Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective

Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Psychiatry and clinical neurosciences Ročník 73; číslo 10; s. 613 - 627
Hlavní autor: Hashimoto, Kenji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Melbourne John Wiley & Sons Australia, Ltd 01.10.2019
Wiley Subscription Services, Inc
Témata:
ISSN:1323-1316, 1440-1819, 1440-1819
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)‐ketamine (or arketamine) and (S)‐ketamine (or esketamine). Because (S)‐ketamine has higher affinity for NMDAR than (R)‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)‐ketamine exerts greater potency and longer‐lasting antidepressant effects than (S)‐ketamine in animal models of depression and that (R)‐ketamine has less detrimental side‐effects than (R,S)‐ketamine or (S)‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABAA] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed.
AbstractList Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)‐ketamine (or arketamine) and (S)‐ketamine (or esketamine). Because (S)‐ketamine has higher affinity for NMDAR than (R)‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)‐ketamine exerts greater potency and longer‐lasting antidepressant effects than (S)‐ketamine in animal models of depression and that (R)‐ketamine has less detrimental side‐effects than (R,S)‐ketamine or (S)‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABAA] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed.
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment‐resistant patients with MDD or BD. Accumulating evidence suggests that the N ‐methyl‐D‐aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment‐resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of ( R )‐ketamine (or arketamine) and ( S )‐ketamine (or esketamine). Because ( S )‐ketamine has higher affinity for NMDAR than ( R )‐ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that ( R )‐ketamine exerts greater potency and longer‐lasting antidepressant effects than ( S )‐ketamine in animal models of depression and that ( R )‐ketamine has less detrimental side‐effects than ( R,S )‐ketamine or ( S )‐ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid‐acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low‐voltage‐sensitive T‐type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ‐aminobutyric acid, and type A [GABA A ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine’s antidepressant effects are discussed.
Author Hashimoto, Kenji
AuthorAffiliation 1 Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
AuthorAffiliation_xml – name: 1 Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
Author_xml – sequence: 1
  givenname: Kenji
  orcidid: 0000-0002-8892-0439
  surname: Hashimoto
  fullname: Hashimoto, Kenji
  email: hashimoto@faculty.chiba-u.jp
  organization: Chiba University Center for Forensic Mental Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31215725$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qFTEQx4NU7Ide-AIS8EbBbZNJ9ssLoRzqBxQV0euQzc7pSd1N1iR7Sr3qI_iMPok5PbVoQXOTmeQ3_5nhv092nHdIyGPODnk-R5NxhxxaBvfIHpeSFbzh7U6OBYiCC17tkv0YzxljQlT8AdkVHHhZQ7lHvn_Sk-1_Xv3QJll3RrVLtscpYIw5pF8x6dE6fEFtinTMWecHmzBmsKc-rTBQk0Pb6_z4kh7TlY3JB2v0QP0aw9rixTW7nNMckE4Y4oS51xofkvtLPUR8dHMfkC-vTz4v3hanH968WxyfFqYUAgoEMFJyCUKIUnYcJKvbppRN1XOjZc8biaLuoBHcSF0hdMZ0AIBd3tG0TByQV1vdae5G7A26FPSgpmBHHS6V11b9_ePsSp35taqaktcNZIFnNwLBf5sxJjXaaHAYtEM_RwUghWxZBZteT--g534OLq-nQDBeV2UePVNP_pzodpTftmTg-RYwwccYcHmLcKY2lqtsubq2PLNHd1hjk07Wb5axw_8qLuyAl_-WVh8X77cVvwAAr77o
CitedBy_id crossref_primary_10_1007_s00406_019_01092_z
crossref_primary_10_1002_chir_23698
crossref_primary_10_1080_13543776_2020_1811234
crossref_primary_10_1016_j_neuropharm_2021_108619
crossref_primary_10_1016_j_pbb_2020_172927
crossref_primary_10_1016_j_euroneuro_2022_11_007
crossref_primary_10_1002_med_21671
crossref_primary_10_1016_j_neuropharm_2022_109305
crossref_primary_10_1002_jmv_26681
crossref_primary_10_1016_j_jad_2020_12_069
crossref_primary_10_1016_j_bbr_2021_113651
crossref_primary_10_1038_s41398_022_01803_6
crossref_primary_10_3390_ph16050742
crossref_primary_10_1080_14728214_2021_1898588
crossref_primary_10_1016_j_pharma_2023_10_008
crossref_primary_10_2174_0929867327666200907141452
crossref_primary_10_1016_j_bcp_2020_113935
crossref_primary_10_3390_pharmaceutics14040846
crossref_primary_10_1016_j_ejphar_2025_177470
crossref_primary_10_1016_j_euroneuro_2021_01_005
crossref_primary_10_3390_biom10070990
crossref_primary_10_1007_s11126_025_10121_1
crossref_primary_10_1038_s41380_021_01377_7
crossref_primary_10_1016_j_neuint_2025_105961
crossref_primary_10_1016_j_jad_2023_04_122
crossref_primary_10_1016_j_nbd_2024_106573
crossref_primary_10_1111_cpr_12804
crossref_primary_10_1016_j_psychres_2021_114058
crossref_primary_10_1007_s00406_020_01103_4
crossref_primary_10_1016_j_drugalcdep_2023_110987
crossref_primary_10_1016_j_bbrc_2019_08_061
crossref_primary_10_1002_npr2_12132
crossref_primary_10_3389_fnins_2021_656921
crossref_primary_10_1016_j_pharmthera_2021_107875
crossref_primary_10_3390_ijms20246235
crossref_primary_10_1016_j_pbb_2020_172904
crossref_primary_10_34133_research_0782
crossref_primary_10_1038_s41398_022_02192_6
crossref_primary_10_1080_14740338_2022_2071422
crossref_primary_10_1016_j_neuropharm_2022_109207
crossref_primary_10_1016_j_brainresbull_2020_07_022
crossref_primary_10_2147_NDT_S451930
crossref_primary_10_1097_JCP_0000000000001941
crossref_primary_10_3390_jcm13061727
crossref_primary_10_1038_s41398_022_02227_y
crossref_primary_10_1016_j_jad_2020_03_040
crossref_primary_10_1017_S0033291722003750
crossref_primary_10_1097_YIC_0000000000000527
crossref_primary_10_1111_pcn_13379
crossref_primary_10_1186_s12974_023_02696_y
crossref_primary_10_1016_j_neuropharm_2022_109219
crossref_primary_10_52965_001c_25091
crossref_primary_10_1097_MS9_0000000000003232
crossref_primary_10_12677_acm_2025_1551503
crossref_primary_10_1016_j_neuropharm_2022_109345
crossref_primary_10_1038_s41380_022_01673_w
crossref_primary_10_1016_j_euroneuro_2020_11_017
crossref_primary_10_1016_j_neuropharm_2024_110088
crossref_primary_10_1007_s00406_024_01920_x
crossref_primary_10_1016_j_neuroscience_2022_05_014
crossref_primary_10_1186_s13063_025_08836_4
crossref_primary_10_1016_j_pbb_2021_173170
crossref_primary_10_3389_fnint_2022_949162
crossref_primary_10_3389_fnins_2021_584649
crossref_primary_10_1007_s00401_021_02371_7
crossref_primary_10_1016_j_ajp_2024_104246
crossref_primary_10_1016_j_jad_2024_08_176
crossref_primary_10_1016_j_phymed_2023_155332
crossref_primary_10_1016_j_jpet_2025_103710
crossref_primary_10_1007_s12035_023_03860_4
crossref_primary_10_1152_jn_00326_2023
crossref_primary_10_1213_ANE_0000000000006925
crossref_primary_10_1016_j_ejphar_2024_177096
crossref_primary_10_1002_EXP_20220133
crossref_primary_10_3390_ph16040568
crossref_primary_10_1080_14740338_2022_2100883
crossref_primary_10_1186_s10020_024_01013_4
crossref_primary_10_1093_ijnp_pyz048
crossref_primary_10_3390_ph16040565
crossref_primary_10_1016_j_jatmed_2025_06_001
crossref_primary_10_1038_s41380_021_01121_1
crossref_primary_10_1007_s00406_024_01809_9
crossref_primary_10_1016_j_neuropharm_2023_109466
crossref_primary_10_1097_MD_0000000000037123
crossref_primary_10_3389_fnbeh_2022_938044
crossref_primary_10_1016_j_heliyon_2024_e35469
crossref_primary_10_1016_j_neuropharm_2020_107947
crossref_primary_10_1016_j_psc_2020_02_008
crossref_primary_10_1007_s00406_020_01208_w
crossref_primary_10_12788_acp_0048
crossref_primary_10_1155_2021_1156031
crossref_primary_10_3389_fgene_2023_1158028
crossref_primary_10_1016_j_neuropharm_2022_109250
crossref_primary_10_1016_j_jpsychires_2022_12_010
crossref_primary_10_3389_fnbeh_2022_845491
crossref_primary_10_1016_j_tins_2020_11_008
crossref_primary_10_1080_14740338_2022_2047928
crossref_primary_10_3390_ani13203161
crossref_primary_10_1016_j_pbb_2024_173906
crossref_primary_10_1038_s41386_020_0622_2
crossref_primary_10_1016_j_neuropharm_2022_109139
crossref_primary_10_1080_19490976_2024_2310603
crossref_primary_10_1038_s41398_019_0624_1
crossref_primary_10_1016_j_jpsychires_2020_03_020
crossref_primary_10_1016_j_bbr_2019_112153
crossref_primary_10_1016_j_bbr_2019_112397
crossref_primary_10_3390_ph16071013
crossref_primary_10_1002_ab_22022
crossref_primary_10_1016_j_nbd_2022_105635
crossref_primary_10_1016_j_jad_2024_06_080
crossref_primary_10_18863_pgy_1524106
crossref_primary_10_31083_j_jin2105144
crossref_primary_10_1016_j_ejphar_2020_173531
crossref_primary_10_3390_ijms222313070
crossref_primary_10_1016_j_pbb_2024_173736
crossref_primary_10_1124_pr_119_018697
crossref_primary_10_3389_fpsyt_2021_673443
crossref_primary_10_1016_j_neuropharm_2022_109153
crossref_primary_10_1016_j_neuropharm_2022_109272
crossref_primary_10_1016_j_ajp_2024_103997
crossref_primary_10_1007_s00406_020_01231_x
crossref_primary_10_2174_0929867328666210623144658
crossref_primary_10_1186_s12991_021_00365_z
crossref_primary_10_1016_j_pbb_2020_172870
crossref_primary_10_1002_etc_4955
crossref_primary_10_1007_s00406_020_01110_5
crossref_primary_10_1016_j_pbb_2020_172876
crossref_primary_10_3390_molecules29112459
crossref_primary_10_1016_j_jpsychires_2024_04_008
crossref_primary_10_1016_j_neuropharm_2022_108984
crossref_primary_10_1007_s00406_019_01084_z
crossref_primary_10_1016_j_pbb_2021_173226
crossref_primary_10_1124_jpet_123_001823
crossref_primary_10_3390_ijms22179338
crossref_primary_10_1016_j_neuropharm_2023_109422
crossref_primary_10_3389_fnbeh_2022_901425
crossref_primary_10_1016_j_addicn_2022_100025
crossref_primary_10_3390_ph16040634
crossref_primary_10_1111_fcp_12745
crossref_primary_10_1016_j_taap_2023_116800
crossref_primary_10_1016_j_heliyon_2023_e19383
crossref_primary_10_1016_j_ejphar_2021_173954
crossref_primary_10_1038_s41398_023_02564_6
crossref_primary_10_1007_s00406_021_01365_6
crossref_primary_10_1016_j_ejphar_2022_175171
crossref_primary_10_1002_ibra_12094
crossref_primary_10_1007_s00406_019_01061_6
crossref_primary_10_1016_j_neubiorev_2025_106209
crossref_primary_10_1016_j_pnpbp_2020_110060
crossref_primary_10_1016_j_bbr_2020_112548
crossref_primary_10_1007_s00406_023_01570_5
crossref_primary_10_1016_j_disamonth_2024_101725
crossref_primary_10_1016_j_jad_2019_11_086
crossref_primary_10_1016_j_brainresbull_2024_110882
crossref_primary_10_1016_j_pnpbp_2024_111151
crossref_primary_10_1016_j_lfs_2021_119882
crossref_primary_10_1016_j_pbb_2022_173500
crossref_primary_10_1016_j_jad_2024_08_222
crossref_primary_10_3390_ph12040149
crossref_primary_10_1038_s41398_024_03176_4
crossref_primary_10_3389_fphar_2021_740996
crossref_primary_10_1093_ijnp_pyac049
crossref_primary_10_1016_j_pnpbp_2021_110403
crossref_primary_10_1016_j_euroneuro_2021_04_010
crossref_primary_10_3389_fncel_2019_00499
crossref_primary_10_3390_biom9110746
crossref_primary_10_1371_journal_pone_0310751
crossref_primary_10_1002_mco2_156
crossref_primary_10_3389_fnins_2021_657714
crossref_primary_10_1007_s00406_020_01095_1
crossref_primary_10_1038_s41398_021_01261_6
crossref_primary_10_1038_s41598_020_65300_w
crossref_primary_10_1016_j_jad_2023_07_007
crossref_primary_10_1016_j_pbb_2023_173659
crossref_primary_10_1111_jcmm_17975
crossref_primary_10_1016_j_jpsychires_2021_02_028
crossref_primary_10_1016_j_phrs_2023_106917
crossref_primary_10_1016_j_jpsychires_2020_12_038
crossref_primary_10_1016_j_brainresbull_2021_10_013
crossref_primary_10_1016_j_intimp_2023_109792
crossref_primary_10_1016_j_neubiorev_2022_104762
crossref_primary_10_1038_s41401_021_00727_z
crossref_primary_10_1177_2045125320916657
crossref_primary_10_1016_j_neuroscience_2024_12_062
crossref_primary_10_1080_00952990_2024_2394963
crossref_primary_10_1002_hbm_26670
crossref_primary_10_3390_genes11091089
crossref_primary_10_3389_fphar_2021_782457
crossref_primary_10_1007_s11696_023_02993_z
crossref_primary_10_1017_S1092852921000791
crossref_primary_10_1002_tox_24227
crossref_primary_10_1016_j_brainresbull_2022_02_004
crossref_primary_10_1016_j_pbb_2024_173773
crossref_primary_10_1177_02698811211026426
crossref_primary_10_1016_j_pbb_2019_172839
crossref_primary_10_1016_j_pbb_2020_173011
crossref_primary_10_1126_sciadv_adv5986
crossref_primary_10_1093_ijnp_pyaa087
crossref_primary_10_1038_s41467_023_43150_0
crossref_primary_10_1016_j_neubiorev_2022_104635
crossref_primary_10_1053_j_jvca_2025_04_013
crossref_primary_10_1016_j_jad_2020_09_071
crossref_primary_10_1007_s00406_020_01226_8
crossref_primary_10_1016_j_pnpbp_2024_111228
crossref_primary_10_1515_revneuro_2022_0096
crossref_primary_10_1002_brb3_2986
crossref_primary_10_1097_JAN_0000000000000315
crossref_primary_10_1016_j_jpsychires_2023_06_028
crossref_primary_10_1097_FBP_0000000000000727
crossref_primary_10_3390_cells14110831
crossref_primary_10_1016_j_euroneuro_2020_01_017
crossref_primary_10_1016_j_jatmed_2024_07_001
crossref_primary_10_1002_anse_202100026
crossref_primary_10_1016_j_drudis_2023_103518
crossref_primary_10_1016_j_jpsychires_2025_05_029
crossref_primary_10_1038_s41380_023_01945_z
crossref_primary_10_1017_erm_2025_10011
crossref_primary_10_1136_gpsych_2023_101374
crossref_primary_10_1111_cns_14598
crossref_primary_10_1016_j_bbr_2020_112508
crossref_primary_10_1073_pnas_2001264117
crossref_primary_10_3389_fnbeh_2021_749180
crossref_primary_10_1016_j_bbr_2020_112631
crossref_primary_10_1007_s40263_022_00897_2
crossref_primary_10_1016_j_bbr_2023_114594
crossref_primary_10_1007_s40263_024_01114_y
crossref_primary_10_1038_s41398_020_0733_x
crossref_primary_10_1007_s00406_024_01770_7
Cites_doi 10.1007/s00406-016-0692-7
10.1017/S0033291716000969
10.1016/j.biopsych.2016.12.031
10.1176/appi.ajp.2018.17060720
10.1523/JNEUROSCI.17-08-02921.1997
10.1038/npp.2017.49
10.1007/s00213-018-5017-2
10.1097/00000539-200007000-00042
10.3389/fpsyt.2018.00386
10.1007/s40262-016-0383-6
10.1038/npp.2013.128
10.1146/annurev-pharmtox-010617-052811
10.4103/1673-5374.230355
10.1093/ijnp/pyy101
10.1038/srep45942
10.1016/j.drudis.2018.11.007
10.1001/archpsyc.63.8.856
10.1016/j.biopsych.2012.05.003
10.9758/cpn.2012.10.1.59
10.1176/appi.ajp.163.1.153
10.1038/mp.2017.241
10.1038/npp.2016.202
10.1017/S1461145713000448
10.1016/j.biopsych.2017.05.016
10.1093/schbul/sbs011
10.3109/03009734.2012.724118
10.1016/S0924-977X(96)00042-9
10.1016/j.talanta.2010.08.005
10.1124/jpet.116.239228
10.1016/j.biopsych.2012.03.004
10.1126/science.1117571
10.1080/00952990.2016.1278449
10.1176/appi.ajp.2017.17060647
10.1001/jamapsychiatry.2019.0763
10.1007/s00213-014-3543-0
10.1016/j.biopsych.2012.10.019
10.1007/s00406-018-0922-2
10.1016/j.pbb.2018.07.003
10.1176/appi.ajp.2018.18111231r
10.1016/S0006-8993(96)00842-6
10.1017/S0033291715001506
10.1038/s12276-018-0164-4
10.1007/s00213-018-4992-7
10.1038/mp.2010.120
10.1016/j.biopsych.2015.10.018
10.1007/s00213-018-4832-9
10.1093/bja/57.2.197
10.1192/bjp.bp.110.086983
10.1038/nature10130
10.1002/cpt196563279
10.3389/fnhum.2016.00612
10.4103/0253-7613.161277
10.1038/tp.2015.157
10.1001/jamapsychiatry.2018.3990
10.1016/j.biopsych.2012.05.031
10.1016/0304-3959(94)00170-J
10.1016/j.biopsych.2017.10.020
10.1093/ijnp/pyu033
10.1038/mp.2011.47
10.1016/j.euroneuro.2015.04.012
10.1176/appi.ajp.2018.18111231
10.1016/j.psychres.2018.08.078
10.1017/S1461145711000629
10.1016/j.biopsych.2012.07.022
10.3389/fpsyt.2018.00277
10.1176/appi.ajp.2018.18091061r
10.1093/ijnp/pyx108
10.1080/15622975.2016.1224927
10.1080/1355621961000124696
10.1093/bja/77.4.441
10.1093/ijnp/pyx100
10.1016/j.jad.2016.05.076
10.1016/j.pbb.2018.11.010
10.1007/s00213-018-4828-5
10.1007/s00213-015-4062-3
10.1001/jamapsychiatry.2019.0766
10.1016/j.pharep.2018.02.011
10.1038/nrd3502
10.1038/mp.2016.44
10.1038/nrn3564
10.1038/s41380-018-0083-8
10.1126/science.1190287
10.1016/j.biopsych.2015.07.003
10.1038/mp.2017.239
10.1002/da.22536
10.1016/j.biopsych.2018.05.007
10.1080/14737175.2019.1554434
10.1016/j.biopsych.2014.06.021
10.1038/npp.2017.94
10.1073/pnas.1814709116
10.1016/j.jad.2018.11.016
10.1038/npp.2015.112
10.1001/archneurpsyc.1959.02340150095011
10.1089/jpm.2012.0617
10.1016/j.biopsych.2009.04.029
10.1097/WNR.0000000000001131
10.1176/appi.ajp.2017.17020239
10.1111/bph.14683
10.1016/j.biopsych.2018.11.006
10.1016/S2215-0366(17)30102-5
10.1016/S2215-0366(17)30272-9
10.1016/j.pbb.2018.10.005
10.1192/bjp.2018.257
10.1016/j.drugalcdep.2008.01.024
10.1213/00000539-199811000-00039
10.1177/2470547018796102
10.1016/S0028-3908(99)00019-2
10.1038/mp.2017.28
10.1038/tp.2016.21
10.1093/ijnp/pyw080
10.1038/nrd.2018.168
10.2174/1570159X14666160119094646
10.1371/journal.pone.0056053
10.1016/j.jpsychires.2018.09.013
10.1176/appi.ajp.2016.16040411
10.1016/j.pbb.2018.09.005
10.1016/j.jad.2018.02.056
10.1038/nrd.2017.16
10.1097/ALN.0b013e3181ed09a2
10.1080/14728222.2016.1238899
10.1016/j.pharmthera.2018.05.010
10.1016/j.neuron.2019.02.005
10.1523/ENEURO.0285-16.2017
10.1002/ana.410300609
10.1007/978-3-319-49795-2_4
10.1016/j.jpsychires.2013.04.008
10.1176/appi.ajp.2016.16010037
10.1038/npp.2015.233
10.1038/nature17998
10.1016/j.neuropharm.2018.06.033
10.1038/s41598-018-22449-9
10.2174/1381612824666180730104707
10.1176/appi.ajp.2019.19010044
10.1016/j.pscychresns.2018.09.001
10.2174/1570159X14666160321122703
10.1586/ern.10.176
10.1038/s41398-019-0379-8
10.1038/mp.2016.46
10.1126/science.2660263
10.1176/appi.ajp.2013.13030392
10.1007/s00406-016-0718-1
10.1177/1179069518815445
10.1016/j.biopsych.2017.12.007
10.1007/s00213-016-4399-2
10.1176/appi.ajp.2018.17121368
10.1176/appi.ajp.2018.18020138
10.1038/npp.2012.246
10.1016/j.biopsych.2015.03.010
10.1093/ijnp/pyy053
10.1007/s12017-014-8312-z
10.1038/s41380-018-0028-2
10.1016/j.biopsych.2016.12.018
10.1016/S0896-6273(02)00653-0
10.1001/archpsyc.1994.03950030035004
10.1038/mp.2013.130
10.1093/schbul/sbs069
10.1111/j.1440-1819.2010.02113.x
10.1038/tp.2017.31
10.1016/j.eurpsy.2013.10.005
10.1016/j.biopsych.2007.05.028
10.1016/j.biopsych.2006.02.013
10.1176/appi.ajp.2018.18091061
10.1016/j.ejphar.2012.11.023
10.1021/acschemneuro.7b00074
10.1016/j.pbb.2019.04.008
10.1016/j.neuropharm.2011.08.034
10.1038/nrd.2018.187
10.1016/j.biopsych.2016.12.020
10.1016/j.jpsychires.2016.09.025
10.1038/s41398-017-0031-4
10.1038/npp.2013.71
10.1016/j.biopsych.2013.01.038
10.1007/s40473-018-0139-8
10.1073/pnas.1414728112
10.1038/nature25752
10.1016/j.psychres.2015.10.032
10.1016/j.biopsych.2012.06.022
10.1016/0014-2999(78)90217-0
10.1073/pnas.1323920111
10.1007/s00213-015-4128-2
10.1093/ijnp/pyx003
10.1176/ajp.148.10.1301
10.1038/s41598-017-16060-7
10.1001/jamapsychiatry.2017.3739
10.1126/scisignal.aai7884
10.12688/f1000research.14344.1
10.1016/j.brainresrev.2004.02.003
10.3390/ijms16047796
10.1176/appi.ajp.2015.15040465
10.1016/j.jad.2016.09.012
10.1124/pr.117.015198
10.1016/j.bbi.2015.03.016
10.1176/appi.ajp.2017.17040472
10.1126/science.1222939
10.1038/s41386-018-0084-y
10.1176/appi.ajp.2014.13111501
10.9758/cpn.2014.12.1.72
10.1176/appi.ajp.163.1.28
10.1016/j.pbb.2013.11.033
10.1016/S0014-2999(97)01116-3
10.1016/j.bbr.2011.05.035
10.1038/nature25509
10.1017/S0033291716000064
10.1038/tp.2015.136
10.1186/s12866-018-1373-7
10.1038/ncomms2295
10.1176/appi.ajp.2017.17090972
10.1016/j.tins.2018.12.002
10.1016/j.nbd.2013.09.004
10.1007/s00213-016-4203-3
10.1016/j.pbb.2018.12.001
10.1016/j.biopsych.2011.12.010
10.1097/01.pra.0000462606.17725.93
10.1016/j.urology.2007.01.038
10.1016/S0006-3223(99)00230-9
10.1007/s00213-017-4706-6
10.1038/mp.2017.109
10.1016/j.bbr.2019.111904
10.1111/j.1399-5618.2007.00467.x
10.1016/j.cll.2016.07.008
10.1038/tp.2017.112
10.1177/0269881118812095
10.1001/archgenpsychiatry.2010.90
10.1093/ijnp/pyx120
10.1016/j.biopsych.2014.04.014
10.1176/appi.ajp.2011.11010128
10.1038/npp.2016.224
10.1016/j.psychres.2016.03.034
10.1007/s11920-013-0431-y
ContentType Journal Article
Copyright 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology
2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
2019 The Author. Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology
Copyright_xml – notice: 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology
– notice: 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
– notice: 2019 The Author. Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1111/pcn.12902
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Rapid‐acting antidepressant ketamine
EISSN 1440-1819
EndPage 627
ExternalDocumentID PMC6851782
31215725
10_1111_pcn_12902
PCN12902
Genre reviewArticle
Historical Article
Journal Article
Review
GrantInformation_xml – fundername: AMED
  funderid: JP19dm0107119
– fundername: AMED
  grantid: JP19dm0107119
– fundername: ;
  grantid: JP19dm0107119
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29P
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
E3Z
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TKC
TR2
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
ZXP
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c5332-e22c4414233354b12407985486d1ca4d184e37b2831c4a6e2bccb222eb215c903
IEDL.DBID 24P
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474903900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1323-1316
1440-1819
IngestDate Tue Sep 30 16:55:02 EDT 2025
Thu Sep 04 17:23:34 EDT 2025
Sat Nov 29 15:02:58 EST 2025
Thu Apr 03 07:01:37 EDT 2025
Sat Nov 29 05:59:58 EST 2025
Tue Nov 18 21:16:40 EST 2025
Wed Jan 22 16:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords (R)-ketamine (or arketamine), (S)-ketamine (or esketamine), (S)-norketamine
gut microbiota
Language English
License Attribution-NonCommercial
2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5332-e22c4414233354b12407985486d1ca4d184e37b2831c4a6e2bccb222eb215c903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8892-0439
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcn.12902
PMID 31215725
PQID 2301765985
PQPubID 1106347
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851782
proquest_miscellaneous_2243490620
proquest_journals_2301765985
pubmed_primary_31215725
crossref_primary_10_1111_pcn_12902
crossref_citationtrail_10_1111_pcn_12902
wiley_primary_10_1111_pcn_12902_PCN12902
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Australia
– name: Tokyo
PublicationTitle Psychiatry and clinical neurosciences
PublicationTitleAlternate Psychiatry Clin Neurosci
PublicationYear 2019
Publisher John Wiley & Sons Australia, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 84
2017; 82
2017; 81
2015; 77
2011; 61
2019; 18
2000; 91
2014; 29
2019; 283
2013; 8
2018; 43
1998; 87
2016; 36
2012; 10
2011; 475
1997; 7
2016; 33
1996; 77
2018; 175
2018; 7
2017; 208
2018; 9
2018; 8
2018; 176
2018; 5
2018; 172
2019; 22
1965; 6
2013; 118
2010; 113
2006; 163
2014; 16
2007; 9
2016; 41
2014; 19
2014; 18
2018; 33
2014; 12
2016; 46
2007; 69
1997; 333
2009; 66
2018; 29
2019; 9
1992; 260
2010; 329
2016; 19
2018; 106
2004; 45
2006; 59
2016; 10
2016; 204
2012; 38
2018; 23
2018; 21
2018; 190
2016; 14
2019; 101
2018; 24
2018; 19
2016; 6
2018; 18
2018; 17
2019; 181
2019; 42
1989; 244
2018; 116
2013; 73
2013; 698
2015; 232
2015; 112
1999; 38
2013; 74
2018; 235
2015; 230
2019; 214
2016; 21
2016; 20
1978; 49
2013; 170
2017; 267
2006; 463
2016; 9
2016; 173
2019; 176
2018; 13
2017; 42
2017; 7
2017; 8
2012; 200
2017; 4
2000; 47
2018; 245
2017; 43
1862; 2016
2019; 59
2019; 368
2011; 11
2011; 10
2018; 85
2018; 84
2018; 83
2011; 14
2014; 171
2014; 62
2011; 16
2017; 234
1996; 740
2016; 79
2012; 72
2010; 67
2015; 45
2012; 71
2015; 48
2015; 172
2015; 47
1995; 61
2011; 168
2010; 64
2006; 63
2013; 14
2013; 16
2018; 139
2015; 40
2016; 239
2018; 70
2016; 233
1997; 17
2017; 361
1996; 1
2008; 63
2016; 80
1991; 148
2018; 75
2012; 338
1985; 57
2018; 141
2014; 116
2017; 20
2015; 16
2015; 5
2013; 47
1959; 81
2019; 76
1991; 30
2002; 34
2018; 269
2017; 23
2017; 174
2014; 231
2008; 95
2014; 111
2016; 55
2010; 82
2006; 311
2011; 224
2015; 25
2012; 3
2013; 38
2017; 15
2017; 16
2018; 554
2015; 21
2019
2018
2017
2017; 18
2016; 533
2018; 50
1994; 51
2014; 76
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_233_1
Tian Z (e_1_2_10_161_1) 2018; 21
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_234_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
Li SX (e_1_2_10_83_1) 2014; 12
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
Deyama S (e_1_2_10_204_1) 2018; 141
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
Reardon S (e_1_2_10_66_1) 2019
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_188_1
e_1_2_10_81_1
Choi M (e_1_2_10_202_1) 1862; 2016
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
Chiu CT (e_1_2_10_210_1) 2014; 18
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
e_1_2_10_238_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_227_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_239_1
e_1_2_10_216_1
Dong C (e_1_2_10_92_1) 2017; 20
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_243_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_232_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
Abdallah CG (e_1_2_10_193_1) 2018
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_244_1
Oye I (e_1_2_10_57_1) 1992; 260
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 267
  start-page: 173
  year: 2017
  end-page: 176
  article-title: Reduction of dopamine D receptor binding in the striatum after a single administration of esketamine, but not ‐ketamine: A PET study in conscious monkeys
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 38
  start-page: 735
  year: 1999
  end-page: 767
  article-title: Memantine is a clinical well tolerated –methyl‐D‐aspartate (NMDA) receptor antagonist—A review of preclinical data
  publication-title: Neuropharmacology
– volume: 66
  start-page: 522
  year: 2009
  end-page: 526
  article-title: Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment‐resistant depression
  publication-title: Biol. Psychiatry
– volume: 84
  start-page: 113
  year: 2017
  end-page: 118
  article-title: Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment‐resistant depression
  publication-title: J. Psychiatr. Res.
– volume: 8
  start-page: 4007
  year: 2018
  article-title: Lack of metabolism in ( )‐ketamine's antidepressant actions in a chronic social defeat stress model
  publication-title: Sci. Rep.
– volume: 47
  start-page: 351
  year: 2000
  end-page: 354
  article-title: Antidepressant effects of ketamine in depressed patients
  publication-title: Biol. Psychiatry
– year: 2018
  article-title: Is ( )‐norketamine an alternative antidepressant for esketamine?
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– year: 2019
  article-title: Antidepressant based on party drug gets backing from FDA advisory group
  publication-title: Nature
– volume: 9
  start-page: 386
  year: 2018
  article-title: Growth factor proteins and treatment‐resistant depression: A place on the path to precision
  publication-title: Front. Psych.
– volume: 16
  start-page: 431
  year: 2014
  article-title: Options for pharmacological treatment of refractory bipolar depression
  publication-title: Curr. Psychiatry Rep.
– volume: 267
  start-page: 177
  year: 2017
  end-page: 182
  article-title: Effects of a single bilateral infusion of R‐ketamine in the rat brain regions of a learned helplessness model of depression
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 74
  start-page: 257
  year: 2013
  end-page: 264
  article-title: A randomized trial of a low‐trapping nonselective ‐methyl‐D‐aspartate channel blocker in major depression
  publication-title: Biol. Psychiatry
– volume: 283
  start-page: 64
  year: 2019
  end-page: 66
  article-title: Synaptic potentiation and rapid antidepressant response to ketamine in treatment‐resistant major depression: A replication study
  publication-title: Psychiatry Res. Neuroimaging
– volume: 79
  start-page: e71
  year: 2016
  end-page: e72
  article-title: Possible affective switch associated with intravenous ketamine treatment in a patient with bipolar I disorder
  publication-title: Biol. Psychiatry
– volume: 269
  start-page: 207
  year: 2018
  end-page: 211
  article-title: Rapid inflammation modulation and antidepressant efficacy of a low‐dose ketamine infusion in treatment‐resistant depression: A randomized, double‐blind control study
  publication-title: Psychiatry Res.
– volume: 72
  start-page: 537
  year: 2012
  end-page: 547
  article-title: Ketamine for depression: Where do we go from here?
  publication-title: Biol. Psychiatry
– volume: 148
  start-page: 1301
  year: 1991
  end-page: 1308
  article-title: Recent advances in the phencyclidine model of schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 368
  start-page: 111904
  year: 2019
  article-title: Beneficial effects of ( )‐ketamine, but not its metabolite (2 ,6 )‐hydroxynorketamine, in the depression‐like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model
  publication-title: Behav. Brain Res.
– volume: 74
  start-page: 250
  year: 2013
  end-page: 256
  article-title: Rapid and longer‐term antidepressant effects of repeated ketamine infusions in treatment‐resistant major depression
  publication-title: Biol. Psychiatry
– volume: 16
  start-page: 1885
  year: 2013
  end-page: 1892
  article-title: microRNAs as novel antidepressant targets: Converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus
  publication-title: Int. J. Neuropsychopharmacol
– volume: 16
  start-page: 383
  year: 2011
  end-page: 406
  article-title: The GABAergic deficit hypothesis of major depressive disorder
  publication-title: Mol. Psychiatry
– volume: 40
  start-page: 2499
  year: 2015
  end-page: 2509
  article-title: Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5‐containing GABA receptors
  publication-title: Neuropsychopharmacology
– volume: 43
  start-page: 495
  year: 2017
  end-page: 504
  article-title: Ketamine and international regulations
  publication-title: Am. J. Drug Alcohol Abuse
– volume: 175
  start-page: 327
  year: 2018
  end-page: 335
  article-title: Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam‐controlled randomized clinical trial
  publication-title: Am. J. Psychiatry
– volume: 76
  start-page: 657
  year: 2019
  article-title: Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect
  publication-title: JAMA Psychiatry
– volume: 4
  start-page: 419
  year: 2017
  end-page: 426
  article-title: Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight
  publication-title: Lancet Psychiatry
– volume: 7
  start-page: 1294
  year: 2017
  article-title: Possible role of gut‐microbiota in the antidepressant effects of ( )‐ketamine in a social defeat stress model
  publication-title: Transl. Psychiatry
– volume: 231
  start-page: 2041
  year: 2014
  end-page: 2042
  article-title: Rapid antidepressant effects and abuse liability of ketamine
  publication-title: Psychopharmacology
– volume: 72
  start-page: 331
  year: 2012
  end-page: 338
  article-title: Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression
  publication-title: Biol. Psychiatry
– volume: 9
  start-page: ra123
  year: 2016
  article-title: Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast‐acting antidepressant responses of ketamine
  publication-title: Sci. Signal.
– volume: 43
  start-page: 1900
  year: 2018
  end-page: 1907
  article-title: (2 ,6 )‐Hydroxynorketamine is not essential for the antidepressant actions of ( )‐ketamine in mice
  publication-title: Neuropsychopharmacology
– volume: 81
  start-page: e35
  year: 2017
  end-page: e37
  article-title: More than a gut feeling: The implications of the gut microbiota in psychiatry
  publication-title: Biol. Psychiatry
– volume: 235
  start-page: 3017
  year: 2018
  end-page: 3030
  article-title: Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects
  publication-title: Psychopharmacology
– volume: 72
  start-page: e27
  year: 2012
  end-page: e28
  article-title: Brain‐derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients
  publication-title: Biol. Psychiatry
– year: 2018
  article-title: Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients
  publication-title: Chronic Stress
– volume: 235
  start-page: 1107
  year: 2018
  end-page: 1119
  article-title: Effect of intranasal esketamine on cognitive functioning in healthy participants: A randomized, double‐blind, placebo‐controlled study
  publication-title: Psychopharmacology
– volume: 16
  start-page: 594
  year: 2014
  end-page: 605
  article-title: MicroRNA expression profile and functional analysis reveal that miR‐206 is a critical novel gene for the expression of BDNF induced by ketamine
  publication-title: Neuromolecular Med.
– volume: 57
  start-page: 197
  year: 1985
  end-page: 203
  article-title: Comparative pharmacology of the ketamine isomers. Studies in volunteers
  publication-title: Br. J. Anaesth.
– volume: 1
  start-page: 61
  year: 1996
  end-page: 70
  article-title: Induction of heat shock protein (HSP)‐70 in posterior cingulate and retrosplenial cortex of rat brain by dizocilpine and phencyclidine: Lack of protective effects of sigma receptor ligands
  publication-title: Addict. Biol.
– volume: 163
  start-page: 28
  year: 2006
  end-page: 40
  article-title: Evaluation of outcomes with citalopram for depression using measurement‐based care in STAR*D: Implications for clinical practice
  publication-title: Am. J. Psychiatry
– volume: 49
  start-page: 15
  year: 1978
  end-page: 23
  article-title: Comparative pharmacology of the optical isomers of ketamine in mice
  publication-title: Eur. J. Pharmacol.
– volume: 19
  start-page: 978
  year: 2014
  end-page: 985
  article-title: Lanicemine: A low‐trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects
  publication-title: Mol. Psychiatry
– volume: 84
  start-page: e3
  year: 2018
  end-page: e6
  article-title: Common neurotransmission recruited in ( )‐ketamine and (2 ,6 )‐hydroxynorketamine‐induced sustained antidepressant‐like effects
  publication-title: Biol. Psychiatry
– volume: 333
  start-page: 99
  year: 1997
  end-page: 104
  article-title: Norketamine, the main metabolite of ketamine, is a non‐competitive NMDA receptor antagonist in the rat cortex and spinal cord
  publication-title: Eur. J. Pharmacol.
– volume: 245
  start-page: 265
  year: 2018
  end-page: 269
  article-title: Increased expression of inwardly rectifying Kir4.1 channel in the parietal cortex from patients with major depressive disorder
  publication-title: J. Affect. Disord.
– volume: 118
  start-page: 3
  year: 2013
  end-page: 8
  article-title: Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test
  publication-title: Ups. J. Med. Sci.
– volume: 76
  start-page: 658
  year: 2019
  article-title: Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect—Reply
  publication-title: JAMA Psychiatry
– volume: 7
  start-page: 25
  year: 1997
  end-page: 38
  article-title: Differential psychopathology and patterns of cerebral glucose utilisation produced by ( )‐ and ( )‐ketamine in healthy volunteers using positron emission tomography (PET)
  publication-title: Eur. Neuropsychopharmacol.
– volume: 29
  start-page: 1425
  year: 2018
  end-page: 1430
  article-title: (2 ,6 )‐Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell‐derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans
  publication-title: Neuroreport
– volume: 24
  start-page: 606
  year: 2018
  end-page: 615
  article-title: A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid‐acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems
  publication-title: Drug Discov. Today
– volume: 42
  start-page: 2482
  year: 2017
  end-page: 2492
  article-title: Dose‐related effects of adjunctive ketamine in Taiwanese patients with treatment‐resistant depression
  publication-title: Neuropsychopharmacology
– volume: 9
  start-page: 277
  year: 2018
  article-title: Efficacy of ketamine in the treatment of substance use disorders: A systematic review
  publication-title: Front. Psych.
– volume: 23
  start-page: 892
  year: 2017
  end-page: 903
  article-title: Perisomatic changes in h‐channels regulate depressive behaviors following chronic unpredictable stress
  publication-title: Mol. Psychiatry
– volume: 176
  start-page: 251
  year: 2019
  end-page: 252
  article-title: Target population, dose, and timing considerations for understanding naltrexone's subjective effect: Response to Amiaz
  publication-title: Am. J. Psychiatry
– volume: 77
  start-page: e19
  year: 2015
  end-page: e20
  article-title: Serum interleukin‐6 is a predictive biomarker for ketamine's antidepressant effect in treatment‐resistant patients with major depression
  publication-title: Biol. Psychiatry
– volume: 233
  start-page: 3647
  year: 2016
  end-page: 3657
  article-title: Comparison of ‐ketamine and rapastinel antidepressant effects in the social defeat stress model of depression
  publication-title: Psychopharmacology
– volume: 174
  start-page: 695
  year: 2017
  end-page: 696
  article-title: A survey of the clinical, off‐label use of ketamine as a treatment for psychiatric disorders
  publication-title: Am. J. Psychiatry
– volume: 19
  start-page: 83
  year: 2018
  end-page: 92
  article-title: An update on ketamine and its two enantiomers as rapid‐acting antidepressants
  publication-title: Expert Rev. Neurother.
– volume: 171
  start-page: 1067
  year: 2014
  end-page: 1073
  article-title: The risk of switch to mania in patients with bipolar disorder during treatment with an antidepressant alone and in combination with a mood stabilizer
  publication-title: Am. J. Psychiatry
– volume: 12
  start-page: 72
  year: 2014
  end-page: 73
  article-title: The ‐stereoisomer of ketamine as an alternative for ketamine for treatment‐resistant major depression
  publication-title: Clin. Psychopharmacol. Neurosci.
– volume: 235
  start-page: 1151
  year: 2018
  end-page: 1161
  article-title: Negative allosteric modulation of alpha 5‐containing GABA receptors engenders antidepressant‐like effects and selectively prevents age‐associated hyperactivity in tau‐depositing mice
  publication-title: Psychopharmacology
– volume: 239
  start-page: 281
  year: 2016
  end-page: 283
  article-title: Loss of parvalbumin‐immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not ‐ketamine
  publication-title: Psychiatric Res.
– volume: 22
  start-page: 247
  year: 2019
  end-page: 259
  article-title: Positive ‐methyl‐D‐aspartate receptor modulation by rapastinel promotes rapid and sustained antidepressant‐like effects
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 10
  start-page: 685
  year: 2011
  end-page: 697
  article-title: Beyond classical benzodiazepines: Novel therapeutic potential of GABA receptor subtypes
  publication-title: Nat. Rev. Drug Discov.
– volume: 7
  start-page: 659
  year: 2018
  article-title: Ketamine and rapid‐acting antidepressants: A new era in the battle against depression and suicide
  publication-title: F1000Res
– volume: 24
  start-page: 2556
  year: 2018
  end-page: 2563
  article-title: Rapid‐acting antidepressants
  publication-title: Curr. Pharm. Des.
– volume: 17
  start-page: 2921
  year: 1997
  end-page: 2927
  article-title: Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex
  publication-title: J. Neurosci.
– volume: 42
  start-page: 179
  year: 2019
  end-page: 191
  article-title: Laternal habenular burst firing as a target of the rapid antidepressant effects of ketamine
  publication-title: Trends Neurosci.
– volume: 38
  start-page: 1609
  year: 2013
  end-page: 1616
  article-title: NMDA receptor blockade by ketamine abrogates lipopolysaccharide‐induced depressive‐like behavior in C57BL/6J mice
  publication-title: Neuropsychopharmacology
– volume: 554
  start-page: 317
  year: 2018
  end-page: 322
  article-title: Ketamine blocks bursting in the lateral habenula to rapidly relieve depression
  publication-title: Nature
– year: 2017
  article-title: A negative allosteric modulator for α5 subunit‐containing GABA receptors exerts a rapid and persistent antidepressant‐like action without the side effects of the NMDA receptor antagonist ketamine in mice
  publication-title: eNeuro
– volume: 73
  start-page: e35
  year: 2013
  end-page: e36
  article-title: Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase‐3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients
  publication-title: Biol. Psychiatry
– volume: 14
  start-page: 721
  year: 2016
  end-page: 731
  article-title: Brain‐derived neurotrophic factor (BDNF) – TrkB signaling in inflammation‐related depression and potential therapeutic targets
  publication-title: Curr. Neuropharmacol.
– volume: 168
  start-page: 751
  year: 2011
  end-page: 752
  article-title: Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation
  publication-title: Am. J. Psychiatry
– volume: 12
  start-page: 124
  year: 2014
  end-page: 127
  article-title: Antidepressant effects of ketamine on depression‐like behavior in juvenile mice after neonatal dexamethasone exposure
  publication-title: Clin. Neuropharmacol. Neurosci.
– volume: 16
  start-page: 7796
  year: 2015
  end-page: 7801
  article-title: Inflammatory biomarkers as differential predictors of antidepressant response
  publication-title: Int. J. Mol. Sci.
– volume: 230
  start-page: 682
  year: 2015
  end-page: 688
  article-title: Meta‐analysis of short‐ and mid‐term efficacy of ketamine in unipolar and bipolar depression
  publication-title: Psychiatry Res.
– volume: 116
  start-page: 137
  year: 2014
  end-page: 141
  article-title: (−)‐ketamine shows greater potency and longer lasting antidepressant effects than (+)‐ketamine
  publication-title: Pharmacol. Biochem. Behav.
– volume: 361
  start-page: 9
  year: 2017
  end-page: 16
  article-title: Antidepressant potential of ( )‐ketamine in rodent models: Comparison with ( )‐ketamine
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 141
  start-page: 10
  year: 2018
  end-page: 16
  article-title: Neurotrophic and antidepressant actions of brain‐derived neurotrophic factor require vascular endothelial growth factor
  publication-title: Biol. Psychiatry
– volume: 175
  start-page: 411
  year: 2018
  end-page: 426
  article-title: Early intervention in bipolar disorder
  publication-title: Am. J. Psychiatry
– volume: 3
  start-page: 1292
  year: 2012
  article-title: Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex
  publication-title: Nat. Commun.
– volume: 38
  start-page: 914
  year: 2012
  end-page: 919
  article-title: Phencyclidine/schizophrenia: One view toward the past, the other to the future
  publication-title: Schizophr. Bull.
– volume: 234
  start-page: 3175
  year: 2017
  end-page: 3183
  article-title: The effects of intranasal esketamine (84 mg) and oral mirtazapine (30 mg) on on‐road driving performance: A double‐blind, placebo‐controlled study
  publication-title: Psychopharmacology
– volume: 77
  start-page: 1031
  year: 2015
  end-page: 1040
  article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia
  publication-title: Biol. Psychiatry
– volume: 33
  start-page: 718
  year: 2016
  end-page: 727
  article-title: A review of ketamine abuse and diversion
  publication-title: Depress. Anxiety
– volume: 29
  start-page: 419
  year: 2014
  end-page: 423
  article-title: Ketamine‐induced antidepressant effects are associated with AMPA receptors‐mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex
  publication-title: Eur. Psychiatry
– volume: 111
  start-page: 8649
  year: 2014
  end-page: 8654
  article-title: Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 65
  year: 2018
  end-page: 78
  article-title: Side‐effects associated with ketamine use in depression: A systematic review
  publication-title: Lancet Psychiatry
– volume: 116
  start-page: 297
  year: 2018
  end-page: 302
  article-title: Activity‐dependent brain‐derived neurotrophic factor signaling is required for the antidepressant actions of (2 ,6 )‐hydroxynorketamine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 175
  start-page: 24
  year: 2018
  end-page: 26
  article-title: Now is the time for (2 ,6 )‐hydroxynorketamine to be viewed independently from its parent drug
  publication-title: Pharmacol. Biochem. Behav.
– volume: 173
  start-page: 1044
  year: 2016
  end-page: 1045
  article-title: Detrimental side effects of repeated ketamine infusions in the brain
  publication-title: Am. J. Psychiatry
– start-page: 69
  year: 2017
  end-page: 81
– volume: 554
  start-page: 323
  year: 2018
  end-page: 327
  article-title: Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression
  publication-title: Nature
– volume: 173
  start-page: 816
  year: 2016
  end-page: 826
  article-title: A double‐blind, randomized, placebo‐controlled, dose‐frequency study of intravenous ketamine in patients with treatment‐resistant depression
  publication-title: Am. J. Psychiatry
– volume: 235
  start-page: 236
  year: 2018
  end-page: 241
  article-title: Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double‐blind controlled trial
  publication-title: J. Affect. Disord.
– volume: 38
  start-page: 2268
  year: 2013
  end-page: 2277
  article-title: GSK‐3 inhibition potentiates the synaptogenic and antidepressant‐like effects of subthreshold doses of ketamine
  publication-title: Neuropsychopharmacology
– volume: 176
  start-page: 249
  year: 2019
  end-page: 250
  article-title: Interpreting ketamine's opioid receptor dependent effect: Response to Sanacora
  publication-title: Am. J. Psychiatry
– volume: 76
  start-page: 337
  year: 2019
  article-title: Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder
  publication-title: JAMA Psychiatry
– volume: 48
  start-page: 186
  year: 2015
  end-page: 194
  article-title: Altered fecal microbiota composition in patients with major depressive disorder
  publication-title: Brain Behav. Immun.
– volume: 59
  start-page: 213
  year: 2019
  end-page: 236
  article-title: Molecular pharmacology and neurobiology of rapid‐acting antidepressants
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 82
  start-page: 472
  year: 2017
  end-page: 487
  article-title: Targeting the microbiota‐gut‐brain axis: Prebiotics have anxiolytic and antidepressant‐like effects and reverse the impact of chronic stress in mice
  publication-title: Biol. Psychiatry
– volume: 42
  start-page: 1739
  year: 2017
  end-page: 1746
  article-title: The nucleus accumbens and ketamine treatment in major depressive disorder
  publication-title: Neuropsychopharmacology
– volume: 101
  start-page: 774
  year: 2019
  end-page: 778
  article-title: Ketamine: A paradigm shift for depression research and treatment
  publication-title: Neuron
– volume: 8
  start-page: e56053
  year: 2013
  article-title: Long‐lasting antidepressant action of ketamine, but not glycogen synthase kinase‐3 inhibitor SB216763, in the chronic mild stress model of mice
  publication-title: PLoS One
– volume: 46
  start-page: 2449
  year: 2016
  end-page: 2451
  article-title: ‐ketamine: A rapid‐onset and sustained antidepressant without risk of brain toxicity
  publication-title: Psychol. Med.
– volume: 172
  start-page: 950
  year: 2015
  end-page: 966
  article-title: Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression
  publication-title: Am. J. Psychiatry
– volume: 10
  start-page: 59
  year: 2012
  end-page: 60
  article-title: A BDNF Val66Met polymorphism and ketamine‐induced rapid antidepressant action
  publication-title: Clin. Psychopharmacol. Neurosci.
– volume: 176
  start-page: 57
  year: 2018
  end-page: 62
  article-title: Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with ( )‐ketamine
  publication-title: Pharmacol. Biochem. Behav.
– volume: 5
  start-page: 36
  year: 2018
  end-page: 47
  article-title: Rapid‐acting antidepressants: Mechanistic insights and future directions
  publication-title: Curr. Behav. Neurosci. Rep.
– volume: 83
  start-page: 18
  year: 2018
  end-page: 28
  article-title: Mechanistic target of rapamycin‐independent antidepressant effects of ( )‐ketamine in a social defeat stress model
  publication-title: Biol. Psychiatry
– volume: 61
  start-page: 215
  year: 1995
  end-page: 220
  article-title: Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain
  publication-title: Pain
– volume: 63
  start-page: 856
  year: 2006
  end-page: 864
  article-title: A randomized trial of an ‐methyl‐D‐aspartate antagonist in treatment‐resistant major depression
  publication-title: Arch. Gen. Psychiatry
– volume: 8
  start-page: 1122
  year: 2017
  end-page: 1134
  article-title: Classics in chemical neuroscience: Ketamine
  publication-title: ACS Chem. Nerosci.
– volume: 74
  start-page: e23
  year: 2013
  end-page: e24
  article-title: Subanesthetic dose ketamine does not induce an affective switch in three independent samples of treatment‐resistant major depression
  publication-title: Biol. Psychiatry
– volume: 175
  start-page: 150
  year: 2018
  end-page: 158
  article-title: The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta‐analysis
  publication-title: Am. J. Psychiatry
– volume: 21
  start-page: 140
  year: 2015
  end-page: 149
  article-title: Randomized proof of concept trial of GLYX‐13, an ‐methyl‐D‐aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent
  publication-title: J. Psychiatr. Pract.
– year: 2018
  article-title: Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment. A double‐blind, placebo‐controlled, cross‐over, randomized clinical trial
  publication-title: bioRxiv
– volume: 75
  start-page: 139
  year: 2018
  end-page: 148
  article-title: Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment‐resistant depression: A randomized clinical trial
  publication-title: JAMA Psychiatry
– volume: 63
  start-page: 349
  year: 2008
  end-page: 352
  article-title: Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptors
  publication-title: Biol. Psychiatry
– volume: 36
  start-page: 721
  year: 2016
  end-page: 744
  article-title: Ketamine: A cause of urinary tract dysfunction
  publication-title: Clin. Lab. Med.
– volume: 62
  start-page: 124
  year: 2014
  end-page: 134
  article-title: Role of the NMDA receptor in cognitive deficits, anxiety and depressive‐like behavior in juvenile and adult mice after neonatal dexamethasone exposure
  publication-title: Neurobiol. Dis.
– volume: 21
  start-page: 797
  year: 2016
  end-page: 805
  article-title: Inflammasome signaling affects anxiety‐ and depressive‐like behavior and gut microbiome composition
  publication-title: Mol. Psychiatry
– volume: 87
  start-page: 1186
  year: 1998
  end-page: 1193
  article-title: Ketamine: Teaching an old drug new tricks
  publication-title: Anesth. Analg.
– volume: 46
  start-page: 1459
  year: 2016
  end-page: 1472
  article-title: Single‐dose infusion ketamine and non‐ketamine ‐methyl‐D‐aspartate receptor antagonists for unipolar and bipolar depression: A meta‐analysis of efficacy, safety and time trajectories
  publication-title: Psychol. Med.
– volume: 18
  start-page: 222
  year: 2018
  article-title: Ketamine interactions with gut‐microbiota in rats: Relevance to its antidepressant and anti‐inflammatory properties
  publication-title: BMC Microbiol.
– volume: 71
  start-page: 939
  year: 2012
  end-page: 946
  article-title: Replication of ketamine's antidepressant efficacy in bipolar depression: A randomized controlled add‐on trial
  publication-title: Biol. Psychiatry
– volume: 45
  start-page: 104
  year: 2004
  end-page: 114
  article-title: Critical role of brain‐derived neurotrophic factor in mood disorders
  publication-title: Brain Res. Rev.
– volume: 175
  start-page: 1205
  year: 2018
  end-page: 1215
  article-title: Attenuation of antidepressant effects of ketamine by opioid receptor antagonisms
  publication-title: Am. J. Psychiatry
– volume: 91
  start-page: 225
  year: 2000
  end-page: 229
  article-title: The stereoselective effects of ketamine isomers on heteromeric ‐methyl‐D‐aspartate receptor channels
  publication-title: Anesth. Analg.
– volume: 95
  start-page: 219
  year: 2008
  end-page: 229
  article-title: Journey through the K‐hole: Phenomenological aspects of ketamine use
  publication-title: Drug Alcohol Depend.
– volume: 21
  start-page: 1031
  year: 2018
  end-page: 1036
  article-title: Lack of antidepressant effects of low‐voltage‐sensitive T‐type calcium channel blocker ethosuximide in a chronic social defeat stress model: Comparison with ( )‐ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 16
  start-page: 1068
  year: 2011
  end-page: 1070
  article-title: Inhibition of glycogen synthase kinase‐3 is necessary for the rapid antidepressant effect of ketamine in mice
  publication-title: Mol. Psychiatry
– volume: 18
  start-page: pyu033
  year: 2014
  article-title: BDNF release is required for the behavioral actions of ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 14
  start-page: 673
  year: 2013
  end-page: 680
  article-title: p11 and its role in depression and therapeutic responses to antidepressants
  publication-title: Nat. Rev. Neurosci.
– volume: 20
  start-page: 504
  year: 2017
  end-page: 509
  article-title: Selective pharmacological augmentation of hippocampal activity produces a sustained antidepressant‐like response without abuse‐related or psychotomimetic effects
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 21
  start-page: 932
  year: 2018
  end-page: 937
  article-title: No sex‐specific differences in the acute antidepressant actions of ( )‐ketamine in an inflammation model
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 59
  start-page: 1116
  year: 2006
  end-page: 1127
  article-title: A neurotrophic model for stress‐related mood disorders
  publication-title: Biol. Psychiatry
– volume: 55
  start-page: 1059
  year: 2016
  end-page: 1077
  article-title: Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy
  publication-title: Clin. Pharmacokinet.
– volume: 190
  start-page: 148
  year: 2018
  end-page: 158
  article-title: The neurobiology of depression, ketamine and rapid‐acting antidepressants: Is it glutamate inhibition or activation?
  publication-title: Pharmacol. Ther.
– volume: 64
  start-page: 341
  year: 2010
  end-page: 357
  article-title: Brain‐derived neurotrophic factor as a biomarker for mood disorders: An historical overview and future directions
  publication-title: Psychiatry Clin. Neurosci.
– volume: 38
  start-page: 958
  year: 2012
  end-page: 966
  article-title: Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia
  publication-title: Schizophr. Bull.
– volume: 232
  start-page: 4325
  year: 2015
  end-page: 4335
  article-title: Comparison of ketamine, 7,8‐dihydroxyflavone, and ANA‐12 antidepressant effects in the social defeat stress model of depression
  publication-title: Psychopharmacology
– volume: 5
  start-page: e632
  year: 2015
  article-title: ‐ketamine: A rapid‐onset and sustained antidepressant without psychotomimetic side effects
  publication-title: Transl. Psychiatry
– volume: 233
  start-page: 405
  year: 2016
  end-page: 415
  article-title: Regulation of glutamate transporter 1 via BDNF‐TrkB signaling plays a role in the anti‐apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression
  publication-title: Psychopharmacology
– volume: 11
  start-page: 33
  year: 2011
  end-page: 36
  article-title: Role of the mTOR signaling pathway in the rapid antidepressant action of ketamine
  publication-title: Expert Rev. Neurother.
– volume: 47
  start-page: 454
  year: 2015
  end-page: 455
  article-title: Ketamine‐induced affective switch in a patient with treatment‐resistant depression
  publication-title: Indian J. Pharmacol.
– volume: 106
  start-page: 61
  year: 2018
  end-page: 68
  article-title: Rapid and longer‐term antidepressant effects of repeated‐dose intravenous ketamine for patients with unipolar and bipolar depression
  publication-title: Psychiatry Res.
– volume: 61
  start-page: 1419
  year: 2011
  end-page: 1423
  article-title: Involvement of the mammalian target of rapamycin signaling in the antidepressant‐like effect of group II metabotropic glutamate receptor antagonists
  publication-title: Neuropharmacology
– volume: 181
  start-page: 53
  year: 2019
  end-page: 59
  article-title: Comparison of antidepressant and side effects in mice after intranasal administration of ( )‐ketamine, ( )‐ketamine, and ( )‐ketamine
  publication-title: Pharmacol. Biochem. Behav.
– volume: 17
  start-page: 773
  year: 2018
  end-page: 775
  article-title: ‘Party drug’ turned antidepressant approaches approval
  publication-title: Nat. Rev. Drug Discov.
– volume: 21
  start-page: 1025
  year: 2018
  end-page: 1030
  article-title: Role of inflammatory bone markers in the antidepressant actions of ( )‐ketamine in a chronic social defeat stress model
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 176
  start-page: 388
  year: 2019
  end-page: 400
  article-title: Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine
  publication-title: Am. J. Psychiatry
– volume: 6
  start-page: 279
  year: 1965
  end-page: 291
  article-title: Pharmacological effects of CF‐581, a new dissociative anesthetic, in man
  publication-title: Clin. Pharmacol. Ther.
– volume: 42
  start-page: 844
  year: 2017
  end-page: 853
  article-title: Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: A randomized, placebo‐controlled study
  publication-title: Neuropsychopharmacology
– volume: 33
  start-page: 12
  year: 2018
  end-page: 24
  article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2 ,6 )‐hydroxynorketamine
  publication-title: J. Psychopharmacol.
– volume: 21
  start-page: 154
  year: 2018
  end-page: 156
  article-title: Is metabolism of ( )‐ketamine essential for the antidepressant effects?
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 81
  start-page: 363
  year: 1959
  end-page: 369
  article-title: Study of a new schizophrenic drug sernyl
  publication-title: Arch. Neurol. Psychiatry
– volume: 15
  start-page: 47
  year: 2017
  end-page: 56
  article-title: The development of rapastinel (formerly GLYX‐13); a rapid acting and long lasting antidepressant
  publication-title: Curr. Neuropharmacol.
– volume: 338
  start-page: 68
  year: 2012
  end-page: 72
  article-title: Synaptic dysfunction in depression: Potential therapeutic targets
  publication-title: Science
– volume: 175
  start-page: 139
  year: 2018
  end-page: 145
  article-title: Comparison of rapid and long‐lasting antidepressant effects of negative modulators of α5‐containing GABA receptors and ( )‐ketamine in a chronic social defeat stress model
  publication-title: Pharmacol. Biochem. Behav.
– volume: 176
  start-page: 249
  year: 2019
  article-title: Caution against overinterpreting opiate receptor stimulation as mediating antidepressant effects of ketamine
  publication-title: Am. J. Psychiatry
– volume: 204
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Efficacy and safety of oral ketamine versus diclofenac to alleviate mild to moderate depression in chronic pain patients: A double‐blind, randomized, controlled trial
  publication-title: J. Affect. Disord.
– year: 2018
  article-title: NMDAR‐independent, cAMP‐dependent antidepressant actions of ketamine
  publication-title: Mol. Psychiatry
– volume: 70
  start-page: 621
  year: 2018
  end-page: 630
  article-title: Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms
  publication-title: Pharmacol. Rev.
– volume: 208
  start-page: 22
  year: 2017
  end-page: 32
  article-title: Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness
  publication-title: J. Affect. Disord.
– volume: 18
  start-page: 445
  year: 2017
  end-page: 456
  article-title: Ketamine up‐regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase‐3
  publication-title: World J. Biol. Psychiatry
– volume: 260
  start-page: 1209
  year: 1992
  end-page: 1213
  article-title: Effects of ketamine on sensory perception: Evidence for a role of ‐methyl‐D‐aspartate receptors
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 76
  start-page: 927
  year: 2014
  end-page: 936
  article-title: Restoring mood balance in depression: Ketamine reverses deficit in dopamine‐dependent synaptic plasticity
  publication-title: Biol. Psychiatry
– volume: 47
  start-page: 1080
  year: 2013
  end-page: 1087
  article-title: VEGF and depression: A comprehensive assessment of clinical data
  publication-title: J. Psychiatr. Res.
– volume: 20
  start-page: 228
  year: 2017
  end-page: 236
  article-title: Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 85
  start-page: e25
  year: 2018
  end-page: e27
  article-title: Lack of opioid system in the antidepressant actions of ketamine
  publication-title: Biol. Psychiatry
– volume: 176
  start-page: 93
  year: 2018
  end-page: 100
  article-title: Role of and in the antidepressant effects of ketamine in an inflammation model of depression
  publication-title: Pharmacol. Biochem. Behav.
– volume: 698
  start-page: 228
  year: 2013
  end-page: 234
  article-title: Sub‐anesthetic concentrations of ( )‐ketamine metabolites inhibit acetylcholine‐evoked currents in α7 nicotinic acetylcholine receptors
  publication-title: Eur. J. Pharmacol.
– volume: 25
  start-page: 1136
  year: 2015
  end-page: 1146
  article-title: Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex
  publication-title: Eur. Neuropsychopharmacol.
– volume: 175
  start-page: 620
  year: 2018
  end-page: 630
  article-title: Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: Results of a double‐blind, randomized, placebo‐controlled study
  publication-title: Am. J. Psychiatry
– volume: 463
  start-page: 153
  year: 2006
  end-page: 155
  article-title: A double‐blind, placebo‐controlled study of memantine in the treatment of major depression
  publication-title: Am. J. Psychiatry
– volume: 113
  start-page: 678
  year: 2010
  end-page: 684
  article-title: Taming the ketamine tiger
  publication-title: Anesthesiology
– volume: 13
  start-page: 651
  year: 2018
  end-page: 652
  article-title: Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders
  publication-title: Neural. Regen. Res.
– volume: 84
  start-page: e7
  year: 2018
  end-page: e8
  article-title: What are the causes for discrepancies of antidepressant actions of (2 ,6 )‐hydroxynorketamine?
  publication-title: Biol. Psychiatry
– volume: 38
  start-page: 729
  year: 2013
  end-page: 742
  article-title: GLYX‐13, a NMDA receptor glycine‐site functional partial agonist, induces antidepressant‐like effects without ketamine‐like side effects
  publication-title: Neuropsychopharmacology
– volume: 7
  start-page: e1138
  year: 2017
  article-title: Blockade of interleukin‐6 receptor in the periphery promotes rapid and sustained antidepressant actions: A possible role of gut‐microbiota‐brain axis
  publication-title: Transl. Psychiatry
– volume: 70
  start-page: 837
  year: 2018
  end-page: 846
  article-title: The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid‐acting antidepressant drug
  publication-title: Pharmacol. Rep.
– volume: 41
  start-page: 1046
  year: 2016
  end-page: 1056
  article-title: The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5‐HT neurons in the DRN
  publication-title: Neuropsychopharmacology
– volume: 233
  start-page: 1215
  year: 2016
  end-page: 1225
  article-title: The novel ketamine analog methoxetamine produces dissociative‐like behavioral effects in rodents
  publication-title: Psychopharmacology
– volume: 214
  start-page: 27
  year: 2019
  end-page: 35
  article-title: Treatment‐resistant and multi‐therapy‐resistant criteria for bipolar depression: Consensus definition
  publication-title: Br. J. Psychiatry
– volume: 77
  start-page: 441
  year: 1996
  end-page: 444
  article-title: Ketamine: Its mechanism(s) of action and unusual clinical uses
  publication-title: Br. J. Anesth.
– volume: 172
  start-page: 17
  year: 2018
  end-page: 21
  article-title: Expression of heat shock protein HSP‐70 in the retrosplenial cortex of rat brain after administration of ( )‐ketamine and ( )‐ketamine, but not ( )‐ketamine
  publication-title: Pharmacol. Biochem. Behav.
– volume: 80
  start-page: 424
  year: 2016
  end-page: 431
  article-title: Intravenous esketamine in adult treatment‐resistant depression: A double‐blind, double‐randomization, placebo‐controlled study
  publication-title: Biol. Psychiatry
– volume: 20
  start-page: 1389
  year: 2016
  end-page: 1392
  article-title: Ketamine's antidepressant action: Beyond NMDA receptor inhibition
  publication-title: Expert Opin. Ther. Targets
– year: 2018
  article-title: Is the history repeated? Can (2 ,6 )‐hydroxynorketamine be another antidepressant?
  publication-title: J. Exp. Neurosci.
– volume: 5
  start-page: e666
  year: 2015
  article-title: BDNF‐TrkB signaling in the nucleus accumbens shell of mice has key role in methamphetamine withdrawal symptoms
  publication-title: Transl. Psychiatry
– volume: 112
  start-page: 8106
  year: 2015
  end-page: 8111
  article-title: Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 533
  start-page: 481
  year: 2016
  end-page: 486
  article-title: NMDAR inhibition‐independent antidepressant actions of ketamine metabolites
  publication-title: Nature
– volume: 84
  start-page: 591
  year: 2018
  end-page: 600
  article-title: AMPA receptor activation‐independent antidepressant actions of ketamine metabolite ( )‐norketamine
  publication-title: Biol. Psychiatry
– volume: 139
  start-page: 1
  year: 2018
  end-page: 12
  article-title: (2 ,6 )‐hydroxynorketamine rescues chronic stress‐induced depression‐like behavior through its actions in the midbrain periaqueductal gray
  publication-title: Neuropharmacology
– volume: 42
  start-page: 1231
  year: 2017
  end-page: 1242
  article-title: GLYX‐13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine
  publication-title: Neuropsychopharmacology
– volume: 311
  start-page: 77
  year: 2006
  end-page: 80
  article-title: Alterations in 5‐HT receptor function by p11 in depression‐like states
  publication-title: Science
– volume: 7
  start-page: 15725
  year: 2017
  article-title: Comparison of ( )‐ketamine and lanicemine on depression‐like phenotype and abnormal composition of gut microbiota in a social defeat stress model
  publication-title: Sci. Rep.
– volume: 170
  start-page: 1134
  year: 2013
  end-page: 1142
  article-title: Antidepressant efficacy of ketamine in treatment‐resistant major depression: A two‐site randomized controlled trial
  publication-title: Am. J. Psychiatry
– volume: 235
  start-page: 3177
  year: 2018
  end-page: 3185
  article-title: Lack of deuterium isotope effects in the antidepressant effects of ( )‐ketamine in a chronic social defeat stress model
  publication-title: Psychopharmacology
– volume: 82
  start-page: 1892
  year: 2010
  end-page: 1904
  article-title: A parallel chiral‐achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome
  publication-title: Talanta
– volume: 2016
  start-page: 1247
  year: 1862
  end-page: 1254
  article-title: Hippocampal VEGF is necessary for antidepressant‐like behaviors but not sufficient for antidepressant‐like effects of ketamine in rats
  publication-title: Biochim. Biophys. Acta
– volume: 7
  start-page: 45942
  year: 2017
  article-title: in the gut microbiota confer resilience to chronic social defeat stress in mice
  publication-title: Sci. Rep.
– volume: 176
  start-page: 250
  year: 2019
  end-page: 251
  article-title: Attenuation of antidepressant effects of ketamine by opioid receptor antagonism: Is it a ketamine‐specific effect?
  publication-title: Am. J. Psychiatry
– volume: 475
  start-page: 91
  year: 2011
  end-page: 95
  article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses
  publication-title: Nature
– volume: 21
  start-page: 786
  year: 2016
  end-page: 796
  article-title: Gut microbiome remodeling induces depressive‐like behaviors through a pathway mediated by the host's metabolism
  publication-title: Mol. Psychiatry
– volume: 69
  start-page: 810
  year: 2007
  end-page: 812
  article-title: Ketamine‐associated ulcerative cystitis: A new clinical entity
  publication-title: Urology
– volume: 740
  start-page: 1
  year: 1996
  end-page: 5
  article-title: Memantine induces heat shock protein HSP‐70 in the posterior cingulate cortex, retrosplenial cortex and dentate gyrus of rat brain
  publication-title: Brain Res.
– volume: 18
  start-page: pyu102
  year: 2014
  article-title: The mood stabilizer lithium potentiates the antidepressant‐like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 7
  start-page: e1065
  year: 2017
  article-title: Altered peripheral immune profiles in treatment‐resistant depression: Response to ketamine and prediction of treatment outcome
  publication-title: Transl. Psychiatry
– volume: 16
  start-page: 958
  year: 2013
  end-page: 965
  article-title: Daily oral ketamine for the treatment of depression and anxiety in patients receiving hospice care: A 28‐day open‐label proof‐of‐concept trial
  publication-title: J. Palliat. Med.
– volume: 45
  start-page: 3571
  year: 2015
  end-page: 3580
  article-title: Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial
  publication-title: Psychol. Med.
– volume: 19
  start-page: pyw080
  year: 2016
  article-title: Antidepressant effects of (+)‐MK‐801 and (−)‐MK‐801 in the social defeat stress model
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 34
  start-page: 13
  year: 2002
  end-page: 25
  article-title: Neurobiology of depression
  publication-title: Neuron
– volume: 23
  start-page: 1626
  year: 2018
  end-page: 1631
  article-title: Acute ketamine administration corrects abnormal inflammatory bone markers in major depressive disorder
  publication-title: Mol. Psychiatry
– volume: 176
  year: 2019
  article-title: ( )‐ketamine exerts antidepressant actions partly via conversion to (2 ,6 )‐hydroxynorketamine, while causing adverse effects at sub‐anaesthetic doses
  publication-title: Br. J. Pharmacol
– volume: 82
  start-page: e43
  year: 2017
  end-page: e44
  article-title: ( )‐ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2 ,6 )‐hydroxynorketamine
  publication-title: Biol. Psychiatry
– volume: 21
  start-page: 84
  year: 2018
  end-page: 88
  article-title: Lack of antidepressant effects of (2 ,6 )‐hydroxynorketamine in a rat learned helplessness model: Comparison with ( )‐ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 50
  start-page: 140
  year: 2018
  article-title: Prefrontal cortex miR‐29b‐3p plays a key role in the antidepressant‐like effect of ketamine in rats
  publication-title: Exp. Mol. Med.
– volume: 200
  start-page: 45
  year: 2012
  end-page: 51
  article-title: Association between antidepressant resistance in unipolar depression and subsequent bipolar disorder: Cohort study
  publication-title: Br. J. Psychiatry
– volume: 24
  start-page: 1040
  year: 2018
  end-page: 1052
  article-title: Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects
  publication-title: Mol. Psychiatry
– volume: 329
  start-page: 959
  year: 2010
  end-page: 964
  article-title: mTOR‐dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists
  publication-title: Science
– volume: 224
  start-page: 107
  year: 2011
  end-page: 111
  article-title: Involvement of AMPA receptor in both the rapid and sustained antidepressant‐like effects of ketamine in animal models of depression
  publication-title: Behav. Brain Res.
– volume: 23
  start-page: 2066
  year: 2018
  end-page: 2077
  article-title: Ketamine and its metabolite (2 ,6 )‐hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit
  publication-title: Mol. Psychiatry
– volume: 16
  start-page: 472
  year: 2017
  end-page: 486
  article-title: Targeting glutamate signalling in depression: Progress and prospects
  publication-title: Nat. Rev. Drug Discov.
– volume: 23
  start-page: 812
  year: 2018
  end-page: 823
  article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC‐derived dopaminergic neurons via AMPAR‐driven BDNF and mTOR signaling
  publication-title: Mol. Psychiatry
– volume: 6
  start-page: e741
  year: 2016
  article-title: Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model
  publication-title: Transl. Psychiatry
– volume: 9
  start-page: 531
  year: 2007
  end-page: 535
  article-title: Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder
  publication-title: Bipolar Disord.
– volume: 244
  start-page: 1360
  year: 1989
  end-page: 1362
  article-title: Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs
  publication-title: Science
– volume: 14
  start-page: 1127
  year: 2011
  end-page: 1131
  article-title: A preliminary naturalistic study of low‐dose ketamine for depression and suicide ideation in the emergency department
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 30
  start-page: 801
  year: 1991
  end-page: 809
  article-title: MK‐801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex
  publication-title: Ann. Neurol.
– volume: 9
  start-page: 57
  year: 2019
  article-title: Key role of gut microbiota in anhedonia‐like phenotype in rodents with neuropathic pain
  publication-title: Transl. Psychiatry
– volume: 18
  start-page: 41
  year: 2019
  end-page: 58
  article-title: Drug repurposing: Progress, challenges and recommendations
  publication-title: Nat. Rev. Drug Discov.
– volume: 67
  start-page: 793
  year: 2010
  end-page: 802
  article-title: A randomized add‐on trial of an ‐methyl‐D‐aspartate antagonist in treatment‐resistant bipolar depression
  publication-title: Arch. Gen. Psychiatry
– volume: 176
  start-page: 410
  year: 2019
  end-page: 411
  article-title: Explaining naltrexone's interference with ketamine's antidepressant effect
  publication-title: Am. J. Psychiatry
– volume: 10
  start-page: 612
  year: 2016
  article-title: Ketamine: 50 years of modulating the mind
  publication-title: Front. Hum. Neurosci.
– volume: 51
  start-page: 199
  year: 1994
  end-page: 214
  article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
  publication-title: Arch. Gen. Psychiatry
– ident: e_1_2_10_107_1
  doi: 10.1007/s00406-016-0692-7
– ident: e_1_2_10_117_1
  doi: 10.1017/S0033291716000969
– ident: e_1_2_10_234_1
  doi: 10.1016/j.biopsych.2016.12.031
– ident: e_1_2_10_65_1
  doi: 10.1176/appi.ajp.2018.17060720
– ident: e_1_2_10_180_1
  doi: 10.1523/JNEUROSCI.17-08-02921.1997
– ident: e_1_2_10_99_1
  doi: 10.1038/npp.2017.49
– ident: e_1_2_10_132_1
  doi: 10.1007/s00213-018-5017-2
– ident: e_1_2_10_29_1
  doi: 10.1097/00000539-200007000-00042
– ident: e_1_2_10_201_1
  doi: 10.3389/fpsyt.2018.00386
– ident: e_1_2_10_43_1
  doi: 10.1007/s40262-016-0383-6
– ident: e_1_2_10_209_1
  doi: 10.1038/npp.2013.128
– ident: e_1_2_10_179_1
  doi: 10.1146/annurev-pharmtox-010617-052811
– ident: e_1_2_10_162_1
  doi: 10.4103/1673-5374.230355
– ident: e_1_2_10_155_1
  doi: 10.1093/ijnp/pyy101
– ident: e_1_2_10_236_1
  doi: 10.1038/srep45942
– ident: e_1_2_10_160_1
  doi: 10.1016/j.drudis.2018.11.007
– volume: 2016
  start-page: 1247
  year: 1862
  ident: e_1_2_10_202_1
  article-title: Hippocampal VEGF is necessary for antidepressant‐like behaviors but not sufficient for antidepressant‐like effects of ketamine in rats
  publication-title: Biochim. Biophys. Acta
– ident: e_1_2_10_32_1
  doi: 10.1001/archpsyc.63.8.856
– ident: e_1_2_10_39_1
  doi: 10.1016/j.biopsych.2012.05.003
– ident: e_1_2_10_69_1
  doi: 10.9758/cpn.2012.10.1.59
– ident: e_1_2_10_145_1
  doi: 10.1176/appi.ajp.163.1.153
– ident: e_1_2_10_126_1
  doi: 10.1038/mp.2017.241
– ident: e_1_2_10_154_1
  doi: 10.1038/npp.2016.202
– ident: e_1_2_10_227_1
  doi: 10.1017/S1461145713000448
– ident: e_1_2_10_190_1
  doi: 10.1016/j.biopsych.2017.05.016
– ident: e_1_2_10_18_1
  doi: 10.1093/schbul/sbs011
– ident: e_1_2_10_188_1
  doi: 10.3109/03009734.2012.724118
– ident: e_1_2_10_58_1
  doi: 10.1016/S0924-977X(96)00042-9
– ident: e_1_2_10_121_1
  doi: 10.1016/j.talanta.2010.08.005
– ident: e_1_2_10_87_1
  doi: 10.1124/jpet.116.239228
– ident: e_1_2_10_122_1
  doi: 10.1016/j.biopsych.2012.03.004
– year: 2019
  ident: e_1_2_10_66_1
  article-title: Antidepressant based on party drug gets backing from FDA advisory group
  publication-title: Nature
– ident: e_1_2_10_212_1
  doi: 10.1126/science.1117571
– ident: e_1_2_10_25_1
  doi: 10.1080/00952990.2016.1278449
– volume: 20
  start-page: 228
  year: 2017
  ident: e_1_2_10_92_1
  article-title: Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– ident: e_1_2_10_38_1
  doi: 10.1176/appi.ajp.2017.17060647
– ident: e_1_2_10_225_1
  doi: 10.1001/jamapsychiatry.2019.0763
– ident: e_1_2_10_141_1
  doi: 10.1007/s00213-014-3543-0
– ident: e_1_2_10_147_1
  doi: 10.1016/j.biopsych.2012.10.019
– ident: e_1_2_10_143_1
  doi: 10.1007/s00406-018-0922-2
– volume: 18
  start-page: pyu102
  year: 2014
  ident: e_1_2_10_210_1
  article-title: The mood stabilizer lithium potentiates the antidepressant‐like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress
  publication-title: Int. J. Neuropsychopharmacol.
– ident: e_1_2_10_112_1
  doi: 10.1016/j.pbb.2018.07.003
– ident: e_1_2_10_221_1
  doi: 10.1176/appi.ajp.2018.18111231r
– ident: e_1_2_10_111_1
  doi: 10.1016/S0006-8993(96)00842-6
– ident: e_1_2_10_37_1
  doi: 10.1017/S0033291715001506
– ident: e_1_2_10_230_1
  doi: 10.1038/s12276-018-0164-4
– ident: e_1_2_10_78_1
  doi: 10.1007/s00213-018-4992-7
– ident: e_1_2_10_166_1
  doi: 10.1038/mp.2010.120
– ident: e_1_2_10_61_1
  doi: 10.1016/j.biopsych.2015.10.018
– ident: e_1_2_10_171_1
  doi: 10.1007/s00213-018-4832-9
– ident: e_1_2_10_30_1
  doi: 10.1093/bja/57.2.197
– ident: e_1_2_10_7_1
  doi: 10.1192/bjp.bp.110.086983
– ident: e_1_2_10_90_1
  doi: 10.1038/nature10130
– ident: e_1_2_10_21_1
  doi: 10.1002/cpt196563279
– ident: e_1_2_10_42_1
  doi: 10.3389/fnhum.2016.00612
– ident: e_1_2_10_54_1
  doi: 10.4103/0253-7613.161277
– ident: e_1_2_10_95_1
  doi: 10.1038/tp.2015.157
– ident: e_1_2_10_223_1
  doi: 10.1001/jamapsychiatry.2018.3990
– ident: e_1_2_10_68_1
  doi: 10.1016/j.biopsych.2012.05.031
– ident: e_1_2_10_56_1
  doi: 10.1016/0304-3959(94)00170-J
– ident: e_1_2_10_124_1
  doi: 10.1016/j.biopsych.2017.10.020
– ident: e_1_2_10_198_1
  doi: 10.1093/ijnp/pyu033
– ident: e_1_2_10_208_1
  doi: 10.1038/mp.2011.47
– ident: e_1_2_10_79_1
  doi: 10.1016/j.euroneuro.2015.04.012
– year: 2018
  ident: e_1_2_10_193_1
  article-title: Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment. A double‐blind, placebo‐controlled, cross‐over, randomized clinical trial
  publication-title: bioRxiv
– ident: e_1_2_10_220_1
  doi: 10.1176/appi.ajp.2018.18111231
– ident: e_1_2_10_71_1
  doi: 10.1016/j.psychres.2018.08.078
– ident: e_1_2_10_34_1
  doi: 10.1017/S1461145711000629
– ident: e_1_2_10_192_1
  doi: 10.1016/j.biopsych.2012.07.022
– ident: e_1_2_10_26_1
  doi: 10.3389/fpsyt.2018.00277
– volume: 21
  start-page: 1031
  year: 2018
  ident: e_1_2_10_161_1
  article-title: Lack of antidepressant effects of low‐voltage‐sensitive T‐type calcium channel blocker ethosuximide in a chronic social defeat stress model: Comparison with (R)‐ketamine
  publication-title: Int. J. Neuropsychopharmacol.
– ident: e_1_2_10_219_1
  doi: 10.1176/appi.ajp.2018.18091061r
– ident: e_1_2_10_130_1
  doi: 10.1093/ijnp/pyx108
– ident: e_1_2_10_229_1
  doi: 10.1080/15622975.2016.1224927
– ident: e_1_2_10_110_1
  doi: 10.1080/1355621961000124696
– ident: e_1_2_10_215_1
  doi: 10.1093/bja/77.4.441
– ident: e_1_2_10_76_1
  doi: 10.1093/ijnp/pyx100
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jad.2016.05.076
– ident: e_1_2_10_165_1
  doi: 10.1016/j.pbb.2018.11.010
– ident: e_1_2_10_62_1
  doi: 10.1007/s00213-018-4828-5
– ident: e_1_2_10_91_1
  doi: 10.1007/s00213-015-4062-3
– ident: e_1_2_10_224_1
  doi: 10.1001/jamapsychiatry.2019.0766
– ident: e_1_2_10_178_1
  doi: 10.1016/j.pharep.2018.02.011
– ident: e_1_2_10_167_1
  doi: 10.1038/nrd3502
– ident: e_1_2_10_233_1
  doi: 10.1038/mp.2016.44
– ident: e_1_2_10_213_1
  doi: 10.1038/nrn3564
– ident: e_1_2_10_128_1
  doi: 10.1038/s41380-018-0083-8
– ident: e_1_2_10_181_1
  doi: 10.1126/science.1190287
– ident: e_1_2_10_55_1
  doi: 10.1016/j.biopsych.2015.07.003
– ident: e_1_2_10_98_1
  doi: 10.1038/mp.2017.239
– ident: e_1_2_10_24_1
  doi: 10.1002/da.22536
– ident: e_1_2_10_142_1
  doi: 10.1016/j.biopsych.2018.05.007
– ident: e_1_2_10_11_1
  doi: 10.1080/14737175.2019.1554434
– ident: e_1_2_10_70_1
  doi: 10.1016/j.biopsych.2014.06.021
– ident: e_1_2_10_67_1
– ident: e_1_2_10_35_1
  doi: 10.1038/npp.2017.94
– ident: e_1_2_10_125_1
  doi: 10.1073/pnas.1814709116
– ident: e_1_2_10_164_1
  doi: 10.1016/j.jad.2018.11.016
– ident: e_1_2_10_168_1
  doi: 10.1038/npp.2015.112
– ident: e_1_2_10_15_1
  doi: 10.1001/archneurpsyc.1959.02340150095011
– ident: e_1_2_10_44_1
  doi: 10.1089/jpm.2012.0617
– ident: e_1_2_10_33_1
  doi: 10.1016/j.biopsych.2009.04.029
– ident: e_1_2_10_127_1
  doi: 10.1097/WNR.0000000000001131
– ident: e_1_2_10_103_1
  doi: 10.1176/appi.ajp.2017.17020239
– ident: e_1_2_10_135_1
  doi: 10.1111/bph.14683
– volume: 141
  start-page: 10
  year: 2018
  ident: e_1_2_10_204_1
  article-title: Neurotrophic and antidepressant actions of brain‐derived neurotrophic factor require vascular endothelial growth factor
  publication-title: Biol. Psychiatry
– ident: e_1_2_10_226_1
  doi: 10.1016/j.biopsych.2018.11.006
– ident: e_1_2_10_102_1
  doi: 10.1016/S2215-0366(17)30102-5
– ident: e_1_2_10_104_1
  doi: 10.1016/S2215-0366(17)30272-9
– ident: e_1_2_10_172_1
  doi: 10.1016/j.pbb.2018.10.005
– ident: e_1_2_10_5_1
  doi: 10.1192/bjp.2018.257
– ident: e_1_2_10_23_1
  doi: 10.1016/j.drugalcdep.2008.01.024
– ident: e_1_2_10_216_1
  doi: 10.1213/00000539-199811000-00039
– ident: e_1_2_10_150_1
  doi: 10.1177/2470547018796102
– ident: e_1_2_10_144_1
  doi: 10.1016/S0028-3908(99)00019-2
– ident: e_1_2_10_206_1
  doi: 10.1038/mp.2017.28
– ident: e_1_2_10_214_1
  doi: 10.1038/tp.2016.21
– ident: e_1_2_10_88_1
  doi: 10.1093/ijnp/pyw080
– ident: e_1_2_10_244_1
  doi: 10.1038/nrd.2018.168
– ident: e_1_2_10_96_1
  doi: 10.2174/1570159X14666160119094646
– ident: e_1_2_10_211_1
  doi: 10.1371/journal.pone.0056053
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jpsychires.2018.09.013
– ident: e_1_2_10_119_1
  doi: 10.1176/appi.ajp.2016.16040411
– ident: e_1_2_10_138_1
  doi: 10.1016/j.pbb.2018.09.005
– ident: e_1_2_10_46_1
  doi: 10.1016/j.jad.2018.02.056
– ident: e_1_2_10_174_1
  doi: 10.1038/nrd.2017.16
– ident: e_1_2_10_19_1
  doi: 10.1097/ALN.0b013e3181ed09a2
– ident: e_1_2_10_118_1
  doi: 10.1080/14728222.2016.1238899
– ident: e_1_2_10_175_1
  doi: 10.1016/j.pharmthera.2018.05.010
– ident: e_1_2_10_243_1
  doi: 10.1016/j.neuron.2019.02.005
– ident: e_1_2_10_169_1
  doi: 10.1523/ENEURO.0285-16.2017
– ident: e_1_2_10_109_1
  doi: 10.1002/ana.410300609
– ident: e_1_2_10_120_1
  doi: 10.1007/978-3-319-49795-2_4
– ident: e_1_2_10_200_1
  doi: 10.1016/j.jpsychires.2013.04.008
– ident: e_1_2_10_41_1
  doi: 10.1176/appi.ajp.2016.16010037
– ident: e_1_2_10_185_1
  doi: 10.1038/npp.2015.233
– ident: e_1_2_10_86_1
  doi: 10.1038/nature17998
– ident: e_1_2_10_123_1
  doi: 10.1016/j.neuropharm.2018.06.033
– ident: e_1_2_10_131_1
  doi: 10.1038/s41598-018-22449-9
– ident: e_1_2_10_177_1
  doi: 10.2174/1381612824666180730104707
– ident: e_1_2_10_222_1
  doi: 10.1176/appi.ajp.2019.19010044
– ident: e_1_2_10_81_1
  doi: 10.1016/j.pscychresns.2018.09.001
– ident: e_1_2_10_153_1
  doi: 10.2174/1570159X14666160321122703
– ident: e_1_2_10_186_1
  doi: 10.1586/ern.10.176
– ident: e_1_2_10_239_1
  doi: 10.1038/s41398-019-0379-8
– ident: e_1_2_10_232_1
  doi: 10.1038/mp.2016.46
– ident: e_1_2_10_108_1
  doi: 10.1126/science.2660263
– ident: e_1_2_10_36_1
  doi: 10.1176/appi.ajp.2013.13030392
– ident: e_1_2_10_94_1
  doi: 10.1007/s00406-016-0718-1
– ident: e_1_2_10_139_1
  doi: 10.1177/1179069518815445
– ident: e_1_2_10_136_1
  doi: 10.1016/j.biopsych.2017.12.007
– ident: e_1_2_10_156_1
  doi: 10.1007/s00213-016-4399-2
– ident: e_1_2_10_203_1
  doi: 10.1176/appi.ajp.2018.17121368
– ident: e_1_2_10_217_1
  doi: 10.1176/appi.ajp.2018.18020138
– ident: e_1_2_10_152_1
  doi: 10.1038/npp.2012.246
– ident: e_1_2_10_113_1
  doi: 10.1016/j.biopsych.2015.03.010
– ident: e_1_2_10_134_1
  doi: 10.1093/ijnp/pyy053
– ident: e_1_2_10_228_1
  doi: 10.1007/s12017-014-8312-z
– ident: e_1_2_10_80_1
  doi: 10.1038/s41380-018-0028-2
– ident: e_1_2_10_235_1
  doi: 10.1016/j.biopsych.2016.12.018
– ident: e_1_2_10_194_1
  doi: 10.1016/S0896-6273(02)00653-0
– ident: e_1_2_10_22_1
  doi: 10.1001/archpsyc.1994.03950030035004
– ident: e_1_2_10_148_1
  doi: 10.1038/mp.2013.130
– ident: e_1_2_10_17_1
  doi: 10.1093/schbul/sbs069
– ident: e_1_2_10_197_1
  doi: 10.1111/j.1440-1819.2010.02113.x
– ident: e_1_2_10_73_1
  doi: 10.1038/tp.2017.31
– ident: e_1_2_10_184_1
  doi: 10.1016/j.eurpsy.2013.10.005
– ident: e_1_2_10_89_1
  doi: 10.1016/j.biopsych.2007.05.028
– ident: e_1_2_10_196_1
  doi: 10.1016/j.biopsych.2006.02.013
– ident: e_1_2_10_218_1
  doi: 10.1176/appi.ajp.2018.18091061
– ident: e_1_2_10_14_1
  doi: 10.1016/j.ejphar.2012.11.023
– ident: e_1_2_10_20_1
  doi: 10.1021/acschemneuro.7b00074
– ident: e_1_2_10_115_1
  doi: 10.1016/j.pbb.2019.04.008
– ident: e_1_2_10_187_1
  doi: 10.1016/j.neuropharm.2011.08.034
– ident: e_1_2_10_60_1
  doi: 10.1038/nrd.2018.187
– ident: e_1_2_10_129_1
  doi: 10.1016/j.biopsych.2016.12.020
– ident: e_1_2_10_72_1
  doi: 10.1016/j.jpsychires.2016.09.025
– ident: e_1_2_10_240_1
  doi: 10.1038/s41398-017-0031-4
– ident: e_1_2_10_182_1
  doi: 10.1038/npp.2013.71
– ident: e_1_2_10_52_1
  doi: 10.1016/j.biopsych.2013.01.038
– ident: e_1_2_10_176_1
  doi: 10.1007/s40473-018-0139-8
– ident: e_1_2_10_93_1
  doi: 10.1073/pnas.1414728112
– ident: e_1_2_10_163_1
  doi: 10.1038/nature25752
– ident: e_1_2_10_53_1
  doi: 10.1016/j.psychres.2015.10.032
– ident: e_1_2_10_40_1
  doi: 10.1016/j.biopsych.2012.06.022
– ident: e_1_2_10_105_1
  doi: 10.1016/0014-2999(78)90217-0
– ident: e_1_2_10_146_1
  doi: 10.1073/pnas.1323920111
– ident: e_1_2_10_199_1
  doi: 10.1007/s00213-015-4128-2
– ident: e_1_2_10_170_1
  doi: 10.1093/ijnp/pyx003
– ident: e_1_2_10_16_1
  doi: 10.1176/ajp.148.10.1301
– ident: e_1_2_10_151_1
  doi: 10.1038/s41598-017-16060-7
– ident: e_1_2_10_64_1
  doi: 10.1001/jamapsychiatry.2017.3739
– ident: e_1_2_10_205_1
  doi: 10.1126/scisignal.aai7884
– ident: e_1_2_10_159_1
– ident: e_1_2_10_12_1
  doi: 10.12688/f1000research.14344.1
– ident: e_1_2_10_195_1
  doi: 10.1016/j.brainresrev.2004.02.003
– ident: e_1_2_10_74_1
  doi: 10.3390/ijms16047796
– ident: e_1_2_10_8_1
  doi: 10.1176/appi.ajp.2015.15040465
– ident: e_1_2_10_238_1
  doi: 10.1016/j.jad.2016.09.012
– ident: e_1_2_10_59_1
  doi: 10.1124/pr.117.015198
– ident: e_1_2_10_158_1
– ident: e_1_2_10_231_1
  doi: 10.1016/j.bbi.2015.03.016
– ident: e_1_2_10_10_1
  doi: 10.1176/appi.ajp.2017.17040472
– volume: 260
  start-page: 1209
  year: 1992
  ident: e_1_2_10_57_1
  article-title: Effects of ketamine on sensory perception: Evidence for a role of N‐methyl‐D‐aspartate receptors
  publication-title: J. Pharmacol. Exp. Ther.
– ident: e_1_2_10_173_1
  doi: 10.1126/science.1222939
– ident: e_1_2_10_133_1
  doi: 10.1038/s41386-018-0084-y
– ident: e_1_2_10_50_1
  doi: 10.1176/appi.ajp.2014.13111501
– ident: e_1_2_10_116_1
  doi: 10.9758/cpn.2014.12.1.72
– ident: e_1_2_10_3_1
  doi: 10.1176/appi.ajp.163.1.28
– ident: e_1_2_10_84_1
  doi: 10.1016/j.pbb.2013.11.033
– ident: e_1_2_10_13_1
  doi: 10.1016/S0014-2999(97)01116-3
– volume: 12
  start-page: 124
  year: 2014
  ident: e_1_2_10_83_1
  article-title: Antidepressant effects of ketamine on depression‐like behavior in juvenile mice after neonatal dexamethasone exposure
  publication-title: Clin. Neuropharmacol. Neurosci.
– ident: e_1_2_10_183_1
  doi: 10.1016/j.bbr.2011.05.035
– ident: e_1_2_10_100_1
  doi: 10.1038/nature25509
– ident: e_1_2_10_9_1
  doi: 10.1017/S0033291716000064
– ident: e_1_2_10_85_1
  doi: 10.1038/tp.2015.136
– ident: e_1_2_10_242_1
  doi: 10.1186/s12866-018-1373-7
– ident: e_1_2_10_189_1
  doi: 10.1038/ncomms2295
– ident: e_1_2_10_51_1
  doi: 10.1176/appi.ajp.2017.17090972
– ident: e_1_2_10_101_1
  doi: 10.1016/j.tins.2018.12.002
– ident: e_1_2_10_82_1
  doi: 10.1016/j.nbd.2013.09.004
– ident: e_1_2_10_106_1
  doi: 10.1007/s00213-016-4203-3
– ident: e_1_2_10_241_1
  doi: 10.1016/j.pbb.2018.12.001
– ident: e_1_2_10_48_1
  doi: 10.1016/j.biopsych.2011.12.010
– ident: e_1_2_10_157_1
  doi: 10.1097/01.pra.0000462606.17725.93
– ident: e_1_2_10_27_1
  doi: 10.1016/j.urology.2007.01.038
– ident: e_1_2_10_31_1
  doi: 10.1016/S0006-3223(99)00230-9
– ident: e_1_2_10_2_1
– ident: e_1_2_10_63_1
  doi: 10.1007/s00213-017-4706-6
– ident: e_1_2_10_75_1
  doi: 10.1038/mp.2017.109
– ident: e_1_2_10_207_1
– ident: e_1_2_10_77_1
  doi: 10.1016/j.bbr.2019.111904
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1399-5618.2007.00467.x
– ident: e_1_2_10_28_1
  doi: 10.1016/j.cll.2016.07.008
– ident: e_1_2_10_237_1
  doi: 10.1038/tp.2017.112
– ident: e_1_2_10_140_1
  doi: 10.1177/0269881118812095
– ident: e_1_2_10_47_1
  doi: 10.1001/archgenpsychiatry.2010.90
– ident: e_1_2_10_137_1
  doi: 10.1093/ijnp/pyx120
– ident: e_1_2_10_97_1
  doi: 10.1016/j.biopsych.2014.04.014
– ident: e_1_2_10_191_1
  doi: 10.1176/appi.ajp.2011.11010128
– ident: e_1_2_10_149_1
  doi: 10.1038/npp.2016.224
– ident: e_1_2_10_114_1
  doi: 10.1016/j.psychres.2016.03.034
– ident: e_1_2_10_6_1
  doi: 10.1007/s11920-013-0431-y
SSID ssj0003361
Score 2.629061
SecondaryResourceType review_article
Snippet Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one‐third of the patients with MDD are treatment resistant to...
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 613
SubjectTerms (R)‐ketamine (or arketamine), (S)‐ketamine (or esketamine), (S)‐norketamine
Animal models
Animals
Antagonists
Antidepressants
Antidepressive Agents - administration & dosage
Antidepressive Agents - history
Antidepressive Agents - pharmacology
Bipolar disorder
Bipolar Disorder - drug therapy
Calcium
Calcium channels (voltage-gated)
Depressive Disorder, Major - physiopathology
Enantiomers
Excitatory Amino Acid Antagonists - administration & dosage
Excitatory Amino Acid Antagonists - history
Excitatory Amino Acid Antagonists - pharmacology
Glutamic acid receptors
gut microbiota
History, 20th Century
History, 21st Century
Humans
Ketamine
Ketamine - administration & dosage
Ketamine - analogs & derivatives
Ketamine - history
Ketamine - pharmacology
Mental depression
Mental disorders
Metabolites
N-Methyl-D-aspartic acid receptors
Patients
PCN Frontier Review
PCN Frontier Reviews
Potassium channels (inwardly-rectifying)
Potassium channels (voltage-gated)
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
γ-Aminobutyric acid A receptors
Title Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcn.12902
https://www.ncbi.nlm.nih.gov/pubmed/31215725
https://www.proquest.com/docview/2301765985
https://www.proquest.com/docview/2243490620
https://pubmed.ncbi.nlm.nih.gov/PMC6851782
Volume 73
WOSCitedRecordID wos000474903900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1440-1819
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003361
  issn: 1323-1316
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-1819
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003361
  issn: 1323-1316
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hqBAX-gGUbSkyiAOHBq1jx0naE6JdgURXKwTq3iLHsUvUElZk6aGn_oT-xv6SzjjZlBVFqsRllSgv2sTx2G_smTcAe6krEqOdC3A-cIGMlQ5ybsOgH0W55FaoSEtfbCIeDpPxOB0twPtZLkyjD9EtuJFl-PGaDFzn9R0jn5jqgBZRcPxd4lwkVLchlKNuGBZCtd6WCLjgqpUVojCe7tb5yegew7wfKHmXwPoZaPD0Uc_-DFZb4skOm57yHBZs9QKWP7Vb62vw40xPyuL3z1-U6VB9YdjiZRsmi4fsq53qKwS-ZeW0Zld4llPknK0RWDCfxsUMpcjQCkL9jh2yy06AhFGYKG1BeGyjYsImf7M81-Fi8PH86DhoCzMEBtlhGNgwNEijkIkJEcmck1eYJuj7qIIbLQv0Gq2Ic2Qu3EitbJgbkyMRQS-eRybtiw1YrK4ruwnMKRcZdAq51lSIPUnSqOAO4c4Zi2SqB_uzL5SZVrWcimd8y2beC7Zl5tuyB7sddNJIdfwLtDX7zFlrrXWGbhiPVYSv0IOd7jLaGW2e6Mpe3yImlEKSqHO_By-bXtH9iyCJjjjEu-O5_tIBSMN7_kpVXnotb4WMF0kavqbvLw8_eDY6GvqDV_8PfQ0ryO_SJvZwCxanN7f2DTwx36dlfbPtzQV_43GyDUsfzgYXp3j2-WT4B9eCHnE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hqFou_aAtXUrBoB56aNA6dpyk6gWhIlAhQhWo3CLHsUvUElZk4cCpP6G_kV_CjJNNWdFKSNwS5UVJHI_9xp55A_A-dWVitHMBzgcukLHSQcFtGAyjqJDcChVp6YtNxFmWHB-nBzPweZIL0-pD9AtuZBl-vCYDpwXpW1Y-MvUGraLgADwnkWhQ4Ybvu1k_DguhOndLBFxw1ekKURxPf-v0bHSHYt6NlLzNYP0UtP3sYS__HJ521JNttn3lBczYegEe73eb6y_h6pseVeX17z-U61D_YNjmVRcoi4fspx3rUwR-ZNW4Yad4VlDsnG0QWDKfyMUMJcnQGkLziW2yk16ChFGgKG1CeGyrY8JGf_M8X8HR9pfDrZ2gK80QGOSHYWDD0CCRQi4mRCQLTn5hmqD3o0putCzRb7QiLpC7cCO1smFhTIFUBP14Hpl0KF7DbH1W2zfAnHKRQbeQa02l2JMkjUruEO6csUinBvBh8oty0-mWU_mMX_nEf8G2zH1bDmC9h45asY5_gZYn_znv7LXJ0RHjsYrwEwaw1l9GS6PtE13bswvEhFJIknUeDmCx7Rb9UwSJdMQh3h1PdZgeQCre01fq6sSreSvkvEjT8DN9h_n_i-cHW5k_WLo_dBWe7Bzu7-V7u9nXtzCPbC9tIxGXYXZ8fmHfwSNzOa6a8xVvOzcVgx8y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VW1RxKd-wUMAgDhxItY4dJ0FcqpYViLJaVVTqLXIcm0a0adRsOXDiJ_Ab-SXMON7QVUFC4pYoL0rieOw39swbgBe5qzKjnYtwPnCRTJWOSm7jaJIkpeRWqERLX2winc2yo6N8vgZvlrkwvT7EsOBGluHHazJw21bukpW3ptmmVRQcgNclFZEZwfrewfRwfxiJhVDB4RIRF1wFZSGK5BluXp2PrpDMq7GSlzmsn4SmN_7v9W_CZiCfbKfvLbdgzTa3YeNj2F6_A98OdFtXP7__oGyH5jPDVq9DqCwesi92oU8R-IrVi46d4llJ0XO2Q2DFfCoXM5QmQ6sI3Wu2w44HERJGoaK0DeGxvZIJa39net6Fw-nbT7vvolCcITLIEOPIxrFBKoVsTIhElpw8wzxD_0dV3GhZoedoRVoie-FGamXj0pgSyQh68jwx-UTcg1Fz1tgHwJxyiUHHkGtNxdizLE8q7hDunLFIqMbwcvmLChOUy6mAxkmx9GCwLQvflmN4PkDbXq7jT6Ct5X8ugsV2BbpiPFUJfsIYng2X0dZoA0U39uwCMbEUkoSdJ2O433eL4SmCZDrSGO9OVzrMACAd79UrTX3s9bwVsl4kaviZvsP8_cWL-e7MHzz8d-hT2JjvTYv997MPj-A60r28D0XcgtHi_MI-hmvm66Luzp8E4_kF9u4f2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%E2%80%90acting+antidepressant+ketamine%2C+its+metabolites+and+other+candidates%3A+A+historical+overview+and+future+perspective&rft.jtitle=Psychiatry+and+clinical+neurosciences&rft.au=Hashimoto%2C+Kenji&rft.date=2019-10-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=1323-1316&rft.eissn=1440-1819&rft.volume=73&rft.issue=10&rft.spage=613&rft.epage=627&rft_id=info:doi/10.1111%2Fpcn.12902&rft.externalDBID=10.1111%252Fpcn.12902&rft.externalDocID=PCN12902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1323-1316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1323-1316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1323-1316&client=summon