Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms

Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ. Computer science Ročník 9; s. e1502
Hlavní autoři: Panigrahi, Siddhant, Maski, Prajwal, Thondiyath, Asokan
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, USA PeerJ. Ltd 25.08.2023
PeerJ Inc
Témata:
ISSN:2376-5992, 2376-5992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the “capture, mark and recapture” technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem.
AbstractList Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the "capture, mark and recapture" technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem.
Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the "capture, mark and recapture" technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem.Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the "capture, mark and recapture" technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem.
ArticleNumber e1502
Audience Academic
Author Maski, Prajwal
Thondiyath, Asokan
Panigrahi, Siddhant
Author_xml – sequence: 1
  givenname: Siddhant
  surname: Panigrahi
  fullname: Panigrahi, Siddhant
  organization: Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
– sequence: 2
  givenname: Prajwal
  surname: Maski
  fullname: Maski, Prajwal
  organization: Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
– sequence: 3
  givenname: Asokan
  surname: Thondiyath
  fullname: Thondiyath, Asokan
  organization: Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
BookMark eNp1kktv1DAUhSNUJErpkn0kNrDIYMdxnKxQVfEYqRJSgQ0b69q-ST1y4sH2VMy_x-lUiCCwF3595-j66jwvzmY_Y1G8pGQjBBVv94hhV-m4oZzUT4rzmom24n1fn_2xf1ZcxrgjhFBO8-jPi--3CK5KdsJSWW_sPYZo07GEGdwx2lgeop3H0iDuK4cQ5uUEbvTBprspln4uJ6-swzJ45ZPV5d5BGnyY4ovi6QAu4uXjelF8-_D-6_Wn6ubzx-311U2lOatTxYF2jKPhnWAdNgOnmpGhFqho2-IgKFe8Fkpw0xsURA3MKENUYwiqATrFLortydd42Ml9sBOEo_Rg5cOFD6OEkCtzKBshGG9I27YMmxZVT2uC0IBuWN8C8uz17uS1P6gJjcY5BXAr0_XLbO_k6O8lJU3Pe1Fnh9ePDsH_OGBMcrJRo3Mwoz9EWXdt0_WiYyKjr07oCLk2Ow8-W-oFl1eirSlltOkztfkHlafByeocgiF3fy14sxJkJuHPNMIhRrn9crtmqxOrg48x4PD7q5TIJVfyIVdSR7nkKvPsL17bBMn6pRvW_Uf1C5zw1g4
CitedBy_id crossref_primary_10_1016_j_array_2025_100412
crossref_primary_10_1371_journal_pcbi_1012520
crossref_primary_10_3390_biology14050520
Cites_doi 10.1038/s41598-019-44565-w
10.1016/j.compag.2018.01.009
10.3996/JFWM-20-076
10.23919/JCIN.2019.8917884
10.1111/2041-210X.13504
10.3389/fpls.2016.01419
10.3390/s21020343
10.1016/B978-0-12-816034-3.00008-0
10.1111/2041-210X.13901
10.1071/WR04003
10.1644/07-MAMM-A-011.1
10.1016/j.crvi.2011.04.004
10.3390/s21185987
10.3390/s22020497
10.1371/journal.pone.0214168
10.1016/j.compag.2023.107707
10.1038/s41467-022-27980-y
10.1109/TITS.2020.3014013
10.7717/peerj.1831
10.1038/sdata.2015.26
10.1016/j.mehy.2020.109761
10.1109/ACCESS.2020.2964608
10.3390/rs12010182
10.1093/biosci/biab073
ContentType Journal Article
Copyright COPYRIGHT 2023 PeerJ. Ltd.
2023 Panigrahi et al.
2023 Panigrahi et al. 2023 Panigrahi et al.
Copyright_xml – notice: COPYRIGHT 2023 PeerJ. Ltd.
– notice: 2023 Panigrahi et al.
– notice: 2023 Panigrahi et al. 2023 Panigrahi et al.
DBID AAYXX
CITATION
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1502
DatabaseName CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_47735406663e46eb9120ea4ac4396ae5
PMC10495972
A762113149
10_7717_peerj_cs_1502
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c532t-5a1835ed58738e4f51c30f27eb166ef715b527b75d9de70bf3dbd0b4d0ebfa8b3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:38:05 EDT 2025
Tue Nov 04 02:06:19 EST 2025
Thu Sep 04 18:03:45 EDT 2025
Tue Nov 11 10:26:57 EST 2025
Tue Nov 04 18:38:25 EST 2025
Thu Nov 13 16:26:19 EST 2025
Sat Nov 29 05:31:00 EST 2025
Tue Nov 18 22:27:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-5a1835ed58738e4f51c30f27eb166ef715b527b75d9de70bf3dbd0b4d0ebfa8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/47735406663e46eb9120ea4ac4396ae5
PQID 2864897837
PQPubID 23479
PageCount e1502
ParticipantIDs doaj_primary_oai_doaj_org_article_47735406663e46eb9120ea4ac4396ae5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10495972
proquest_miscellaneous_2864897837
gale_infotracmisc_A762113149
gale_infotracacademiconefile_A762113149
gale_incontextgauss_ISR_A762113149
crossref_primary_10_7717_peerj_cs_1502
crossref_citationtrail_10_7717_peerj_cs_1502
PublicationCentury 2000
PublicationDate 2023-08-25
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-25
  day: 25
PublicationDecade 2020
PublicationPlace San Diego, USA
PublicationPlace_xml – name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationYear 2023
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Witmer (10.7717/peerj-cs.1502/ref-42) 2005; 32
Hassaballah (10.7717/peerj-cs.1502/ref-11) 2020; 22
Panigrahi (10.7717/peerj-cs.1502/ref-31) 2021; 21
Dronecode (10.7717/peerj-cs.1502/ref-6) 2021
Betke (10.7717/peerj-cs.1502/ref-2) 2008; 89
Krizhevsky (10.7717/peerj-cs.1502/ref-16) 2012; 25
Arablouei (10.7717/peerj-cs.1502/ref-1) 2023; 207
Palani (10.7717/peerj-cs.1502/ref-30) 2022
Parham (10.7717/peerj-cs.1502/ref-33) 2017
Ucar (10.7717/peerj-cs.1502/ref-38) 2020; 140
Panigrahi (10.7717/peerj-cs.1502/ref-32) 2022
Kim (10.7717/peerj-cs.1502/ref-15) 2020
Microsoft (10.7717/peerj-cs.1502/ref-27) 2023
Tamil Nadu Tourism (10.7717/peerj-cs.1502/ref-35) 2021
Mazzia (10.7717/peerj-cs.1502/ref-23) 2020; 8
Mohanty (10.7717/peerj-cs.1502/ref-28) 2016; 7
Ferentinos (10.7717/peerj-cs.1502/ref-8) 2018; 145
Tuia (10.7717/peerj-cs.1502/ref-37) 2022; 13
Villon (10.7717/peerj-cs.1502/ref-41) 2018; 6
Van Horn (10.7717/peerj-cs.1502/ref-39) 2018
Meng (10.7717/peerj-cs.1502/ref-25) 2020; 12
Google (10.7717/peerj-cs.1502/ref-10) 2021
Integrated Marine Observing System (IMOS) (10.7717/peerj-cs.1502/ref-14) 2023
Goëau (10.7717/peerj-cs.1502/ref-9) 2018
HumanSignal (10.7717/peerj-cs.1502/ref-13) 2021
Lostanlen (10.7717/peerj-cs.1502/ref-21) 2019; 14
Norouzzadeh (10.7717/peerj-cs.1502/ref-29) 2021; 12
Kutugata (10.7717/peerj-cs.1502/ref-18) 2021; 12
Zhao (10.7717/peerj-cs.1502/ref-43) 2019; 4
Howard (10.7717/peerj-cs.1502/ref-12) 2017
Le Maho (10.7717/peerj-cs.1502/ref-20) 2011; 334
Bjerge (10.7717/peerj-cs.1502/ref-3) 2021; 21
Maski (10.7717/peerj-cs.1502/ref-22) 2021
McEvoy (10.7717/peerj-cs.1502/ref-24) 2016; 4
Swanson (10.7717/peerj-cs.1502/ref-34) 2015; 2
Chalmers (10.7717/peerj-cs.1502/ref-5) 2021
Duhart (10.7717/peerj-cs.1502/ref-7) 2019
Tao (10.7717/peerj-cs.1502/ref-36) 2017
Villon (10.7717/peerj-cs.1502/ref-40) 2022; 22
Kuenzi (10.7717/peerj-cs.1502/ref-17) 1998; 26
Miao (10.7717/peerj-cs.1502/ref-26) 2019; 9
Borowiec (10.7717/peerj-cs.1502/ref-4) 2022; 13
Lahoz-Monfort (10.7717/peerj-cs.1502/ref-19) 2021; 71
References_xml – volume: 9
  start-page: 8137
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1502/ref-26
  article-title: Insights and approaches using deep learning to classify wildlife
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-44565-w
– year: 2023
  ident: 10.7717/peerj-cs.1502/ref-27
  article-title: Megadetector AI for Earth
– year: 2017
  ident: 10.7717/peerj-cs.1502/ref-33
  article-title: Animal population censusing at scale with citizen science and photographic identification
– volume: 145
  start-page: 311
  year: 2018
  ident: 10.7717/peerj-cs.1502/ref-8
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.01.009
– year: 2021
  ident: 10.7717/peerj-cs.1502/ref-10
  article-title: Open Images Dataset v6
– volume: 12
  start-page: 412
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-18
  article-title: Automatic camera-trap classification using wildlife-specific deep learning in Nilgai management
  publication-title: Journal of Fish and Wildlife Management
  doi: 10.3996/JFWM-20-076
– volume: 4
  start-page: 38
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.1502/ref-43
  article-title: DeepCount: crowd counting with Wi-Fi using deep learning
  publication-title: Journal of Communications and Information Networks
  doi: 10.23919/JCIN.2019.8917884
– start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-5
  article-title: Modelling animal biodiversity using acoustic monitoring and deep learning
– start-page: 8769
  year: 2018
  ident: 10.7717/peerj-cs.1502/ref-39
  article-title: The inaturalist species classification and detection dataset
– start-page: 49
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-22
  article-title: Plant disease detection using advanced deep learning algorithms: a case study of papaya ring spot disease
– volume: 12
  start-page: 150
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-29
  article-title: A deep active learning system for species identification and counting in camera trap images
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13504
– volume: 7
  start-page: 1419
  year: 2016
  ident: 10.7717/peerj-cs.1502/ref-28
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01419
– volume: 21
  start-page: 343
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-3
  article-title: An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning
  publication-title: Sensors
  doi: 10.3390/s21020343
– start-page: 128
  year: 2022
  ident: 10.7717/peerj-cs.1502/ref-30
  article-title: Real-time joint angle estimation using mediapipe framework and inertial sensors
– start-page: 239
  volume-title: Biomedical information technology
  year: 2020
  ident: 10.7717/peerj-cs.1502/ref-15
  article-title: Deep learning in biomedical image analysis
  doi: 10.1016/B978-0-12-816034-3.00008-0
– volume: 13
  start-page: 1640
  issue: 8
  year: 2022
  ident: 10.7717/peerj-cs.1502/ref-4
  article-title: Deep learning as a tool for ecology and evolution
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13901
– volume: 32
  start-page: 259
  issue: 3
  year: 2005
  ident: 10.7717/peerj-cs.1502/ref-42
  article-title: Wildlife population monitoring: some practical considerations
  publication-title: Wildlife Research
  doi: 10.1071/WR04003
– volume: 89
  start-page: 18
  issue: 1
  year: 2008
  ident: 10.7717/peerj-cs.1502/ref-2
  article-title: Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated
  publication-title: Journal of Mammalogy
  doi: 10.1644/07-MAMM-A-011.1
– volume: 334
  start-page: 378
  issue: 5–6
  year: 2011
  ident: 10.7717/peerj-cs.1502/ref-20
  article-title: An ethical issue in biodiversity science: the monitoring of penguins with flipper bands
  publication-title: Comptes Rendus Biologies
  doi: 10.1016/j.crvi.2011.04.004
– year: 2021
  ident: 10.7717/peerj-cs.1502/ref-35
  article-title: Tamil Nadu Tourism Development Centre, Guindy National Park
– year: 2021
  ident: 10.7717/peerj-cs.1502/ref-13
  article-title: LabelImg—a graphical image annotation tool
– volume: 21
  start-page: 5987
  issue: 18
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-31
  article-title: Design, analysis, and testing of a hybrid VTOL tilt-rotor UAV for increased endurance
  publication-title: Sensors
  doi: 10.3390/s21185987
– volume: 22
  start-page: 497
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.1502/ref-40
  article-title: Confronting deep-learning and biodiversity challenges for automatic video-monitoring of marine ecosystems
  publication-title: Sensors
  doi: 10.3390/s22020497
– volume: 6
  start-page: e26818v1
  year: 2018
  ident: 10.7717/peerj-cs.1502/ref-41
  article-title: A deep learning algorithm for accurate and fast identification of coral reef fishes in underwater videos
  publication-title: PeerJ Preprints
– start-page: 401
  year: 2022
  ident: 10.7717/peerj-cs.1502/ref-32
  article-title: Deep learning based real-time biodiversity analysis using aerial vehicles
– year: 2023
  ident: 10.7717/peerj-cs.1502/ref-14
– volume: 26
  start-page: 307
  year: 1998
  ident: 10.7717/peerj-cs.1502/ref-17
  article-title: Detection of bats by mist-nets and ultrasonic sensors
  publication-title: Wildlife Society Bulletin
– year: 2018
  ident: 10.7717/peerj-cs.1502/ref-9
  article-title: Overview of BirdCLEF 2018: monospecies vs. soundscape bird identification
– volume: 14
  start-page: e0214168
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.1502/ref-21
  article-title: Robust sound event detection in bioacoustic sensor networks
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0214168
– volume: 207
  start-page: 107707
  year: 2023
  ident: 10.7717/peerj-cs.1502/ref-1
  article-title: Animal behavior classification via deep learning on embedded systems
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.107707
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1502/ref-37
  article-title: Perspectives in machine learning for wildlife conservation
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-27980-y
– volume: 22
  start-page: 4230
  issue: 7
  year: 2020
  ident: 10.7717/peerj-cs.1502/ref-11
  article-title: Vehicle detection and tracking in adverse weather using a deep learning framework
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3014013
– year: 2017
  ident: 10.7717/peerj-cs.1502/ref-12
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
– volume: 4
  start-page: e1831
  year: 2016
  ident: 10.7717/peerj-cs.1502/ref-24
  article-title: Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition
  publication-title: PeerJ
  doi: 10.7717/peerj.1831
– year: 2021
  ident: 10.7717/peerj-cs.1502/ref-6
  article-title: QGround control for Pixhawk4
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.1502/ref-34
  article-title: Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna
  publication-title: Scientific Data
  doi: 10.1038/sdata.2015.26
– volume: 140
  start-page: 109761
  year: 2020
  ident: 10.7717/peerj-cs.1502/ref-38
  article-title: COVIDiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– start-page: 3
  year: 2019
  ident: 10.7717/peerj-cs.1502/ref-7
  article-title: Deep learning locally trained wildlife sensing in real acoustic wetland environment
– volume: 8
  start-page: 9102
  year: 2020
  ident: 10.7717/peerj-cs.1502/ref-23
  article-title: Real-time apple detection system using embedded systems with hardware accelerators: an edge AI application
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964608
– start-page: 315
  year: 2017
  ident: 10.7717/peerj-cs.1502/ref-36
  article-title: An object detection system based on YOLO in traffic scene
– volume: 12
  start-page: 182
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1502/ref-25
  article-title: Real-time detection of ground objects based on unmanned aerial vehicle remote sensing with deep learning: application in excavator detection for pipeline safety
  publication-title: Remote Sensing
  doi: 10.3390/rs12010182
– volume: 71
  start-page: 1038
  issue: 10
  year: 2021
  ident: 10.7717/peerj-cs.1502/ref-19
  article-title: A comprehensive overview of technologies for species and habitat monitoring and conservation
  publication-title: BioScience
  doi: 10.1093/biosci/biab073
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.7717/peerj-cs.1502/ref-16
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
SSID ssj0001511119
Score 2.3114471
Snippet Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e1502
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
Autonomous Systems
Biological diversity
Biological diversity conservation
Computer Vision
Data mining
Deep learning
Ecosystems
Object detection
Population biology
Protection and preservation
Real-Time and Embedded Systems
Robotics
UAV
YOLO v3
Title Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms
URI https://www.proquest.com/docview/2864897837
https://pubmed.ncbi.nlm.nih.gov/PMC10495972
https://doaj.org/article/47735406663e46eb9120ea4ac4396ae5
Volume 9
WOSCitedRecordID wos001059148300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MAL41OUjcogBC-EpY4dJ48b6sQEq6ryobIXy3YuXVGXVE3LI387d0k6NSDECy9-iC9KfL47353Ov2PsZawd4U3aIEwpdeOSLHCQkiyrPM9kCL7udfj1ox6Nkuk0He-0-qKasAYeuGHckdSaUhPoZUcgY3DpQIRgpfV4ksYWavTSUKc7wVRzP5hMQdqAamoMWY6WAKvvga_eogckOodQjdX_p0X-vUpy59g5vcfutv4iP27-8z67AcUDtr_txcBb1XzILibo8QXUKZ67eZltqy24bUFHOBW4z3gGsAzaThEzbhezcjVfX15VvCz4VenQRPBV6Ur8GF8u7Jo82uoR-3I6_PzufdD2TQi8isQ6UBb1VEGmEh0lIHM18FGYC41mOY4h1wPllNBOqyzNQIcujzKXhU5mIbjcJi56zPaKsoAnjMcCkOE29yKPpceXQgUSQu0koOMhZY-92TLS-BZUnHpbLAwGF8R3U_Pd-MoQ33vs1TX5skHT-BvhCe3KNRGBYNcPUDRMKxrmX6LRYy9oTw3BXBRURzOzm6oyZ58m5hjPgMEgwvCwx163RHmJf-5tey0B10_IWB3Kww4l6qHvTD_fio6hKSpeK6DcVEYksUwoxaZ7LOnIVGd93ZliflmDfWO4nGLQJ57-D44csDsCnTTKiQt1yPbWqw08Y7f9j_W8WvXZTT1N-uzWyXA0nvRrhcLxgw5wPP85xHGsLnB-fHY-_vYLBz8rqA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+biodiversity+analysis+using+deep-learning+algorithms+on+mobile+robotic+platforms&rft.jtitle=PeerJ.+Computer+science&rft.au=Panigrahi%2C+Siddhant&rft.au=Maski%2C+Prajwal&rft.au=Thondiyath%2C+Asokan&rft.date=2023-08-25&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=9&rft.spage=e1502&rft_id=info:doi/10.7717%2Fpeerj-cs.1502&rft.externalDocID=A762113149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon