Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles

In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials Jg. 35; H. 10; S. 3331 - 3339
Hauptverfasser: Li, Li, Gu, Wenyi, Chen, Jiezhong, Chen, Weiyu, Xu, Zhi P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.03.2014
Schlagworte:
ISSN:0142-9612, 1878-5905, 1878-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.
AbstractList Abstract In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.
In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.
In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.
Author Li, Li
Xu, Zhi P.
Chen, Jiezhong
Gu, Wenyi
Chen, Weiyu
Author_xml – sequence: 1
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 2
  givenname: Wenyi
  surname: Gu
  fullname: Gu, Wenyi
  email: w.gu@uq.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 3
  givenname: Jiezhong
  surname: Chen
  fullname: Chen, Jiezhong
  organization: School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
– sequence: 4
  givenname: Weiyu
  surname: Chen
  fullname: Chen, Weiyu
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
– sequence: 5
  givenname: Zhi P.
  surname: Xu
  fullname: Xu, Zhi P.
  email: gordonxu@uq.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24456604$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhoOsuLOrf0GKV9605ruNF-I6-AWLgh_gXUiT0zVjJxmTdrH_3pRZRQRxL0IIPO9DOO85QychBkDoEcENwUQ-2TW9j3szQfJmzA3FhDWENliJO2hDurarhcLiBG0w4bRWktBTdJbzDpc35vQeOqWcCykx36Av21g7GP01pKWKQ5X9h3cXuTLBlTP52ppgIVUuzVe5mrMPV9VoFkjgKhfnfoTq6-JS_OEdVMGEeDBp8naEfB_dHcrv4MHNfY4-v3r5afumvnz_-u324rK2gtGpbqUbjOwYsd0wtBJbrDqmaEfaQbSUDdATCT3mgjEJxpBOmZ4LJznrlZPFcY4eH72HFL_PkCe999nCOJoAcc6aYowpxYLi_6KEK84IVpQW9OENOvd7cPqQ_N6kRf8aXAGeHgGbYs4Jht8IwXptSe_0ny3ptSVNqC4tlfDzv8LWT2byMUzJ-PF2imdHBZTZXntI2o4-eGvGb7BA3sU5hTVDdC4B_XFdhXUTCMNEKMKK4MW_BdpFf5tf_ASuH8rZ
CitedBy_id crossref_primary_10_1002_adtp_202200147
crossref_primary_10_3390_ma15227977
crossref_primary_10_1016_j_postharvbio_2022_112051
crossref_primary_10_1134_S1070427217010189
crossref_primary_10_1016_j_colsurfb_2017_07_077
crossref_primary_10_1016_j_nantod_2023_101788
crossref_primary_10_1002_pi_4824
crossref_primary_10_2147_IJN_S257700
crossref_primary_10_1016_j_arr_2015_03_001
crossref_primary_10_1016_j_clay_2019_105196
crossref_primary_10_1016_j_jtice_2015_06_040
crossref_primary_10_1016_j_jphotochem_2017_05_008
crossref_primary_10_1007_s00604_019_3371_3
crossref_primary_10_1007_s11814_021_0892_3
crossref_primary_10_1016_j_jece_2024_115275
crossref_primary_10_1002_wnan_1679
crossref_primary_10_1016_j_molstruc_2024_139616
crossref_primary_10_1016_j_clay_2019_04_022
crossref_primary_10_1016_j_clay_2022_106717
crossref_primary_10_1039_D1BM01806J
crossref_primary_10_3390_ijms15057409
crossref_primary_10_1016_j_ccr_2021_214345
crossref_primary_10_3389_fbioe_2021_769178
crossref_primary_10_1039_C6CC09510K
crossref_primary_10_1016_j_ijpharm_2023_123640
crossref_primary_10_1016_j_jddst_2023_104829
crossref_primary_10_1039_D2BM01432G
crossref_primary_10_1016_j_pharmthera_2021_107871
crossref_primary_10_1002_chem_201702835
crossref_primary_10_3390_pharmaceutics13111803
crossref_primary_10_3390_cryst9070361
crossref_primary_10_1007_s40005_017_0321_0
crossref_primary_10_1088_1468_6996_16_5_054205
crossref_primary_10_1007_s42860_019_0006_z
crossref_primary_10_3390_pharmaceutics6040584
crossref_primary_10_1016_j_cap_2019_08_003
crossref_primary_10_1021_acsbiomaterials_7b00569
crossref_primary_10_1016_j_actbio_2015_10_029
crossref_primary_10_1002_cnma_201700125
crossref_primary_10_1002_jcp_28281
crossref_primary_10_1002_adma_202502375
crossref_primary_10_1016_j_colsurfb_2022_113066
crossref_primary_10_1016_j_jssc_2017_10_031
crossref_primary_10_1016_j_eurpolymj_2020_109675
crossref_primary_10_1016_j_matchemphys_2015_03_011
crossref_primary_10_1002_smll_201503359
crossref_primary_10_1016_j_ejpb_2025_114838
crossref_primary_10_1016_j_colsurfa_2019_124077
crossref_primary_10_1016_j_cej_2023_146449
crossref_primary_10_1016_j_jconrel_2015_05_262
crossref_primary_10_1016_j_mtchem_2020_100295
crossref_primary_10_3389_fimmu_2019_02022
crossref_primary_10_1016_j_clay_2015_04_018
crossref_primary_10_1016_j_chemosphere_2018_03_166
crossref_primary_10_1039_C6TB03365B
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1002_smll_201704465
crossref_primary_10_1016_j_cej_2023_144020
crossref_primary_10_1016_j_clay_2020_105891
crossref_primary_10_1002_adma_201902333
crossref_primary_10_1016_j_matdes_2020_109298
crossref_primary_10_1016_j_pmatsci_2019_100631
crossref_primary_10_1039_D3RA08201F
crossref_primary_10_1016_j_pmatsci_2023_101220
crossref_primary_10_1002_smll_201902262
crossref_primary_10_1016_j_jallcom_2017_12_299
crossref_primary_10_1002_advs_201801155
crossref_primary_10_1016_j_nano_2017_06_006
crossref_primary_10_1016_j_polymertesting_2023_107979
crossref_primary_10_1016_j_nxsust_2024_100060
crossref_primary_10_1016_j_nano_2019_04_011
crossref_primary_10_1016_j_ijpharm_2020_119921
crossref_primary_10_1016_j_tplants_2017_03_014
crossref_primary_10_1016_j_xphs_2021_01_023
crossref_primary_10_1002_slct_202300967
crossref_primary_10_1016_j_jcis_2019_08_027
crossref_primary_10_1038_s41598_019_48180_7
crossref_primary_10_1016_j_eti_2024_104003
crossref_primary_10_61186_jcc_5_2_5
crossref_primary_10_1016_j_jddst_2023_104294
crossref_primary_10_1016_j_jiec_2020_05_021
crossref_primary_10_1039_C4TB01989J
crossref_primary_10_1007_s12034_019_1976_0
crossref_primary_10_1016_j_actbio_2020_01_008
crossref_primary_10_1016_j_biomaterials_2014_07_055
crossref_primary_10_1016_j_msec_2017_03_009
crossref_primary_10_1016_j_clay_2022_106514
crossref_primary_10_1186_s12951_022_01565_9
crossref_primary_10_1016_j_clay_2018_08_020
crossref_primary_10_1039_C4CC09879J
crossref_primary_10_3389_fphar_2023_1111991
crossref_primary_10_1002_jgm_2998
crossref_primary_10_1007_s10853_017_0847_6
crossref_primary_10_1007_s12274_017_1619_y
crossref_primary_10_1016_j_ijhydene_2024_12_179
crossref_primary_10_3390_nano9020159
crossref_primary_10_1002_aenm_201801804
crossref_primary_10_1016_j_jiec_2017_05_011
crossref_primary_10_3390_nano11123315
crossref_primary_10_1016_j_jallcom_2021_161184
crossref_primary_10_1039_C7DT03725B
crossref_primary_10_1016_j_molliq_2022_120717
crossref_primary_10_1002_smtd_201900343
crossref_primary_10_1016_j_addr_2022_114270
crossref_primary_10_3390_ijms20153764
crossref_primary_10_1016_j_biomaterials_2018_04_031
crossref_primary_10_1016_j_ijhydene_2019_04_052
crossref_primary_10_1016_j_ccr_2016_04_004
crossref_primary_10_1016_j_colsurfb_2025_115031
crossref_primary_10_1371_journal_pone_0136530
crossref_primary_10_3390_molecules21091249
crossref_primary_10_1016_j_apsb_2015_03_001
crossref_primary_10_1016_j_bioactmat_2024_04_033
crossref_primary_10_1007_s43207_020_00090_5
crossref_primary_10_1038_s41392_017_0004_3
crossref_primary_10_1016_j_nano_2022_102544
crossref_primary_10_3390_ma12213580
crossref_primary_10_1002_admi_202200373
crossref_primary_10_1089_ees_2020_0105
crossref_primary_10_1016_j_jddst_2022_103191
crossref_primary_10_1016_j_biopha_2019_109561
crossref_primary_10_3390_pharmaceutics12121219
crossref_primary_10_1002_anie_201510844
crossref_primary_10_1016_j_ccr_2017_06_024
crossref_primary_10_1002_wnan_1715
crossref_primary_10_1002_smll_202002115
crossref_primary_10_1021_acsbiomaterials_9b01894
crossref_primary_10_1016_j_mtnano_2021_100132
crossref_primary_10_1007_s13762_024_05960_7
crossref_primary_10_3390_nano9020208
crossref_primary_10_1007_s11051_024_06074_4
crossref_primary_10_1007_s12247_014_9183_4
crossref_primary_10_1016_j_biomaterials_2018_05_015
crossref_primary_10_1039_D1RA03289E
crossref_primary_10_1002_adfm_201909745
crossref_primary_10_1016_j_teac_2017_10_003
crossref_primary_10_1016_j_jconrel_2023_01_043
crossref_primary_10_1016_j_cej_2024_149961
crossref_primary_10_1007_s10876_023_02411_0
crossref_primary_10_1039_D1BM00765C
crossref_primary_10_4155_tde_2015_0003
crossref_primary_10_1021_acsbiomaterials_5c00333
crossref_primary_10_1016_j_jcis_2016_02_042
crossref_primary_10_1002_cnma_202400472
crossref_primary_10_1002_jps_24507
crossref_primary_10_1002_sstr_202000112
crossref_primary_10_1016_j_jcis_2015_07_044
crossref_primary_10_2147_IJN_S457782
crossref_primary_10_3390_ijms20040965
crossref_primary_10_1016_j_apsusc_2017_07_207
crossref_primary_10_1186_s12951_025_03489_6
crossref_primary_10_3390_ijms22115433
crossref_primary_10_1186_s12951_022_01364_2
crossref_primary_10_3390_polym13091515
crossref_primary_10_1007_s12209_016_2710_2
crossref_primary_10_1002_smll_201902309
crossref_primary_10_1116_1_4936393
crossref_primary_10_4274_tjps_galenos_2021_26529
crossref_primary_10_3390_ma16196523
crossref_primary_10_1002_admi_202400343
crossref_primary_10_1002_adma_201700373
crossref_primary_10_2147_IJN_S380515
crossref_primary_10_1002_adma_201502422
crossref_primary_10_1002_smll_202304862
crossref_primary_10_1038_s41598_017_08238_w
crossref_primary_10_1016_j_intimp_2022_109022
crossref_primary_10_1038_s41392_020_0183_1
crossref_primary_10_1002_wnan_1596
crossref_primary_10_1002_adma_202501256
crossref_primary_10_1016_j_cis_2021_102598
crossref_primary_10_1002_macp_201500464
crossref_primary_10_1039_C7CC05081J
crossref_primary_10_2217_nnm_2018_0237
crossref_primary_10_1016_j_impact_2020_100222
crossref_primary_10_1016_j_molliq_2019_110989
crossref_primary_10_1080_09205063_2021_1967701
crossref_primary_10_1016_j_jconrel_2021_05_011
crossref_primary_10_1002_ange_201510844
crossref_primary_10_1016_j_colsurfb_2017_06_002
crossref_primary_10_1016_j_apsusc_2018_10_202
crossref_primary_10_1016_j_jssc_2020_121291
crossref_primary_10_1016_j_xphs_2022_05_012
crossref_primary_10_1016_j_ejps_2021_105922
crossref_primary_10_1016_j_nano_2021_102369
crossref_primary_10_1002_smtd_202301005
crossref_primary_10_1007_s12274_014_0552_6
crossref_primary_10_1016_j_ijbiomac_2025_147495
crossref_primary_10_1016_j_envres_2023_117171
crossref_primary_10_1016_j_actbio_2015_11_041
crossref_primary_10_1021_acsami_6b16509
crossref_primary_10_1016_j_actbio_2016_02_041
crossref_primary_10_1080_03639045_2023_2182125
crossref_primary_10_1186_s12951_024_02319_5
crossref_primary_10_3748_wjg_v29_i13_1911
crossref_primary_10_1002_tcr_201700091
crossref_primary_10_1007_s11814_024_00205_2
crossref_primary_10_1016_j_jcis_2024_01_077
crossref_primary_10_1016_j_ijbiomac_2018_05_077
crossref_primary_10_2217_nnm_2018_0252
crossref_primary_10_1016_j_snb_2018_06_038
crossref_primary_10_1002_rmv_1825
Cites_doi 10.1021/nn2013707
10.1007/s004320100264
10.2217/17435889.3.6.761
10.1016/j.biomaterials.2009.10.058
10.1016/j.jpcs.2006.01.033
10.1016/j.jconrel.2008.05.021
10.1038/mt.2011.174
10.1002/adhm.201200109
10.7150/ijms.7.398
10.1016/j.jssc.2008.03.032
10.1023/A:1024995202135
10.1021/ja056652a
10.1002/smll.201001389
10.1016/j.jcis.2012.09.033
10.1016/j.biomaterials.2003.09.083
10.4155/tde.10.13
10.1039/C0CC01313G
10.1080/01926230701320337
10.1002/smll.200900621
10.1016/j.ceramint.2011.08.014
10.1007/s11051-010-0118-9
10.1016/j.biomaterials.2011.07.032
10.1016/j.jpcs.2007.10.140
10.1039/c3nr00781b
10.1016/j.clay.2009.11.032
10.1021/jp062281o
10.1021/bc0601323
10.1016/j.biomaterials.2011.09.017
10.1016/j.biomaterials.2010.07.077
10.1517/17425240903130585
10.1039/b925831k
10.1038/nnano.2007.387
10.1016/j.biomaterials.2011.10.057
10.1016/j.bcp.2012.01.008
10.1038/nrc1074
10.1016/j.biomaterials.2011.10.043
10.1016/j.jssc.2004.11.005
10.1016/j.ultrasmedbio.2006.01.011
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2013.12.095
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 3339
ExternalDocumentID 24456604
10_1016_j_biomaterials_2013_12_095
1_s2_0_S0142961213015913
S0142961213015913
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c532t-76dfa6831c8ff760c098392817f5723feb16eb045336eaa189ab45d643b9d6c53
ISICitedReferencesCount 267
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332188400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Wed Oct 01 14:53:06 EDT 2025
Sun Sep 28 01:35:03 EDT 2025
Mon Jul 21 05:55:04 EDT 2025
Sat Nov 29 07:26:37 EST 2025
Tue Nov 18 22:25:14 EST 2025
Sun Feb 23 10:18:52 EST 2025
Tue Oct 14 19:31:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Co-delivery system
Layered double hydroxide
Electrostatic assembly
Apoptosis
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-76dfa6831c8ff760c098392817f5723feb16eb045336eaa189ab45d643b9d6c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24456604
PQID 1494310922
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000220520
proquest_miscellaneous_1494310922
pubmed_primary_24456604
crossref_primary_10_1016_j_biomaterials_2013_12_095
crossref_citationtrail_10_1016_j_biomaterials_2013_12_095
elsevier_clinicalkeyesjournals_1_s2_0_S0142961213015913
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_12_095
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Cooper, Zhou, Bartlett, Xu (bib25) 2013; 390
Cheng, Cao, Chen, Yu, Shuai (bib13) 2012; 33
Choi, Choi, Oh, Oh, Park, Choy (bib17) 2010; 20
Chakraborty, Dasgupta, Sengupta, Chakraborty, Ghosh, Ghosh (bib18) 2012; 38
Ladewig, Niebert, Xu, Gray, Lu (bib33) 2010; 48
Chen, Yee, Gong, Zhang, Xu (bib29) 2013; 5
Ladewig, Niebert, Xu, Gray, Lu (bib21) 2010; 31
Oh, Park, Kim, Jung, Kang, Choy (bib24) 2006; 67
Fan, Hu, Xu, Liang, Tang, Yang (bib8) 2012; 33
Ladewig, Xu, Lu (bib15) 2009; 6
Khan, Ong, Wiradharma, Attia, Yang (bib7) 2012; 1
Nakamura, Abu Lila, Matsunaga, Doi, Ishida, Kiwada (bib10) 2011; 19
Chumakova, Liopo, Evers, Esenaliev (bib35) 2006; 32
Saad, Garbuzenko, Minko (bib3) 2008; 3
Oh, Choi, Kim, Choy (bib34) 2006; 17
Xu, Stevenson, Lu, Lu (bib26) 2006; 110
Tan, Kiatwuthinon, Roh, Kahn, Luo (bib6) 2011; 7
Liu, Hou, Li, Li, Liu (bib27) 2008; 181
Gillet, Gottesman (bib2) 2010
Xu, Gu, Cheng, Rasoul, Whittaker, Lu (bib30) 2011; 13
Wang, Wang, Gao, Xu (bib28) 2005; 178
Kang, Suh, Jang, Park (bib40) 2001; 127
Hu, Aryal, Zhang (bib9) 2010; 1
Xu, Brateman, Yarberry (bib14) 2004
Xu, Niebert, Porazik, Walker, Cooper, Middelberg (bib31) 2008; 130
Chen, Zhang, Wei, Stueber, Taratula, Minko (bib11) 2009; 5
Peer, Karp, Hong, Farokhzad, Margalit, Langer (bib1) 2007; 2
Pan, Zhang, Fan, Chen, Duan (bib19) 2011; 47
Choy, Jung, Oh, Park, Jeong, Kang (bib23) 2004; 25
Hu, Zhang (bib38) 2012; 83
Choi, Oh, Choy (bib20) 2008; 69
Xu, Stevenson, Lu, Lu, Bartlett, Gray (bib16) 2006; 128
Xiong, Lavasanifar (bib37) 2011; 5
Chow, Loo (bib36) 2003; 80
Chang, Suh, Kim, Shim, Lee, Han (bib5) 2011; 32
Wang, Zhao, Wu, Hu, Nan, Nie (bib12) 2011; 32
Longley, Harkin, Johnston (bib4) 2003; 3
Wong, Markham, Xu, Chen, Lu, Bartlett (bib22) 2010; 31
Elmore (bib39) 2007; 35
Yassin, Anwer, Mowafy, El-Bagory, Bayomi, Alsarra (bib32) 2010; 7
Hu (10.1016/j.biomaterials.2013.12.095_bib38) 2012; 83
Chen (10.1016/j.biomaterials.2013.12.095_bib11) 2009; 5
Gillet (10.1016/j.biomaterials.2013.12.095_bib2) 2010
Nakamura (10.1016/j.biomaterials.2013.12.095_bib10) 2011; 19
Wong (10.1016/j.biomaterials.2013.12.095_bib22) 2010; 31
Chen (10.1016/j.biomaterials.2013.12.095_bib29) 2013; 5
Xu (10.1016/j.biomaterials.2013.12.095_bib14) 2004
Ladewig (10.1016/j.biomaterials.2013.12.095_bib21) 2010; 31
Xiong (10.1016/j.biomaterials.2013.12.095_bib37) 2011; 5
Choi (10.1016/j.biomaterials.2013.12.095_bib20) 2008; 69
Chakraborty (10.1016/j.biomaterials.2013.12.095_bib18) 2012; 38
Xu (10.1016/j.biomaterials.2013.12.095_bib30) 2011; 13
Peer (10.1016/j.biomaterials.2013.12.095_bib1) 2007; 2
Wang (10.1016/j.biomaterials.2013.12.095_bib28) 2005; 178
Chow (10.1016/j.biomaterials.2013.12.095_bib36) 2003; 80
Cheng (10.1016/j.biomaterials.2013.12.095_bib13) 2012; 33
Hu (10.1016/j.biomaterials.2013.12.095_bib9) 2010; 1
Choi (10.1016/j.biomaterials.2013.12.095_bib17) 2010; 20
Pan (10.1016/j.biomaterials.2013.12.095_bib19) 2011; 47
Chen (10.1016/j.biomaterials.2013.12.095_bib25) 2013; 390
Fan (10.1016/j.biomaterials.2013.12.095_bib8) 2012; 33
Chang (10.1016/j.biomaterials.2013.12.095_bib5) 2011; 32
Oh (10.1016/j.biomaterials.2013.12.095_bib34) 2006; 17
Chumakova (10.1016/j.biomaterials.2013.12.095_bib35) 2006; 32
Saad (10.1016/j.biomaterials.2013.12.095_bib3) 2008; 3
Khan (10.1016/j.biomaterials.2013.12.095_bib7) 2012; 1
Yassin (10.1016/j.biomaterials.2013.12.095_bib32) 2010; 7
Elmore (10.1016/j.biomaterials.2013.12.095_bib39) 2007; 35
Xu (10.1016/j.biomaterials.2013.12.095_bib26) 2006; 110
Tan (10.1016/j.biomaterials.2013.12.095_bib6) 2011; 7
Ladewig (10.1016/j.biomaterials.2013.12.095_bib15) 2009; 6
Wang (10.1016/j.biomaterials.2013.12.095_bib12) 2011; 32
Kang (10.1016/j.biomaterials.2013.12.095_bib40) 2001; 127
Oh (10.1016/j.biomaterials.2013.12.095_bib24) 2006; 67
Liu (10.1016/j.biomaterials.2013.12.095_bib27) 2008; 181
Xu (10.1016/j.biomaterials.2013.12.095_bib16) 2006; 128
Ladewig (10.1016/j.biomaterials.2013.12.095_bib33) 2010; 48
Choy (10.1016/j.biomaterials.2013.12.095_bib23) 2004; 25
Longley (10.1016/j.biomaterials.2013.12.095_bib4) 2003; 3
Xu (10.1016/j.biomaterials.2013.12.095_bib31) 2008; 130
References_xml – volume: 31
  start-page: 8770
  year: 2010
  end-page: 8779
  ident: bib22
  article-title: Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles
  publication-title: Biomaterials
– volume: 13
  start-page: 1253
  year: 2011
  end-page: 1264
  ident: bib30
  article-title: Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles
  publication-title: J Nanopart Res
– volume: 1
  start-page: 373
  year: 2012
  end-page: 392
  ident: bib7
  article-title: Advanced materials for co-delivery of drugs and genes in cancer therapy
  publication-title: Adv Healthc Mater
– start-page: 47
  year: 2010
  end-page: 76
  ident: bib2
  article-title: Mechanisms of multidrug resistance in cancer
  publication-title: Multi-drug resistance in cancer
– volume: 33
  start-page: 1170
  year: 2012
  end-page: 1179
  ident: bib13
  article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat
  publication-title: Biomaterials
– volume: 127
  start-page: 570
  year: 2001
  end-page: 576
  ident: bib40
  article-title: Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells
  publication-title: J Cancer Res Clin Oncol
– volume: 1
  start-page: 323
  year: 2010
  end-page: 334
  ident: bib9
  article-title: Nanoparticle-assisted combination therapies for effective cancer treatment
  publication-title: Ther Deliv
– volume: 35
  start-page: 495
  year: 2007
  end-page: 516
  ident: bib39
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
– volume: 47
  start-page: 908
  year: 2011
  end-page: 910
  ident: bib19
  article-title: Nearly monodispersed core-shell structural Fe
  publication-title: Chem Commun
– volume: 5
  start-page: 4314
  year: 2013
  end-page: 4320
  ident: bib29
  article-title: A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy
  publication-title: Nanoscale
– volume: 32
  start-page: 9785
  year: 2011
  end-page: 9795
  ident: bib5
  article-title: Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA
  publication-title: Biomaterials
– volume: 38
  start-page: 941
  year: 2012
  end-page: 949
  ident: bib18
  article-title: A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate
  publication-title: Ceram Int
– volume: 25
  start-page: 3059
  year: 2004
  end-page: 3064
  ident: bib23
  article-title: Layered double hydroxide as an efficient drug reservoir for folate derivatives
  publication-title: Biomaterials
– volume: 48
  start-page: 280
  year: 2010
  end-page: 289
  ident: bib33
  article-title: Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles
  publication-title: Appl Clay Sci
– volume: 80
  start-page: 239
  year: 2003
  end-page: 244
  ident: bib36
  article-title: The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), proapoptotic protein (p21WAF-1) and anti-apoptotic protein (bcl-2) in breast cancer cells
  publication-title: Breast Cancer Res Treat
– volume: 3
  start-page: 761
  year: 2008
  end-page: 776
  ident: bib3
  article-title: Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer
  publication-title: Nanomedicine
– volume: 5
  start-page: 5202
  year: 2011
  end-page: 5213
  ident: bib37
  article-title: Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin
  publication-title: ACS Nano
– volume: 33
  start-page: 1428
  year: 2012
  end-page: 1436
  ident: bib8
  article-title: In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL
  publication-title: Biomaterials
– volume: 31
  start-page: 1821
  year: 2010
  end-page: 1829
  ident: bib21
  article-title: Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles
  publication-title: Biomaterials
– volume: 110
  start-page: 16923
  year: 2006
  end-page: 16929
  ident: bib26
  article-title: Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions
  publication-title: J Phys Chem B
– volume: 5
  start-page: 2673
  year: 2009
  end-page: 2677
  ident: bib11
  article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells
  publication-title: Small
– volume: 32
  start-page: 8281
  year: 2011
  end-page: 8290
  ident: bib12
  article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles
  publication-title: Biomaterials
– volume: 83
  start-page: 1104
  year: 2012
  end-page: 1111
  ident: bib38
  article-title: Nanoparticle-based combination therapy toward overcoming drug resistance in cancer
  publication-title: Biochem Pharmacol
– volume: 7
  start-page: 841
  year: 2011
  end-page: 856
  ident: bib6
  article-title: Engineering nanocarriers for siRNA delivery
  publication-title: Small
– start-page: 373
  year: 2004
  ident: bib14
  article-title: Layer double hydroxides
  publication-title: Handbook of layered materials
– volume: 181
  start-page: 1792
  year: 2008
  end-page: 1797
  ident: bib27
  article-title: Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide
  publication-title: J Solid State Chem
– volume: 178
  start-page: 736
  year: 2005
  end-page: 741
  ident: bib28
  article-title: Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil
  publication-title: J Solid State Chem
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1417
  ident: bib34
  article-title: Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates:  enhanced efficacy due to clathrin-mediated endocytosis
  publication-title: Bioconjug Chem
– volume: 20
  start-page: 9463
  year: 2010
  end-page: 9469
  ident: bib17
  article-title: Anticancer drug encapsulated in inorganic lattice can overcome drug resistance
  publication-title: J Mater Chem
– volume: 7
  start-page: 398
  year: 2010
  end-page: 408
  ident: bib32
  article-title: Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer
  publication-title: Int J Med Sci
– volume: 6
  start-page: 907
  year: 2009
  end-page: 922
  ident: bib15
  article-title: Layered double hydroxide nanoparticles in gene and drug delivery
  publication-title: Expert Opin Drug Deliv
– volume: 2
  start-page: 751
  year: 2007
  end-page: 760
  ident: bib1
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat Nanotechnol
– volume: 390
  start-page: 275
  year: 2013
  end-page: 281
  ident: bib25
  article-title: Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery
  publication-title: J Colloid Interface Sci
– volume: 3
  start-page: 330
  year: 2003
  end-page: 338
  ident: bib4
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat Rev Cancer
– volume: 67
  start-page: 1024
  year: 2006
  end-page: 1027
  ident: bib24
  article-title: Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system
  publication-title: J Phys Chem Solids
– volume: 19
  start-page: 2040
  year: 2011
  end-page: 2047
  ident: bib10
  article-title: A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA
  publication-title: Mol Ther
– volume: 128
  start-page: 36
  year: 2006
  end-page: 37
  ident: bib16
  article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution
  publication-title: J Am Chem Soc
– volume: 69
  start-page: 1528
  year: 2008
  end-page: 1532
  ident: bib20
  article-title: Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents
  publication-title: J Phys Chem Solids
– volume: 32
  start-page: 751
  year: 2006
  end-page: 758
  ident: bib35
  article-title: Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability
  publication-title: Ultrasound Med Biol
– volume: 130
  start-page: 86
  year: 2008
  end-page: 94
  ident: bib31
  article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles
  publication-title: J Control Release
– volume: 5
  start-page: 5202
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib37
  article-title: Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin
  publication-title: ACS Nano
  doi: 10.1021/nn2013707
– volume: 127
  start-page: 570
  year: 2001
  ident: 10.1016/j.biomaterials.2013.12.095_bib40
  article-title: Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s004320100264
– volume: 3
  start-page: 761
  year: 2008
  ident: 10.1016/j.biomaterials.2013.12.095_bib3
  article-title: Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer
  publication-title: Nanomedicine
  doi: 10.2217/17435889.3.6.761
– volume: 31
  start-page: 1821
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib21
  article-title: Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.10.058
– volume: 67
  start-page: 1024
  year: 2006
  ident: 10.1016/j.biomaterials.2013.12.095_bib24
  article-title: Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2006.01.033
– volume: 130
  start-page: 86
  year: 2008
  ident: 10.1016/j.biomaterials.2013.12.095_bib31
  article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.05.021
– volume: 19
  start-page: 2040
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib10
  article-title: A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.174
– volume: 1
  start-page: 373
  year: 2012
  ident: 10.1016/j.biomaterials.2013.12.095_bib7
  article-title: Advanced materials for co-delivery of drugs and genes in cancer therapy
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201200109
– volume: 7
  start-page: 398
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib32
  article-title: Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.7.398
– volume: 181
  start-page: 1792
  year: 2008
  ident: 10.1016/j.biomaterials.2013.12.095_bib27
  article-title: Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2008.03.032
– volume: 80
  start-page: 239
  year: 2003
  ident: 10.1016/j.biomaterials.2013.12.095_bib36
  article-title: The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), proapoptotic protein (p21WAF-1) and anti-apoptotic protein (bcl-2) in breast cancer cells
  publication-title: Breast Cancer Res Treat
  doi: 10.1023/A:1024995202135
– volume: 128
  start-page: 36
  year: 2006
  ident: 10.1016/j.biomaterials.2013.12.095_bib16
  article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution
  publication-title: J Am Chem Soc
  doi: 10.1021/ja056652a
– volume: 7
  start-page: 841
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib6
  article-title: Engineering nanocarriers for siRNA delivery
  publication-title: Small
  doi: 10.1002/smll.201001389
– volume: 390
  start-page: 275
  year: 2013
  ident: 10.1016/j.biomaterials.2013.12.095_bib25
  article-title: Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2012.09.033
– start-page: 47
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib2
  article-title: Mechanisms of multidrug resistance in cancer
– volume: 25
  start-page: 3059
  year: 2004
  ident: 10.1016/j.biomaterials.2013.12.095_bib23
  article-title: Layered double hydroxide as an efficient drug reservoir for folate derivatives
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.09.083
– start-page: 373
  year: 2004
  ident: 10.1016/j.biomaterials.2013.12.095_bib14
  article-title: Layer double hydroxides
– volume: 1
  start-page: 323
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib9
  article-title: Nanoparticle-assisted combination therapies for effective cancer treatment
  publication-title: Ther Deliv
  doi: 10.4155/tde.10.13
– volume: 47
  start-page: 908
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib19
  article-title: Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release
  publication-title: Chem Commun
  doi: 10.1039/C0CC01313G
– volume: 35
  start-page: 495
  year: 2007
  ident: 10.1016/j.biomaterials.2013.12.095_bib39
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 5
  start-page: 2673
  year: 2009
  ident: 10.1016/j.biomaterials.2013.12.095_bib11
  article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells
  publication-title: Small
  doi: 10.1002/smll.200900621
– volume: 38
  start-page: 941
  year: 2012
  ident: 10.1016/j.biomaterials.2013.12.095_bib18
  article-title: A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2011.08.014
– volume: 13
  start-page: 1253
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib30
  article-title: Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-010-0118-9
– volume: 32
  start-page: 8281
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib12
  article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.032
– volume: 69
  start-page: 1528
  year: 2008
  ident: 10.1016/j.biomaterials.2013.12.095_bib20
  article-title: Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2007.10.140
– volume: 5
  start-page: 4314
  year: 2013
  ident: 10.1016/j.biomaterials.2013.12.095_bib29
  article-title: A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy
  publication-title: Nanoscale
  doi: 10.1039/c3nr00781b
– volume: 48
  start-page: 280
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib33
  article-title: Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2009.11.032
– volume: 110
  start-page: 16923
  year: 2006
  ident: 10.1016/j.biomaterials.2013.12.095_bib26
  article-title: Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions
  publication-title: J Phys Chem B
  doi: 10.1021/jp062281o
– volume: 17
  start-page: 1411
  year: 2006
  ident: 10.1016/j.biomaterials.2013.12.095_bib34
  article-title: Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis
  publication-title: Bioconjug Chem
  doi: 10.1021/bc0601323
– volume: 32
  start-page: 9785
  year: 2011
  ident: 10.1016/j.biomaterials.2013.12.095_bib5
  article-title: Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.017
– volume: 31
  start-page: 8770
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib22
  article-title: Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.077
– volume: 6
  start-page: 907
  year: 2009
  ident: 10.1016/j.biomaterials.2013.12.095_bib15
  article-title: Layered double hydroxide nanoparticles in gene and drug delivery
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425240903130585
– volume: 20
  start-page: 9463
  year: 2010
  ident: 10.1016/j.biomaterials.2013.12.095_bib17
  article-title: Anticancer drug encapsulated in inorganic lattice can overcome drug resistance
  publication-title: J Mater Chem
  doi: 10.1039/b925831k
– volume: 2
  start-page: 751
  year: 2007
  ident: 10.1016/j.biomaterials.2013.12.095_bib1
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2007.387
– volume: 33
  start-page: 1170
  year: 2012
  ident: 10.1016/j.biomaterials.2013.12.095_bib13
  article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.057
– volume: 83
  start-page: 1104
  year: 2012
  ident: 10.1016/j.biomaterials.2013.12.095_bib38
  article-title: Nanoparticle-based combination therapy toward overcoming drug resistance in cancer
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2012.01.008
– volume: 3
  start-page: 330
  year: 2003
  ident: 10.1016/j.biomaterials.2013.12.095_bib4
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1074
– volume: 33
  start-page: 1428
  year: 2012
  ident: 10.1016/j.biomaterials.2013.12.095_bib8
  article-title: In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.043
– volume: 178
  start-page: 736
  year: 2005
  ident: 10.1016/j.biomaterials.2013.12.095_bib28
  article-title: Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2004.11.005
– volume: 32
  start-page: 751
  year: 2006
  ident: 10.1016/j.biomaterials.2013.12.095_bib35
  article-title: Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2006.01.011
SSID ssj0014042
Score 2.565854
Snippet In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell...
Abstract In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3331
SubjectTerms Advanced Basic Science
anion exchange capacity
Antineoplastic Agents - administration & dosage
Apoptosis
Blotting, Western
cell death
Cell Line, Tumor
Co-delivery system
cytotoxicity
Dentistry
drug resistance
Electrostatic assembly
fluorouracil
Humans
Hydroxides - chemistry
Layered double hydroxide
mitochondria
Nanoparticles
neoplasms
RNA, Small Interfering - administration & dosage
small interfering RNA
Title Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213015913
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213015913
https://www.ncbi.nlm.nih.gov/pubmed/24456604
https://www.proquest.com/docview/1494310922
https://www.proquest.com/docview/2000220520
Volume 35
WOSCitedRecordID wos000332188400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhA8IBgfKx-TkRAvVVASJ3EsnqqqE6BREOpE3qwkdlimKumaBrX89ZwdJ83EKpUHXqLIivPh--Xu7Pv5DqG3BKx2IlQNQEGkBRYPzsDNsFKPBqkIBJUs0cUm6HQaRhH7ZqhDlS4nQIsiXK_Z4r-KGtpA2Grr7D-Iu7spNMA5CB2OIHY47iX4cWkJOVd0Cx08r_Lv01FlcrKucitVYl4OxbL-WQ1rvVIwjzeqYudQlLXaR3W5EctynQs5LOIC5tSGOncj_JuX4Ok2X9NRepp91nnH6Kk1f08Wm65p3G4FyeXvy9LYzF77D5lv6v46hONtiVhGdYYwH_WZ3cSo5S1tRt826UlaXNk97UnM7q2_1HqzwnD1Pul9naLlEb2Uy_ytMWsD-NOv_Ozi_JzPJtHs3eLaUmXGVDje1Fw5QEcu9RmowaPRp0n0uQs8ebaut9S9eJunVlMCdz1-l0-za86ifZfZI_TQTDrwqJHkY3RHFsfoQS8V5TG698WQLJ6gqIcgXGa4QRAGBOEegrBGENYIwgZBuEEQ7hCEbyDoKbo4m8zGHy1TgMNKfeKuLBqILA5C4qRhltHATm2m_OnQoZlPXZKBnQ9kApMCQgIZx07I4sTzBTi5CRMB3OMZOizKQp4gLKR0fBhUL1D5iGw7DhNw3EkqmM0k9b0BYu0Q8tRkp1dFUua8pSFe8f7wczX83HE5DP8Aka7vosnRslevD62keLsLGewmB8zt1Zve1ltWRhNU3OEVXKnZky5TefrAlPrMIQP0poUFB1Wu4nNxIcsaesDQqES9rrv7GldnrFLktQF63mCq-2bw1GFyZnsv9njCS3R_-xO_QoerZS1fo7vpr1VeLU_RAY3CU_Nv_AECndaU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-delivery+of+siRNAs+and+anti-cancer+drugs+using+layered+double+hydroxide+nanoparticles&rft.jtitle=Biomaterials&rft.au=Li%2C+Li&rft.au=Gu%2C+Wenyi&rft.au=Chen%2C+Jiezhong&rft.au=Chen%2C+Weiyu&rft.date=2014-03-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=35&rft.issue=10&rft.spage=3331&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.12.095&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00037%2Fcov150h.gif