On the use of statistical models to predict crop yield responses to climate change

▶ Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. ▶ Time-series models are better suited for predicting response to precipitation than temperature, whereas panel or cross-section models are better suited for tem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Agricultural and forest meteorology Ročník 150; číslo 11; s. 1443 - 1452
Hlavní autoři: Lobell, David B., Burke, Marshall B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.10.2010
[Oxford]: Elsevier Science Ltd
Elsevier
Témata:
ISSN:0168-1923, 1873-2240
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ▶ Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. ▶ Time-series models are better suited for predicting response to precipitation than temperature, whereas panel or cross-section models are better suited for temperature. ▶ The skill of statistical models that use growing season average temperature and precipitation improves as the spatial scale of analysis becomes broader. Predicting the potential effects of climate change on crop yields requires a model of how crops respond to weather. As predictions from different models often disagree, understanding the sources of this divergence is central to building a more robust picture of climate change's likely impacts. A common approach is to use statistical models trained on historical yields and some simplified measurements of weather, such as growing season average temperature and precipitation. Although the general strengths and weaknesses of statistical models are widely understood, there has been little systematic evaluation of their performance relative to other methods. Here we use a perfect model approach to examine the ability of statistical models to predict yield responses to changes in mean temperature and precipitation, as simulated by a process-based crop model. The CERES-Maize model was first used to simulate historical maize yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of hypothetical future scenarios of 2 °C warming and 20% precipitation reduction. Statistical models of three types (time series, panel, and cross-sectional models) were then trained on the simulated historical variability and used to predict the responses to the future climate changes. The agreement between the process-based and statistical models’ predictions was then assessed as a measure of how well statistical models can capture crop responses to warming or precipitation changes. The performance of statistical models differed by climate variable and spatial scale, with time-series statistical models ably reproducing site-specific yield response to precipitation change, but performing less well for temperature responses. In contrast, statistical models that relied on information from multiple sites, namely panel and cross-sectional models, were better at predicting responses to temperature change than precipitation change. The models based on multiple sites were also much less sensitive to the length of historical period used for training. For all three statistical approaches, the performance improved when individual sites were first aggregated to country-level averages. Results suggest that statistical models, as compared to CERES-Maize, represent a useful if imperfect tool for projecting future yield responses, with their usefulness higher at broader spatial scales. It is also at these broader scales that climate projections are most available and reliable, and therefore statistical models are likely to continue to play an important role in anticipating future impacts of climate change.
AbstractList Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. Time-series models are better suited for predicting response to precipitation than temperature, whereas panel or cross-section models are better suited for temperature. The skill of statistical models that use growing season average temperature and precipitation improves as the spatial scale of analysis becomes broader. Predicting the potential effects of climate change on crop yields requires a model of how crops respond to weather. As predictions from different models often disagree, understanding the sources of this divergence is central to building a more robust picture of climate change's likely impacts. A common approach is to use statistical models trained on historical yields and some simplified measurements of weather, such as growing season average temperature and precipitation. Although the general strengths and weaknesses of statistical models are widely understood, there has been little systematic evaluation of their performance relative to other methods. Here we use a perfect model approach to examine the ability of statistical models to predict yield responses to changes in mean temperature and precipitation, as simulated by a process-based crop model. The CERES-Maize model was first used to simulate historical maize yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of hypothetical future scenarios of 2 degree warming and 20% precipitation reduction. Statistical models of three types (time series, panel, and cross-sectional models) were then trained on the simulated historical variability and used to predict the responses to the future climate changes. The agreement between the process-based and statistical models' predictions was then assessed as a measure of how well statistical models can capture crop responses to warming or precipitation changes. The performance of statistical models differed by climate variable and spatial scale, with time-series statistical models ably reproducing site-specific yield response to precipitation change, but performing less well for temperature responses. In contrast, statistical models that relied on information from multiple sites, namely panel and cross-sectional models, were better at predicting responses to temperature change than precipitation change. The models based on multiple sites were also much less sensitive to the length of historical period used for training. For all three statistical approaches, the performance improved when individual sites were first aggregated to country-level averages. Results suggest that statistical models, as compared to CERES-Maize, represent a useful if imperfect tool for projecting future yield responses, with their usefulness higher at broader spatial scales. It is also at these broader scales that climate projections are most available and reliable, and therefore statistical models are likely to continue to play an important role in anticipating future impacts of climate change.
Predicting the potential effects of climate change on crop yields requires a model of how crops respond to weather. As predictions from different models often disagree, understanding the sources of this divergence is central to building a more robust picture of climate change's likely impacts. A common approach is to use statistical models trained on historical yields and some simplified measurements of weather, such as growing season average temperature and precipitation. Although the general strengths and weaknesses of statistical models are widely understood, there has been little systematic evaluation of their performance relative to other methods. Here we use a perfect model approach to examine the ability of statistical models to predict yield responses to changes in mean temperature and precipitation, as simulated by a process-based crop model. The CERES-Maize model was first used to simulate historical maize yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of hypothetical future scenarios of 2°C warming and 20% precipitation reduction. Statistical models of three types (time series, panel, and cross-sectional models) were then trained on the simulated historical variability and used to predict the responses to the future climate changes. The agreement between the process-based and statistical models' predictions was then assessed as a measure of how well statistical models can capture crop responses to warming or precipitation changes. The performance of statistical models differed by climate variable and spatial scale, with time-series statistical models ably reproducing site-specific yield response to precipitation change, but performing less well for temperature responses. In contrast, statistical models that relied on information from multiple sites, namely panel and cross-sectional models, were better at predicting responses to temperature change than precipitation change. The models based on multiple sites were also much less sensitive to the length of historical period used for training. For all three statistical approaches, the performance improved when individual sites were first aggregated to country-level averages. Results suggest that statistical models, as compared to CERES-Maize, represent a useful if imperfect tool for projecting future yield responses, with their usefulness higher at broader spatial scales. It is also at these broader scales that climate projections are most available and reliable, and therefore statistical models are likely to continue to play an important role in anticipating future impacts of climate change.
▶ Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. ▶ Time-series models are better suited for predicting response to precipitation than temperature, whereas panel or cross-section models are better suited for temperature. ▶ The skill of statistical models that use growing season average temperature and precipitation improves as the spatial scale of analysis becomes broader. Predicting the potential effects of climate change on crop yields requires a model of how crops respond to weather. As predictions from different models often disagree, understanding the sources of this divergence is central to building a more robust picture of climate change's likely impacts. A common approach is to use statistical models trained on historical yields and some simplified measurements of weather, such as growing season average temperature and precipitation. Although the general strengths and weaknesses of statistical models are widely understood, there has been little systematic evaluation of their performance relative to other methods. Here we use a perfect model approach to examine the ability of statistical models to predict yield responses to changes in mean temperature and precipitation, as simulated by a process-based crop model. The CERES-Maize model was first used to simulate historical maize yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of hypothetical future scenarios of 2 °C warming and 20% precipitation reduction. Statistical models of three types (time series, panel, and cross-sectional models) were then trained on the simulated historical variability and used to predict the responses to the future climate changes. The agreement between the process-based and statistical models’ predictions was then assessed as a measure of how well statistical models can capture crop responses to warming or precipitation changes. The performance of statistical models differed by climate variable and spatial scale, with time-series statistical models ably reproducing site-specific yield response to precipitation change, but performing less well for temperature responses. In contrast, statistical models that relied on information from multiple sites, namely panel and cross-sectional models, were better at predicting responses to temperature change than precipitation change. The models based on multiple sites were also much less sensitive to the length of historical period used for training. For all three statistical approaches, the performance improved when individual sites were first aggregated to country-level averages. Results suggest that statistical models, as compared to CERES-Maize, represent a useful if imperfect tool for projecting future yield responses, with their usefulness higher at broader spatial scales. It is also at these broader scales that climate projections are most available and reliable, and therefore statistical models are likely to continue to play an important role in anticipating future impacts of climate change.
Author Lobell, David B.
Burke, Marshall B.
Author_xml – sequence: 1
  givenname: David B.
  surname: Lobell
  fullname: Lobell, David B.
  email: dlobell@stanford.edu, dlobell@stanfordalumni.org
  organization: Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, United States
– sequence: 2
  givenname: Marshall B.
  surname: Burke
  fullname: Burke, Marshall B.
  organization: Program on Food Security and Environment, Stanford University, Stanford, CA 94305, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23303393$$DView record in Pascal Francis
BookMark eNqNkc1u3CAURlGVSJ0kfYawqdqNpxcYG7zoIor6J0WKlDRrhK-vE0Ye4wITKW9f3Em76KLpCgnOx4XznbCjKUzE2LmAtQDRfNiu3X0cQtxRXksou6DXAOYVWwmjVSXlBo7YqpCmEq1Ur9lJSlsAIbVuV-zmeuL5gfg-EQ8DT9lln7JHN_Jd6GlMPAc-R-o9Zo4xzPzJ09jzSGkOU6Jf5zj6ncvE8cFN93TGjgc3JnrzvJ6yu8-fvl9-ra6uv3y7vLiqsFYyV73sQaNopKAWTL9pjRuo7zabRnfOIOCgGyFqo9ANfSdc2zVYEKgbxFboTp2yd4d75xh-7Cllu_MJaRzdRGGfrJGyLj8G8V8kSGhkId__kywWawMN1G1B3z6jLhVdQ3QT-mTnWFzEJyuVAqVaVbiPB67YSynSYNEvlsOUo_OjFWCXHu3W_unRLj1a0Lb0WPL6r_zvES8nzw_JwYUFKa-7u118gDDFIDSFuDgQpWh69BRtQk8TlrojYbZ98C9O-QnV58ha
CODEN AFMEEB
CitedBy_id crossref_primary_10_1016_j_enpol_2018_10_016
crossref_primary_10_1080_03650340_2020_1819531
crossref_primary_10_1002_joc_6792
crossref_primary_10_1007_s11442_013_1029_3
crossref_primary_10_1016_j_jclepro_2020_122333
crossref_primary_10_3390_rs14061474
crossref_primary_10_1007_s00122_021_03773_7
crossref_primary_10_3389_fpls_2021_749854
crossref_primary_10_1371_journal_pone_0305762
crossref_primary_10_3390_econometrics9020024
crossref_primary_10_3390_rs16010069
crossref_primary_10_3390_jimaging4040052
crossref_primary_10_1016_j_agrformet_2024_110242
crossref_primary_10_1016_j_sajb_2023_03_059
crossref_primary_10_1111_pce_13466
crossref_primary_10_1080_23322039_2024_2345437
crossref_primary_10_3389_fsufs_2023_1101717
crossref_primary_10_1109_JSEN_2024_3488085
crossref_primary_10_3354_cr01307
crossref_primary_10_1016_j_ecolmodel_2025_111132
crossref_primary_10_1186_s40066_018_0228_7
crossref_primary_10_1016_j_eja_2025_127519
crossref_primary_10_1016_j_agrformet_2015_10_004
crossref_primary_10_1038_s41598_021_93061_7
crossref_primary_10_1016_j_agrformet_2015_10_005
crossref_primary_10_1016_j_agrformet_2016_12_010
crossref_primary_10_1175_WCAS_D_17_0036_1
crossref_primary_10_1002_ece3_782
crossref_primary_10_3390_app11167352
crossref_primary_10_1016_j_agrformet_2020_108154
crossref_primary_10_1007_s11707_017_0665_9
crossref_primary_10_1007_s10584_017_2054_5
crossref_primary_10_3390_su11236659
crossref_primary_10_3389_frai_2021_647999
crossref_primary_10_1088_1748_9326_aa6cb9
crossref_primary_10_1088_1748_9326_aae159
crossref_primary_10_1016_j_worlddev_2017_02_008
crossref_primary_10_3390_agriculture8120197
crossref_primary_10_1016_j_worlddev_2024_106683
crossref_primary_10_1080_02626667_2024_2377353
crossref_primary_10_3390_land11081293
crossref_primary_10_1016_j_agrformet_2021_108340
crossref_primary_10_1016_j_envc_2025_101095
crossref_primary_10_1016_j_jclepro_2019_117648
crossref_primary_10_1016_j_agsy_2010_12_006
crossref_primary_10_1007_s12571_023_01351_x
crossref_primary_10_2166_wcc_2021_030
crossref_primary_10_3390_atmos4040365
crossref_primary_10_3390_rs14132975
crossref_primary_10_3390_cli5030054
crossref_primary_10_15544_mts_2015_13
crossref_primary_10_1016_j_agrformet_2014_01_013
crossref_primary_10_1016_j_econmod_2017_02_005
crossref_primary_10_1016_j_fcr_2019_02_005
crossref_primary_10_1094_CCHEM_07_14_0146_R
crossref_primary_10_1139_cjps_2017_0135
crossref_primary_10_1016_j_ecolecon_2015_11_016
crossref_primary_10_1016_j_agee_2015_04_006
crossref_primary_10_1016_j_eja_2024_127254
crossref_primary_10_1016_j_eja_2024_127496
crossref_primary_10_1016_S2095_3119_20_63244_0
crossref_primary_10_3389_frai_2024_1312115
crossref_primary_10_1007_s40031_024_01029_8
crossref_primary_10_1002_agj2_21198
crossref_primary_10_3390_rs16173217
crossref_primary_10_1016_j_ecolind_2019_105991
crossref_primary_10_1093_jeea_jvab054
crossref_primary_10_1371_journal_pone_0191217
crossref_primary_10_3390_agriculture13122214
crossref_primary_10_1038_s41893_020_0560_3
crossref_primary_10_1093_jxb_erac503
crossref_primary_10_1016_j_gloplacha_2013_08_010
crossref_primary_10_1016_j_agsy_2024_104140
crossref_primary_10_1016_j_jag_2022_102823
crossref_primary_10_3389_fsufs_2023_1246347
crossref_primary_10_1016_j_eja_2018_05_006
crossref_primary_10_3390_rs13183582
crossref_primary_10_1016_j_jclepro_2020_123651
crossref_primary_10_1371_journal_pone_0236757
crossref_primary_10_2134_jeq2017_09_0374
crossref_primary_10_38124_ijisrt_25may118
crossref_primary_10_1016_j_wace_2021_100369
crossref_primary_10_1007_s00484_017_1470_6
crossref_primary_10_3389_fpls_2022_975976
crossref_primary_10_1093_hr_uhae144
crossref_primary_10_1007_s11356_021_13313_x
crossref_primary_10_1007_s42106_019_00038_8
crossref_primary_10_1007_s42106_021_00179_9
crossref_primary_10_1016_j_agrformet_2012_04_007
crossref_primary_10_1016_j_eja_2023_127066
crossref_primary_10_1016_j_carbpol_2013_06_005
crossref_primary_10_3390_rs13122395
crossref_primary_10_1016_j_agwat_2022_107881
crossref_primary_10_1016_j_jclepro_2023_136543
crossref_primary_10_1002_2014MS000311
crossref_primary_10_1002_fes3_275
crossref_primary_10_1016_j_jue_2015_04_004
crossref_primary_10_1016_j_compag_2025_110847
crossref_primary_10_1142_S2010007814500110
crossref_primary_10_1017_S001447971300015X
crossref_primary_10_1007_s12517_022_09654_7
crossref_primary_10_1007_s12571_013_0256_x
crossref_primary_10_1016_j_agee_2018_09_006
crossref_primary_10_1007_s00704_022_04291_2
crossref_primary_10_1016_j_agrformet_2021_108369
crossref_primary_10_1016_j_ecolind_2021_108517
crossref_primary_10_1007_s11027_022_10000_1
crossref_primary_10_1016_j_eja_2019_125992
crossref_primary_10_1080_10106049_2022_2071476
crossref_primary_10_1016_j_fcr_2015_10_013
crossref_primary_10_1080_10920277_2023_2182792
crossref_primary_10_1007_s10113_015_0860_8
crossref_primary_10_1093_pcp_pcx141
crossref_primary_10_1016_j_fcr_2023_109044
crossref_primary_10_1109_LGRS_2022_3211444
crossref_primary_10_30910_turkjans_1656274
crossref_primary_10_3390_plants11151925
crossref_primary_10_1111_gcb_12660
crossref_primary_10_1016_j_scitotenv_2023_167265
crossref_primary_10_5194_esd_12_1371_2021
crossref_primary_10_1016_j_jclepro_2019_117853
crossref_primary_10_1111_gcb_12412
crossref_primary_10_3390_microorganisms10020279
crossref_primary_10_1016_j_agrformet_2019_107828
crossref_primary_10_1007_s41324_020_00346_6
crossref_primary_10_1038_s41586_025_09085_w
crossref_primary_10_3390_e23111546
crossref_primary_10_3390_rs17030491
crossref_primary_10_1016_j_agrformet_2015_03_018
crossref_primary_10_1016_j_envsoft_2024_106119
crossref_primary_10_1038_srep33160
crossref_primary_10_1002_eco_2500
crossref_primary_10_1016_j_eja_2013_02_010
crossref_primary_10_1139_gen_2020_0175
crossref_primary_10_2139_ssrn_4222020
crossref_primary_10_3390_land10121389
crossref_primary_10_1007_s10113_014_0685_x
crossref_primary_10_1016_j_gloplacha_2018_01_011
crossref_primary_10_4028_www_scientific_net_AMM_239_240_1165
crossref_primary_10_1080_17421772_2020_1754448
crossref_primary_10_1016_j_fcr_2023_109034
crossref_primary_10_1016_j_telpol_2022_102370
crossref_primary_10_1111_gcb_12325
crossref_primary_10_1016_j_agrformet_2016_12_022
crossref_primary_10_1016_j_compag_2019_01_011
crossref_primary_10_2478_picbe_2025_0111
crossref_primary_10_1016_j_scitotenv_2018_06_198
crossref_primary_10_3390_w11010038
crossref_primary_10_1016_j_scitotenv_2019_135355
crossref_primary_10_1007_s00382_012_1299_y
crossref_primary_10_1007_s13132_023_01713_y
crossref_primary_10_1007_s10668_022_02517_x
crossref_primary_10_1088_1748_9326_abadcb
crossref_primary_10_2135_cropsci2012_09_0545
crossref_primary_10_1016_j_gloenvcha_2022_102548
crossref_primary_10_3390_agronomy13030704
crossref_primary_10_1016_j_envdev_2016_09_001
crossref_primary_10_1016_j_plaphy_2023_107762
crossref_primary_10_5194_esd_9_119_2018
crossref_primary_10_1016_j_jeconom_2021_03_010
crossref_primary_10_3390_rs16040701
crossref_primary_10_1002_joc_4481
crossref_primary_10_1007_s11356_020_10655_w
crossref_primary_10_1016_j_agrformet_2019_107808
crossref_primary_10_1038_s41598_024_62027_w
crossref_primary_10_3390_agronomy10060809
crossref_primary_10_1108_IJCCSM_11_2022_0139
crossref_primary_10_3390_rs16050863
crossref_primary_10_1007_s11442_023_2150_6
crossref_primary_10_1016_j_agrformet_2012_03_015
crossref_primary_10_1016_j_agsy_2015_12_002
crossref_primary_10_1016_j_scitotenv_2020_140473
crossref_primary_10_1016_j_agsy_2020_103008
crossref_primary_10_1007_s00704_022_04218_x
crossref_primary_10_3390_atmos11101097
crossref_primary_10_1007_s00704_014_1093_3
crossref_primary_10_3390_rs16132417
crossref_primary_10_1007_s00704_020_03492_x
crossref_primary_10_1016_j_jhydrol_2020_125097
crossref_primary_10_3390_su12031216
crossref_primary_10_5018_economics_ejournal_ja_2015_10
crossref_primary_10_1007_s00704_016_1779_9
crossref_primary_10_1016_j_agrformet_2015_08_256
crossref_primary_10_1175_JAMC_D_14_0147_1
crossref_primary_10_1002_ldr_3699
crossref_primary_10_3390_atmos11121350
crossref_primary_10_1038_ncomms15212
crossref_primary_10_1016_j_catena_2025_108743
crossref_primary_10_1016_j_compag_2023_107876
crossref_primary_10_1080_01431161_2020_1871102
crossref_primary_10_1007_s10584_014_1062_y
crossref_primary_10_1016_j_compag_2022_107101
crossref_primary_10_1007_s00484_024_02763_w
crossref_primary_10_1108_MEQ_10_2021_0241
crossref_primary_10_1088_1748_9326_aa518a
crossref_primary_10_3390_cli12100161
crossref_primary_10_1007_s11356_022_20722_z
crossref_primary_10_3389_fclim_2022_976427
crossref_primary_10_3390_rs12020236
crossref_primary_10_1016_j_compag_2021_106557
crossref_primary_10_1093_ajae_aas035
crossref_primary_10_3390_w15244215
crossref_primary_10_1038_s41598_017_01599_2
crossref_primary_10_1007_s10584_011_0338_8
crossref_primary_10_1080_1343943X_2018_1459752
crossref_primary_10_1371_journal_pone_0308736
crossref_primary_10_14720_aas_2019_114_1_14
crossref_primary_10_1016_j_agrformet_2020_107931
crossref_primary_10_1016_j_agsy_2016_10_002
crossref_primary_10_1016_j_fcr_2016_02_008
crossref_primary_10_1016_j_compag_2025_110140
crossref_primary_10_1007_s00122_025_04984_y
crossref_primary_10_1016_j_ecolmodel_2017_02_009
crossref_primary_10_1007_s40003_024_00719_5
crossref_primary_10_3354_cr01605
crossref_primary_10_1093_ajae_aau122
crossref_primary_10_1016_j_agrformet_2012_09_011
crossref_primary_10_3390_agriculture10030058
crossref_primary_10_1016_j_fcr_2013_08_012
crossref_primary_10_1016_j_gloenvcha_2016_12_006
crossref_primary_10_5194_gmd_18_1287_2025
crossref_primary_10_1016_j_envsoft_2018_07_017
crossref_primary_10_1007_s00704_020_03504_w
crossref_primary_10_1002_cli2_70019
crossref_primary_10_2134_agronj13_0321
crossref_primary_10_1016_j_ecolind_2020_106935
crossref_primary_10_1016_j_ancene_2017_05_002
crossref_primary_10_1080_23311932_2017_1309739
crossref_primary_10_3390_su12239890
crossref_primary_10_1007_s10584_012_0428_2
crossref_primary_10_1007_s40808_021_01199_0
crossref_primary_10_1016_j_agsy_2018_01_010
crossref_primary_10_1016_j_scitotenv_2020_138235
crossref_primary_10_1142_S2010007825500150
crossref_primary_10_1007_s40333_022_0021_0
crossref_primary_10_1007_s13593_013_0179_0
crossref_primary_10_1093_jssam_smu024
crossref_primary_10_1016_j_envsoft_2015_03_007
crossref_primary_10_1007_s11430_024_1477_2
crossref_primary_10_3390_rs14133005
crossref_primary_10_1016_j_scitotenv_2021_145474
crossref_primary_10_1016_j_rse_2025_114638
crossref_primary_10_3390_rs14246290
crossref_primary_10_1016_j_eja_2024_127426
crossref_primary_10_3390_plants14060906
crossref_primary_10_1016_j_agrformet_2023_109458
crossref_primary_10_1088_2515_7620_adac33
crossref_primary_10_3390_rs16132342
crossref_primary_10_1080_17565529_2024_2329465
crossref_primary_10_1016_j_agrformet_2022_109186
crossref_primary_10_3390_su16177339
crossref_primary_10_1016_j_eja_2016_09_015
crossref_primary_10_3390_s20185293
crossref_primary_10_3390_agriculture14071093
crossref_primary_10_3390_atmos16010034
crossref_primary_10_1038_s41598_025_13453_x
crossref_primary_10_1016_j_agrformet_2014_11_003
crossref_primary_10_2139_ssrn_5198832
crossref_primary_10_1088_1748_9326_ab5ebb
crossref_primary_10_1002_ird_2566
crossref_primary_10_1002_agj2_21412
crossref_primary_10_1016_j_jag_2020_102126
crossref_primary_10_1016_j_pce_2020_102866
crossref_primary_10_3389_fevo_2017_00051
crossref_primary_10_1016_j_jag_2025_104367
crossref_primary_10_1007_s10113_012_0332_3
crossref_primary_10_1007_s11027_016_9731_y
crossref_primary_10_1007_s13351_014_4002_x
crossref_primary_10_1088_1748_9326_ab66cb
crossref_primary_10_1016_j_agsy_2016_12_006
crossref_primary_10_1007_s42106_023_00268_x
crossref_primary_10_1088_1748_9326_10_4_045004
crossref_primary_10_1038_s41558_022_01376_8
crossref_primary_10_1111_gcb_12250
crossref_primary_10_1016_j_apgeog_2016_10_004
crossref_primary_10_1155_2020_9424327
crossref_primary_10_3390_su122310133
crossref_primary_10_1007_s00484_023_02544_x
crossref_primary_10_1007_s12517_021_08432_1
crossref_primary_10_1016_j_jag_2020_102258
crossref_primary_10_1016_j_agrformet_2023_109674
crossref_primary_10_3389_fsufs_2020_00052
crossref_primary_10_1142_S2010007820500050
crossref_primary_10_1016_j_agwat_2014_08_007
crossref_primary_10_1016_j_jenvman_2020_111024
crossref_primary_10_3390_rs13122249
crossref_primary_10_1016_j_jaridenv_2020_104195
crossref_primary_10_1007_s00704_019_02924_7
crossref_primary_10_1016_j_scitotenv_2023_163288
crossref_primary_10_1016_j_cj_2017_01_004
crossref_primary_10_5194_hess_29_4341_2025
crossref_primary_10_1016_j_agsy_2016_12_017
crossref_primary_10_1088_2752_5295_adcbc9
crossref_primary_10_1016_j_agsy_2023_103633
crossref_primary_10_1038_s41598_021_88277_6
crossref_primary_10_1007_s10584_015_1428_9
crossref_primary_10_3389_fpls_2016_01262
crossref_primary_10_1016_j_atmosenv_2017_09_002
crossref_primary_10_1080_10106049_2022_2112301
crossref_primary_10_3390_atmos10070378
crossref_primary_10_1016_j_atech_2023_100224
crossref_primary_10_3390_su14116916
crossref_primary_10_1007_s10113_012_0388_0
crossref_primary_10_3390_su11226271
crossref_primary_10_1007_s42106_019_00052_w
crossref_primary_10_1016_j_jag_2022_102861
crossref_primary_10_1002_agj2_20585
crossref_primary_10_1007_s11027_025_10199_9
crossref_primary_10_1111_agec_12315
crossref_primary_10_5194_hess_21_295_2017
crossref_primary_10_1111_jac_12590
crossref_primary_10_1371_journal_pone_0252067
crossref_primary_10_1016_j_agrformet_2023_109693
crossref_primary_10_1016_j_energy_2018_11_064
crossref_primary_10_3390_cli11100198
crossref_primary_10_1007_s10584_013_0822_4
crossref_primary_10_3390_cli6020041
crossref_primary_10_5194_bg_15_4301_2018
crossref_primary_10_1016_j_agwat_2023_108490
crossref_primary_10_1016_j_jclepro_2018_03_304
crossref_primary_10_1016_j_jhazmat_2021_127049
crossref_primary_10_1007_s00484_023_02458_8
crossref_primary_10_1007_s44279_025_00287_4
crossref_primary_10_1007_s12517_024_11921_8
crossref_primary_10_1007_s40710_021_00526_y
crossref_primary_10_1177_1471082X14568248
crossref_primary_10_1016_S2095_3119_15_61095_4
crossref_primary_10_1029_2022EF003106
crossref_primary_10_1016_j_jenvman_2019_03_030
crossref_primary_10_1016_j_jeem_2016_06_005
crossref_primary_10_3390_jrfm17030107
crossref_primary_10_1016_j_compag_2020_105442
crossref_primary_10_1007_s00704_021_03799_3
crossref_primary_10_1016_j_fcr_2020_107988
crossref_primary_10_3390_agriculture12020130
crossref_primary_10_1016_j_fcr_2025_110069
crossref_primary_10_4018_IJACI_300799
crossref_primary_10_1016_j_strueco_2020_08_003
crossref_primary_10_1016_j_scitotenv_2016_12_158
crossref_primary_10_1007_s10479_022_04995_8
crossref_primary_10_1108_IJCCSM_01_2014_0005
crossref_primary_10_1016_j_agwat_2020_106692
crossref_primary_10_1016_j_scitotenv_2023_164502
crossref_primary_10_1016_j_techfore_2019_119711
crossref_primary_10_1016_j_jclepro_2019_06_251
crossref_primary_10_1186_s40066_015_0028_2
crossref_primary_10_1371_journal_pone_0184474
crossref_primary_10_3390_agronomy13020320
crossref_primary_10_1108_AFR_11_2017_0102
crossref_primary_10_3390_agronomy15030654
crossref_primary_10_1016_j_foodchem_2013_07_089
crossref_primary_10_3390_rs15010072
crossref_primary_10_1016_j_fcr_2020_107756
crossref_primary_10_1017_S0021859616000897
crossref_primary_10_3389_fpls_2022_895183
crossref_primary_10_1016_j_agsy_2019_02_009
crossref_primary_10_1016_j_eja_2017_06_012
crossref_primary_10_1016_j_agrformet_2022_109235
crossref_primary_10_1088_1748_9326_7_3_034032
crossref_primary_10_1007_s13351_017_6114_6
crossref_primary_10_1051_ctv_20153001029
crossref_primary_10_3390_horticulturae3010009
crossref_primary_10_1002_2017EF000687
crossref_primary_10_1016_j_rsase_2024_101371
crossref_primary_10_1111_gcb_15073
crossref_primary_10_3390_atmos11121291
crossref_primary_10_3390_agronomy10030426
crossref_primary_10_1111_grs_12412
crossref_primary_10_1007_s10584_015_1350_1
crossref_primary_10_3390_agriculture12122123
crossref_primary_10_1007_s00477_016_1215_9
crossref_primary_10_1155_2021_6646126
crossref_primary_10_3390_math9233058
crossref_primary_10_1016_j_compag_2024_109706
crossref_primary_10_1108_EJMBE_08_2023_0244
crossref_primary_10_1007_s12355_024_01461_6
crossref_primary_10_3390_agronomy11112245
crossref_primary_10_2480_agrmet_D_24_00033
crossref_primary_10_1016_j_ecoinf_2023_102235
crossref_primary_10_1016_j_agrformet_2017_02_033
crossref_primary_10_3390_earth3010004
crossref_primary_10_3390_computers13060137
crossref_primary_10_3390_rs12081232
crossref_primary_10_1080_22797254_2023_2294121
crossref_primary_10_1016_j_csag_2025_100065
crossref_primary_10_1016_j_jscs_2020_11_006
crossref_primary_10_1371_journal_pone_0259180
crossref_primary_10_1016_j_envsoft_2016_03_008
crossref_primary_10_3390_rs14102340
crossref_primary_10_3390_su16166849
crossref_primary_10_1175_JAMC_D_16_0258_1
crossref_primary_10_3390_agriculture15111179
crossref_primary_10_3390_agriculture13030618
crossref_primary_10_3390_su16114443
crossref_primary_10_1016_j_crm_2017_10_001
crossref_primary_10_1073_pnas_1222463110
crossref_primary_10_1371_journal_pone_0217148
crossref_primary_10_1016_j_agee_2012_04_026
crossref_primary_10_1007_s00704_015_1723_4
crossref_primary_10_1007_s10584_016_1652_y
crossref_primary_10_1111_gcb_17556
crossref_primary_10_5194_hess_25_1827_2021
crossref_primary_10_1007_s00704_021_03635_8
crossref_primary_10_1016_j_seps_2023_101578
crossref_primary_10_1007_s10666_023_09927_9
crossref_primary_10_1111_agec_12180
crossref_primary_10_3389_ffgc_2023_1198186
crossref_primary_10_1016_j_jhydrol_2017_07_060
crossref_primary_10_1007_s43621_024_00745_x
crossref_primary_10_1111_ajae_12446
crossref_primary_10_1016_j_ecolind_2017_12_047
crossref_primary_10_1038_s41598_025_02700_w
crossref_primary_10_1016_j_agsy_2022_103384
crossref_primary_10_1088_1748_9326_aa6f23
crossref_primary_10_1016_j_landusepol_2022_106011
crossref_primary_10_1088_1748_9326_ad42b5
crossref_primary_10_1080_01621459_2017_1411268
crossref_primary_10_1016_j_eja_2017_05_002
crossref_primary_10_3390_plants12203548
crossref_primary_10_1080_10920277_2023_2176323
crossref_primary_10_2134_agronj14_0510
crossref_primary_10_1371_journal_pone_0137409
crossref_primary_10_1002_jsfa_11576
crossref_primary_10_3390_rs12071111
crossref_primary_10_1016_j_ifacol_2018_08_167
crossref_primary_10_3390_su151914204
crossref_primary_10_1007_s41685_022_00264_5
crossref_primary_10_3390_land8030049
crossref_primary_10_1093_erae_jbt025
crossref_primary_10_1007_s00704_016_1935_2
crossref_primary_10_1007_s10584_018_2150_1
crossref_primary_10_1007_s00704_024_04894_x
crossref_primary_10_3390_ijgi11080433
crossref_primary_10_1007_s10584_014_1067_6
crossref_primary_10_1007_s40808_020_00932_5
crossref_primary_10_1080_01621459_2022_2123333
crossref_primary_10_1007_s10333_019_00755_w
crossref_primary_10_1016_j_agwat_2020_106168
crossref_primary_10_1038_s41597_025_04650_4
crossref_primary_10_1016_j_agee_2014_06_014
crossref_primary_10_3897_popecon_7_e101500
crossref_primary_10_18278_wfp_4_2_9
crossref_primary_10_1007_s00704_024_05334_6
crossref_primary_10_1007_s10661_023_12055_2
crossref_primary_10_1007_s40808_020_00943_2
crossref_primary_10_1111_ajae_12549
crossref_primary_10_1371_journal_pone_0252335
crossref_primary_10_3390_agronomy10111645
crossref_primary_10_1016_j_ecolind_2019_01_059
crossref_primary_10_1016_j_heliyon_2024_e40359
crossref_primary_10_2134_agronj2017_01_0052
crossref_primary_10_1016_j_agee_2014_06_009
crossref_primary_10_1038_nclimate1916
crossref_primary_10_1029_2023EF004063
crossref_primary_10_1016_j_scitotenv_2017_06_211
crossref_primary_10_1088_1748_9326_ab422b
crossref_primary_10_1088_1748_9326_ab25a1
crossref_primary_10_1088_1748_9326_10_12_124014
crossref_primary_10_1016_j_compag_2019_105031
crossref_primary_10_3390_agronomy15010098
crossref_primary_10_1007_s12524_022_01549_0
crossref_primary_10_1016_j_scitotenv_2017_07_017
crossref_primary_10_3390_agronomy9060316
crossref_primary_10_1016_j_agrformet_2018_06_009
crossref_primary_10_1016_j_jenvman_2025_126271
crossref_primary_10_1016_j_wace_2020_100271
crossref_primary_10_3390_land10121339
crossref_primary_10_1029_2019EF001316
crossref_primary_10_1088_1748_9326_10_11_115002
crossref_primary_10_1016_j_jenvman_2023_119162
crossref_primary_10_3390_w13243624
crossref_primary_10_1007_s10584_022_03356_5
crossref_primary_10_1007_s42106_022_00209_0
crossref_primary_10_3389_fsufs_2022_847892
crossref_primary_10_3390_agronomy9120833
crossref_primary_10_1061__ASCE_WR_1943_5452_0001175
crossref_primary_10_1007_s10668_019_00445_x
crossref_primary_10_2478_picbe_2024_0130
crossref_primary_10_1007_s00704_023_04408_1
crossref_primary_10_1016_j_insmatheco_2020_11_003
crossref_primary_10_1016_j_scitotenv_2019_07_027
crossref_primary_10_3390_stats8020030
crossref_primary_10_1111_grs_12220
crossref_primary_10_1111_gcb_14822
crossref_primary_10_3354_cr01057
crossref_primary_10_3390_su17020474
crossref_primary_10_1016_j_jhydrol_2019_124524
crossref_primary_10_1080_01431161_2025_2459215
crossref_primary_10_3390_su12176784
crossref_primary_10_1007_s42452_019_0912_7
crossref_primary_10_1111_gcb_13738
crossref_primary_10_1017_S0021859614000392
crossref_primary_10_3390_su14073721
crossref_primary_10_1016_j_accre_2022_08_007
crossref_primary_10_1016_j_njas_2017_02_002
crossref_primary_10_1007_s00376_014_4161_9
crossref_primary_10_1111_aab_12402
crossref_primary_10_1088_1748_9326_ab93fc
crossref_primary_10_3390_su8070670
crossref_primary_10_1016_j_jia_2025_04_038
crossref_primary_10_1016_j_agrformet_2017_12_256
crossref_primary_10_1109_JSTARS_2014_2357584
crossref_primary_10_3390_su15043485
crossref_primary_10_3390_su14159366
crossref_primary_10_3390_su14159246
crossref_primary_10_1002_agj2_20709
crossref_primary_10_1088_1748_9326_abede6
crossref_primary_10_1007_s10584_025_03868_w
crossref_primary_10_1002_agr_21348
crossref_primary_10_1007_s00704_014_1179_y
crossref_primary_10_1016_j_eja_2021_126335
crossref_primary_10_1515_biol_2022_0507
crossref_primary_10_2480_agrmet_D_24_00009
crossref_primary_10_1007_s00484_018_1583_6
crossref_primary_10_1002_joc_4975
crossref_primary_10_1108_AFR_08_2017_0064
crossref_primary_10_1002_joc_5820
crossref_primary_10_1016_j_compag_2017_09_024
crossref_primary_10_1088_2515_7620_ac814c
crossref_primary_10_1016_j_agrformet_2017_05_008
crossref_primary_10_3390_agronomy12051205
crossref_primary_10_1002_jsfa_70124
crossref_primary_10_1002_wcc_498
crossref_primary_10_48130_grares_0025_0003
crossref_primary_10_1111_pbi_70019
crossref_primary_10_1016_j_agrformet_2012_05_013
crossref_primary_10_1007_s00477_014_0871_x
crossref_primary_10_1007_s00704_020_03256_7
crossref_primary_10_1007_s12517_024_11871_1
crossref_primary_10_1038_s44264_025_00067_z
crossref_primary_10_1016_j_agrformet_2025_110567
crossref_primary_10_1016_j_agrformet_2025_110687
crossref_primary_10_1007_s10584_017_1941_0
crossref_primary_10_1007_s11442_022_1938_0
crossref_primary_10_1007_s13351_019_8143_9
crossref_primary_10_1016_j_ecoinf_2025_103011
crossref_primary_10_1080_23311932_2019_1581457
crossref_primary_10_3390_su9081412
crossref_primary_10_1016_j_compag_2020_105880
crossref_primary_10_1155_2019_2767018
crossref_primary_10_1016_j_eja_2022_126569
crossref_primary_10_1016_j_eja_2023_126868
crossref_primary_10_3390_rs12111819
crossref_primary_10_3390_su15043068
crossref_primary_10_1016_j_agsy_2014_12_003
crossref_primary_10_1088_2515_7620_ab67f0
crossref_primary_10_1016_j_foodpol_2022_102304
crossref_primary_10_1002_jsfa_12020
crossref_primary_10_1007_s11111_016_0263_x
crossref_primary_10_1371_journal_pone_0112785
crossref_primary_10_3354_cr01138
crossref_primary_10_1079_ab_2025_0011
crossref_primary_10_1007_s11769_023_1345_1
crossref_primary_10_1016_j_eja_2023_126956
crossref_primary_10_3389_fpls_2016_00729
crossref_primary_10_1080_15427528_2022_2145591
crossref_primary_10_2134_agronj2015_0482
crossref_primary_10_1007_s00704_013_1031_9
crossref_primary_10_1080_10095020_2021_1936656
crossref_primary_10_1007_s13753_012_0010_6
crossref_primary_10_1108_CAER_11_2020_0275
crossref_primary_10_1007_s00704_023_04573_3
crossref_primary_10_1016_j_agwat_2023_108140
crossref_primary_10_1016_j_compag_2020_105554
crossref_primary_10_1007_s00704_021_03848_x
crossref_primary_10_3390_agronomy10101585
crossref_primary_10_1016_j_crope_2023_07_002
crossref_primary_10_1016_j_ecolecon_2020_106875
crossref_primary_10_1088_1748_9326_aaf8be
crossref_primary_10_1093_jxb_erac146
crossref_primary_10_1371_journal_pone_0156571
crossref_primary_10_1111_grs_12163
crossref_primary_10_1088_1748_9326_ac1fbb
crossref_primary_10_3390_su151310237
crossref_primary_10_1016_j_envsoft_2019_104562
crossref_primary_10_5194_hess_25_551_2021
crossref_primary_10_17660_ActaHortic_2016_1123_8
crossref_primary_10_1016_j_cj_2023_06_008
crossref_primary_10_1080_23322039_2024_2421894
crossref_primary_10_1088_1748_9326_11_12_123001
crossref_primary_10_1360_SSTe_2024_0018
crossref_primary_10_3389_fpls_2019_00809
crossref_primary_10_5194_esd_12_151_2021
crossref_primary_10_1016_j_compag_2020_105667
crossref_primary_10_1016_j_scitotenv_2021_148090
crossref_primary_10_3390_ijerph17249241
crossref_primary_10_1016_j_agwat_2014_03_006
crossref_primary_10_3390_soilsystems5040058
crossref_primary_10_3390_agriculture11060550
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SU
8FD
C1K
FR3
H8D
KR7
L7M
7S9
L.6
7ST
7TG
7U6
7UA
KL.
SOI
DOI 10.1016/j.agrformet.2010.07.008
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environmental Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
Water Resources Abstracts
DatabaseTitleList Aerospace Database
AGRICOLA

Meteorological & Geoastrophysical Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
EndPage 1452
ExternalDocumentID 23303393
10_1016_j_agrformet_2010_07_008
US201301891706
S0168192310001978
GeographicLocations Sub-Saharan Africa
Africa
GeographicLocations_xml – name: Sub-Saharan Africa
– name: Africa
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
WUQ
Y6R
ZMT
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
AFJKZ
AGCQF
AGQPQ
AGRNS
AIGII
APXCP
BNPGV
IQODW
SSH
7SU
8FD
C1K
FR3
H8D
KR7
L7M
7S9
L.6
7ST
7TG
7U6
7UA
KL.
SOI
ID FETCH-LOGICAL-c532t-d2d07c1621e908d498afedb4467ba8c0cf7611583cafdb1a9b6c8af056cc917b3
ISICitedReferencesCount 676
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283022900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1923
IngestDate Tue Oct 07 09:53:34 EDT 2025
Sun Nov 09 10:18:40 EST 2025
Tue Oct 07 09:43:42 EDT 2025
Mon Jul 21 09:12:04 EDT 2025
Tue Nov 18 21:05:49 EST 2025
Sat Nov 29 06:45:09 EST 2025
Wed Dec 27 19:06:00 EST 2023
Fri Feb 23 02:31:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Maize
Marksim
CERES-Maize
Africa
Biometeorology
Monocotyledones
Vegetals
Zea mays
Use
Prediction
C4-Type
Forecast model
Modeling
Cereal crop
Dynamical climatology
Climate change
Gramineae
Statistical model
Angiospermae
Spermatophyta
Yield
Simulation model
Cultivated plant
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-d2d07c1621e908d498afedb4467ba8c0cf7611583cafdb1a9b6c8af056cc917b3
Notes http://dx.doi.org/10.1016/j.agrformet.2010.07.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1685806059
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_822519201
proquest_miscellaneous_822502062
proquest_miscellaneous_1685806059
pascalfrancis_primary_23303393
crossref_citationtrail_10_1016_j_agrformet_2010_07_008
crossref_primary_10_1016_j_agrformet_2010_07_008
fao_agris_US201301891706
elsevier_sciencedirect_doi_10_1016_j_agrformet_2010_07_008
PublicationCentury 2000
PublicationDate 2010-10-15
PublicationDateYYYYMMDD 2010-10-15
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Agricultural and forest meteorology
PublicationYear 2010
Publisher Elsevier B.V
[Oxford]: Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: [Oxford]: Elsevier Science Ltd
– name: Elsevier
References Beven (bib0015) 2002; 458
Tebaldi, Knutti (bib0150) 2007; 365
Lobell, Field (bib0100) 2007; 2
Peng, Huang, Sheehy, Laza, Visperas, Zhong, Centeno, Khush, Cassman (bib0120) 2004; 101
Addiscott, Tuck (bib0005) 2001; 52
Hansen, Indeje (bib0040) 2004; 125
Schlenker, Roberts (bib0135) 2009; 106
Sheehy, Mitchell, Ferrer (bib0140) 2006; 98
Tao, Yokozawa, Zhang (bib0145) 2009; 149
Lobell, Ortiz-Monasterio (bib0105) 2007; 99
White (bib0165) 2009; 129
Iizumi, Yokozawa, Nishimori (bib0060) 2009; 149
Dinar, Somé, Hassan, Mendelsohn, Benhin (bib0030) 2008
Jones, Thornton (bib0070) 2000
Jones, Thornton (bib0075) 2003; 13
Schlenker, Lobell (bib0130) 2010
Landau, Mitchell, Barnett, Colls, Craigon, Payne (bib0085) 2000; 101
Porter, Semenov (bib0125) 2005; 360
Hastie, Tibshirani, Friedman (bib0050) 2001
Challinor, Wheeler, Slingo, Craufurd, Grimes (bib0020) 2005; 44
Iglesias, Rosenzweig, Pereira (bib0055) 2000; 10
Christensen, Hewitson, Busuioc, Chen, Gao, Held, Jones, Kolli, Kwon, Laprise, Rueda, Mearns, Menéndez, Räisänen, Rinke, Sarr, Whetton (bib0025) 2007
Murphy, Sexton, Barnett, Jones, Webb, Collins, Stainforth (bib0115) 2004; 430
Gijsman, Thornton, Hoogenboom (bib0035) 2007; 56
Kurukulasuriya, Mendelsohn, Hassan, Benhin, Deressa, Diop, Eid, Fosu, Gbetibouo, Jain (bib0080) 2006; 20
Batjes (bib0010) 1995
Wang (bib0160) 2005; 25
Hansen, Jones (bib0045) 2000; 65
Lobell, Burke, Tebaldi, Mastrandrea, Falcon, Naylor (bib0110) 2008; 319
Thornton, Jones, Alagarswamy, Andresen (bib0155) 2009; 19
(bib0095) 2009
Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt, Wilkens, Singh, Gijsman, Ritchie (bib0065) 2003; 18
Lobell, Burke (bib0090) 2008; 3
References_xml – year: 2010
  ident: bib0130
  article-title: Robust negative impacts of climate change on African agriculture
  publication-title: Environmental Research Letters
– volume: 25
  start-page: 739
  year: 2005
  end-page: 753
  ident: bib0160
  article-title: Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment
  publication-title: Climate Dynamics
– year: 2001
  ident: bib0050
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics
– volume: 18
  start-page: 235
  year: 2003
  end-page: 265
  ident: bib0065
  article-title: The DSSAT cropping system model
  publication-title: European Journal of Agronomy
– volume: 20
  start-page: 367
  year: 2006
  ident: bib0080
  article-title: Will African Agriculture Survive Climate Change?
  publication-title: The World Bank Economic Review
– volume: 106
  start-page: 15594
  year: 2009
  end-page: 15598
  ident: bib0135
  article-title: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change
  publication-title: Proceedings of the National Academy of Sciences
– volume: 52
  start-page: 129
  year: 2001
  end-page: 138
  ident: bib0005
  article-title: Non-linearity and error in modelling soil processes
  publication-title: European Journal of Soil Science
– volume: 3
  start-page: 034007
  year: 2008
  ident: bib0090
  article-title: Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation
  publication-title: Environmental Research Letters
– volume: 360
  start-page: 2021
  year: 2005
  end-page: 2035
  ident: bib0125
  article-title: Crop responses to climatic variation
  publication-title: Philosophical Transactions of the Royal Society B-Biological Sciences
– volume: 99
  start-page: 469
  year: 2007
  end-page: 477
  ident: bib0105
  article-title: Impacts of day versus night temperatures on spring wheat yields: a comparison of empirical and CERES model predictions in three locations
  publication-title: Agronomy Journal
– volume: 365
  start-page: 2053
  year: 2007
  end-page: 2075
  ident: bib0150
  article-title: The use of the multi-model ensemble in probabilistic climate projections
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– year: 1995
  ident: bib0010
  article-title: A Homogenized Soil Data File for Global Environmental Research: A Subset of FAO, ISRIC and NCRS Profiles (Version 1.0)
– volume: 101
  start-page: 151
  year: 2000
  end-page: 166
  ident: bib0085
  article-title: A parsimonious, multiple-regression model of wheat yield response to environment
  publication-title: Agricultural and Forest Meteorology
– volume: 101
  start-page: 9971
  year: 2004
  end-page: 9975
  ident: bib0120
  article-title: Rice yields decline with higher night temperature from global warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2008
  ident: bib0030
  article-title: Climate Change and Agriculture in Africa: Impact Assessment and Adaptation Strategies
– volume: 319
  start-page: 607
  year: 2008
  end-page: 610
  ident: bib0110
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
– year: 2007
  ident: bib0025
  article-title: Regional climate projections
  publication-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 125
  start-page: 143
  year: 2004
  end-page: 157
  ident: bib0040
  article-title: Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya
  publication-title: Agricultural and Forest Meteorology
– start-page: 445
  year: 2000
  end-page: 453
  ident: bib0070
  article-title: MarkSim Software to generate daily weather data for Latin America and Africa
  publication-title: American Society of Agronomy
– volume: 56
  start-page: 85
  year: 2007
  end-page: 100
  ident: bib0035
  article-title: Using the WISE database to parameterize soil inputs for crop simulation models
  publication-title: Computers and Electronics in Agriculture
– volume: 149
  start-page: 831
  year: 2009
  end-page: 850
  ident: bib0145
  article-title: Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis
  publication-title: Agricultural and Forest Meteorology
– volume: 129
  start-page: 547
  year: 2009
  end-page: 548
  ident: bib0165
  article-title: Comments on a report of regression-based evidence for impact of recent climate change on winter wheat yields
  publication-title: Agriculture, Ecosystems and Environment
– volume: 2
  year: 2007
  ident: bib0100
  article-title: Global scale climate–crop yield relationships and the impacts of recent warming
  publication-title: Environmental Research Letters
– volume: 65
  start-page: 43
  year: 2000
  end-page: 72
  ident: bib0045
  article-title: Scaling-up crop models for climate variability applications
  publication-title: Agricultural Systems
– volume: 458
  start-page: 2465
  year: 2002
  end-page: 2484
  ident: bib0015
  article-title: Towards a coherent philosophy for modelling the environment
  publication-title: Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences
– volume: 149
  start-page: 333
  year: 2009
  end-page: 348
  ident: bib0060
  article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach
  publication-title: Agricultural and Forest Meteorology
– year: 2009
  ident: bib0095
  publication-title: Climate Change and Food Security: Adapting Agriculture to a Warmer World
– volume: 19
  start-page: 54
  year: 2009
  end-page: 65
  ident: bib0155
  article-title: Spatial variation of crop yield response to climate change in East Africa
  publication-title: Global Environmental Change
– volume: 98
  start-page: 151
  year: 2006
  end-page: 156
  ident: bib0140
  article-title: Decline in rice grain yields with temperature: models and correlations can give different estimates
  publication-title: Field Crops Research
– volume: 13
  start-page: 51
  year: 2003
  end-page: 59
  ident: bib0075
  article-title: The potential impacts of climate change on maize production in Africa and Latin America in 2055
  publication-title: Global Environmental Change-Human and Policy Dimensions
– volume: 10
  start-page: 69
  year: 2000
  end-page: 80
  ident: bib0055
  article-title: Agricultural impacts of climate change in Spain: developing tools for a spatial analysis
  publication-title: Global Environmental Change
– volume: 44
  start-page: 516
  year: 2005
  end-page: 531
  ident: bib0020
  article-title: Simulation of crop yields using ERA-40: limits to skill and nonstationarity in weather–yield relationships
  publication-title: Journal of Applied Meteorology
– volume: 430
  start-page: 768
  year: 2004
  end-page: 772
  ident: bib0115
  article-title: Quantification of modelling uncertainties in a large ensemble of climate change simulations
  publication-title: Nature
SSID ssj0012779
Score 2.5402343
Snippet ▶ Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. ▶ Time-series models...
Predicting the potential effects of climate change on crop yields requires a model of how crops respond to weather. As predictions from different models often...
Statistical models are able to reproduce many of the key features of process-based model responses to warming and precipitation changes. Time-series models are...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1443
SubjectTerms accuracy
Africa
Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agronomy. Soil science and plant productions
air temperature
Biological and medical sciences
CERES-Maize
Climate
Climate change
Computer simulation
corn
crop models
Crops
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
grain yield
Maize
Marksim
Mathematical models
meteorological parameters
Panels
Precipitation
prediction
spatial scale
Statistical analysis
statistical models
Sub-Saharan Africa
temporal variation
time series analysis
weather
Zea mays
Title On the use of statistical models to predict crop yield responses to climate change
URI https://dx.doi.org/10.1016/j.agrformet.2010.07.008
https://www.proquest.com/docview/1685806059
https://www.proquest.com/docview/822502062
https://www.proquest.com/docview/822519201
Volume 150
WOSCitedRecordID wos000283022900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYxgM8IBighctkJLSXKihO0sTmrUydAHWtBC3qm5U4zrRpSkraovHvOSd2klZjFB54iVrfevk-28c-N0LexpHIYZ8WbhYI7oYizFzOU-HWsbyYp_K4DqX0bRSPx3w-F41Gd1mnE4iLgt_ciMV_hRrKAGx0nf0HuNtBoQBeA-jwBNjh-VfAT4zh4tpc0qPDUB2LGb1EMOtNHdFhUaF-ZtXD_F29n2jE1quMsayJ-KCuL0GS1dYteFOAHVxUXbQOvHQHoRc2FsxErctq645-VDZKjdpwvsvv_GFtTYLO4VSNyVxslb18QEMOzzXul819ZASHUGFchtsF1YSSbZjDegtUIQcuC02wWrtWYtnGvtvU3lrTzfXC1bvkovak0CtrkIexJ3m3jTWq-_FEns1GIzkdzqcni-8uJhhDRbzNtrJHDvy4L2ABPBh8Gs4_tyonPzaBGZtftGUM-NvPvkuU2cuTEm1skyVgm5v8KLe2-lp-mT4mj-zBgw4MYZ6Qe7o4JA87OPUhcc47EOkJPa1JUL97Sr5MCgq0okArWuZ0g1bU0IquSmppRZFWtKYVbWmF9ZZW1NDqGZmdDaenH12bj8NV_cBfuZmfebFikc-08HgWCp7kOkthWsdpwhVO7AgOGDxQSZ6lLBFppKAJiNhKCRanwXOyX5SFPiI05aGnWMo0T_OwzxNoleoQBlGx4v1UOSRq_lqpbLB6zJlyLRurxCvZYiIRE-mhIQV3iNd2XJh4Lbu7vG-wk1bsNOKkBAbu7nwEaGPd5VLOvvpoCMC4wKBUDjneokD7ffwA5MZABA5503BCwqKOmrqk0OV6KRlmhfAiOPo4hN7RBiT7Ppz1Iv_PTYDKHnuxe5SX5EE3wV-R_VW11q_JffUD2FQd28nyC-mb3FA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+statistical+models+to+predict+crop+yield+responses+to+climate+change&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Lobell%2C+David+B&rft.au=Burke%2C+Marshall+B&rft.date=2010-10-15&rft.issn=0168-1923&rft.volume=150&rft.issue=11+p.1443-1452&rft.spage=1443&rft.epage=1452&rft_id=info:doi/10.1016%2Fj.agrformet.2010.07.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon