The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes

Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Immunology Vol. 178; no. 7; pp. 4424 - 4435
Main Authors: Alam, S Munir, McAdams, Mildred, Boren, David, Rak, Michael, Scearce, Richard M, Gao, Feng, Camacho, Zenaido T, Gewirth, Daniel, Kelsoe, Garnett, Chen, Pojen, Haynes, Barton F
Format: Journal Article
Language:English
Published: England 01.04.2007
Subjects:
ISSN:0022-1767, 1365-2567
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with K(d) values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.
AbstractList Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with K(d) values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with K(d) values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.
Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with K sub(d) values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.
Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with K(d) values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.
Author Camacho, Zenaido T
Gewirth, Daniel
Haynes, Barton F
Boren, David
Alam, S Munir
McAdams, Mildred
Kelsoe, Garnett
Chen, Pojen
Scearce, Richard M
Gao, Feng
Rak, Michael
Author_xml – sequence: 1
  givenname: S Munir
  surname: Alam
  fullname: Alam, S Munir
  email: alam0004@mc.duke.edu
  organization: Department of Medicine, Duke Human Vaccine Institute, Duke University School of Medicine, RP1 Circuit Drive, Durham, NC 27710, USA. alam0004@mc.duke.edu
– sequence: 2
  givenname: Mildred
  surname: McAdams
  fullname: McAdams, Mildred
– sequence: 3
  givenname: David
  surname: Boren
  fullname: Boren, David
– sequence: 4
  givenname: Michael
  surname: Rak
  fullname: Rak, Michael
– sequence: 5
  givenname: Richard M
  surname: Scearce
  fullname: Scearce, Richard M
– sequence: 6
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
– sequence: 7
  givenname: Zenaido T
  surname: Camacho
  fullname: Camacho, Zenaido T
– sequence: 8
  givenname: Daniel
  surname: Gewirth
  fullname: Gewirth, Daniel
– sequence: 9
  givenname: Garnett
  surname: Kelsoe
  fullname: Kelsoe, Garnett
– sequence: 10
  givenname: Pojen
  surname: Chen
  fullname: Chen, Pojen
– sequence: 11
  givenname: Barton F
  surname: Haynes
  fullname: Haynes, Barton F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17372000$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3RZ-ARLyiVsWe-zY2SOqWlqpUi-F68qOJ60rf4Q4qUh_JT8JL225ojmM5vnNe-OZE3KUckJCPnK2lUzuvjz4GJeUw5brbqu3UoJ8QzZcqLaBVukjsmEMoOFa6WNyUsoDY0wxkO_IMddCQy035PftPdIpB6R5oCbN3ma30jGHtYzY-8H3fl7rg6PBj97RCU0_-8cD6BO1Pjmf7g69dsrGhZUmXObJBP90wA-CzeXVj4ZTTI8Y8oj0fokm0ZhT7kNOJry6eiwULtq_XvKcMzpnehfWPo9TnrGaSU4jRjuZhLRiv3yszf9kcfRzzeU9eTuYUPDDSz4l3y_Ob88um-ubb1dnX6-bvhUwN61Q1g6COebsoLtOKiVh51ADGOE6trMtAqAAaeqqhFPdAIMZEGxvQQorTsnnZ906ys8Fy7yPvvQYQh0vL2Wvmaih9X-JfKeY1Aoq8dMLcbER3X6c6g-ndf96LPEHRUyegw
CitedBy_id crossref_primary_10_1128_JVI_01604_09
crossref_primary_10_1371_journal_pone_0086905
crossref_primary_10_1016_j_coi_2017_06_004
crossref_primary_10_4049_jimmunol_1201303
crossref_primary_10_1089_aid_2010_0265
crossref_primary_10_1128_jvi_01647_22
crossref_primary_10_1002_cyto_a_20599
crossref_primary_10_1128_JVI_02257_09
crossref_primary_10_1073_pnas_1317855110
crossref_primary_10_1371_journal_ppat_1002200
crossref_primary_10_1016_j_it_2014_08_007
crossref_primary_10_1038_nsmb_2922
crossref_primary_10_1134_S0026893317060176
crossref_primary_10_1146_annurev_med_60_042507_164323
crossref_primary_10_1128_JVI_00846_08
crossref_primary_10_1073_pnas_1103869108
crossref_primary_10_3390_v12111210
crossref_primary_10_1128_JVI_00872_07
crossref_primary_10_1016_j_colsurfb_2017_01_032
crossref_primary_10_1128_JVI_02113_09
crossref_primary_10_1073_pnas_1307336110
crossref_primary_10_1093_infdis_jis183
crossref_primary_10_1097_COH_0b013e3282f9ae79
crossref_primary_10_1128_JVI_00033_08
crossref_primary_10_1371_journal_ppat_1003639
crossref_primary_10_1097_QAD_0b013e32834785cf
crossref_primary_10_3390_vaccines9091001
crossref_primary_10_1186_1742_4690_10_3
crossref_primary_10_1038_s41467_018_07962_9
crossref_primary_10_1128_JVI_02363_09
crossref_primary_10_1016_j_vaccine_2009_05_059
crossref_primary_10_1038_nature12053
crossref_primary_10_3389_fimmu_2022_910367
crossref_primary_10_1016_j_virol_2008_02_007
crossref_primary_10_1038_nsmb0510_543
crossref_primary_10_1186_1742_4690_11_44
crossref_primary_10_1016_j_jmb_2008_09_024
crossref_primary_10_1128_JVI_01680_10
crossref_primary_10_1038_nri3516
crossref_primary_10_1128_JVI_02664_13
crossref_primary_10_1016_j_coviro_2019_02_004
crossref_primary_10_1128_JVI_02357_09
crossref_primary_10_1016_j_virol_2009_07_041
crossref_primary_10_1002_ange_201508421
crossref_primary_10_1073_pnas_0912381107
crossref_primary_10_1097_COH_0b013e32832edc50
crossref_primary_10_1097_QAD_0b013e3283292153
crossref_primary_10_1097_COH_0000000000000049
crossref_primary_10_1073_pnas_1120059109
crossref_primary_10_1089_aid_2008_0129
crossref_primary_10_1097_COH_0b013e32832f4a4d
crossref_primary_10_1056_NEJMra066267
crossref_primary_10_1128_JVI_00571_09
crossref_primary_10_1371_journal_pone_0016857
crossref_primary_10_1089_vim_2019_0136
crossref_primary_10_1038_nri2674
crossref_primary_10_1016_j_febslet_2008_10_012
crossref_primary_10_1073_pnas_0909680107
crossref_primary_10_1074_jbc_M114_569566
crossref_primary_10_1097_QAD_0b013e328342ff11
crossref_primary_10_1016_j_immuni_2012_08_012
crossref_primary_10_1080_14760584_2019_1651649
crossref_primary_10_1016_j_jim_2013_11_026
crossref_primary_10_1007_s00018_011_0872_6
crossref_primary_10_1002_anie_201508421
crossref_primary_10_1128_JVI_05489_11
crossref_primary_10_1128_mSphere_00086_16
crossref_primary_10_1371_journal_pone_0024078
crossref_primary_10_1016_j_immuni_2007_11_018
crossref_primary_10_1016_j_immuni_2014_11_014
crossref_primary_10_1038_s41385_019_0164_2
crossref_primary_10_1016_j_bbamem_2008_11_015
crossref_primary_10_1128_JVI_00656_09
crossref_primary_10_1016_j_bbamem_2007_12_018
crossref_primary_10_1128_JVI_00718_12
crossref_primary_10_1016_j_febslet_2010_03_021
crossref_primary_10_1039_c2jm32016a
crossref_primary_10_1128_jvi_00710_23
crossref_primary_10_1128_CVI_00615_12
crossref_primary_10_1016_j_chom_2019_09_016
crossref_primary_10_1128_JVI_03309_13
crossref_primary_10_1128_CVI_00425_10
crossref_primary_10_1016_j_cocis_2013_06_004
crossref_primary_10_1097_QAD_0b013e3283196a80
crossref_primary_10_1128_JVI_05045_11
crossref_primary_10_7554_eLife_90139
crossref_primary_10_1021_ja405990z
crossref_primary_10_1159_000438484
crossref_primary_10_1016_j_sbi_2024_102897
crossref_primary_10_1038_nsmb_1944
crossref_primary_10_1038_gene_2012_16
crossref_primary_10_1097_COH_0000000000000820
crossref_primary_10_1371_journal_ppat_1006212
crossref_primary_10_1586_erv_10_52
crossref_primary_10_1097_COH_0000000000000148
crossref_primary_10_1371_journal_ppat_1002095
crossref_primary_10_1002_1873_3468_14814
crossref_primary_10_1016_j_immuni_2019_02_008
crossref_primary_10_1126_sciimmunol_aal2200
crossref_primary_10_1371_journal_pone_0025797
crossref_primary_10_4049_jimmunol_1900069
crossref_primary_10_1002_jgm_1277
crossref_primary_10_1016_j_cell_2014_06_022
crossref_primary_10_1371_journal_pone_0023532
crossref_primary_10_1016_j_jim_2011_10_005
crossref_primary_10_1074_jbc_M114_556266
crossref_primary_10_1093_infdis_jiaa377
crossref_primary_10_4049_jimmunol_2000732
crossref_primary_10_1126_scitranslmed_aaf0618
crossref_primary_10_1038_ni_1746
crossref_primary_10_1002_jia2_25831
crossref_primary_10_1128_JVI_06938_11
crossref_primary_10_1021_acs_molpharmaceut_4c01341
crossref_primary_10_3390_vaccines12091043
crossref_primary_10_1073_pnas_0912914107
crossref_primary_10_1126_science_1241144
crossref_primary_10_1016_j_chom_2014_08_006
crossref_primary_10_1096_fj_08_113142
crossref_primary_10_1016_j_ijpharm_2015_02_021
crossref_primary_10_1002_jmr_928
crossref_primary_10_1097_COH_0000000000000364
crossref_primary_10_1128_JVI_05680_11
crossref_primary_10_3390_v6125047
crossref_primary_10_1128_JVI_00685_09
crossref_primary_10_1097_COH_0b013e32832e6184
crossref_primary_10_1371_journal_pone_0007215
crossref_primary_10_1016_j_cell_2016_02_022
crossref_primary_10_1016_j_ebiom_2015_06_016
crossref_primary_10_1182_blood_2012_03_418913
crossref_primary_10_1128_JVI_00927_07
crossref_primary_10_1016_j_bbamem_2014_07_007
crossref_primary_10_1016_j_virol_2007_11_009
crossref_primary_10_1002_jmr_1116
crossref_primary_10_1016_j_cell_2024_04_033
crossref_primary_10_1128_JVI_00426_12
crossref_primary_10_1038_srep40800
crossref_primary_10_1371_journal_ppat_1003202
crossref_primary_10_7554_eLife_90139_3
crossref_primary_10_1016_j_immuni_2015_12_001
crossref_primary_10_1089_aid_2011_0226
crossref_primary_10_4049_jimmunol_1601484
crossref_primary_10_1016_j_virol_2009_05_015
crossref_primary_10_1073_pnas_1301456110
crossref_primary_10_1128_JVI_00412_15
crossref_primary_10_1371_journal_pone_0037157
crossref_primary_10_1007_s13238_018_0534_7
crossref_primary_10_1128_jvi_01594_23
crossref_primary_10_1084_jem_20121977
crossref_primary_10_1016_j_bbrc_2008_08_105
crossref_primary_10_1084_jem_20091281
crossref_primary_10_4049_jimmunol_1101080
crossref_primary_10_1038_nsmb_2154
crossref_primary_10_1007_s12250_015_3664_6
crossref_primary_10_1016_j_jaci_2008_03_036
crossref_primary_10_1128_JVI_01558_09
crossref_primary_10_1371_journal_ppat_1000203
crossref_primary_10_1371_journal_pcbi_1003431
crossref_primary_10_1016_j_jneuroim_2011_08_002
crossref_primary_10_1016_j_virol_2020_06_016
crossref_primary_10_1021_acsami_4c13353
crossref_primary_10_1128_JVI_01739_14
crossref_primary_10_1517_14712598_2012_688020
crossref_primary_10_1371_journal_pone_0027824
crossref_primary_10_1128_cmr_00152_22
crossref_primary_10_3389_fimmu_2017_01154
crossref_primary_10_1128_JVI_06349_11
crossref_primary_10_1186_1758_2652_12_2
crossref_primary_10_1016_j_virol_2017_04_008
crossref_primary_10_1186_s12979_024_00415_6
crossref_primary_10_1038_mi_2009_89
crossref_primary_10_1128_JVI_05086_11
crossref_primary_10_1016_j_immuni_2012_11_011
crossref_primary_10_1016_j_vaccine_2011_11_048
crossref_primary_10_1073_pnas_0908713106
crossref_primary_10_1093_protein_gzaa025
crossref_primary_10_1016_j_jmb_2010_01_064
crossref_primary_10_1111_imr_12513
crossref_primary_10_1073_pnas_1012051108
crossref_primary_10_1016_j_vaccine_2011_06_085
crossref_primary_10_1116_1_3432480
crossref_primary_10_1128_AAC_02097_15
crossref_primary_10_1016_j_immuni_2007_12_005
crossref_primary_10_1111_imr_12075
crossref_primary_10_1128_MMBR_00020_07
crossref_primary_10_1128_IAI_00529_07
crossref_primary_10_4049_jimmunol_1101633
crossref_primary_10_1002_cbic_200800609
crossref_primary_10_4049_jimmunol_1302511
crossref_primary_10_1371_journal_ppat_1005042
crossref_primary_10_1371_journal_ppat_1006098
crossref_primary_10_1128_JVI_00156_14
crossref_primary_10_4049_jimmunol_1300971
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
DOI 10.4049/jimmunol.178.7.4424
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1365-2567
EndPage 4435
ExternalDocumentID 17372000
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI067854
– fundername: NIAID NIH HHS
  grantid: P30 AI051445
– fundername: NIAID NIH HHS
  grantid: P01 AI 52816
– fundername: NIAID NIH HHS
  grantid: AI 51445
– fundername: NIAID NIH HHS
  grantid: P01 AI052816
– fundername: NIAID NIH HHS
  grantid: AI 06785-01
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
ABCQX
ABDFA
ABEFU
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
ADXHL
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CGR
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
J5H
K-O
KQ8
L7B
MVM
NEJ
NPM
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
ZE2
ZGI
.3N
.GA
.Y3
05W
10A
1OC
29I
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5HH
5LA
66C
702
7PT
7T5
7U9
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACGOF
ACMXC
ACPOU
ACUHS
ACXBN
ACXQS
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGXDD
AGYGG
AHBTC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBB
EBC
EBD
EBX
EMB
EMK
EMOBN
EPT
ESTFP
ESX
EX3
F00
F01
F04
FD6
FIJ
FUBAC
G-S
G.N
GODZA
H.X
H94
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YF5
YFH
YOC
YUY
ZZTAW
~IA
~KM
~WT
7X8
ABXVV
KOP
ID FETCH-LOGICAL-c532t-536bbf30d0dbf788466429de722a3d809b5e22e324a3723d68f2fafe2bcb243b3
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000245197300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1767
IngestDate Sun Nov 09 12:47:19 EST 2025
Fri Sep 05 13:46:22 EDT 2025
Fri May 30 10:49:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-536bbf30d0dbf788466429de722a3d809b5e22e324a3723d68f2fafe2bcb243b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jimmunol.org/content/jimmunol/178/7/4424.full.pdf
PMID 17372000
PQID 19604762
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_70303077
proquest_miscellaneous_19604762
pubmed_primary_17372000
PublicationCentury 2000
PublicationDate 2007-Apr-01
20070401
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-Apr-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of Immunology
PublicationTitleAlternate J Immunol
PublicationYear 2007
SSID ssj0006024
ssj0013055
Score 2.3592982
Snippet Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4424
SubjectTerms Amino Acid Sequence
Animals
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - immunology
Antibody Specificity
Antiphospholipid Syndrome - immunology
Autoantibodies - immunology
Cardiolipins - immunology
HIV Antibodies - immunology
HIV Envelope Protein gp41 - immunology
HIV-1 - immunology
Human immunodeficiency virus 1
Humans
Lipids - immunology
Liposomes - chemistry
Mice
Molecular Sequence Data
Title The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes
URI https://www.ncbi.nlm.nih.gov/pubmed/17372000
https://www.proquest.com/docview/19604762
https://www.proquest.com/docview/70303077
Volume 178
WOSCitedRecordID wos000245197300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2567
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0013055
  issn: 0022-1767
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013055
  issn: 0022-1767
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa25SEuCJbX8lh8QFyqdBMnqZNjQS1baVMq6EJvURI7UkQ3Kd121fIr-UnMOE4TCivgwCWqrHjsaL6OZ8bzIOSV6zMJWrZppBEThmNzbkQJCEOOVa0tvNlhsWo2wcdjbzbzJwetdpULczXnee5tNv7iv7IaxoDZmDr7D-zeEYUB-A1MhyewHZ5_zfgPOmawn6-yuBBbDHPbYlIlBgah3o3ucmxbjcmJmNqgOkhkeedNVma5wFww0CMx34IYXCtvyDflQAGCxunok2F1BrkKN5L6HgCEQ5HMlV9Rrwo2eIcNXbWWM7BMVHPfzbdJoWpDwGKO1QnkBZjroOhOlsUmu8AixxXZwQKEzUKHOP6qPo8wseWnO4G-BvfHYJ1nu5jjIOkL7U8KVN662HkgiqWWuXVcP154fdlPJ6icIrwRS1MnKVi87PTRlaVsVwF9rh6rhD_3GijnDVHuOGVyt1YLHKcsq7J_5DhgYuGRk5Vf3QWCXd6tJzcLfI_fh8Pzs7NwOphNXy--Gtj7DGMEdCOYFrnBuOtjYOLn0XinT_RMTOCpLsZM160K4OP3lYW0cBMnv9nC9WaTUp-m98hdzTjaL_F6nxzI_JDcKjuhbg_J7UDHeDwg3wHAFAFMi5RWAKZ7AKYAKqoATGsA0yynGsA4VwOYNgFMawDTCmlUAZjWAKY1gCkAWK2FAKargjYBTB2LVgCmFYBrshWAH5Lz4WD69tTQfUeMxLXZynDtXhyntilMEafc87ADA_OF5IxFtvBMP3YlYxJMkcjmzBY9L2VplEoWJzFz7Nh-RNp5kcsnhLLY9qW0Iyk8y2GWiBNTxq7wgUyCpsoReVkxKAS5jpd1sOVifRlaWDUJNJXr38CzGk5ofkQel5wNF2WBmtBSvadM8-kfqT8jd-q_z3PSXi3X8gW5mVytssvlMWnxmQfP8SQ4Vpj8AZ6K3PY
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Antibody+Polyspecificity+and+Lipid+Reactivity+in+Binding+of+Broadly+Neutralizing+Anti-HIV-1+Envelope+Human+Monoclonal+Antibodies+2F5+and+4E10+to+Glycoprotein+41+Membrane+Proximal+Envelope+Epitopes&rft.jtitle=Journal+of+Immunology&rft.au=Alam%2C+SMunir&rft.au=McAdams%2C+Mildred&rft.au=Boren%2C+David&rft.au=Rak%2C+Michael&rft.date=2007-04-01&rft.issn=0022-1767&rft.eissn=1365-2567&rft.volume=178&rft.issue=7&rft.spage=4424&rft.epage=4435&rft_id=info:doi/10.4049%2Fjimmunol.178.7.4424&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon