Systematic fluctuation expansion for neural network activity equations

Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into ac...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation Vol. 22; no. 2; p. 377
Main Authors: Buice, Michael A, Cowan, Jack D, Chow, Carson C
Format: Journal Article
Language:English
Published: United States 01.02.2010
Subjects:
ISSN:1530-888X, 1530-888X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.
AbstractList Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.
Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.
Author Cowan, Jack D
Buice, Michael A
Chow, Carson C
Author_xml – sequence: 1
  givenname: Michael A
  surname: Buice
  fullname: Buice, Michael A
– sequence: 2
  givenname: Jack D
  surname: Cowan
  fullname: Cowan, Jack D
– sequence: 3
  givenname: Carson C
  surname: Chow
  fullname: Chow, Carson C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19852585$$D View this record in MEDLINE/PubMed
BookMark eNpNj11LwzAYhYNM3If-AkF651Xrm2RJk0sZToWBFyp4V5I0gWqbbE2q7t9b2QSvzsPh4cCZo4kP3iJ0iaHAmJMbb00oCIAsgOQgc8nhBM0wo5ALId4m_3iK5jG-AwDHwM7QFEvBCBNshtbP-5hsp1JjMtcOJg0jBp_Z763y8Zdc6DNvh161Y6Sv0H9kyqTms0n7zO4OejxHp0610V4cc4Fe13cvq4d883T_uLrd5IZRknKpeG2NEopiXApNYFkbTVxJx4LJWhBautJxzDSt9VILYyUVWjlumBwRyAJdH3a3fdgNNqaqa6Kxbau8DUOsSkq5IHwpR_PqaA66s3W17ZtO9fvq7zr5AeDxX-U
CitedBy_id crossref_primary_10_1186_2190_8567_1_2
crossref_primary_10_1103_PhysRevX_6_031024
crossref_primary_10_1371_journal_pcbi_1002872
crossref_primary_10_1103_PhysRevX_5_041030
crossref_primary_10_1137_19M1243877
crossref_primary_10_1162_neco_a_01612
crossref_primary_10_1162_neco_a_01656
crossref_primary_10_1371_journal_pcbi_1005507
crossref_primary_10_1186_s13408_015_0018_5
crossref_primary_10_1088_1751_8121_aa5db4
crossref_primary_10_1371_journal_pcbi_1002560
crossref_primary_10_1137_120898978
crossref_primary_10_1007_s10827_014_0528_2
crossref_primary_10_1007_s10955_013_0818_5
crossref_primary_10_1186_s13408_016_0036_y
crossref_primary_10_1371_journal_pcbi_1000846
crossref_primary_10_3389_fninf_2017_00034
crossref_primary_10_1152_jn_00404_2019
crossref_primary_10_1007_s00285_011_0484_7
crossref_primary_10_1371_journal_pcbi_1005534
crossref_primary_10_3389_fnsys_2019_00075
crossref_primary_10_1016_j_neunet_2012_02_006
crossref_primary_10_1137_15M1033927
crossref_primary_10_3389_fphy_2021_639389
crossref_primary_10_1007_s10827_011_0320_5
crossref_primary_10_1007_s10827_019_00712_w
crossref_primary_10_1371_journal_pcbi_1005780
crossref_primary_10_1371_journal_pcbi_1007442
crossref_primary_10_1103_PhysRevX_12_041007
crossref_primary_10_1137_110851031
crossref_primary_10_1017_apr_2018_42
crossref_primary_10_1103_PhysRevE_111_064402
crossref_primary_10_1371_journal_pcbi_1004490
crossref_primary_10_1162_neco_a_01173
crossref_primary_10_1186_2190_8567_2_6
crossref_primary_10_1016_j_jde_2025_113721
crossref_primary_10_1371_journal_pcbi_1011097
crossref_primary_10_1371_journal_pone_0068189
crossref_primary_10_1186_s13408_019_0070_7
crossref_primary_10_1007_s00421_025_05855_6
crossref_primary_10_1016_j_crma_2014_08_017
crossref_primary_10_1088_1751_8121_abf38f
crossref_primary_10_1137_20M1331664
crossref_primary_10_1371_journal_pcbi_1003428
crossref_primary_10_1073_pnas_1121274109
crossref_primary_10_1371_journal_pcbi_1008884
crossref_primary_10_1103_PhysRevX_4_021039
crossref_primary_10_1371_journal_pcbi_1005691
crossref_primary_10_1016_j_physrep_2013_03_004
crossref_primary_10_1088_1742_5468_2013_03_P03001
crossref_primary_10_3390_e17074701
crossref_primary_10_1152_jn_00399_2019
crossref_primary_10_1088_1751_8121_aa54d9
crossref_primary_10_1088_1742_5468_2013_03_P03003
crossref_primary_10_3389_fphar_2022_1025417
crossref_primary_10_1007_s10827_014_0546_0
crossref_primary_10_1186_s13408_014_0016_z
crossref_primary_10_1103_PhysRevResearch_5_013005
crossref_primary_10_1137_140995738
crossref_primary_10_1016_j_jcp_2025_114117
crossref_primary_10_1186_s13408_017_0048_2
crossref_primary_10_1016_j_neuroimage_2010_01_045
crossref_primary_10_1007_s00422_022_00952_7
crossref_primary_10_1088_1751_8113_45_3_033001
crossref_primary_10_1088_1751_8121_adbc50
crossref_primary_10_1007_s10827_025_00904_7
crossref_primary_10_1371_journal_pcbi_1011315
crossref_primary_10_1016_j_conb_2017_07_011
crossref_primary_10_1103_PhysRevX_13_041047
crossref_primary_10_1007_s00285_012_0541_x
crossref_primary_10_1162_NECO_a_00267
crossref_primary_10_1016_j_neuroimage_2017_10_003
crossref_primary_10_1016_j_physa_2023_128492
crossref_primary_10_1186_2190_8567_2_10
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/neco.2009.02-09-960
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
ExternalDocumentID 19852585
Genre Letter
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 DK013024
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAFWJ
AAJGR
AALMD
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ABVLG
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ID FETCH-LOGICAL-c532t-9a6deca8a31178b204dcb2f73a3159d8237f7f615b3db4b8ce938baf6c59e9302
IEDL.DBID 7X8
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273897500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-888X
IngestDate Thu Sep 04 17:26:06 EDT 2025
Mon Jul 21 05:59:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-9a6deca8a31178b204dcb2f73a3159d8237f7f615b3db4b8ce938baf6c59e9302
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 23
OpenAccessLink http://doi.org/10.1162/neco.2009.02-09-960
PMID 19852585
PQID 733682649
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733682649
pubmed_primary_19852585
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2010
SSID ssj0006105
Score 2.3751574
Snippet Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 377
SubjectTerms Action Potentials - physiology
Algorithms
Animals
Artificial Intelligence
Brain - physiology
Humans
Mathematical Computing
Mathematical Concepts
Nerve Net - physiology
Neural Networks, Computer
Neurons - physiology
Title Systematic fluctuation expansion for neural network activity equations
URI https://www.ncbi.nlm.nih.gov/pubmed/19852585
https://www.proquest.com/docview/733682649
Volume 22
WOSCitedRecordID wos000273897500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDi-nZ9kYPXsG3aNMlJRFw86LLgg95KniBId9fuij_fSZvVi-DBSyklCWUyk3yTmXyD0KXSjNmcK-KtNiQ3PidSuZSAa5C6hHqtWwLTl3s-HouylJOYm9PEtMrVmtgu1HZqwhn5MND2ARTO5dVsTkLRqBBcjRU01lEvAyQTMrp4-UMWXnQZjGDTCQFHr4ykQ2lBhzX4dpGskobov4wUlb9CzHarGfX_-ZM7aDtiTHzdKcUuWnP1Huqv6jfgaM77aPT4TeOM_dsyXCUJ04TdJywR4RQNA6LFgfESRqu7fHEcLkKEehPYzbvmzQF6Ht0-3dyRWFeBGJbRBUxGYZ1RQmVpyoWmSW6Npp5n8IFJG-hrPPcAdXRmda6FcTITWvnCMAmvCT1EG_W0dscIi7RIrEq4hr4wihCKSW8EBVgiYHvkA4RXgqpAb0MwQtVuumyqb1EN0FEn7GrW8WtUqRSMghtz8nfnU7TVhfNDfskZ6nmwWXeONs3H4rV5v2j1AZ7jycMX693BdQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+fluctuation+expansion+for+neural+network+activity+equations&rft.jtitle=Neural+computation&rft.au=Buice%2C+Michael+A&rft.au=Cowan%2C+Jack+D&rft.au=Chow%2C+Carson+C&rft.date=2010-02-01&rft.eissn=1530-888X&rft.volume=22&rft.issue=2&rft.spage=377&rft_id=info:doi/10.1162%2Fneco.2009.02-09-960&rft_id=info%3Apmid%2F19852585&rft_id=info%3Apmid%2F19852585&rft.externalDocID=19852585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon