Systematic fluctuation expansion for neural network activity equations
Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into ac...
Saved in:
| Published in: | Neural computation Vol. 22; no. 2; p. 377 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.02.2010
|
| Subjects: | |
| ISSN: | 1530-888X, 1530-888X |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone. |
|---|---|
| AbstractList | Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone. Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone. |
| Author | Cowan, Jack D Buice, Michael A Chow, Carson C |
| Author_xml | – sequence: 1 givenname: Michael A surname: Buice fullname: Buice, Michael A – sequence: 2 givenname: Jack D surname: Cowan fullname: Cowan, Jack D – sequence: 3 givenname: Carson C surname: Chow fullname: Chow, Carson C |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19852585$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj11LwzAYhYNM3If-AkF651Xrm2RJk0sZToWBFyp4V5I0gWqbbE2q7t9b2QSvzsPh4cCZo4kP3iJ0iaHAmJMbb00oCIAsgOQgc8nhBM0wo5ALId4m_3iK5jG-AwDHwM7QFEvBCBNshtbP-5hsp1JjMtcOJg0jBp_Z763y8Zdc6DNvh161Y6Sv0H9kyqTms0n7zO4OejxHp0610V4cc4Fe13cvq4d883T_uLrd5IZRknKpeG2NEopiXApNYFkbTVxJx4LJWhBautJxzDSt9VILYyUVWjlumBwRyAJdH3a3fdgNNqaqa6Kxbau8DUOsSkq5IHwpR_PqaA66s3W17ZtO9fvq7zr5AeDxX-U |
| CitedBy_id | crossref_primary_10_1186_2190_8567_1_2 crossref_primary_10_1103_PhysRevX_6_031024 crossref_primary_10_1371_journal_pcbi_1002872 crossref_primary_10_1103_PhysRevX_5_041030 crossref_primary_10_1137_19M1243877 crossref_primary_10_1162_neco_a_01612 crossref_primary_10_1162_neco_a_01656 crossref_primary_10_1371_journal_pcbi_1005507 crossref_primary_10_1186_s13408_015_0018_5 crossref_primary_10_1088_1751_8121_aa5db4 crossref_primary_10_1371_journal_pcbi_1002560 crossref_primary_10_1137_120898978 crossref_primary_10_1007_s10827_014_0528_2 crossref_primary_10_1007_s10955_013_0818_5 crossref_primary_10_1186_s13408_016_0036_y crossref_primary_10_1371_journal_pcbi_1000846 crossref_primary_10_3389_fninf_2017_00034 crossref_primary_10_1152_jn_00404_2019 crossref_primary_10_1007_s00285_011_0484_7 crossref_primary_10_1371_journal_pcbi_1005534 crossref_primary_10_3389_fnsys_2019_00075 crossref_primary_10_1016_j_neunet_2012_02_006 crossref_primary_10_1137_15M1033927 crossref_primary_10_3389_fphy_2021_639389 crossref_primary_10_1007_s10827_011_0320_5 crossref_primary_10_1007_s10827_019_00712_w crossref_primary_10_1371_journal_pcbi_1005780 crossref_primary_10_1371_journal_pcbi_1007442 crossref_primary_10_1103_PhysRevX_12_041007 crossref_primary_10_1137_110851031 crossref_primary_10_1017_apr_2018_42 crossref_primary_10_1103_PhysRevE_111_064402 crossref_primary_10_1371_journal_pcbi_1004490 crossref_primary_10_1162_neco_a_01173 crossref_primary_10_1186_2190_8567_2_6 crossref_primary_10_1016_j_jde_2025_113721 crossref_primary_10_1371_journal_pcbi_1011097 crossref_primary_10_1371_journal_pone_0068189 crossref_primary_10_1186_s13408_019_0070_7 crossref_primary_10_1007_s00421_025_05855_6 crossref_primary_10_1016_j_crma_2014_08_017 crossref_primary_10_1088_1751_8121_abf38f crossref_primary_10_1137_20M1331664 crossref_primary_10_1371_journal_pcbi_1003428 crossref_primary_10_1073_pnas_1121274109 crossref_primary_10_1371_journal_pcbi_1008884 crossref_primary_10_1103_PhysRevX_4_021039 crossref_primary_10_1371_journal_pcbi_1005691 crossref_primary_10_1016_j_physrep_2013_03_004 crossref_primary_10_1088_1742_5468_2013_03_P03001 crossref_primary_10_3390_e17074701 crossref_primary_10_1152_jn_00399_2019 crossref_primary_10_1088_1751_8121_aa54d9 crossref_primary_10_1088_1742_5468_2013_03_P03003 crossref_primary_10_3389_fphar_2022_1025417 crossref_primary_10_1007_s10827_014_0546_0 crossref_primary_10_1186_s13408_014_0016_z crossref_primary_10_1103_PhysRevResearch_5_013005 crossref_primary_10_1137_140995738 crossref_primary_10_1016_j_jcp_2025_114117 crossref_primary_10_1186_s13408_017_0048_2 crossref_primary_10_1016_j_neuroimage_2010_01_045 crossref_primary_10_1007_s00422_022_00952_7 crossref_primary_10_1088_1751_8113_45_3_033001 crossref_primary_10_1088_1751_8121_adbc50 crossref_primary_10_1007_s10827_025_00904_7 crossref_primary_10_1371_journal_pcbi_1011315 crossref_primary_10_1016_j_conb_2017_07_011 crossref_primary_10_1103_PhysRevX_13_041047 crossref_primary_10_1007_s00285_012_0541_x crossref_primary_10_1162_NECO_a_00267 crossref_primary_10_1016_j_neuroimage_2017_10_003 crossref_primary_10_1016_j_physa_2023_128492 crossref_primary_10_1186_2190_8567_2_10 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1162/neco.2009.02-09-960 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1530-888X |
| ExternalDocumentID | 19852585 |
| Genre | Letter Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 DK013024 |
| GroupedDBID | --- -~X .4S .DC 0R~ 123 36B 4.4 41~ 53G 6IK AAFWJ AAJGR AALMD ABAZT ABDBF ABDNZ ABEFU ABIVO ABJNI ABVLG ACGFO ACUHS ACYGS ADIYS ADMLS AEGXH AEILP AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CGR COF CS3 CUY CVF DU5 EAP EAS EBC EBD EBS ECM ECS EDO EIF EJD EMB EMK EMOBN EPL EPS EST ESX F5P FEDTE FNEHJ HVGLF HZ~ H~9 I-F IPLJI JAVBF MCG MINIK MKJ NPM O9- OCL P2P PK0 PQQKQ RMI SV3 TUS WG8 WH7 XJE ZWS 7X8 |
| ID | FETCH-LOGICAL-c532t-9a6deca8a31178b204dcb2f73a3159d8237f7f615b3db4b8ce938baf6c59e9302 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273897500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-888X |
| IngestDate | Thu Sep 04 17:26:06 EDT 2025 Mon Jul 21 05:59:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c532t-9a6deca8a31178b204dcb2f73a3159d8237f7f615b3db4b8ce938baf6c59e9302 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 23 |
| OpenAccessLink | http://doi.org/10.1162/neco.2009.02-09-960 |
| PMID | 19852585 |
| PQID | 733682649 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_733682649 pubmed_primary_19852585 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-02-01 |
| PublicationDateYYYYMMDD | 2010-02-01 |
| PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural computation |
| PublicationTitleAlternate | Neural Comput |
| PublicationYear | 2010 |
| SSID | ssj0006105 |
| Score | 2.3751574 |
| Snippet | Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 377 |
| SubjectTerms | Action Potentials - physiology Algorithms Animals Artificial Intelligence Brain - physiology Humans Mathematical Computing Mathematical Concepts Nerve Net - physiology Neural Networks, Computer Neurons - physiology |
| Title | Systematic fluctuation expansion for neural network activity equations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19852585 https://www.proquest.com/docview/733682649 |
| Volume | 22 |
| WOSCitedRecordID | wos000273897500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDi-nZ9kYPXsG3aNMlJRFw86LLgg95KniBId9fuij_fSZvVi-DBSyklCWUyk3yTmXyD0KXSjNmcK-KtNiQ3PidSuZSAa5C6hHqtWwLTl3s-HouylJOYm9PEtMrVmtgu1HZqwhn5MND2ARTO5dVsTkLRqBBcjRU01lEvAyQTMrp4-UMWXnQZjGDTCQFHr4ykQ2lBhzX4dpGskobov4wUlb9CzHarGfX_-ZM7aDtiTHzdKcUuWnP1Huqv6jfgaM77aPT4TeOM_dsyXCUJ04TdJywR4RQNA6LFgfESRqu7fHEcLkKEehPYzbvmzQF6Ht0-3dyRWFeBGJbRBUxGYZ1RQmVpyoWmSW6Npp5n8IFJG-hrPPcAdXRmda6FcTITWvnCMAmvCT1EG_W0dscIi7RIrEq4hr4wihCKSW8EBVgiYHvkA4RXgqpAb0MwQtVuumyqb1EN0FEn7GrW8WtUqRSMghtz8nfnU7TVhfNDfskZ6nmwWXeONs3H4rV5v2j1AZ7jycMX693BdQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+fluctuation+expansion+for+neural+network+activity+equations&rft.jtitle=Neural+computation&rft.au=Buice%2C+Michael+A&rft.au=Cowan%2C+Jack+D&rft.au=Chow%2C+Carson+C&rft.date=2010-02-01&rft.eissn=1530-888X&rft.volume=22&rft.issue=2&rft.spage=377&rft_id=info:doi/10.1162%2Fneco.2009.02-09-960&rft_id=info%3Apmid%2F19852585&rft_id=info%3Apmid%2F19852585&rft.externalDocID=19852585 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon |