Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles
In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU i...
Gespeichert in:
| Veröffentlicht in: | Biomaterials Jg. 35; H. 10; S. 3331 - 3339 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Ltd
01.03.2014
|
| Schlagworte: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment. |
|---|---|
| AbstractList | Abstract In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment. In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment.In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment. In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell Death siRNA (CD-siRNA) for effective cancer treatment. The strategy takes advantage of the LDH anion exchange capacity to intercalate 5-FU into its interlayer spacing and load siRNA on the surface of LDH nanoparticles. LDH nanoparticles have been previously demonstrated as an effective cellular delivery system for 5-FU and siRNA separately in various investigations. More excitedly, the combination of CD-siRNA and anticancer drug 5-FU with the same LDH particles significantly enhanced cytotoxicity to three cancer cell lines, e.g. MCF-7, U2OS and HCT-116, compared to the single treatment with either CD-siRNA or 5-FU. This enhancement is probably a result of coordinate mitochondrial damage process. Thus, the strategy to co-deliver siRNA and an anticancer drug by LDHs has great potential to overcome the drug resistance and enhance cancer treatment. |
| Author | Li, Li Xu, Zhi P. Chen, Jiezhong Gu, Wenyi Chen, Weiyu |
| Author_xml | – sequence: 1 givenname: Li surname: Li fullname: Li, Li organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 2 givenname: Wenyi surname: Gu fullname: Gu, Wenyi email: w.gu@uq.edu.au organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 3 givenname: Jiezhong surname: Chen fullname: Chen, Jiezhong organization: School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia – sequence: 4 givenname: Weiyu surname: Chen fullname: Chen, Weiyu organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia – sequence: 5 givenname: Zhi P. surname: Xu fullname: Xu, Zhi P. email: gordonxu@uq.edu.au organization: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24456604$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAUhoOsuLOrf0GKV9605ruNF-I6-AWLgh_gXUiT0zVjJxmTdrH_3pRZRQRxL0IIPO9DOO85QychBkDoEcENwUQ-2TW9j3szQfJmzA3FhDWENliJO2hDurarhcLiBG0w4bRWktBTdJbzDpc35vQeOqWcCykx36Av21g7GP01pKWKQ5X9h3cXuTLBlTP52ppgIVUuzVe5mrMPV9VoFkjgKhfnfoTq6-JS_OEdVMGEeDBp8naEfB_dHcrv4MHNfY4-v3r5afumvnz_-u324rK2gtGpbqUbjOwYsd0wtBJbrDqmaEfaQbSUDdATCT3mgjEJxpBOmZ4LJznrlZPFcY4eH72HFL_PkCe999nCOJoAcc6aYowpxYLi_6KEK84IVpQW9OENOvd7cPqQ_N6kRf8aXAGeHgGbYs4Jht8IwXptSe_0ny3ptSVNqC4tlfDzv8LWT2byMUzJ-PF2imdHBZTZXntI2o4-eGvGb7BA3sU5hTVDdC4B_XFdhXUTCMNEKMKK4MW_BdpFf5tf_ASuH8rZ |
| CitedBy_id | crossref_primary_10_1002_adtp_202200147 crossref_primary_10_3390_ma15227977 crossref_primary_10_1016_j_postharvbio_2022_112051 crossref_primary_10_1134_S1070427217010189 crossref_primary_10_1016_j_colsurfb_2017_07_077 crossref_primary_10_1016_j_nantod_2023_101788 crossref_primary_10_1002_pi_4824 crossref_primary_10_2147_IJN_S257700 crossref_primary_10_1016_j_arr_2015_03_001 crossref_primary_10_1016_j_clay_2019_105196 crossref_primary_10_1016_j_jtice_2015_06_040 crossref_primary_10_1016_j_jphotochem_2017_05_008 crossref_primary_10_1007_s00604_019_3371_3 crossref_primary_10_1007_s11814_021_0892_3 crossref_primary_10_1016_j_jece_2024_115275 crossref_primary_10_1002_wnan_1679 crossref_primary_10_1016_j_molstruc_2024_139616 crossref_primary_10_1016_j_clay_2019_04_022 crossref_primary_10_1016_j_clay_2022_106717 crossref_primary_10_1039_D1BM01806J crossref_primary_10_3390_ijms15057409 crossref_primary_10_1016_j_ccr_2021_214345 crossref_primary_10_3389_fbioe_2021_769178 crossref_primary_10_1039_C6CC09510K crossref_primary_10_1016_j_ijpharm_2023_123640 crossref_primary_10_1016_j_jddst_2023_104829 crossref_primary_10_1039_D2BM01432G crossref_primary_10_1016_j_pharmthera_2021_107871 crossref_primary_10_1002_chem_201702835 crossref_primary_10_3390_pharmaceutics13111803 crossref_primary_10_3390_cryst9070361 crossref_primary_10_1007_s40005_017_0321_0 crossref_primary_10_1088_1468_6996_16_5_054205 crossref_primary_10_1007_s42860_019_0006_z crossref_primary_10_3390_pharmaceutics6040584 crossref_primary_10_1016_j_cap_2019_08_003 crossref_primary_10_1021_acsbiomaterials_7b00569 crossref_primary_10_1016_j_actbio_2015_10_029 crossref_primary_10_1002_cnma_201700125 crossref_primary_10_1002_jcp_28281 crossref_primary_10_1002_adma_202502375 crossref_primary_10_1016_j_colsurfb_2022_113066 crossref_primary_10_1016_j_jssc_2017_10_031 crossref_primary_10_1016_j_eurpolymj_2020_109675 crossref_primary_10_1016_j_matchemphys_2015_03_011 crossref_primary_10_1002_smll_201503359 crossref_primary_10_1016_j_ejpb_2025_114838 crossref_primary_10_1016_j_colsurfa_2019_124077 crossref_primary_10_1016_j_cej_2023_146449 crossref_primary_10_1016_j_jconrel_2015_05_262 crossref_primary_10_1016_j_mtchem_2020_100295 crossref_primary_10_3389_fimmu_2019_02022 crossref_primary_10_1016_j_clay_2015_04_018 crossref_primary_10_1016_j_chemosphere_2018_03_166 crossref_primary_10_1039_C6TB03365B crossref_primary_10_1039_D2CS00236A crossref_primary_10_1002_smll_201704465 crossref_primary_10_1016_j_cej_2023_144020 crossref_primary_10_1016_j_clay_2020_105891 crossref_primary_10_1002_adma_201902333 crossref_primary_10_1016_j_matdes_2020_109298 crossref_primary_10_1016_j_pmatsci_2019_100631 crossref_primary_10_1039_D3RA08201F crossref_primary_10_1016_j_pmatsci_2023_101220 crossref_primary_10_1002_smll_201902262 crossref_primary_10_1016_j_jallcom_2017_12_299 crossref_primary_10_1002_advs_201801155 crossref_primary_10_1016_j_nano_2017_06_006 crossref_primary_10_1016_j_polymertesting_2023_107979 crossref_primary_10_1016_j_nxsust_2024_100060 crossref_primary_10_1016_j_nano_2019_04_011 crossref_primary_10_1016_j_ijpharm_2020_119921 crossref_primary_10_1016_j_tplants_2017_03_014 crossref_primary_10_1016_j_xphs_2021_01_023 crossref_primary_10_1002_slct_202300967 crossref_primary_10_1016_j_jcis_2019_08_027 crossref_primary_10_1038_s41598_019_48180_7 crossref_primary_10_1016_j_eti_2024_104003 crossref_primary_10_61186_jcc_5_2_5 crossref_primary_10_1016_j_jddst_2023_104294 crossref_primary_10_1016_j_jiec_2020_05_021 crossref_primary_10_1039_C4TB01989J crossref_primary_10_1007_s12034_019_1976_0 crossref_primary_10_1016_j_actbio_2020_01_008 crossref_primary_10_1016_j_biomaterials_2014_07_055 crossref_primary_10_1016_j_msec_2017_03_009 crossref_primary_10_1016_j_clay_2022_106514 crossref_primary_10_1186_s12951_022_01565_9 crossref_primary_10_1016_j_clay_2018_08_020 crossref_primary_10_1039_C4CC09879J crossref_primary_10_3389_fphar_2023_1111991 crossref_primary_10_1002_jgm_2998 crossref_primary_10_1007_s10853_017_0847_6 crossref_primary_10_1007_s12274_017_1619_y crossref_primary_10_1016_j_ijhydene_2024_12_179 crossref_primary_10_3390_nano9020159 crossref_primary_10_1002_aenm_201801804 crossref_primary_10_1016_j_jiec_2017_05_011 crossref_primary_10_3390_nano11123315 crossref_primary_10_1016_j_jallcom_2021_161184 crossref_primary_10_1039_C7DT03725B crossref_primary_10_1016_j_molliq_2022_120717 crossref_primary_10_1002_smtd_201900343 crossref_primary_10_1016_j_addr_2022_114270 crossref_primary_10_3390_ijms20153764 crossref_primary_10_1016_j_biomaterials_2018_04_031 crossref_primary_10_1016_j_ijhydene_2019_04_052 crossref_primary_10_1016_j_ccr_2016_04_004 crossref_primary_10_1016_j_colsurfb_2025_115031 crossref_primary_10_1371_journal_pone_0136530 crossref_primary_10_3390_molecules21091249 crossref_primary_10_1016_j_apsb_2015_03_001 crossref_primary_10_1016_j_bioactmat_2024_04_033 crossref_primary_10_1007_s43207_020_00090_5 crossref_primary_10_1038_s41392_017_0004_3 crossref_primary_10_1016_j_nano_2022_102544 crossref_primary_10_3390_ma12213580 crossref_primary_10_1002_admi_202200373 crossref_primary_10_1089_ees_2020_0105 crossref_primary_10_1016_j_jddst_2022_103191 crossref_primary_10_1016_j_biopha_2019_109561 crossref_primary_10_3390_pharmaceutics12121219 crossref_primary_10_1002_anie_201510844 crossref_primary_10_1016_j_ccr_2017_06_024 crossref_primary_10_1002_wnan_1715 crossref_primary_10_1002_smll_202002115 crossref_primary_10_1021_acsbiomaterials_9b01894 crossref_primary_10_1016_j_mtnano_2021_100132 crossref_primary_10_1007_s13762_024_05960_7 crossref_primary_10_3390_nano9020208 crossref_primary_10_1007_s11051_024_06074_4 crossref_primary_10_1007_s12247_014_9183_4 crossref_primary_10_1016_j_biomaterials_2018_05_015 crossref_primary_10_1039_D1RA03289E crossref_primary_10_1002_adfm_201909745 crossref_primary_10_1016_j_teac_2017_10_003 crossref_primary_10_1016_j_jconrel_2023_01_043 crossref_primary_10_1016_j_cej_2024_149961 crossref_primary_10_1007_s10876_023_02411_0 crossref_primary_10_1039_D1BM00765C crossref_primary_10_4155_tde_2015_0003 crossref_primary_10_1021_acsbiomaterials_5c00333 crossref_primary_10_1016_j_jcis_2016_02_042 crossref_primary_10_1002_cnma_202400472 crossref_primary_10_1002_jps_24507 crossref_primary_10_1002_sstr_202000112 crossref_primary_10_1016_j_jcis_2015_07_044 crossref_primary_10_2147_IJN_S457782 crossref_primary_10_3390_ijms20040965 crossref_primary_10_1016_j_apsusc_2017_07_207 crossref_primary_10_1186_s12951_025_03489_6 crossref_primary_10_3390_ijms22115433 crossref_primary_10_1186_s12951_022_01364_2 crossref_primary_10_3390_polym13091515 crossref_primary_10_1007_s12209_016_2710_2 crossref_primary_10_1002_smll_201902309 crossref_primary_10_1116_1_4936393 crossref_primary_10_4274_tjps_galenos_2021_26529 crossref_primary_10_3390_ma16196523 crossref_primary_10_1002_admi_202400343 crossref_primary_10_1002_adma_201700373 crossref_primary_10_2147_IJN_S380515 crossref_primary_10_1002_adma_201502422 crossref_primary_10_1002_smll_202304862 crossref_primary_10_1038_s41598_017_08238_w crossref_primary_10_1016_j_intimp_2022_109022 crossref_primary_10_1038_s41392_020_0183_1 crossref_primary_10_1002_wnan_1596 crossref_primary_10_1002_adma_202501256 crossref_primary_10_1016_j_cis_2021_102598 crossref_primary_10_1002_macp_201500464 crossref_primary_10_1039_C7CC05081J crossref_primary_10_2217_nnm_2018_0237 crossref_primary_10_1016_j_impact_2020_100222 crossref_primary_10_1016_j_molliq_2019_110989 crossref_primary_10_1080_09205063_2021_1967701 crossref_primary_10_1016_j_jconrel_2021_05_011 crossref_primary_10_1002_ange_201510844 crossref_primary_10_1016_j_colsurfb_2017_06_002 crossref_primary_10_1016_j_apsusc_2018_10_202 crossref_primary_10_1016_j_jssc_2020_121291 crossref_primary_10_1016_j_xphs_2022_05_012 crossref_primary_10_1016_j_ejps_2021_105922 crossref_primary_10_1016_j_nano_2021_102369 crossref_primary_10_1002_smtd_202301005 crossref_primary_10_1007_s12274_014_0552_6 crossref_primary_10_1016_j_ijbiomac_2025_147495 crossref_primary_10_1016_j_envres_2023_117171 crossref_primary_10_1016_j_actbio_2015_11_041 crossref_primary_10_1021_acsami_6b16509 crossref_primary_10_1016_j_actbio_2016_02_041 crossref_primary_10_1080_03639045_2023_2182125 crossref_primary_10_1186_s12951_024_02319_5 crossref_primary_10_3748_wjg_v29_i13_1911 crossref_primary_10_1002_tcr_201700091 crossref_primary_10_1007_s11814_024_00205_2 crossref_primary_10_1016_j_jcis_2024_01_077 crossref_primary_10_1016_j_ijbiomac_2018_05_077 crossref_primary_10_2217_nnm_2018_0252 crossref_primary_10_1016_j_snb_2018_06_038 crossref_primary_10_1002_rmv_1825 |
| Cites_doi | 10.1021/nn2013707 10.1007/s004320100264 10.2217/17435889.3.6.761 10.1016/j.biomaterials.2009.10.058 10.1016/j.jpcs.2006.01.033 10.1016/j.jconrel.2008.05.021 10.1038/mt.2011.174 10.1002/adhm.201200109 10.7150/ijms.7.398 10.1016/j.jssc.2008.03.032 10.1023/A:1024995202135 10.1021/ja056652a 10.1002/smll.201001389 10.1016/j.jcis.2012.09.033 10.1016/j.biomaterials.2003.09.083 10.4155/tde.10.13 10.1039/C0CC01313G 10.1080/01926230701320337 10.1002/smll.200900621 10.1016/j.ceramint.2011.08.014 10.1007/s11051-010-0118-9 10.1016/j.biomaterials.2011.07.032 10.1016/j.jpcs.2007.10.140 10.1039/c3nr00781b 10.1016/j.clay.2009.11.032 10.1021/jp062281o 10.1021/bc0601323 10.1016/j.biomaterials.2011.09.017 10.1016/j.biomaterials.2010.07.077 10.1517/17425240903130585 10.1039/b925831k 10.1038/nnano.2007.387 10.1016/j.biomaterials.2011.10.057 10.1016/j.bcp.2012.01.008 10.1038/nrc1074 10.1016/j.biomaterials.2011.10.043 10.1016/j.jssc.2004.11.005 10.1016/j.ultrasmedbio.2006.01.011 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2013.12.095 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Dentistry |
| EISSN | 1878-5905 |
| EndPage | 3339 |
| ExternalDocumentID | 24456604 10_1016_j_biomaterials_2013_12_095 1_s2_0_S0142961213015913 S0142961213015913 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c532t-76dfa6831c8ff760c098392817f5723feb16eb045336eaa189ab45d643b9d6c53 |
| ISICitedReferencesCount | 267 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332188400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Wed Oct 01 14:53:06 EDT 2025 Sun Sep 28 01:35:03 EDT 2025 Mon Jul 21 05:55:04 EDT 2025 Sat Nov 29 07:26:37 EST 2025 Tue Nov 18 22:25:14 EST 2025 Sun Feb 23 10:18:52 EST 2025 Tue Oct 14 19:31:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Co-delivery system Layered double hydroxide Electrostatic assembly Apoptosis |
| Language | English |
| License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c532t-76dfa6831c8ff760c098392817f5723feb16eb045336eaa189ab45d643b9d6c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24456604 |
| PQID | 1494310922 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000220520 proquest_miscellaneous_1494310922 pubmed_primary_24456604 crossref_primary_10_1016_j_biomaterials_2013_12_095 crossref_citationtrail_10_1016_j_biomaterials_2013_12_095 elsevier_clinicalkeyesjournals_1_s2_0_S0142961213015913 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_12_095 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Cooper, Zhou, Bartlett, Xu (bib25) 2013; 390 Cheng, Cao, Chen, Yu, Shuai (bib13) 2012; 33 Choi, Choi, Oh, Oh, Park, Choy (bib17) 2010; 20 Chakraborty, Dasgupta, Sengupta, Chakraborty, Ghosh, Ghosh (bib18) 2012; 38 Ladewig, Niebert, Xu, Gray, Lu (bib33) 2010; 48 Chen, Yee, Gong, Zhang, Xu (bib29) 2013; 5 Ladewig, Niebert, Xu, Gray, Lu (bib21) 2010; 31 Oh, Park, Kim, Jung, Kang, Choy (bib24) 2006; 67 Fan, Hu, Xu, Liang, Tang, Yang (bib8) 2012; 33 Ladewig, Xu, Lu (bib15) 2009; 6 Khan, Ong, Wiradharma, Attia, Yang (bib7) 2012; 1 Nakamura, Abu Lila, Matsunaga, Doi, Ishida, Kiwada (bib10) 2011; 19 Chumakova, Liopo, Evers, Esenaliev (bib35) 2006; 32 Saad, Garbuzenko, Minko (bib3) 2008; 3 Oh, Choi, Kim, Choy (bib34) 2006; 17 Xu, Stevenson, Lu, Lu (bib26) 2006; 110 Tan, Kiatwuthinon, Roh, Kahn, Luo (bib6) 2011; 7 Liu, Hou, Li, Li, Liu (bib27) 2008; 181 Gillet, Gottesman (bib2) 2010 Xu, Gu, Cheng, Rasoul, Whittaker, Lu (bib30) 2011; 13 Wang, Wang, Gao, Xu (bib28) 2005; 178 Kang, Suh, Jang, Park (bib40) 2001; 127 Hu, Aryal, Zhang (bib9) 2010; 1 Xu, Brateman, Yarberry (bib14) 2004 Xu, Niebert, Porazik, Walker, Cooper, Middelberg (bib31) 2008; 130 Chen, Zhang, Wei, Stueber, Taratula, Minko (bib11) 2009; 5 Peer, Karp, Hong, Farokhzad, Margalit, Langer (bib1) 2007; 2 Pan, Zhang, Fan, Chen, Duan (bib19) 2011; 47 Choy, Jung, Oh, Park, Jeong, Kang (bib23) 2004; 25 Hu, Zhang (bib38) 2012; 83 Choi, Oh, Choy (bib20) 2008; 69 Xu, Stevenson, Lu, Lu, Bartlett, Gray (bib16) 2006; 128 Xiong, Lavasanifar (bib37) 2011; 5 Chow, Loo (bib36) 2003; 80 Chang, Suh, Kim, Shim, Lee, Han (bib5) 2011; 32 Wang, Zhao, Wu, Hu, Nan, Nie (bib12) 2011; 32 Longley, Harkin, Johnston (bib4) 2003; 3 Wong, Markham, Xu, Chen, Lu, Bartlett (bib22) 2010; 31 Elmore (bib39) 2007; 35 Yassin, Anwer, Mowafy, El-Bagory, Bayomi, Alsarra (bib32) 2010; 7 Hu (10.1016/j.biomaterials.2013.12.095_bib38) 2012; 83 Chen (10.1016/j.biomaterials.2013.12.095_bib11) 2009; 5 Gillet (10.1016/j.biomaterials.2013.12.095_bib2) 2010 Nakamura (10.1016/j.biomaterials.2013.12.095_bib10) 2011; 19 Wong (10.1016/j.biomaterials.2013.12.095_bib22) 2010; 31 Chen (10.1016/j.biomaterials.2013.12.095_bib29) 2013; 5 Xu (10.1016/j.biomaterials.2013.12.095_bib14) 2004 Ladewig (10.1016/j.biomaterials.2013.12.095_bib21) 2010; 31 Xiong (10.1016/j.biomaterials.2013.12.095_bib37) 2011; 5 Choi (10.1016/j.biomaterials.2013.12.095_bib20) 2008; 69 Chakraborty (10.1016/j.biomaterials.2013.12.095_bib18) 2012; 38 Xu (10.1016/j.biomaterials.2013.12.095_bib30) 2011; 13 Peer (10.1016/j.biomaterials.2013.12.095_bib1) 2007; 2 Wang (10.1016/j.biomaterials.2013.12.095_bib28) 2005; 178 Chow (10.1016/j.biomaterials.2013.12.095_bib36) 2003; 80 Cheng (10.1016/j.biomaterials.2013.12.095_bib13) 2012; 33 Hu (10.1016/j.biomaterials.2013.12.095_bib9) 2010; 1 Choi (10.1016/j.biomaterials.2013.12.095_bib17) 2010; 20 Pan (10.1016/j.biomaterials.2013.12.095_bib19) 2011; 47 Chen (10.1016/j.biomaterials.2013.12.095_bib25) 2013; 390 Fan (10.1016/j.biomaterials.2013.12.095_bib8) 2012; 33 Chang (10.1016/j.biomaterials.2013.12.095_bib5) 2011; 32 Oh (10.1016/j.biomaterials.2013.12.095_bib34) 2006; 17 Chumakova (10.1016/j.biomaterials.2013.12.095_bib35) 2006; 32 Saad (10.1016/j.biomaterials.2013.12.095_bib3) 2008; 3 Khan (10.1016/j.biomaterials.2013.12.095_bib7) 2012; 1 Yassin (10.1016/j.biomaterials.2013.12.095_bib32) 2010; 7 Elmore (10.1016/j.biomaterials.2013.12.095_bib39) 2007; 35 Xu (10.1016/j.biomaterials.2013.12.095_bib26) 2006; 110 Tan (10.1016/j.biomaterials.2013.12.095_bib6) 2011; 7 Ladewig (10.1016/j.biomaterials.2013.12.095_bib15) 2009; 6 Wang (10.1016/j.biomaterials.2013.12.095_bib12) 2011; 32 Kang (10.1016/j.biomaterials.2013.12.095_bib40) 2001; 127 Oh (10.1016/j.biomaterials.2013.12.095_bib24) 2006; 67 Liu (10.1016/j.biomaterials.2013.12.095_bib27) 2008; 181 Xu (10.1016/j.biomaterials.2013.12.095_bib16) 2006; 128 Ladewig (10.1016/j.biomaterials.2013.12.095_bib33) 2010; 48 Choy (10.1016/j.biomaterials.2013.12.095_bib23) 2004; 25 Longley (10.1016/j.biomaterials.2013.12.095_bib4) 2003; 3 Xu (10.1016/j.biomaterials.2013.12.095_bib31) 2008; 130 |
| References_xml | – volume: 31 start-page: 8770 year: 2010 end-page: 8779 ident: bib22 article-title: Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles publication-title: Biomaterials – volume: 13 start-page: 1253 year: 2011 end-page: 1264 ident: bib30 article-title: Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles publication-title: J Nanopart Res – volume: 1 start-page: 373 year: 2012 end-page: 392 ident: bib7 article-title: Advanced materials for co-delivery of drugs and genes in cancer therapy publication-title: Adv Healthc Mater – start-page: 47 year: 2010 end-page: 76 ident: bib2 article-title: Mechanisms of multidrug resistance in cancer publication-title: Multi-drug resistance in cancer – volume: 33 start-page: 1170 year: 2012 end-page: 1179 ident: bib13 article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat publication-title: Biomaterials – volume: 127 start-page: 570 year: 2001 end-page: 576 ident: bib40 article-title: Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells publication-title: J Cancer Res Clin Oncol – volume: 1 start-page: 323 year: 2010 end-page: 334 ident: bib9 article-title: Nanoparticle-assisted combination therapies for effective cancer treatment publication-title: Ther Deliv – volume: 35 start-page: 495 year: 2007 end-page: 516 ident: bib39 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol – volume: 47 start-page: 908 year: 2011 end-page: 910 ident: bib19 article-title: Nearly monodispersed core-shell structural Fe publication-title: Chem Commun – volume: 5 start-page: 4314 year: 2013 end-page: 4320 ident: bib29 article-title: A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy publication-title: Nanoscale – volume: 32 start-page: 9785 year: 2011 end-page: 9795 ident: bib5 article-title: Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA publication-title: Biomaterials – volume: 38 start-page: 941 year: 2012 end-page: 949 ident: bib18 article-title: A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate publication-title: Ceram Int – volume: 25 start-page: 3059 year: 2004 end-page: 3064 ident: bib23 article-title: Layered double hydroxide as an efficient drug reservoir for folate derivatives publication-title: Biomaterials – volume: 48 start-page: 280 year: 2010 end-page: 289 ident: bib33 article-title: Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles publication-title: Appl Clay Sci – volume: 80 start-page: 239 year: 2003 end-page: 244 ident: bib36 article-title: The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), proapoptotic protein (p21WAF-1) and anti-apoptotic protein (bcl-2) in breast cancer cells publication-title: Breast Cancer Res Treat – volume: 3 start-page: 761 year: 2008 end-page: 776 ident: bib3 article-title: Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer publication-title: Nanomedicine – volume: 5 start-page: 5202 year: 2011 end-page: 5213 ident: bib37 article-title: Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin publication-title: ACS Nano – volume: 33 start-page: 1428 year: 2012 end-page: 1436 ident: bib8 article-title: In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL publication-title: Biomaterials – volume: 31 start-page: 1821 year: 2010 end-page: 1829 ident: bib21 article-title: Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles publication-title: Biomaterials – volume: 110 start-page: 16923 year: 2006 end-page: 16929 ident: bib26 article-title: Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions publication-title: J Phys Chem B – volume: 5 start-page: 2673 year: 2009 end-page: 2677 ident: bib11 article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells publication-title: Small – volume: 32 start-page: 8281 year: 2011 end-page: 8290 ident: bib12 article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles publication-title: Biomaterials – volume: 83 start-page: 1104 year: 2012 end-page: 1111 ident: bib38 article-title: Nanoparticle-based combination therapy toward overcoming drug resistance in cancer publication-title: Biochem Pharmacol – volume: 7 start-page: 841 year: 2011 end-page: 856 ident: bib6 article-title: Engineering nanocarriers for siRNA delivery publication-title: Small – start-page: 373 year: 2004 ident: bib14 article-title: Layer double hydroxides publication-title: Handbook of layered materials – volume: 181 start-page: 1792 year: 2008 end-page: 1797 ident: bib27 article-title: Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide publication-title: J Solid State Chem – volume: 178 start-page: 736 year: 2005 end-page: 741 ident: bib28 article-title: Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil publication-title: J Solid State Chem – volume: 17 start-page: 1411 year: 2006 end-page: 1417 ident: bib34 article-title: Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis publication-title: Bioconjug Chem – volume: 20 start-page: 9463 year: 2010 end-page: 9469 ident: bib17 article-title: Anticancer drug encapsulated in inorganic lattice can overcome drug resistance publication-title: J Mater Chem – volume: 7 start-page: 398 year: 2010 end-page: 408 ident: bib32 article-title: Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer publication-title: Int J Med Sci – volume: 6 start-page: 907 year: 2009 end-page: 922 ident: bib15 article-title: Layered double hydroxide nanoparticles in gene and drug delivery publication-title: Expert Opin Drug Deliv – volume: 2 start-page: 751 year: 2007 end-page: 760 ident: bib1 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat Nanotechnol – volume: 390 start-page: 275 year: 2013 end-page: 281 ident: bib25 article-title: Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery publication-title: J Colloid Interface Sci – volume: 3 start-page: 330 year: 2003 end-page: 338 ident: bib4 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat Rev Cancer – volume: 67 start-page: 1024 year: 2006 end-page: 1027 ident: bib24 article-title: Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system publication-title: J Phys Chem Solids – volume: 19 start-page: 2040 year: 2011 end-page: 2047 ident: bib10 article-title: A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA publication-title: Mol Ther – volume: 128 start-page: 36 year: 2006 end-page: 37 ident: bib16 article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution publication-title: J Am Chem Soc – volume: 69 start-page: 1528 year: 2008 end-page: 1532 ident: bib20 article-title: Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents publication-title: J Phys Chem Solids – volume: 32 start-page: 751 year: 2006 end-page: 758 ident: bib35 article-title: Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability publication-title: Ultrasound Med Biol – volume: 130 start-page: 86 year: 2008 end-page: 94 ident: bib31 article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles publication-title: J Control Release – volume: 5 start-page: 5202 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib37 article-title: Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin publication-title: ACS Nano doi: 10.1021/nn2013707 – volume: 127 start-page: 570 year: 2001 ident: 10.1016/j.biomaterials.2013.12.095_bib40 article-title: Thymidine-dependent attenuation of the mitochondrial apoptotic pathway in adenosine-induced apoptosis of HL-60 cells publication-title: J Cancer Res Clin Oncol doi: 10.1007/s004320100264 – volume: 3 start-page: 761 year: 2008 ident: 10.1016/j.biomaterials.2013.12.095_bib3 article-title: Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer publication-title: Nanomedicine doi: 10.2217/17435889.3.6.761 – volume: 31 start-page: 1821 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib21 article-title: Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.10.058 – volume: 67 start-page: 1024 year: 2006 ident: 10.1016/j.biomaterials.2013.12.095_bib24 article-title: Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2006.01.033 – volume: 130 start-page: 86 year: 2008 ident: 10.1016/j.biomaterials.2013.12.095_bib31 article-title: Subcellular compartment targeting of layered double hydroxide nanoparticles publication-title: J Control Release doi: 10.1016/j.jconrel.2008.05.021 – volume: 19 start-page: 2040 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib10 article-title: A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA publication-title: Mol Ther doi: 10.1038/mt.2011.174 – volume: 1 start-page: 373 year: 2012 ident: 10.1016/j.biomaterials.2013.12.095_bib7 article-title: Advanced materials for co-delivery of drugs and genes in cancer therapy publication-title: Adv Healthc Mater doi: 10.1002/adhm.201200109 – volume: 7 start-page: 398 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib32 article-title: Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer publication-title: Int J Med Sci doi: 10.7150/ijms.7.398 – volume: 181 start-page: 1792 year: 2008 ident: 10.1016/j.biomaterials.2013.12.095_bib27 article-title: Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide publication-title: J Solid State Chem doi: 10.1016/j.jssc.2008.03.032 – volume: 80 start-page: 239 year: 2003 ident: 10.1016/j.biomaterials.2013.12.095_bib36 article-title: The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), proapoptotic protein (p21WAF-1) and anti-apoptotic protein (bcl-2) in breast cancer cells publication-title: Breast Cancer Res Treat doi: 10.1023/A:1024995202135 – volume: 128 start-page: 36 year: 2006 ident: 10.1016/j.biomaterials.2013.12.095_bib16 article-title: Stable suspension of layered double hydroxide nanoparticles in aqueous solution publication-title: J Am Chem Soc doi: 10.1021/ja056652a – volume: 7 start-page: 841 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib6 article-title: Engineering nanocarriers for siRNA delivery publication-title: Small doi: 10.1002/smll.201001389 – volume: 390 start-page: 275 year: 2013 ident: 10.1016/j.biomaterials.2013.12.095_bib25 article-title: Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2012.09.033 – start-page: 47 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib2 article-title: Mechanisms of multidrug resistance in cancer – volume: 25 start-page: 3059 year: 2004 ident: 10.1016/j.biomaterials.2013.12.095_bib23 article-title: Layered double hydroxide as an efficient drug reservoir for folate derivatives publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.09.083 – start-page: 373 year: 2004 ident: 10.1016/j.biomaterials.2013.12.095_bib14 article-title: Layer double hydroxides – volume: 1 start-page: 323 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib9 article-title: Nanoparticle-assisted combination therapies for effective cancer treatment publication-title: Ther Deliv doi: 10.4155/tde.10.13 – volume: 47 start-page: 908 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib19 article-title: Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release publication-title: Chem Commun doi: 10.1039/C0CC01313G – volume: 35 start-page: 495 year: 2007 ident: 10.1016/j.biomaterials.2013.12.095_bib39 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 5 start-page: 2673 year: 2009 ident: 10.1016/j.biomaterials.2013.12.095_bib11 article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells publication-title: Small doi: 10.1002/smll.200900621 – volume: 38 start-page: 941 year: 2012 ident: 10.1016/j.biomaterials.2013.12.095_bib18 article-title: A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate publication-title: Ceram Int doi: 10.1016/j.ceramint.2011.08.014 – volume: 13 start-page: 1253 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib30 article-title: Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles publication-title: J Nanopart Res doi: 10.1007/s11051-010-0118-9 – volume: 32 start-page: 8281 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib12 article-title: Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.032 – volume: 69 start-page: 1528 year: 2008 ident: 10.1016/j.biomaterials.2013.12.095_bib20 article-title: Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2007.10.140 – volume: 5 start-page: 4314 year: 2013 ident: 10.1016/j.biomaterials.2013.12.095_bib29 article-title: A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy publication-title: Nanoscale doi: 10.1039/c3nr00781b – volume: 48 start-page: 280 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib33 article-title: Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles publication-title: Appl Clay Sci doi: 10.1016/j.clay.2009.11.032 – volume: 110 start-page: 16923 year: 2006 ident: 10.1016/j.biomaterials.2013.12.095_bib26 article-title: Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions publication-title: J Phys Chem B doi: 10.1021/jp062281o – volume: 17 start-page: 1411 year: 2006 ident: 10.1016/j.biomaterials.2013.12.095_bib34 article-title: Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis publication-title: Bioconjug Chem doi: 10.1021/bc0601323 – volume: 32 start-page: 9785 year: 2011 ident: 10.1016/j.biomaterials.2013.12.095_bib5 article-title: Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.017 – volume: 31 start-page: 8770 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib22 article-title: Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.077 – volume: 6 start-page: 907 year: 2009 ident: 10.1016/j.biomaterials.2013.12.095_bib15 article-title: Layered double hydroxide nanoparticles in gene and drug delivery publication-title: Expert Opin Drug Deliv doi: 10.1517/17425240903130585 – volume: 20 start-page: 9463 year: 2010 ident: 10.1016/j.biomaterials.2013.12.095_bib17 article-title: Anticancer drug encapsulated in inorganic lattice can overcome drug resistance publication-title: J Mater Chem doi: 10.1039/b925831k – volume: 2 start-page: 751 year: 2007 ident: 10.1016/j.biomaterials.2013.12.095_bib1 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat Nanotechnol doi: 10.1038/nnano.2007.387 – volume: 33 start-page: 1170 year: 2012 ident: 10.1016/j.biomaterials.2013.12.095_bib13 article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.057 – volume: 83 start-page: 1104 year: 2012 ident: 10.1016/j.biomaterials.2013.12.095_bib38 article-title: Nanoparticle-based combination therapy toward overcoming drug resistance in cancer publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2012.01.008 – volume: 3 start-page: 330 year: 2003 ident: 10.1016/j.biomaterials.2013.12.095_bib4 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat Rev Cancer doi: 10.1038/nrc1074 – volume: 33 start-page: 1428 year: 2012 ident: 10.1016/j.biomaterials.2013.12.095_bib8 article-title: In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.043 – volume: 178 start-page: 736 year: 2005 ident: 10.1016/j.biomaterials.2013.12.095_bib28 article-title: Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil publication-title: J Solid State Chem doi: 10.1016/j.jssc.2004.11.005 – volume: 32 start-page: 751 year: 2006 ident: 10.1016/j.biomaterials.2013.12.095_bib35 article-title: Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2006.01.011 |
| SSID | ssj0014042 |
| Score | 2.565854 |
| Snippet | In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and Allstars Cell... Abstract In this research we employed layered double hydroxide nanoparticles (LDHs) to simultaneously deliver an anticancer drug 5-fluorouracil (5-FU) and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3331 |
| SubjectTerms | Advanced Basic Science anion exchange capacity Antineoplastic Agents - administration & dosage Apoptosis Blotting, Western cell death Cell Line, Tumor Co-delivery system cytotoxicity Dentistry drug resistance Electrostatic assembly fluorouracil Humans Hydroxides - chemistry Layered double hydroxide mitochondria Nanoparticles neoplasms RNA, Small Interfering - administration & dosage small interfering RNA |
| Title | Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213015913 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213015913 https://www.ncbi.nlm.nih.gov/pubmed/24456604 https://www.proquest.com/docview/1494310922 https://www.proquest.com/docview/2000220520 |
| Volume | 35 |
| WOSCitedRecordID | wos000332188400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhA8IBgfKx-TkRAvVVASJ3EsnqqqE6BREOpE3qwkdlimKumaBrX89ZwdJ83EKpUHXqLIivPh--Xu7Pv5DqG3BKx2IlQNQEGkBRYPzsDNsFKPBqkIBJUs0cUm6HQaRhH7ZqhDlS4nQIsiXK_Z4r-KGtpA2Grr7D-Iu7spNMA5CB2OIHY47iX4cWkJOVd0Cx08r_Lv01FlcrKucitVYl4OxbL-WQ1rvVIwjzeqYudQlLXaR3W5EctynQs5LOIC5tSGOncj_JuX4Ok2X9NRepp91nnH6Kk1f08Wm65p3G4FyeXvy9LYzF77D5lv6v46hONtiVhGdYYwH_WZ3cSo5S1tRt826UlaXNk97UnM7q2_1HqzwnD1Pul9naLlEb2Uy_ytMWsD-NOv_Ozi_JzPJtHs3eLaUmXGVDje1Fw5QEcu9RmowaPRp0n0uQs8ebaut9S9eJunVlMCdz1-l0-za86ifZfZI_TQTDrwqJHkY3RHFsfoQS8V5TG698WQLJ6gqIcgXGa4QRAGBOEegrBGENYIwgZBuEEQ7hCEbyDoKbo4m8zGHy1TgMNKfeKuLBqILA5C4qRhltHATm2m_OnQoZlPXZKBnQ9kApMCQgIZx07I4sTzBTi5CRMB3OMZOizKQp4gLKR0fBhUL1D5iGw7DhNw3EkqmM0k9b0BYu0Q8tRkp1dFUua8pSFe8f7wczX83HE5DP8Aka7vosnRslevD62keLsLGewmB8zt1Zve1ltWRhNU3OEVXKnZky5TefrAlPrMIQP0poUFB1Wu4nNxIcsaesDQqES9rrv7GldnrFLktQF63mCq-2bw1GFyZnsv9njCS3R_-xO_QoerZS1fo7vpr1VeLU_RAY3CU_Nv_AECndaU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-delivery+of+siRNAs+and+anti-cancer+drugs+using+layered+double+hydroxide+nanoparticles&rft.jtitle=Biomaterials&rft.au=Li%2C+Li&rft.au=Gu%2C+Wenyi&rft.au=Chen%2C+Jiezhong&rft.au=Chen%2C+Weiyu&rft.date=2014-03-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=35&rft.issue=10&rft.spage=3331&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.12.095&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00037%2Fcov150h.gif |