90 10.1093/ijnp/pyx120 10.1016/j.biopsych.2014.04.014 10.1176/appi.ajp.2011.11010128 10.1038/npp.2016.224 10.1016/j.psychres.2016.03.034 10.1007/s11920-013-0431-y |
| ContentType | Journal Article |
| Copyright | 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. 2019 The Author. Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology |
| Copyright_xml | – notice: 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology – notice: 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. – notice: 2019 The Author. Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| DOI | 10.1111/pcn.12902 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Rapid‐acting antidepressant ketamine |
| EISSN | 1440-1819 |
| EndPage | 627 |
| ExternalDocumentID | PMC6851782 31215725 10_1111_pcn_12902 PCN12902 |
| Genre | reviewArticle Historical Article Journal Article Review |
| GrantInformation_xml | – fundername: AMED funderid: JP19dm0107119 – fundername: AMED grantid: JP19dm0107119 – fundername: ; grantid: JP19dm0107119 |
| GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29P 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TKC TR2 TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH ZXP ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5332-e22c4414233354b12407985486d1ca4d184e37b2831c4a6e2bccb222eb215c903 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 265 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474903900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1323-1316 1440-1819 |
| IngestDate | Tue Sep 30 16:55:02 EDT 2025 Thu Sep 04 17:23:34 EDT 2025 Sat Nov 29 15:02:58 EST 2025 Thu Apr 03 07:01:37 EDT 2025 Sat Nov 29 05:59:58 EST 2025 Tue Nov 18 21:16:40 EST 2025 Wed Jan 22 16:39:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | (R)-ketamine (or arketamine), (S)-ketamine (or esketamine), (S)-norketamine gut microbiota |
| Language | English |
| License | Attribution-NonCommercial 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5332-e22c4414233354b12407985486d1ca4d184e37b2831c4a6e2bccb222eb215c903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8892-0439 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcn.12902 |
| PMID | 31215725 |
| PQID | 2301765985 |
| PQPubID | 1106347 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851782 proquest_miscellaneous_2243490620 proquest_journals_2301765985 pubmed_primary_31215725 crossref_primary_10_1111_pcn_12902 crossref_citationtrail_10_1111_pcn_12902 wiley_primary_10_1111_pcn_12902_PCN12902 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Melbourne |
| PublicationPlace_xml | – name: Melbourne – name: Australia – name: Tokyo |
| PublicationTitle | Psychiatry and clinical neurosciences |
| PublicationTitleAlternate | Psychiatry Clin Neurosci |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons Australia, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: Wiley Subscription Services, Inc |
| References | 2017; 84 2017; 82 2017; 81 2015; 77 2011; 61 2019; 18 2000; 91 2014; 29 2019; 283 2013; 8 2018; 43 1998; 87 2016; 36 2012; 10 2011; 475 1997; 7 2016; 33 1996; 77 2018; 175 2018; 7 2017; 208 2018; 9 2018; 8 2018; 176 2018; 5 2018; 172 2019; 22 1965; 6 2013; 118 2010; 113 2006; 163 2014; 16 2007; 9 2016; 41 2014; 19 2014; 18 2018; 33 2014; 12 2016; 46 2007; 69 1997; 333 2009; 66 2018; 29 2019; 9 1992; 260 2010; 329 2016; 19 2018; 106 2004; 45 2006; 59 2016; 10 2016; 204 2012; 38 2018; 23 2018; 21 2018; 190 2016; 14 2019; 101 2018; 24 2018; 19 2016; 6 2018; 18 2018; 17 2019; 181 2019; 42 1989; 244 2018; 116 2013; 73 2013; 698 2015; 232 2015; 112 1999; 38 2013; 74 2018; 235 2015; 230 2019; 214 2016; 21 2016; 20 1978; 49 2013; 170 2017; 267 2006; 463 2016; 9 2016; 173 2019; 176 2018; 13 2017; 42 2017; 7 2017; 8 2012; 200 2017; 4 2000; 47 2018; 245 2017; 43 1862; 2016 2019; 59 2019; 368 2011; 11 2011; 10 2018; 85 2018; 84 2018; 83 2011; 14 2014; 171 2014; 62 2011; 16 2017; 234 1996; 740 2016; 79 2012; 72 2010; 67 2015; 45 2012; 71 2015; 48 2015; 172 2015; 47 1995; 61 2011; 168 2010; 64 2006; 63 2013; 14 2013; 16 2018; 139 2015; 40 2016; 239 2018; 70 2016; 233 1997; 17 2017; 361 1996; 1 2008; 63 2016; 80 1991; 148 2018; 75 2012; 338 1985; 57 2018; 141 2014; 116 2017; 20 2015; 16 2015; 5 2013; 47 1959; 81 2019; 76 1991; 30 2002; 34 2018; 269 2017; 23 2017; 174 2014; 231 2008; 95 2014; 111 2016; 55 2010; 82 2006; 311 2011; 224 2015; 25 2012; 3 2013; 38 2017; 15 2017; 16 2018; 554 2015; 21 2019 2018 2017 2017; 18 2016; 533 2018; 50 1994; 51 2014; 76 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_233_1 Tian Z (e_1_2_10_161_1) 2018; 21 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_234_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 Li SX (e_1_2_10_83_1) 2014; 12 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 Deyama S (e_1_2_10_204_1) 2018; 141 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 Reardon S (e_1_2_10_66_1) 2019 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_188_1 e_1_2_10_81_1 Choi M (e_1_2_10_202_1) 1862; 2016 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 Chiu CT (e_1_2_10_210_1) 2014; 18 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 e_1_2_10_238_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_227_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_239_1 e_1_2_10_216_1 Dong C (e_1_2_10_92_1) 2017; 20 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_243_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_232_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 Abdallah CG (e_1_2_10_193_1) 2018 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_244_1 Oye I (e_1_2_10_57_1) 1992; 260 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 267 start-page: 173 year: 2017 end-page: 176 article-title: Reduction of dopamine D receptor binding in the striatum after a single administration of esketamine, but not ‐ketamine: A PET study in conscious monkeys publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 38 start-page: 735 year: 1999 end-page: 767 article-title: Memantine is a clinical well tolerated –methyl‐D‐aspartate (NMDA) receptor antagonist—A review of preclinical data publication-title: Neuropharmacology – volume: 66 start-page: 522 year: 2009 end-page: 526 article-title: Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment‐resistant depression publication-title: Biol. Psychiatry – volume: 84 start-page: 113 year: 2017 end-page: 118 article-title: Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment‐resistant depression publication-title: J. Psychiatr. Res. – volume: 8 start-page: 4007 year: 2018 article-title: Lack of metabolism in ( )‐ketamine's antidepressant actions in a chronic social defeat stress model publication-title: Sci. Rep. – volume: 47 start-page: 351 year: 2000 end-page: 354 article-title: Antidepressant effects of ketamine in depressed patients publication-title: Biol. Psychiatry – year: 2018 article-title: Is ( )‐norketamine an alternative antidepressant for esketamine? publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – year: 2019 article-title: Antidepressant based on party drug gets backing from FDA advisory group publication-title: Nature – volume: 9 start-page: 386 year: 2018 article-title: Growth factor proteins and treatment‐resistant depression: A place on the path to precision publication-title: Front. Psych. – volume: 16 start-page: 431 year: 2014 article-title: Options for pharmacological treatment of refractory bipolar depression publication-title: Curr. Psychiatry Rep. – volume: 267 start-page: 177 year: 2017 end-page: 182 article-title: Effects of a single bilateral infusion of R‐ketamine in the rat brain regions of a learned helplessness model of depression publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 74 start-page: 257 year: 2013 end-page: 264 article-title: A randomized trial of a low‐trapping nonselective ‐methyl‐D‐aspartate channel blocker in major depression publication-title: Biol. Psychiatry – volume: 283 start-page: 64 year: 2019 end-page: 66 article-title: Synaptic potentiation and rapid antidepressant response to ketamine in treatment‐resistant major depression: A replication study publication-title: Psychiatry Res. Neuroimaging – volume: 79 start-page: e71 year: 2016 end-page: e72 article-title: Possible affective switch associated with intravenous ketamine treatment in a patient with bipolar I disorder publication-title: Biol. Psychiatry – volume: 269 start-page: 207 year: 2018 end-page: 211 article-title: Rapid inflammation modulation and antidepressant efficacy of a low‐dose ketamine infusion in treatment‐resistant depression: A randomized, double‐blind control study publication-title: Psychiatry Res. – volume: 72 start-page: 537 year: 2012 end-page: 547 article-title: Ketamine for depression: Where do we go from here? publication-title: Biol. Psychiatry – volume: 148 start-page: 1301 year: 1991 end-page: 1308 article-title: Recent advances in the phencyclidine model of schizophrenia publication-title: Am. J. Psychiatry – volume: 368 start-page: 111904 year: 2019 article-title: Beneficial effects of ( )‐ketamine, but not its metabolite (2 ,6 )‐hydroxynorketamine, in the depression‐like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model publication-title: Behav. Brain Res. – volume: 74 start-page: 250 year: 2013 end-page: 256 article-title: Rapid and longer‐term antidepressant effects of repeated ketamine infusions in treatment‐resistant major depression publication-title: Biol. Psychiatry – volume: 16 start-page: 1885 year: 2013 end-page: 1892 article-title: microRNAs as novel antidepressant targets: Converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus publication-title: Int. J. Neuropsychopharmacol – volume: 16 start-page: 383 year: 2011 end-page: 406 article-title: The GABAergic deficit hypothesis of major depressive disorder publication-title: Mol. Psychiatry – volume: 40 start-page: 2499 year: 2015 end-page: 2509 article-title: Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5‐containing GABA receptors publication-title: Neuropsychopharmacology – volume: 43 start-page: 495 year: 2017 end-page: 504 article-title: Ketamine and international regulations publication-title: Am. J. Drug Alcohol Abuse – volume: 175 start-page: 327 year: 2018 end-page: 335 article-title: Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam‐controlled randomized clinical trial publication-title: Am. J. Psychiatry – volume: 76 start-page: 657 year: 2019 article-title: Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect publication-title: JAMA Psychiatry – volume: 4 start-page: 419 year: 2017 end-page: 426 article-title: Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight publication-title: Lancet Psychiatry – volume: 7 start-page: 1294 year: 2017 article-title: Possible role of gut‐microbiota in the antidepressant effects of ( )‐ketamine in a social defeat stress model publication-title: Transl. Psychiatry – volume: 231 start-page: 2041 year: 2014 end-page: 2042 article-title: Rapid antidepressant effects and abuse liability of ketamine publication-title: Psychopharmacology – volume: 72 start-page: 331 year: 2012 end-page: 338 article-title: Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression publication-title: Biol. Psychiatry – volume: 9 start-page: ra123 year: 2016 article-title: Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast‐acting antidepressant responses of ketamine publication-title: Sci. Signal. – volume: 43 start-page: 1900 year: 2018 end-page: 1907 article-title: (2 ,6 )‐Hydroxynorketamine is not essential for the antidepressant actions of ( )‐ketamine in mice publication-title: Neuropsychopharmacology – volume: 81 start-page: e35 year: 2017 end-page: e37 article-title: More than a gut feeling: The implications of the gut microbiota in psychiatry publication-title: Biol. Psychiatry – volume: 235 start-page: 3017 year: 2018 end-page: 3030 article-title: Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects publication-title: Psychopharmacology – volume: 72 start-page: e27 year: 2012 end-page: e28 article-title: Brain‐derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients publication-title: Biol. Psychiatry – year: 2018 article-title: Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients publication-title: Chronic Stress – volume: 235 start-page: 1107 year: 2018 end-page: 1119 article-title: Effect of intranasal esketamine on cognitive functioning in healthy participants: A randomized, double‐blind, placebo‐controlled study publication-title: Psychopharmacology – volume: 16 start-page: 594 year: 2014 end-page: 605 article-title: MicroRNA expression profile and functional analysis reveal that miR‐206 is a critical novel gene for the expression of BDNF induced by ketamine publication-title: Neuromolecular Med. – volume: 57 start-page: 197 year: 1985 end-page: 203 article-title: Comparative pharmacology of the ketamine isomers. Studies in volunteers publication-title: Br. J. Anaesth. – volume: 1 start-page: 61 year: 1996 end-page: 70 article-title: Induction of heat shock protein (HSP)‐70 in posterior cingulate and retrosplenial cortex of rat brain by dizocilpine and phencyclidine: Lack of protective effects of sigma receptor ligands publication-title: Addict. Biol. – volume: 163 start-page: 28 year: 2006 end-page: 40 article-title: Evaluation of outcomes with citalopram for depression using measurement‐based care in STAR*D: Implications for clinical practice publication-title: Am. J. Psychiatry – volume: 49 start-page: 15 year: 1978 end-page: 23 article-title: Comparative pharmacology of the optical isomers of ketamine in mice publication-title: Eur. J. Pharmacol. – volume: 19 start-page: 978 year: 2014 end-page: 985 article-title: Lanicemine: A low‐trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects publication-title: Mol. Psychiatry – volume: 84 start-page: e3 year: 2018 end-page: e6 article-title: Common neurotransmission recruited in ( )‐ketamine and (2 ,6 )‐hydroxynorketamine‐induced sustained antidepressant‐like effects publication-title: Biol. Psychiatry – volume: 333 start-page: 99 year: 1997 end-page: 104 article-title: Norketamine, the main metabolite of ketamine, is a non‐competitive NMDA receptor antagonist in the rat cortex and spinal cord publication-title: Eur. J. Pharmacol. – volume: 245 start-page: 265 year: 2018 end-page: 269 article-title: Increased expression of inwardly rectifying Kir4.1 channel in the parietal cortex from patients with major depressive disorder publication-title: J. Affect. Disord. – volume: 118 start-page: 3 year: 2013 end-page: 8 article-title: Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test publication-title: Ups. J. Med. Sci. – volume: 76 start-page: 658 year: 2019 article-title: Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect—Reply publication-title: JAMA Psychiatry – volume: 7 start-page: 25 year: 1997 end-page: 38 article-title: Differential psychopathology and patterns of cerebral glucose utilisation produced by ( )‐ and ( )‐ketamine in healthy volunteers using positron emission tomography (PET) publication-title: Eur. Neuropsychopharmacol. – volume: 29 start-page: 1425 year: 2018 end-page: 1430 article-title: (2 ,6 )‐Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell‐derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans publication-title: Neuroreport – volume: 24 start-page: 606 year: 2018 end-page: 615 article-title: A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid‐acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems publication-title: Drug Discov. Today – volume: 42 start-page: 2482 year: 2017 end-page: 2492 article-title: Dose‐related effects of adjunctive ketamine in Taiwanese patients with treatment‐resistant depression publication-title: Neuropsychopharmacology – volume: 9 start-page: 277 year: 2018 article-title: Efficacy of ketamine in the treatment of substance use disorders: A systematic review publication-title: Front. Psych. – volume: 23 start-page: 892 year: 2017 end-page: 903 article-title: Perisomatic changes in h‐channels regulate depressive behaviors following chronic unpredictable stress publication-title: Mol. Psychiatry – volume: 176 start-page: 251 year: 2019 end-page: 252 article-title: Target population, dose, and timing considerations for understanding naltrexone's subjective effect: Response to Amiaz publication-title: Am. J. Psychiatry – volume: 77 start-page: e19 year: 2015 end-page: e20 article-title: Serum interleukin‐6 is a predictive biomarker for ketamine's antidepressant effect in treatment‐resistant patients with major depression publication-title: Biol. Psychiatry – volume: 233 start-page: 3647 year: 2016 end-page: 3657 article-title: Comparison of ‐ketamine and rapastinel antidepressant effects in the social defeat stress model of depression publication-title: Psychopharmacology – volume: 174 start-page: 695 year: 2017 end-page: 696 article-title: A survey of the clinical, off‐label use of ketamine as a treatment for psychiatric disorders publication-title: Am. J. Psychiatry – volume: 19 start-page: 83 year: 2018 end-page: 92 article-title: An update on ketamine and its two enantiomers as rapid‐acting antidepressants publication-title: Expert Rev. Neurother. – volume: 171 start-page: 1067 year: 2014 end-page: 1073 article-title: The risk of switch to mania in patients with bipolar disorder during treatment with an antidepressant alone and in combination with a mood stabilizer publication-title: Am. J. Psychiatry – volume: 12 start-page: 72 year: 2014 end-page: 73 article-title: The ‐stereoisomer of ketamine as an alternative for ketamine for treatment‐resistant major depression publication-title: Clin. Psychopharmacol. Neurosci. – volume: 235 start-page: 1151 year: 2018 end-page: 1161 article-title: Negative allosteric modulation of alpha 5‐containing GABA receptors engenders antidepressant‐like effects and selectively prevents age‐associated hyperactivity in tau‐depositing mice publication-title: Psychopharmacology – volume: 239 start-page: 281 year: 2016 end-page: 283 article-title: Loss of parvalbumin‐immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not ‐ketamine publication-title: Psychiatric Res. – volume: 22 start-page: 247 year: 2019 end-page: 259 article-title: Positive ‐methyl‐D‐aspartate receptor modulation by rapastinel promotes rapid and sustained antidepressant‐like effects publication-title: Int. J. Neuropsychopharmacol. – volume: 10 start-page: 685 year: 2011 end-page: 697 article-title: Beyond classical benzodiazepines: Novel therapeutic potential of GABA receptor subtypes publication-title: Nat. Rev. Drug Discov. – volume: 7 start-page: 659 year: 2018 article-title: Ketamine and rapid‐acting antidepressants: A new era in the battle against depression and suicide publication-title: F1000Res – volume: 24 start-page: 2556 year: 2018 end-page: 2563 article-title: Rapid‐acting antidepressants publication-title: Curr. Pharm. Des. – volume: 17 start-page: 2921 year: 1997 end-page: 2927 article-title: Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex publication-title: J. Neurosci. – volume: 42 start-page: 179 year: 2019 end-page: 191 article-title: Laternal habenular burst firing as a target of the rapid antidepressant effects of ketamine publication-title: Trends Neurosci. – volume: 38 start-page: 1609 year: 2013 end-page: 1616 article-title: NMDA receptor blockade by ketamine abrogates lipopolysaccharide‐induced depressive‐like behavior in C57BL/6J mice publication-title: Neuropsychopharmacology – volume: 554 start-page: 317 year: 2018 end-page: 322 article-title: Ketamine blocks bursting in the lateral habenula to rapidly relieve depression publication-title: Nature – year: 2017 article-title: A negative allosteric modulator for α5 subunit‐containing GABA receptors exerts a rapid and persistent antidepressant‐like action without the side effects of the NMDA receptor antagonist ketamine in mice publication-title: eNeuro – volume: 73 start-page: e35 year: 2013 end-page: e36 article-title: Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase‐3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients publication-title: Biol. Psychiatry – volume: 14 start-page: 721 year: 2016 end-page: 731 article-title: Brain‐derived neurotrophic factor (BDNF) – TrkB signaling in inflammation‐related depression and potential therapeutic targets publication-title: Curr. Neuropharmacol. – volume: 168 start-page: 751 year: 2011 end-page: 752 article-title: Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation publication-title: Am. J. Psychiatry – volume: 12 start-page: 124 year: 2014 end-page: 127 article-title: Antidepressant effects of ketamine on depression‐like behavior in juvenile mice after neonatal dexamethasone exposure publication-title: Clin. Neuropharmacol. Neurosci. – volume: 16 start-page: 7796 year: 2015 end-page: 7801 article-title: Inflammatory biomarkers as differential predictors of antidepressant response publication-title: Int. J. Mol. Sci. – volume: 230 start-page: 682 year: 2015 end-page: 688 article-title: Meta‐analysis of short‐ and mid‐term efficacy of ketamine in unipolar and bipolar depression publication-title: Psychiatry Res. – volume: 116 start-page: 137 year: 2014 end-page: 141 article-title: (−)‐ketamine shows greater potency and longer lasting antidepressant effects than (+)‐ketamine publication-title: Pharmacol. Biochem. Behav. – volume: 361 start-page: 9 year: 2017 end-page: 16 article-title: Antidepressant potential of ( )‐ketamine in rodent models: Comparison with ( )‐ketamine publication-title: J. Pharmacol. Exp. Ther. – volume: 141 start-page: 10 year: 2018 end-page: 16 article-title: Neurotrophic and antidepressant actions of brain‐derived neurotrophic factor require vascular endothelial growth factor publication-title: Biol. Psychiatry – volume: 175 start-page: 411 year: 2018 end-page: 426 article-title: Early intervention in bipolar disorder publication-title: Am. J. Psychiatry – volume: 3 start-page: 1292 year: 2012 article-title: Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex publication-title: Nat. Commun. – volume: 38 start-page: 914 year: 2012 end-page: 919 article-title: Phencyclidine/schizophrenia: One view toward the past, the other to the future publication-title: Schizophr. Bull. – volume: 234 start-page: 3175 year: 2017 end-page: 3183 article-title: The effects of intranasal esketamine (84 mg) and oral mirtazapine (30 mg) on on‐road driving performance: A double‐blind, placebo‐controlled study publication-title: Psychopharmacology – volume: 77 start-page: 1031 year: 2015 end-page: 1040 article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia publication-title: Biol. Psychiatry – volume: 33 start-page: 718 year: 2016 end-page: 727 article-title: A review of ketamine abuse and diversion publication-title: Depress. Anxiety – volume: 29 start-page: 419 year: 2014 end-page: 423 article-title: Ketamine‐induced antidepressant effects are associated with AMPA receptors‐mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex publication-title: Eur. Psychiatry – volume: 111 start-page: 8649 year: 2014 end-page: 8654 article-title: Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 65 year: 2018 end-page: 78 article-title: Side‐effects associated with ketamine use in depression: A systematic review publication-title: Lancet Psychiatry – volume: 116 start-page: 297 year: 2018 end-page: 302 article-title: Activity‐dependent brain‐derived neurotrophic factor signaling is required for the antidepressant actions of (2 ,6 )‐hydroxynorketamine publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 175 start-page: 24 year: 2018 end-page: 26 article-title: Now is the time for (2 ,6 )‐hydroxynorketamine to be viewed independently from its parent drug publication-title: Pharmacol. Biochem. Behav. – volume: 173 start-page: 1044 year: 2016 end-page: 1045 article-title: Detrimental side effects of repeated ketamine infusions in the brain publication-title: Am. J. Psychiatry – start-page: 69 year: 2017 end-page: 81 – volume: 554 start-page: 323 year: 2018 end-page: 327 article-title: Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression publication-title: Nature – volume: 173 start-page: 816 year: 2016 end-page: 826 article-title: A double‐blind, randomized, placebo‐controlled, dose‐frequency study of intravenous ketamine in patients with treatment‐resistant depression publication-title: Am. J. Psychiatry – volume: 235 start-page: 236 year: 2018 end-page: 241 article-title: Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double‐blind controlled trial publication-title: J. Affect. Disord. – volume: 38 start-page: 2268 year: 2013 end-page: 2277 article-title: GSK‐3 inhibition potentiates the synaptogenic and antidepressant‐like effects of subthreshold doses of ketamine publication-title: Neuropsychopharmacology – volume: 176 start-page: 249 year: 2019 end-page: 250 article-title: Interpreting ketamine's opioid receptor dependent effect: Response to Sanacora publication-title: Am. J. Psychiatry – volume: 76 start-page: 337 year: 2019 article-title: Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder publication-title: JAMA Psychiatry – volume: 48 start-page: 186 year: 2015 end-page: 194 article-title: Altered fecal microbiota composition in patients with major depressive disorder publication-title: Brain Behav. Immun. – volume: 59 start-page: 213 year: 2019 end-page: 236 article-title: Molecular pharmacology and neurobiology of rapid‐acting antidepressants publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 82 start-page: 472 year: 2017 end-page: 487 article-title: Targeting the microbiota‐gut‐brain axis: Prebiotics have anxiolytic and antidepressant‐like effects and reverse the impact of chronic stress in mice publication-title: Biol. Psychiatry – volume: 42 start-page: 1739 year: 2017 end-page: 1746 article-title: The nucleus accumbens and ketamine treatment in major depressive disorder publication-title: Neuropsychopharmacology – volume: 101 start-page: 774 year: 2019 end-page: 778 article-title: Ketamine: A paradigm shift for depression research and treatment publication-title: Neuron – volume: 8 start-page: e56053 year: 2013 article-title: Long‐lasting antidepressant action of ketamine, but not glycogen synthase kinase‐3 inhibitor SB216763, in the chronic mild stress model of mice publication-title: PLoS One – volume: 46 start-page: 2449 year: 2016 end-page: 2451 article-title: ‐ketamine: A rapid‐onset and sustained antidepressant without risk of brain toxicity publication-title: Psychol. Med. – volume: 172 start-page: 950 year: 2015 end-page: 966 article-title: Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression publication-title: Am. J. Psychiatry – volume: 10 start-page: 59 year: 2012 end-page: 60 article-title: A BDNF Val66Met polymorphism and ketamine‐induced rapid antidepressant action publication-title: Clin. Psychopharmacol. Neurosci. – volume: 176 start-page: 57 year: 2018 end-page: 62 article-title: Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with ( )‐ketamine publication-title: Pharmacol. Biochem. Behav. – volume: 5 start-page: 36 year: 2018 end-page: 47 article-title: Rapid‐acting antidepressants: Mechanistic insights and future directions publication-title: Curr. Behav. Neurosci. Rep. – volume: 83 start-page: 18 year: 2018 end-page: 28 article-title: Mechanistic target of rapamycin‐independent antidepressant effects of ( )‐ketamine in a social defeat stress model publication-title: Biol. Psychiatry – volume: 61 start-page: 215 year: 1995 end-page: 220 article-title: Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain publication-title: Pain – volume: 63 start-page: 856 year: 2006 end-page: 864 article-title: A randomized trial of an ‐methyl‐D‐aspartate antagonist in treatment‐resistant major depression publication-title: Arch. Gen. Psychiatry – volume: 8 start-page: 1122 year: 2017 end-page: 1134 article-title: Classics in chemical neuroscience: Ketamine publication-title: ACS Chem. Nerosci. – volume: 74 start-page: e23 year: 2013 end-page: e24 article-title: Subanesthetic dose ketamine does not induce an affective switch in three independent samples of treatment‐resistant major depression publication-title: Biol. Psychiatry – volume: 175 start-page: 150 year: 2018 end-page: 158 article-title: The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta‐analysis publication-title: Am. J. Psychiatry – volume: 21 start-page: 140 year: 2015 end-page: 149 article-title: Randomized proof of concept trial of GLYX‐13, an ‐methyl‐D‐aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent publication-title: J. Psychiatr. Pract. – year: 2018 article-title: Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment. A double‐blind, placebo‐controlled, cross‐over, randomized clinical trial publication-title: bioRxiv – volume: 75 start-page: 139 year: 2018 end-page: 148 article-title: Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment‐resistant depression: A randomized clinical trial publication-title: JAMA Psychiatry – volume: 63 start-page: 349 year: 2008 end-page: 352 article-title: Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptors publication-title: Biol. Psychiatry – volume: 36 start-page: 721 year: 2016 end-page: 744 article-title: Ketamine: A cause of urinary tract dysfunction publication-title: Clin. Lab. Med. – volume: 62 start-page: 124 year: 2014 end-page: 134 article-title: Role of the NMDA receptor in cognitive deficits, anxiety and depressive‐like behavior in juvenile and adult mice after neonatal dexamethasone exposure publication-title: Neurobiol. Dis. – volume: 21 start-page: 797 year: 2016 end-page: 805 article-title: Inflammasome signaling affects anxiety‐ and depressive‐like behavior and gut microbiome composition publication-title: Mol. Psychiatry – volume: 87 start-page: 1186 year: 1998 end-page: 1193 article-title: Ketamine: Teaching an old drug new tricks publication-title: Anesth. Analg. – volume: 46 start-page: 1459 year: 2016 end-page: 1472 article-title: Single‐dose infusion ketamine and non‐ketamine ‐methyl‐D‐aspartate receptor antagonists for unipolar and bipolar depression: A meta‐analysis of efficacy, safety and time trajectories publication-title: Psychol. Med. – volume: 18 start-page: 222 year: 2018 article-title: Ketamine interactions with gut‐microbiota in rats: Relevance to its antidepressant and anti‐inflammatory properties publication-title: BMC Microbiol. – volume: 71 start-page: 939 year: 2012 end-page: 946 article-title: Replication of ketamine's antidepressant efficacy in bipolar depression: A randomized controlled add‐on trial publication-title: Biol. Psychiatry – volume: 45 start-page: 104 year: 2004 end-page: 114 article-title: Critical role of brain‐derived neurotrophic factor in mood disorders publication-title: Brain Res. Rev. – volume: 175 start-page: 1205 year: 2018 end-page: 1215 article-title: Attenuation of antidepressant effects of ketamine by opioid receptor antagonisms publication-title: Am. J. Psychiatry – volume: 91 start-page: 225 year: 2000 end-page: 229 article-title: The stereoselective effects of ketamine isomers on heteromeric ‐methyl‐D‐aspartate receptor channels publication-title: Anesth. Analg. – volume: 95 start-page: 219 year: 2008 end-page: 229 article-title: Journey through the K‐hole: Phenomenological aspects of ketamine use publication-title: Drug Alcohol Depend. – volume: 21 start-page: 1031 year: 2018 end-page: 1036 article-title: Lack of antidepressant effects of low‐voltage‐sensitive T‐type calcium channel blocker ethosuximide in a chronic social defeat stress model: Comparison with ( )‐ketamine publication-title: Int. J. Neuropsychopharmacol. – volume: 16 start-page: 1068 year: 2011 end-page: 1070 article-title: Inhibition of glycogen synthase kinase‐3 is necessary for the rapid antidepressant effect of ketamine in mice publication-title: Mol. Psychiatry – volume: 18 start-page: pyu033 year: 2014 article-title: BDNF release is required for the behavioral actions of ketamine publication-title: Int. J. Neuropsychopharmacol. – volume: 14 start-page: 673 year: 2013 end-page: 680 article-title: p11 and its role in depression and therapeutic responses to antidepressants publication-title: Nat. Rev. Neurosci. – volume: 20 start-page: 504 year: 2017 end-page: 509 article-title: Selective pharmacological augmentation of hippocampal activity produces a sustained antidepressant‐like response without abuse‐related or psychotomimetic effects publication-title: Int. J. Neuropsychopharmacol. – volume: 21 start-page: 932 year: 2018 end-page: 937 article-title: No sex‐specific differences in the acute antidepressant actions of ( )‐ketamine in an inflammation model publication-title: Int. J. Neuropsychopharmacol. – volume: 59 start-page: 1116 year: 2006 end-page: 1127 article-title: A neurotrophic model for stress‐related mood disorders publication-title: Biol. Psychiatry – volume: 55 start-page: 1059 year: 2016 end-page: 1077 article-title: Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy publication-title: Clin. Pharmacokinet. – volume: 190 start-page: 148 year: 2018 end-page: 158 article-title: The neurobiology of depression, ketamine and rapid‐acting antidepressants: Is it glutamate inhibition or activation? publication-title: Pharmacol. Ther. – volume: 64 start-page: 341 year: 2010 end-page: 357 article-title: Brain‐derived neurotrophic factor as a biomarker for mood disorders: An historical overview and future directions publication-title: Psychiatry Clin. Neurosci. – volume: 38 start-page: 958 year: 2012 end-page: 966 article-title: Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia publication-title: Schizophr. Bull. – volume: 232 start-page: 4325 year: 2015 end-page: 4335 article-title: Comparison of ketamine, 7,8‐dihydroxyflavone, and ANA‐12 antidepressant effects in the social defeat stress model of depression publication-title: Psychopharmacology – volume: 5 start-page: e632 year: 2015 article-title: ‐ketamine: A rapid‐onset and sustained antidepressant without psychotomimetic side effects publication-title: Transl. Psychiatry – volume: 233 start-page: 405 year: 2016 end-page: 415 article-title: Regulation of glutamate transporter 1 via BDNF‐TrkB signaling plays a role in the anti‐apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression publication-title: Psychopharmacology – volume: 11 start-page: 33 year: 2011 end-page: 36 article-title: Role of the mTOR signaling pathway in the rapid antidepressant action of ketamine publication-title: Expert Rev. Neurother. – volume: 47 start-page: 454 year: 2015 end-page: 455 article-title: Ketamine‐induced affective switch in a patient with treatment‐resistant depression publication-title: Indian J. Pharmacol. – volume: 106 start-page: 61 year: 2018 end-page: 68 article-title: Rapid and longer‐term antidepressant effects of repeated‐dose intravenous ketamine for patients with unipolar and bipolar depression publication-title: Psychiatry Res. – volume: 61 start-page: 1419 year: 2011 end-page: 1423 article-title: Involvement of the mammalian target of rapamycin signaling in the antidepressant‐like effect of group II metabotropic glutamate receptor antagonists publication-title: Neuropharmacology – volume: 181 start-page: 53 year: 2019 end-page: 59 article-title: Comparison of antidepressant and side effects in mice after intranasal administration of ( )‐ketamine, ( )‐ketamine, and ( )‐ketamine publication-title: Pharmacol. Biochem. Behav. – volume: 17 start-page: 773 year: 2018 end-page: 775 article-title: ‘Party drug’ turned antidepressant approaches approval publication-title: Nat. Rev. Drug Discov. – volume: 21 start-page: 1025 year: 2018 end-page: 1030 article-title: Role of inflammatory bone markers in the antidepressant actions of ( )‐ketamine in a chronic social defeat stress model publication-title: Int. J. Neuropsychopharmacol. – volume: 176 start-page: 388 year: 2019 end-page: 400 article-title: Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine publication-title: Am. J. Psychiatry – volume: 6 start-page: 279 year: 1965 end-page: 291 article-title: Pharmacological effects of CF‐581, a new dissociative anesthetic, in man publication-title: Clin. Pharmacol. Ther. – volume: 42 start-page: 844 year: 2017 end-page: 853 article-title: Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: A randomized, placebo‐controlled study publication-title: Neuropsychopharmacology – volume: 33 start-page: 12 year: 2018 end-page: 24 article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2 ,6 )‐hydroxynorketamine publication-title: J. Psychopharmacol. – volume: 21 start-page: 154 year: 2018 end-page: 156 article-title: Is metabolism of ( )‐ketamine essential for the antidepressant effects? publication-title: Int. J. Neuropsychopharmacol. – volume: 81 start-page: 363 year: 1959 end-page: 369 article-title: Study of a new schizophrenic drug sernyl publication-title: Arch. Neurol. Psychiatry – volume: 15 start-page: 47 year: 2017 end-page: 56 article-title: The development of rapastinel (formerly GLYX‐13); a rapid acting and long lasting antidepressant publication-title: Curr. Neuropharmacol. – volume: 338 start-page: 68 year: 2012 end-page: 72 article-title: Synaptic dysfunction in depression: Potential therapeutic targets publication-title: Science – volume: 175 start-page: 139 year: 2018 end-page: 145 article-title: Comparison of rapid and long‐lasting antidepressant effects of negative modulators of α5‐containing GABA receptors and ( )‐ketamine in a chronic social defeat stress model publication-title: Pharmacol. Biochem. Behav. – volume: 176 start-page: 249 year: 2019 article-title: Caution against overinterpreting opiate receptor stimulation as mediating antidepressant effects of ketamine publication-title: Am. J. Psychiatry – volume: 204 start-page: 1 year: 2016 end-page: 8 article-title: Efficacy and safety of oral ketamine versus diclofenac to alleviate mild to moderate depression in chronic pain patients: A double‐blind, randomized, controlled trial publication-title: J. Affect. Disord. – year: 2018 article-title: NMDAR‐independent, cAMP‐dependent antidepressant actions of ketamine publication-title: Mol. Psychiatry – volume: 70 start-page: 621 year: 2018 end-page: 630 article-title: Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms publication-title: Pharmacol. Rev. – volume: 208 start-page: 22 year: 2017 end-page: 32 article-title: Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness publication-title: J. Affect. Disord. – volume: 18 start-page: 445 year: 2017 end-page: 456 article-title: Ketamine up‐regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase‐3 publication-title: World J. Biol. Psychiatry – volume: 260 start-page: 1209 year: 1992 end-page: 1213 article-title: Effects of ketamine on sensory perception: Evidence for a role of ‐methyl‐D‐aspartate receptors publication-title: J. Pharmacol. Exp. Ther. – volume: 76 start-page: 927 year: 2014 end-page: 936 article-title: Restoring mood balance in depression: Ketamine reverses deficit in dopamine‐dependent synaptic plasticity publication-title: Biol. Psychiatry – volume: 47 start-page: 1080 year: 2013 end-page: 1087 article-title: VEGF and depression: A comprehensive assessment of clinical data publication-title: J. Psychiatr. Res. – volume: 20 start-page: 228 year: 2017 end-page: 236 article-title: Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine publication-title: Int. J. Neuropsychopharmacol. – volume: 85 start-page: e25 year: 2018 end-page: e27 article-title: Lack of opioid system in the antidepressant actions of ketamine publication-title: Biol. Psychiatry – volume: 176 start-page: 93 year: 2018 end-page: 100 article-title: Role of and in the antidepressant effects of ketamine in an inflammation model of depression publication-title: Pharmacol. Biochem. Behav. – volume: 698 start-page: 228 year: 2013 end-page: 234 article-title: Sub‐anesthetic concentrations of ( )‐ketamine metabolites inhibit acetylcholine‐evoked currents in α7 nicotinic acetylcholine receptors publication-title: Eur. J. Pharmacol. – volume: 25 start-page: 1136 year: 2015 end-page: 1146 article-title: Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex publication-title: Eur. Neuropsychopharmacol. – volume: 175 start-page: 620 year: 2018 end-page: 630 article-title: Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: Results of a double‐blind, randomized, placebo‐controlled study publication-title: Am. J. Psychiatry – volume: 463 start-page: 153 year: 2006 end-page: 155 article-title: A double‐blind, placebo‐controlled study of memantine in the treatment of major depression publication-title: Am. J. Psychiatry – volume: 113 start-page: 678 year: 2010 end-page: 684 article-title: Taming the ketamine tiger publication-title: Anesthesiology – volume: 13 start-page: 651 year: 2018 end-page: 652 article-title: Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders publication-title: Neural. Regen. Res. – volume: 84 start-page: e7 year: 2018 end-page: e8 article-title: What are the causes for discrepancies of antidepressant actions of (2 ,6 )‐hydroxynorketamine? publication-title: Biol. Psychiatry – volume: 38 start-page: 729 year: 2013 end-page: 742 article-title: GLYX‐13, a NMDA receptor glycine‐site functional partial agonist, induces antidepressant‐like effects without ketamine‐like side effects publication-title: Neuropsychopharmacology – volume: 7 start-page: e1138 year: 2017 article-title: Blockade of interleukin‐6 receptor in the periphery promotes rapid and sustained antidepressant actions: A possible role of gut‐microbiota‐brain axis publication-title: Transl. Psychiatry – volume: 70 start-page: 837 year: 2018 end-page: 846 article-title: The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid‐acting antidepressant drug publication-title: Pharmacol. Rep. – volume: 41 start-page: 1046 year: 2016 end-page: 1056 article-title: The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5‐HT neurons in the DRN publication-title: Neuropsychopharmacology – volume: 233 start-page: 1215 year: 2016 end-page: 1225 article-title: The novel ketamine analog methoxetamine produces dissociative‐like behavioral effects in rodents publication-title: Psychopharmacology – volume: 214 start-page: 27 year: 2019 end-page: 35 article-title: Treatment‐resistant and multi‐therapy‐resistant criteria for bipolar depression: Consensus definition publication-title: Br. J. Psychiatry – volume: 77 start-page: 441 year: 1996 end-page: 444 article-title: Ketamine: Its mechanism(s) of action and unusual clinical uses publication-title: Br. J. Anesth. – volume: 172 start-page: 17 year: 2018 end-page: 21 article-title: Expression of heat shock protein HSP‐70 in the retrosplenial cortex of rat brain after administration of ( )‐ketamine and ( )‐ketamine, but not ( )‐ketamine publication-title: Pharmacol. Biochem. Behav. – volume: 80 start-page: 424 year: 2016 end-page: 431 article-title: Intravenous esketamine in adult treatment‐resistant depression: A double‐blind, double‐randomization, placebo‐controlled study publication-title: Biol. Psychiatry – volume: 20 start-page: 1389 year: 2016 end-page: 1392 article-title: Ketamine's antidepressant action: Beyond NMDA receptor inhibition publication-title: Expert Opin. Ther. Targets – year: 2018 article-title: Is the history repeated? Can (2 ,6 )‐hydroxynorketamine be another antidepressant? publication-title: J. Exp. Neurosci. – volume: 5 start-page: e666 year: 2015 article-title: BDNF‐TrkB signaling in the nucleus accumbens shell of mice has key role in methamphetamine withdrawal symptoms publication-title: Transl. Psychiatry – volume: 112 start-page: 8106 year: 2015 end-page: 8111 article-title: Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 533 start-page: 481 year: 2016 end-page: 486 article-title: NMDAR inhibition‐independent antidepressant actions of ketamine metabolites publication-title: Nature – volume: 84 start-page: 591 year: 2018 end-page: 600 article-title: AMPA receptor activation‐independent antidepressant actions of ketamine metabolite ( )‐norketamine publication-title: Biol. Psychiatry – volume: 139 start-page: 1 year: 2018 end-page: 12 article-title: (2 ,6 )‐hydroxynorketamine rescues chronic stress‐induced depression‐like behavior through its actions in the midbrain periaqueductal gray publication-title: Neuropharmacology – volume: 42 start-page: 1231 year: 2017 end-page: 1242 article-title: GLYX‐13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine publication-title: Neuropsychopharmacology – volume: 311 start-page: 77 year: 2006 end-page: 80 article-title: Alterations in 5‐HT receptor function by p11 in depression‐like states publication-title: Science – volume: 7 start-page: 15725 year: 2017 article-title: Comparison of ( )‐ketamine and lanicemine on depression‐like phenotype and abnormal composition of gut microbiota in a social defeat stress model publication-title: Sci. Rep. – volume: 170 start-page: 1134 year: 2013 end-page: 1142 article-title: Antidepressant efficacy of ketamine in treatment‐resistant major depression: A two‐site randomized controlled trial publication-title: Am. J. Psychiatry – volume: 235 start-page: 3177 year: 2018 end-page: 3185 article-title: Lack of deuterium isotope effects in the antidepressant effects of ( )‐ketamine in a chronic social defeat stress model publication-title: Psychopharmacology – volume: 82 start-page: 1892 year: 2010 end-page: 1904 article-title: A parallel chiral‐achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome publication-title: Talanta – volume: 2016 start-page: 1247 year: 1862 end-page: 1254 article-title: Hippocampal VEGF is necessary for antidepressant‐like behaviors but not sufficient for antidepressant‐like effects of ketamine in rats publication-title: Biochim. Biophys. Acta – volume: 7 start-page: 45942 year: 2017 article-title: in the gut microbiota confer resilience to chronic social defeat stress in mice publication-title: Sci. Rep. – volume: 176 start-page: 250 year: 2019 end-page: 251 article-title: Attenuation of antidepressant effects of ketamine by opioid receptor antagonism: Is it a ketamine‐specific effect? publication-title: Am. J. Psychiatry – volume: 475 start-page: 91 year: 2011 end-page: 95 article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses publication-title: Nature – volume: 21 start-page: 786 year: 2016 end-page: 796 article-title: Gut microbiome remodeling induces depressive‐like behaviors through a pathway mediated by the host's metabolism publication-title: Mol. Psychiatry – volume: 69 start-page: 810 year: 2007 end-page: 812 article-title: Ketamine‐associated ulcerative cystitis: A new clinical entity publication-title: Urology – volume: 740 start-page: 1 year: 1996 end-page: 5 article-title: Memantine induces heat shock protein HSP‐70 in the posterior cingulate cortex, retrosplenial cortex and dentate gyrus of rat brain publication-title: Brain Res. – volume: 18 start-page: pyu102 year: 2014 article-title: The mood stabilizer lithium potentiates the antidepressant‐like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress publication-title: Int. J. Neuropsychopharmacol. – volume: 7 start-page: e1065 year: 2017 article-title: Altered peripheral immune profiles in treatment‐resistant depression: Response to ketamine and prediction of treatment outcome publication-title: Transl. Psychiatry – volume: 16 start-page: 958 year: 2013 end-page: 965 article-title: Daily oral ketamine for the treatment of depression and anxiety in patients receiving hospice care: A 28‐day open‐label proof‐of‐concept trial publication-title: J. Palliat. Med. – volume: 45 start-page: 3571 year: 2015 end-page: 3580 article-title: Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial publication-title: Psychol. Med. – volume: 19 start-page: pyw080 year: 2016 article-title: Antidepressant effects of (+)‐MK‐801 and (−)‐MK‐801 in the social defeat stress model publication-title: Int. J. Neuropsychopharmacol. – volume: 34 start-page: 13 year: 2002 end-page: 25 article-title: Neurobiology of depression publication-title: Neuron – volume: 23 start-page: 1626 year: 2018 end-page: 1631 article-title: Acute ketamine administration corrects abnormal inflammatory bone markers in major depressive disorder publication-title: Mol. Psychiatry – volume: 176 year: 2019 article-title: ( )‐ketamine exerts antidepressant actions partly via conversion to (2 ,6 )‐hydroxynorketamine, while causing adverse effects at sub‐anaesthetic doses publication-title: Br. J. Pharmacol – volume: 82 start-page: e43 year: 2017 end-page: e44 article-title: ( )‐ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2 ,6 )‐hydroxynorketamine publication-title: Biol. Psychiatry – volume: 21 start-page: 84 year: 2018 end-page: 88 article-title: Lack of antidepressant effects of (2 ,6 )‐hydroxynorketamine in a rat learned helplessness model: Comparison with ( )‐ketamine publication-title: Int. J. Neuropsychopharmacol. – volume: 50 start-page: 140 year: 2018 article-title: Prefrontal cortex miR‐29b‐3p plays a key role in the antidepressant‐like effect of ketamine in rats publication-title: Exp. Mol. Med. – volume: 200 start-page: 45 year: 2012 end-page: 51 article-title: Association between antidepressant resistance in unipolar depression and subsequent bipolar disorder: Cohort study publication-title: Br. J. Psychiatry – volume: 24 start-page: 1040 year: 2018 end-page: 1052 article-title: Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects publication-title: Mol. Psychiatry – volume: 329 start-page: 959 year: 2010 end-page: 964 article-title: mTOR‐dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists publication-title: Science – volume: 224 start-page: 107 year: 2011 end-page: 111 article-title: Involvement of AMPA receptor in both the rapid and sustained antidepressant‐like effects of ketamine in animal models of depression publication-title: Behav. Brain Res. – volume: 23 start-page: 2066 year: 2018 end-page: 2077 article-title: Ketamine and its metabolite (2 ,6 )‐hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit publication-title: Mol. Psychiatry – volume: 16 start-page: 472 year: 2017 end-page: 486 article-title: Targeting glutamate signalling in depression: Progress and prospects publication-title: Nat. Rev. Drug Discov. – volume: 23 start-page: 812 year: 2018 end-page: 823 article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC‐derived dopaminergic neurons via AMPAR‐driven BDNF and mTOR signaling publication-title: Mol. Psychiatry – volume: 6 start-page: e741 year: 2016 article-title: Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model publication-title: Transl. Psychiatry – volume: 9 start-page: 531 year: 2007 end-page: 535 article-title: Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder publication-title: Bipolar Disord. – volume: 244 start-page: 1360 year: 1989 end-page: 1362 article-title: Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs publication-title: Science – volume: 14 start-page: 1127 year: 2011 end-page: 1131 article-title: A preliminary naturalistic study of low‐dose ketamine for depression and suicide ideation in the emergency department publication-title: Int. J. Neuropsychopharmacol. – volume: 30 start-page: 801 year: 1991 end-page: 809 article-title: MK‐801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex publication-title: Ann. Neurol. – volume: 9 start-page: 57 year: 2019 article-title: Key role of gut microbiota in anhedonia‐like phenotype in rodents with neuropathic pain publication-title: Transl. Psychiatry – volume: 18 start-page: 41 year: 2019 end-page: 58 article-title: Drug repurposing: Progress, challenges and recommendations publication-title: Nat. Rev. Drug Discov. – volume: 67 start-page: 793 year: 2010 end-page: 802 article-title: A randomized add‐on trial of an ‐methyl‐D‐aspartate antagonist in treatment‐resistant bipolar depression publication-title: Arch. Gen. Psychiatry – volume: 176 start-page: 410 year: 2019 end-page: 411 article-title: Explaining naltrexone's interference with ketamine's antidepressant effect publication-title: Am. J. Psychiatry – volume: 10 start-page: 612 year: 2016 article-title: Ketamine: 50 years of modulating the mind publication-title: Front. Hum. Neurosci. – volume: 51 start-page: 199 year: 1994 end-page: 214 article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses publication-title: Arch. Gen. Psychiatry – ident: e_1_2_10_107_1 doi: 10.1007/s00406-016-0692-7 – ident: e_1_2_10_117_1 doi: 10.1017/S0033291716000969 – ident: e_1_2_10_234_1 doi: 10.1016/j.biopsych.2016.12.031 – ident: e_1_2_10_65_1 doi: 10.1176/appi.ajp.2018.17060720 – ident: e_1_2_10_180_1 doi: 10.1523/JNEUROSCI.17-08-02921.1997 – ident: e_1_2_10_99_1 doi: 10.1038/npp.2017.49 – ident: e_1_2_10_132_1 doi: 10.1007/s00213-018-5017-2 – ident: e_1_2_10_29_1 doi: 10.1097/00000539-200007000-00042 – ident: e_1_2_10_201_1 doi: 10.3389/fpsyt.2018.00386 – ident: e_1_2_10_43_1 doi: 10.1007/s40262-016-0383-6 – ident: e_1_2_10_209_1 doi: 10.1038/npp.2013.128 – ident: e_1_2_10_179_1 doi: 10.1146/annurev-pharmtox-010617-052811 – ident: e_1_2_10_162_1 doi: 10.4103/1673-5374.230355 – ident: e_1_2_10_155_1 doi: 10.1093/ijnp/pyy101 – ident: e_1_2_10_236_1 doi: 10.1038/srep45942 – ident: e_1_2_10_160_1 doi: 10.1016/j.drudis.2018.11.007 – volume: 2016 start-page: 1247 year: 1862 ident: e_1_2_10_202_1 article-title: Hippocampal VEGF is necessary for antidepressant‐like behaviors but not sufficient for antidepressant‐like effects of ketamine in rats publication-title: Biochim. Biophys. Acta – ident: e_1_2_10_32_1 doi: 10.1001/archpsyc.63.8.856 – ident: e_1_2_10_39_1 doi: 10.1016/j.biopsych.2012.05.003 – ident: e_1_2_10_69_1 doi: 10.9758/cpn.2012.10.1.59 – ident: e_1_2_10_145_1 doi: 10.1176/appi.ajp.163.1.153 – ident: e_1_2_10_126_1 doi: 10.1038/mp.2017.241 – ident: e_1_2_10_154_1 doi: 10.1038/npp.2016.202 – ident: e_1_2_10_227_1 doi: 10.1017/S1461145713000448 – ident: e_1_2_10_190_1 doi: 10.1016/j.biopsych.2017.05.016 – ident: e_1_2_10_18_1 doi: 10.1093/schbul/sbs011 – ident: e_1_2_10_188_1 doi: 10.3109/03009734.2012.724118 – ident: e_1_2_10_58_1 doi: 10.1016/S0924-977X(96)00042-9 – ident: e_1_2_10_121_1 doi: 10.1016/j.talanta.2010.08.005 – ident: e_1_2_10_87_1 doi: 10.1124/jpet.116.239228 – ident: e_1_2_10_122_1 doi: 10.1016/j.biopsych.2012.03.004 – year: 2019 ident: e_1_2_10_66_1 article-title: Antidepressant based on party drug gets backing from FDA advisory group publication-title: Nature – ident: e_1_2_10_212_1 doi: 10.1126/science.1117571 – ident: e_1_2_10_25_1 doi: 10.1080/00952990.2016.1278449 – volume: 20 start-page: 228 year: 2017 ident: e_1_2_10_92_1 article-title: Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine publication-title: Int. J. Neuropsychopharmacol. – ident: e_1_2_10_38_1 doi: 10.1176/appi.ajp.2017.17060647 – ident: e_1_2_10_225_1 doi: 10.1001/jamapsychiatry.2019.0763 – ident: e_1_2_10_141_1 doi: 10.1007/s00213-014-3543-0 – ident: e_1_2_10_147_1 doi: 10.1016/j.biopsych.2012.10.019 – ident: e_1_2_10_143_1 doi: 10.1007/s00406-018-0922-2 – volume: 18 start-page: pyu102 year: 2014 ident: e_1_2_10_210_1 article-title: The mood stabilizer lithium potentiates the antidepressant‐like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress publication-title: Int. J. Neuropsychopharmacol. – ident: e_1_2_10_112_1 doi: 10.1016/j.pbb.2018.07.003 – ident: e_1_2_10_221_1 doi: 10.1176/appi.ajp.2018.18111231r – ident: e_1_2_10_111_1 doi: 10.1016/S0006-8993(96)00842-6 – ident: e_1_2_10_37_1 doi: 10.1017/S0033291715001506 – ident: e_1_2_10_230_1 doi: 10.1038/s12276-018-0164-4 – ident: e_1_2_10_78_1 doi: 10.1007/s00213-018-4992-7 – ident: e_1_2_10_166_1 doi: 10.1038/mp.2010.120 – ident: e_1_2_10_61_1 doi: 10.1016/j.biopsych.2015.10.018 – ident: e_1_2_10_171_1 doi: 10.1007/s00213-018-4832-9 – ident: e_1_2_10_30_1 doi: 10.1093/bja/57.2.197 – ident: e_1_2_10_7_1 doi: 10.1192/bjp.bp.110.086983 – ident: e_1_2_10_90_1 doi: 10.1038/nature10130 – ident: e_1_2_10_21_1 doi: 10.1002/cpt196563279 – ident: e_1_2_10_42_1 doi: 10.3389/fnhum.2016.00612 – ident: e_1_2_10_54_1 doi: 10.4103/0253-7613.161277 – ident: e_1_2_10_95_1 doi: 10.1038/tp.2015.157 – ident: e_1_2_10_223_1 doi: 10.1001/jamapsychiatry.2018.3990 – ident: e_1_2_10_68_1 doi: 10.1016/j.biopsych.2012.05.031 – ident: e_1_2_10_56_1 doi: 10.1016/0304-3959(94)00170-J – ident: e_1_2_10_124_1 doi: 10.1016/j.biopsych.2017.10.020 – ident: e_1_2_10_198_1 doi: 10.1093/ijnp/pyu033 – ident: e_1_2_10_208_1 doi: 10.1038/mp.2011.47 – ident: e_1_2_10_79_1 doi: 10.1016/j.euroneuro.2015.04.012 – year: 2018 ident: e_1_2_10_193_1 article-title: Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment. A double‐blind, placebo‐controlled, cross‐over, randomized clinical trial publication-title: bioRxiv – ident: e_1_2_10_220_1 doi: 10.1176/appi.ajp.2018.18111231 – ident: e_1_2_10_71_1 doi: 10.1016/j.psychres.2018.08.078 – ident: e_1_2_10_34_1 doi: 10.1017/S1461145711000629 – ident: e_1_2_10_192_1 doi: 10.1016/j.biopsych.2012.07.022 – ident: e_1_2_10_26_1 doi: 10.3389/fpsyt.2018.00277 – volume: 21 start-page: 1031 year: 2018 ident: e_1_2_10_161_1 article-title: Lack of antidepressant effects of low‐voltage‐sensitive T‐type calcium channel blocker ethosuximide in a chronic social defeat stress model: Comparison with (R)‐ketamine publication-title: Int. J. Neuropsychopharmacol. – ident: e_1_2_10_219_1 doi: 10.1176/appi.ajp.2018.18091061r – ident: e_1_2_10_130_1 doi: 10.1093/ijnp/pyx108 – ident: e_1_2_10_229_1 doi: 10.1080/15622975.2016.1224927 – ident: e_1_2_10_110_1 doi: 10.1080/1355621961000124696 – ident: e_1_2_10_215_1 doi: 10.1093/bja/77.4.441 – ident: e_1_2_10_76_1 doi: 10.1093/ijnp/pyx100 – ident: e_1_2_10_45_1 doi: 10.1016/j.jad.2016.05.076 – ident: e_1_2_10_165_1 doi: 10.1016/j.pbb.2018.11.010 – ident: e_1_2_10_62_1 doi: 10.1007/s00213-018-4828-5 – ident: e_1_2_10_91_1 doi: 10.1007/s00213-015-4062-3 – ident: e_1_2_10_224_1 doi: 10.1001/jamapsychiatry.2019.0766 – ident: e_1_2_10_178_1 doi: 10.1016/j.pharep.2018.02.011 – ident: e_1_2_10_167_1 doi: 10.1038/nrd3502 – ident: e_1_2_10_233_1 doi: 10.1038/mp.2016.44 – ident: e_1_2_10_213_1 doi: 10.1038/nrn3564 – ident: e_1_2_10_128_1 doi: 10.1038/s41380-018-0083-8 – ident: e_1_2_10_181_1 doi: 10.1126/science.1190287 – ident: e_1_2_10_55_1 doi: 10.1016/j.biopsych.2015.07.003 – ident: e_1_2_10_98_1 doi: 10.1038/mp.2017.239 – ident: e_1_2_10_24_1 doi: 10.1002/da.22536 – ident: e_1_2_10_142_1 doi: 10.1016/j.biopsych.2018.05.007 – ident: e_1_2_10_11_1 doi: 10.1080/14737175.2019.1554434 – ident: e_1_2_10_70_1 doi: 10.1016/j.biopsych.2014.06.021 – ident: e_1_2_10_67_1 – ident: e_1_2_10_35_1 doi: 10.1038/npp.2017.94 – ident: e_1_2_10_125_1 doi: 10.1073/pnas.1814709116 – ident: e_1_2_10_164_1 doi: 10.1016/j.jad.2018.11.016 – ident: e_1_2_10_168_1 doi: 10.1038/npp.2015.112 – ident: e_1_2_10_15_1 doi: 10.1001/archneurpsyc.1959.02340150095011 – ident: e_1_2_10_44_1 doi: 10.1089/jpm.2012.0617 – ident: e_1_2_10_33_1 doi: 10.1016/j.biopsych.2009.04.029 – ident: e_1_2_10_127_1 doi: 10.1097/WNR.0000000000001131 – ident: e_1_2_10_103_1 doi: 10.1176/appi.ajp.2017.17020239 – ident: e_1_2_10_135_1 doi: 10.1111/bph.14683 – volume: 141 start-page: 10 year: 2018 ident: e_1_2_10_204_1 article-title: Neurotrophic and antidepressant actions of brain‐derived neurotrophic factor require vascular endothelial growth factor publication-title: Biol. Psychiatry – ident: e_1_2_10_226_1 doi: 10.1016/j.biopsych.2018.11.006 – ident: e_1_2_10_102_1 doi: 10.1016/S2215-0366(17)30102-5 – ident: e_1_2_10_104_1 doi: 10.1016/S2215-0366(17)30272-9 – ident: e_1_2_10_172_1 doi: 10.1016/j.pbb.2018.10.005 – ident: e_1_2_10_5_1 doi: 10.1192/bjp.2018.257 – ident: e_1_2_10_23_1 doi: 10.1016/j.drugalcdep.2008.01.024 – ident: e_1_2_10_216_1 doi: 10.1213/00000539-199811000-00039 – ident: e_1_2_10_150_1 doi: 10.1177/2470547018796102 – ident: e_1_2_10_144_1 doi: 10.1016/S0028-3908(99)00019-2 – ident: e_1_2_10_206_1 doi: 10.1038/mp.2017.28 – ident: e_1_2_10_214_1 doi: 10.1038/tp.2016.21 – ident: e_1_2_10_88_1 doi: 10.1093/ijnp/pyw080 – ident: e_1_2_10_244_1 doi: 10.1038/nrd.2018.168 – ident: e_1_2_10_96_1 doi: 10.2174/1570159X14666160119094646 – ident: e_1_2_10_211_1 doi: 10.1371/journal.pone.0056053 – ident: e_1_2_10_49_1 doi: 10.1016/j.jpsychires.2018.09.013 – ident: e_1_2_10_119_1 doi: 10.1176/appi.ajp.2016.16040411 – ident: e_1_2_10_138_1 doi: 10.1016/j.pbb.2018.09.005 – ident: e_1_2_10_46_1 doi: 10.1016/j.jad.2018.02.056 – ident: e_1_2_10_174_1 doi: 10.1038/nrd.2017.16 – ident: e_1_2_10_19_1 doi: 10.1097/ALN.0b013e3181ed09a2 – ident: e_1_2_10_118_1 doi: 10.1080/14728222.2016.1238899 – ident: e_1_2_10_175_1 doi: 10.1016/j.pharmthera.2018.05.010 – ident: e_1_2_10_243_1 doi: 10.1016/j.neuron.2019.02.005 – ident: e_1_2_10_169_1 doi: 10.1523/ENEURO.0285-16.2017 – ident: e_1_2_10_109_1 doi: 10.1002/ana.410300609 – ident: e_1_2_10_120_1 doi: 10.1007/978-3-319-49795-2_4 – ident: e_1_2_10_200_1 doi: 10.1016/j.jpsychires.2013.04.008 – ident: e_1_2_10_41_1 doi: 10.1176/appi.ajp.2016.16010037 – ident: e_1_2_10_185_1 doi: 10.1038/npp.2015.233 – ident: e_1_2_10_86_1 doi: 10.1038/nature17998 – ident: e_1_2_10_123_1 doi: 10.1016/j.neuropharm.2018.06.033 – ident: e_1_2_10_131_1 doi: 10.1038/s41598-018-22449-9 – ident: e_1_2_10_177_1 doi: 10.2174/1381612824666180730104707 – ident: e_1_2_10_222_1 doi: 10.1176/appi.ajp.2019.19010044 – ident: e_1_2_10_81_1 doi: 10.1016/j.pscychresns.2018.09.001 – ident: e_1_2_10_153_1 doi: 10.2174/1570159X14666160321122703 – ident: e_1_2_10_186_1 doi: 10.1586/ern.10.176 – ident: e_1_2_10_239_1 doi: 10.1038/s41398-019-0379-8 – ident: e_1_2_10_232_1 doi: 10.1038/mp.2016.46 – ident: e_1_2_10_108_1 doi: 10.1126/science.2660263 – ident: e_1_2_10_36_1 doi: 10.1176/appi.ajp.2013.13030392 – ident: e_1_2_10_94_1 doi: 10.1007/s00406-016-0718-1 – ident: e_1_2_10_139_1 doi: 10.1177/1179069518815445 – ident: e_1_2_10_136_1 doi: 10.1016/j.biopsych.2017.12.007 – ident: e_1_2_10_156_1 doi: 10.1007/s00213-016-4399-2 – ident: e_1_2_10_203_1 doi: 10.1176/appi.ajp.2018.17121368 – ident: e_1_2_10_217_1 doi: 10.1176/appi.ajp.2018.18020138 – ident: e_1_2_10_152_1 doi: 10.1038/npp.2012.246 – ident: e_1_2_10_113_1 doi: 10.1016/j.biopsych.2015.03.010 – ident: e_1_2_10_134_1 doi: 10.1093/ijnp/pyy053 – ident: e_1_2_10_228_1 doi: 10.1007/s12017-014-8312-z – ident: e_1_2_10_80_1 doi: 10.1038/s41380-018-0028-2 – ident: e_1_2_10_235_1 doi: 10.1016/j.biopsych.2016.12.018 – ident: e_1_2_10_194_1 doi: 10.1016/S0896-6273(02)00653-0 – ident: e_1_2_10_22_1 doi: 10.1001/archpsyc.1994.03950030035004 – ident: e_1_2_10_148_1 doi: 10.1038/mp.2013.130 – ident: e_1_2_10_17_1 doi: 10.1093/schbul/sbs069 – ident: e_1_2_10_197_1 doi: 10.1111/j.1440-1819.2010.02113.x – ident: e_1_2_10_73_1 doi: 10.1038/tp.2017.31 – ident: e_1_2_10_184_1 doi: 10.1016/j.eurpsy.2013.10.005 – ident: e_1_2_10_89_1 doi: 10.1016/j.biopsych.2007.05.028 – ident: e_1_2_10_196_1 doi: 10.1016/j.biopsych.2006.02.013 – ident: e_1_2_10_218_1 doi: 10.1176/appi.ajp.2018.18091061 – ident: e_1_2_10_14_1 doi: 10.1016/j.ejphar.2012.11.023 – ident: e_1_2_10_20_1 doi: 10.1021/acschemneuro.7b00074 – ident: e_1_2_10_115_1 doi: 10.1016/j.pbb.2019.04.008 – ident: e_1_2_10_187_1 doi: 10.1016/j.neuropharm.2011.08.034 – ident: e_1_2_10_60_1 doi: 10.1038/nrd.2018.187 – ident: e_1_2_10_129_1 doi: 10.1016/j.biopsych.2016.12.020 – ident: e_1_2_10_72_1 doi: 10.1016/j.jpsychires.2016.09.025 – ident: e_1_2_10_240_1 doi: 10.1038/s41398-017-0031-4 – ident: e_1_2_10_182_1 doi: 10.1038/npp.2013.71 – ident: e_1_2_10_52_1 doi: 10.1016/j.biopsych.2013.01.038 – ident: e_1_2_10_176_1 doi: 10.1007/s40473-018-0139-8 – ident: e_1_2_10_93_1 doi: 10.1073/pnas.1414728112 – ident: e_1_2_10_163_1 doi: 10.1038/nature25752 – ident: e_1_2_10_53_1 doi: 10.1016/j.psychres.2015.10.032 – ident: e_1_2_10_40_1 doi: 10.1016/j.biopsych.2012.06.022 – ident: e_1_2_10_105_1 doi: 10.1016/0014-2999(78)90217-0 – ident: e_1_2_10_146_1 doi: 10.1073/pnas.1323920111 – ident: e_1_2_10_199_1 doi: 10.1007/s00213-015-4128-2 – ident: e_1_2_10_170_1 doi: 10.1093/ijnp/pyx003 – ident: e_1_2_10_16_1 doi: 10.1176/ajp.148.10.1301 – ident: e_1_2_10_151_1 doi: 10.1038/s41598-017-16060-7 – ident: e_1_2_10_64_1 doi: 10.1001/jamapsychiatry.2017.3739 – ident: e_1_2_10_205_1 doi: 10.1126/scisignal.aai7884 – ident: e_1_2_10_159_1 – ident: e_1_2_10_12_1 doi: 10.12688/f1000research.14344.1 – ident: e_1_2_10_195_1 doi: 10.1016/j.brainresrev.2004.02.003 – ident: e_1_2_10_74_1 doi: 10.3390/ijms16047796 – ident: e_1_2_10_8_1 doi: 10.1176/appi.ajp.2015.15040465 – ident: e_1_2_10_238_1 doi: 10.1016/j.jad.2016.09.012 – ident: e_1_2_10_59_1 doi: 10.1124/pr.117.015198 – ident: e_1_2_10_158_1 – ident: e_1_2_10_231_1 doi: 10.1016/j.bbi.2015.03.016 – ident: e_1_2_10_10_1 doi: 10.1176/appi.ajp.2017.17040472 – volume: 260 start-page: 1209 year: 1992 ident: e_1_2_10_57_1 article-title: Effects of ketamine on sensory perception: Evidence for a role of N‐methyl‐D‐aspartate receptors publication-title: J. Pharmacol. Exp. Ther. – ident: e_1_2_10_173_1 doi: 10.1126/science.1222939 – ident: e_1_2_10_133_1 doi: 10.1038/s41386-018-0084-y – ident: e_1_2_10_50_1 doi: 10.1176/appi.ajp.2014.13111501 – ident: e_1_2_10_116_1 doi: 10.9758/cpn.2014.12.1.72 – ident: e_1_2_10_3_1 doi: 10.1176/appi.ajp.163.1.28 – ident: e_1_2_10_84_1 doi: 10.1016/j.pbb.2013.11.033 – ident: e_1_2_10_13_1 doi: 10.1016/S0014-2999(97)01116-3 – volume: 12 start-page: 124 year: 2014 ident: e_1_2_10_83_1 article-title: Antidepressant effects of ketamine on depression‐like behavior in juvenile mice after neonatal dexamethasone exposure publication-title: Clin. Neuropharmacol. Neurosci. – ident: e_1_2_10_183_1 doi: 10.1016/j.bbr.2011.05.035 – ident: e_1_2_10_100_1 doi: 10.1038/nature25509 – ident: e_1_2_10_9_1 doi: 10.1017/S0033291716000064 – ident: e_1_2_10_85_1 doi: 10.1038/tp.2015.136 – ident: e_1_2_10_242_1 doi: 10.1186/s12866-018-1373-7 – ident: e_1_2_10_189_1 doi: 10.1038/ncomms2295 – ident: e_1_2_10_51_1 doi: 10.1176/appi.ajp.2017.17090972 – ident: e_1_2_10_101_1 doi: 10.1016/j.tins.2018.12.002 – ident: e_1_2_10_82_1 doi: 10.1016/j.nbd.2013.09.004 – ident: e_1_2_10_106_1 doi: 10.1007/s00213-016-4203-3 – ident: e_1_2_10_241_1 doi: 10.1016/j.pbb.2018.12.001 – ident: e_1_2_10_48_1 doi: 10.1016/j.biopsych.2011.12.010 – ident: e_1_2_10_157_1 doi: 10.1097/01.pra.0000462606.17725.93 – ident: e_1_2_10_27_1 doi: 10.1016/j.urology.2007.01.038 – ident: e_1_2_10_31_1 doi: 10.1016/S0006-3223(99)00230-9 – ident: e_1_2_10_2_1 – ident: e_1_2_10_63_1 doi: 10.1007/s00213-017-4706-6 – ident: e_1_2_10_75_1 doi: 10.1038/mp.2017.109 – ident: e_1_2_10_207_1 – ident: e_1_2_10_77_1 doi: 10.1016/j.bbr.2019.111904 – ident: e_1_2_10_4_1 doi: 10.1111/j.1399-5618.2007.00467.x – ident: e_1_2_10_28_1 doi: 10.1016/j.cll.2016.07.008 – ident: e_1_2_10_237_1 doi: 10.1038/tp.2017.112 – ident: e_1_2_10_140_1 doi: 10.1177/0269881118812095 – ident: e_1_2_10_47_1 doi: 10.1001/archgenpsychiatry.2010.90 – ident: e_1_2_10_137_1 doi: 10.1093/ijnp/pyx120 – ident: e_1_2_10_97_1 doi: 10.1016/j.biopsych.2014.04.014 – ident: e_1_2_10_191_1 doi: 10.1176/appi.ajp.2011.11010128 – ident: e_1_2_10_149_1 doi: 10.1038/npp.2016.224 – ident: e_1_2_10_114_1 doi: 10.1016/j.psychres.2016.03.034 – ident: e_1_2_10_6_1 doi: 10.1007/s11920-013-0431-y |
| SSID | ssj0003361 |
| Score | 2.629061 |
| SecondaryResourceType | review_article |
| Snippet | Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to... Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 613 |
| SubjectTerms | (R)‐ketamine (or arketamine), (S)‐ketamine (or esketamine), (S)‐norketamine Animal models Animals Antagonists Antidepressants Antidepressive Agents - administration & dosage Antidepressive Agents - history Antidepressive Agents - pharmacology Bipolar disorder Bipolar Disorder - drug therapy Calcium Calcium channels (voltage-gated) Depressive Disorder, Major - physiopathology Enantiomers Excitatory Amino Acid Antagonists - administration & dosage Excitatory Amino Acid Antagonists - history Excitatory Amino Acid Antagonists - pharmacology Glutamic acid receptors gut microbiota History, 20th Century History, 21st Century Humans Ketamine Ketamine - administration & dosage Ketamine - analogs & derivatives Ketamine - history Ketamine - pharmacology Mental depression Mental disorders Metabolites N-Methyl-D-aspartic acid receptors Patients PCN Frontier Review PCN Frontier Reviews Potassium channels (inwardly-rectifying) Potassium channels (voltage-gated) Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors γ-Aminobutyric acid A receptors |
| Title | Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcn.12902 https://www.ncbi.nlm.nih.gov/pubmed/31215725 https://www.proquest.com/docview/2301765985 https://www.proquest.com/docview/2243490620 https://pubmed.ncbi.nlm.nih.gov/PMC6851782 |
| Volume | 73 |
| WOSCitedRecordID | wos000474903900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1440-1819 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003361 issn: 1323-1316 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1440-1819 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003361 issn: 1323-1316 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hqBAX-gGUbSkyiAOHBq1jx0naE6JdgURXKwTq3iLHsUvUElZk6aGn_oT-xv6SzjjZlBVFqsRllSgv2sTx2G_smTcAe6krEqOdC3A-cIGMlQ5ybsOgH0W55FaoSEtfbCIeDpPxOB0twPtZLkyjD9EtuJFl-PGaDFzn9R0jn5jqgBZRcPxd4lwkVLchlKNuGBZCtd6WCLjgqpUVojCe7tb5yegew7wfKHmXwPoZaPD0Uc_-DFZb4skOm57yHBZs9QKWP7Vb62vw40xPyuL3z1-U6VB9YdjiZRsmi4fsq53qKwS-ZeW0Zld4llPknK0RWDCfxsUMpcjQCkL9jh2yy06AhFGYKG1BeGyjYsImf7M81-Fi8PH86DhoCzMEBtlhGNgwNEijkIkJEcmck1eYJuj7qIIbLQv0Gq2Ic2Qu3EitbJgbkyMRQS-eRybtiw1YrK4ruwnMKRcZdAq51lSIPUnSqOAO4c4Zi2SqB_uzL5SZVrWcimd8y2beC7Zl5tuyB7sddNJIdfwLtDX7zFlrrXWGbhiPVYSv0IOd7jLaGW2e6Mpe3yImlEKSqHO_By-bXtH9iyCJjjjEu-O5_tIBSMN7_kpVXnotb4WMF0kavqbvLw8_eDY6GvqDV_8PfQ0ryO_SJvZwCxanN7f2DTwx36dlfbPtzQV_43GyDUsfzgYXp3j2-WT4B9eCHnE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hqFou_aAtXUrBoB56aNA6dpyk6gWhIlAhQhWo3CLHsUvUElZk4cCpP6G_kV_CjJNNWdFKSNwS5UVJHI_9xp55A_A-dWVitHMBzgcukLHSQcFtGAyjqJDcChVp6YtNxFmWHB-nBzPweZIL0-pD9AtuZBl-vCYDpwXpW1Y-MvUGraLgADwnkWhQ4Ybvu1k_DguhOndLBFxw1ekKURxPf-v0bHSHYt6NlLzNYP0UtP3sYS__HJ521JNttn3lBczYegEe73eb6y_h6pseVeX17z-U61D_YNjmVRcoi4fspx3rUwR-ZNW4Yad4VlDsnG0QWDKfyMUMJcnQGkLziW2yk16ChFGgKG1CeGyrY8JGf_M8X8HR9pfDrZ2gK80QGOSHYWDD0CCRQi4mRCQLTn5hmqD3o0putCzRb7QiLpC7cCO1smFhTIFUBP14Hpl0KF7DbH1W2zfAnHKRQbeQa02l2JMkjUruEO6csUinBvBh8oty0-mWU_mMX_nEf8G2zH1bDmC9h45asY5_gZYn_znv7LXJ0RHjsYrwEwaw1l9GS6PtE13bswvEhFJIknUeDmCx7Rb9UwSJdMQh3h1PdZgeQCre01fq6sSreSvkvEjT8DN9h_n_i-cHW5k_WLo_dBWe7Bzu7-V7u9nXtzCPbC9tIxGXYXZ8fmHfwSNzOa6a8xVvOzcVgx8y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VW1RxKd-wUMAgDhxItY4dJ0FcqpYViLJaVVTqLXIcm0a0adRsOXDiJ_Ab-SXMON7QVUFC4pYoL0rieOw39swbgBe5qzKjnYtwPnCRTJWOSm7jaJIkpeRWqERLX2winc2yo6N8vgZvlrkwvT7EsOBGluHHazJw21bukpW3ptmmVRQcgNclFZEZwfrewfRwfxiJhVDB4RIRF1wFZSGK5BluXp2PrpDMq7GSlzmsn4SmN_7v9W_CZiCfbKfvLbdgzTa3YeNj2F6_A98OdFtXP7__oGyH5jPDVq9DqCwesi92oU8R-IrVi46d4llJ0XO2Q2DFfCoXM5QmQ6sI3Wu2w44HERJGoaK0DeGxvZIJa39net6Fw-nbT7vvolCcITLIEOPIxrFBKoVsTIhElpw8wzxD_0dV3GhZoedoRVoie-FGamXj0pgSyQh68jwx-UTcg1Fz1tgHwJxyiUHHkGtNxdizLE8q7hDunLFIqMbwcvmLChOUy6mAxkmx9GCwLQvflmN4PkDbXq7jT6Ct5X8ugsV2BbpiPFUJfsIYng2X0dZoA0U39uwCMbEUkoSdJ2O433eL4SmCZDrSGO9OVzrMACAd79UrTX3s9bwVsl4kaviZvsP8_cWL-e7MHzz8d-hT2JjvTYv997MPj-A60r28D0XcgtHi_MI-hmvm66Luzp8E4_kF9u4f2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%E2%80%90acting+antidepressant+ketamine%2C+its+metabolites+and+other+candidates%3A+A+historical+overview+and+future+perspective&rft.jtitle=Psychiatry+and+clinical+neurosciences&rft.au=Hashimoto%2C+Kenji&rft.date=2019-10-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=1323-1316&rft.eissn=1440-1819&rft.volume=73&rft.issue=10&rft.spage=613&rft.epage=627&rft_id=info:doi/10.1111%2Fpcn.12902&rft.externalDBID=10.1111%252Fpcn.12902&rft.externalDocID=PCN12902 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1323-1316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1323-1316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1323-1316&client=summon |