Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution

Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IUCrJ Ročník 7; číslo 5; s. 860 - 869
Hlavní autori: Guo, Hui, Franken, Erik, Deng, Yuchen, Benlekbir, Samir, Singla Lezcano, Garbi, Janssen, Bart, Yu, Lingbo, Ripstein, Zev A., Tan, Yong Zi, Rubinstein, John L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England International Union of Crystallography 01.09.2020
Predmet:
ISSN:2052-2525, 2052-2525
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
AbstractList Electron-event representation is a new data format for cryoEM that preserves the full temporal and spatial resolution of movies from direct detector device cameras. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. Keywords: electron-event representation; cryoEM; direct detector device.
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
Audience Academic
Author Tan, Yong Zi
Franken, Erik
Deng, Yuchen
Guo, Hui
Singla Lezcano, Garbi
Yu, Lingbo
Ripstein, Zev A.
Benlekbir, Samir
Janssen, Bart
Rubinstein, John L.
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0001-7007-2876
  surname: Guo
  fullname: Guo, Hui
– sequence: 2
  givenname: Erik
  surname: Franken
  fullname: Franken, Erik
– sequence: 3
  givenname: Yuchen
  surname: Deng
  fullname: Deng, Yuchen
– sequence: 4
  givenname: Samir
  orcidid: 0000-0001-5079-0547
  surname: Benlekbir
  fullname: Benlekbir, Samir
– sequence: 5
  givenname: Garbi
  surname: Singla Lezcano
  fullname: Singla Lezcano, Garbi
– sequence: 6
  givenname: Bart
  surname: Janssen
  fullname: Janssen, Bart
– sequence: 7
  givenname: Lingbo
  surname: Yu
  fullname: Yu, Lingbo
– sequence: 8
  givenname: Zev A.
  orcidid: 0000-0003-3601-0596
  surname: Ripstein
  fullname: Ripstein, Zev A.
– sequence: 9
  givenname: Yong Zi
  orcidid: 0000-0001-6656-6320
  surname: Tan
  fullname: Tan, Yong Zi
– sequence: 10
  givenname: John L.
  orcidid: 0000-0003-0566-2209
  surname: Rubinstein
  fullname: Rubinstein, John L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32939278$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNUREvpD-CCInHhkhJ_xE4uSFW1QKUiDoDEzXLs8dYrb7zYyVY98s-ZNC1qi5APHo3feewZvy-LgyEOUBSvSX1KSC3ff6N1Q2mDq67rjnY_nxVHc6qacwcP4sPiJOcNigihjeTkRXHIaMc6Ktuj4vcqgBlTHCrYwzCWCXYJMkZ69HEorR51CYPuA5TgnDd-Fpl0E1dfSucxm8eY9BrKaz9elW4KobwFpP0CiK7MOwx1KPVgyxG2O9QHvCfHMM2SV8Vzp0OGk7v9uPjxcfX9_HN1-fXTxfnZZWUaRseKSWCk7UQvSG-s0dBqbShnTWObmtMOp0Cdka6jDeeWSEsICAAuiSQdtY4dFxcL10a9UbvktzrdqKi9uk3EtFY6jd4EUB3rRes63RqN8-K2F9JZaTvWAGe9aZH1YWHtpn4L1uBQsKlH0Mcng79S67hXkgt8kEDAuztAir8myKPa-mwgBD1AnLKinLNWttgLSt8-kW7ilAYclaKi5rxlXMzA00W11tiAH1zEew0uC1tv0DnzZ6kzwURDBBcMC948bOHv2--tgQK5CEyKOSdwyvjFFUj2QZFazT5U__gQK8mTynv4_2v-AEB24DM
CitedBy_id crossref_primary_10_1016_j_jsb_2022_107911
crossref_primary_10_1016_j_jsb_2022_107875
crossref_primary_10_26508_lsa_202201527
crossref_primary_10_1016_j_jsb_2023_107958
crossref_primary_10_1093_micmic_ozad064
crossref_primary_10_1093_pnasnexus_pgac153
crossref_primary_10_1038_s41594_024_01348_w
crossref_primary_10_1038_s42003_023_05122_4
crossref_primary_10_1016_j_ultramic_2021_113423
crossref_primary_10_3390_ijms241914785
crossref_primary_10_1038_s41598_025_88055_8
crossref_primary_10_1093_mam_ozae044_363
crossref_primary_10_1016_j_jsb_2023_108015
crossref_primary_10_1007_s00401_023_02598_6
crossref_primary_10_1007_s00401_024_02807_w
crossref_primary_10_1007_s00401_024_02741_x
crossref_primary_10_1017_S0033583521000020
crossref_primary_10_1016_j_jsb_2022_107905
crossref_primary_10_1038_s41586_024_07739_9
crossref_primary_10_1038_s42003_021_01999_1
crossref_primary_10_1038_s41594_021_00619_0
crossref_primary_10_1038_s41594_022_00905_5
crossref_primary_10_1093_jmicro_dfab016
crossref_primary_10_1038_s41467_025_59009_5
crossref_primary_10_1126_science_adp5577
crossref_primary_10_1038_s41467_020_20694_z
crossref_primary_10_1042_BST20210360
crossref_primary_10_1016_j_ultramic_2025_114206
crossref_primary_10_1017_S2633903X23000107
crossref_primary_10_1038_s41594_025_01498_5
crossref_primary_10_7554_eLife_81702
crossref_primary_10_1107_S2052252524005530
crossref_primary_10_1016_j_jbc_2024_107166
crossref_primary_10_1016_j_cmpb_2022_106799
crossref_primary_10_1017_S1431927621001288
crossref_primary_10_1038_s41467_023_43634_z
crossref_primary_10_1107_S205225252401217X
crossref_primary_10_1186_s40478_023_01565_2
crossref_primary_10_1038_s41594_025_01575_9
crossref_primary_10_1016_j_str_2023_10_011
crossref_primary_10_1107_S2052252522000069
crossref_primary_10_1126_science_abm9609
crossref_primary_10_1017_S003358352000013X
crossref_primary_10_1038_s41586_025_08624_9
crossref_primary_10_1107_S2052252520011616
crossref_primary_10_1107_S2059798321009475
crossref_primary_10_1073_pnas_2509329122
crossref_primary_10_1016_j_str_2025_07_007
crossref_primary_10_1038_s41594_024_01295_6
crossref_primary_10_1016_j_molcel_2020_11_043
crossref_primary_10_1038_s42003_022_03284_1
crossref_primary_10_1016_j_jsb_2022_107843
crossref_primary_10_1109_MSP_2021_3120981
crossref_primary_10_1038_s41586_020_2829_0
crossref_primary_10_1038_s41586_021_03911_7
crossref_primary_10_1016_j_ddtec_2020_12_003
crossref_primary_10_1073_pnas_2306767120
crossref_primary_10_1016_j_cell_2024_10_012
crossref_primary_10_1134_S0006297924040138
crossref_primary_10_1016_j_biocel_2024_106536
crossref_primary_10_1073_pnas_2414511121
crossref_primary_10_1016_j_jsb_2025_108206
crossref_primary_10_1146_annurev_biochem_032620_110705
crossref_primary_10_1038_s41467_021_24650_3
crossref_primary_10_1017_S1431927622000617
crossref_primary_10_1038_s41467_024_54912_9
crossref_primary_10_1016_j_celrep_2024_114511
Cites_doi 10.1016/j.jsb.2015.08.008
10.1107/S205225251801463X
10.1016/j.jsb.2015.04.002
10.1016/j.jsb.2015.08.015
10.1038/nmeth.4169
10.1016/j.ultramic.2009.04.002
10.1016/bs.mie.2016.05.056
10.1016/j.jsb.2015.08.007
10.7554/eLife.06980
10.1016/j.jsb.2012.09.006
10.1016/j.jsb.2013.11.002
10.1002/j.1538-7305.1948.tb01338.x
10.1002/anie.201802731
10.1038/nmeth.2472
10.1016/j.jsb.2019.04.013
10.1016/j.str.2017.02.005
10.7554/eLife.03665
10.1016/j.jsb.2012.02.003
10.1016/j.jsb.2009.11.014
10.1016/j.str.2012.08.026
10.1016/j.ultramic.2009.05.005
10.7554/eLife.00461
10.1109/MC.1984.1659158
10.1016/bs.mie.2016.04.009
10.1038/nmeth.4193
10.1107/S2052252520000081
ContentType Journal Article
Copyright Hui Guo et al. 2020.
COPYRIGHT 2020 International Union of Crystallography
2020. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Hui Guo et al. 2020 2020
Copyright_xml – notice: Hui Guo et al. 2020.
– notice: COPYRIGHT 2020 International Union of Crystallography
– notice: 2020. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Hui Guo et al. 2020 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1107/S205225252000929X
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
UK & Ireland Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Electron-event representation
EISSN 2052-2525
EndPage 869
ExternalDocumentID oai_doaj_org_article_93b68f9a8ca7414db67fd7d935e43bc8
PMC7467176
A636516463
32939278
10_1107_S205225252000929X
Genre Journal Article
GeographicLocations Ontario
GeographicLocations_xml – name: Ontario
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: Ontario Graduate Scholarship
– fundername: Canada Research Chairs
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Thermo Fisher Scientific
– fundername: Canada Graduate Scholarship
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
ROL
RPM
ZBA
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c532t-37e31896b61bcdcae8aac24355d504292002fc7f92544d17d11e6ee4717192df3
IEDL.DBID KB.
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568664600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Tue Oct 14 19:03:33 EDT 2025
Tue Nov 04 01:57:59 EST 2025
Sun Nov 09 09:49:07 EST 2025
Fri Jul 25 12:04:38 EDT 2025
Tue Nov 04 17:57:22 EST 2025
Thu Apr 03 07:05:55 EDT 2025
Sat Nov 29 01:43:47 EST 2025
Tue Nov 18 22:32:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords electron-event representation
cryoEM
direct detector device
Language English
License Hui Guo et al. 2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-37e31896b61bcdcae8aac24355d504292002fc7f92544d17d11e6ee4717192df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
ORCID 0000-0003-3601-0596
0000-0001-5079-0547
0000-0003-0566-2209
0000-0001-7007-2876
0000-0001-6656-6320
OpenAccessLink https://www.proquest.com/docview/2604483466?pq-origsite=%requestingapplication%
PMID 32939278
PQID 2604483466
PQPubID 2035043
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_93b68f9a8ca7414db67fd7d935e43bc8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7467176
proquest_miscellaneous_2443878254
proquest_journals_2604483466
gale_infotracacademiconefile_A636516463
pubmed_primary_32939278
crossref_citationtrail_10_1107_S205225252000929X
crossref_primary_10_1107_S205225252000929X
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2020
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Shannon (fq5014_bb24) 1948; 27
Grant (fq5014_bb11) 2015; 4
Cheng (fq5014_bb6) 2015; 192
Rohou (fq5014_bb20) 2015; 192
McMullan (fq5014_bb15) 2009; 109
Scheres (fq5014_bb22) 2014; 3
Campbell (fq5014_bb4) 2012; 20
Baker (fq5014_bb2) 2010; 169
fq5014_bb5
Rubinstein (fq5014_bb21) 2015; 192
Brilot (fq5014_bb3) 2012; 177
Zivanov (fq5014_bb27) 2019; 6
Feng (fq5014_bb10) 2017; 25
Marr (fq5014_bb14) 2014; 185
Feathers (fq5014_bb9) 2019
McMullan (fq5014_bb16) 2016; 579
Bai (fq5014_bb1) 2013; 2
Henderson (fq5014_bb12) 2018; 57
Zheng (fq5014_bb26) 2017; 14
Li (fq5014_bb13) 2013; 10
Welch (fq5014_bb25) 1984; 17
Punjani (fq5014_bb18) 2017; 14
Chiu (fq5014_bb7) 2015; 192
McMullan (fq5014_bb17) 2009; 109
Zivanov (fq5014_bb28) 2020; 7
Ripstein (fq5014_bb19) 2016; 579
Eng (fq5014_bb8) 2019; 207
Scheres (fq5014_bb23) 2012; 180
References_xml – volume: 192
  start-page: 216
  year: 2015
  ident: fq5014_bb20
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 6
  start-page: 5
  year: 2019
  ident: fq5014_bb27
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
– volume: 192
  start-page: 146
  year: 2015
  ident: fq5014_bb6
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.04.002
– volume: 192
  start-page: 163
  year: 2015
  ident: fq5014_bb7
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.015
– volume: 14
  start-page: 290
  year: 2017
  ident: fq5014_bb18
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 109
  start-page: 1126
  year: 2009
  ident: fq5014_bb15
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2009.04.002
– ident: fq5014_bb5
– volume: 579
  start-page: 1
  year: 2016
  ident: fq5014_bb16
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.05.056
– volume: 192
  start-page: 188
  year: 2015
  ident: fq5014_bb21
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.007
– volume: 4
  start-page: e06980
  year: 2015
  ident: fq5014_bb11
  publication-title: eLife
  doi: 10.7554/eLife.06980
– volume: 180
  start-page: 519
  year: 2012
  ident: fq5014_bb23
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 185
  start-page: 42
  year: 2014
  ident: fq5014_bb14
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.11.002
– volume: 27
  start-page: 379
  year: 1948
  ident: fq5014_bb24
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 57
  start-page: 10804
  year: 2018
  ident: fq5014_bb12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802731
– volume: 10
  start-page: 584
  year: 2013
  ident: fq5014_bb13
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2472
– volume: 207
  start-page: 49
  year: 2019
  ident: fq5014_bb8
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2019.04.013
– volume: 25
  start-page: 663
  year: 2017
  ident: fq5014_bb10
  publication-title: Structure
  doi: 10.1016/j.str.2017.02.005
– volume: 3
  start-page: e03665
  year: 2014
  ident: fq5014_bb22
  publication-title: eLife
  doi: 10.7554/eLife.03665
– volume: 177
  start-page: 630
  year: 2012
  ident: fq5014_bb3
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.02.003
– volume: 169
  start-page: 431
  year: 2010
  ident: fq5014_bb2
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.11.014
– volume: 20
  start-page: 1823
  year: 2012
  ident: fq5014_bb4
  publication-title: Structure
  doi: 10.1016/j.str.2012.08.026
– volume: 109
  start-page: 1144
  year: 2009
  ident: fq5014_bb17
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2009.05.005
– start-page: 675397
  year: 2019
  ident: fq5014_bb9
  publication-title: BioRxiv
– volume: 2
  start-page: e00461
  year: 2013
  ident: fq5014_bb1
  publication-title: eLife
  doi: 10.7554/eLife.00461
– volume: 17
  start-page: 8
  year: 1984
  ident: fq5014_bb25
  publication-title: Computer
  doi: 10.1109/MC.1984.1659158
– volume: 579
  start-page: 103
  year: 2016
  ident: fq5014_bb19
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.04.009
– volume: 14
  start-page: 331
  year: 2017
  ident: fq5014_bb26
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 7
  start-page: 253
  year: 2020
  ident: fq5014_bb28
  publication-title: IUCrJ
  doi: 10.1107/S2052252520000081
SSID ssj0001125741
Score 2.4596362
Snippet Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of...
Electron-event representation is a new data format for cryoEM that preserves the full temporal and spatial resolution of movies from direct detector device...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 860
SubjectTerms Cameras
cryoem
Detection equipment
direct detector device
electron-event representation
Electrons
Format
Frames per second
Image analysis
Image processing
Motion pictures
Quantum efficiency
Radiation damage
Recording
Representations
Research Papers
Temporal resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSvp2mhYVCoWCifW2jknY0EtDoS3szch60EDwlt1NIcf8887I2sUm0F56lbVePT5pHp75hpAPIESDA_DUxqdQy56p2iXH6si8Tj44aXyTi02Yy8t2ubRfJ6W-MCZspAceF-7Eil63ybrWOxB-MvTapGCCFSpK0fuc5gtaz8SYyt4VkNsml63kjeI1V1yVT5pg7px8w0ZswzwV0A-WM6GUufvv39ATETUPn5zIo4tD8qQokvR0nMBT8iAOz8jjCb3gc3K3KDVu6kzTRDOB5S7ZaKAYHEpjzp2iMTNJYCe_vl0tvlDka6IYOQn3DUVnLUVHPc0vKG5cukp0gwHZMAw3BFpYrq7hf3aAfkF-XCy-n3-uS8mF2ivBt3DdoE_U6l6z3gfvYuuc56BSqaCaXNmq4cmbZJHZLDATGIs6RpBwBlTFkMRLcjCshviaUMd6Zr2QQcsge-5b23ieAmwlvEprXpFmt-adL3zkWBbjust2SWO6e9tUkU_7n_wayTj-1vkMN3LfEXm0cwOgqyvo6v6Frop8RBh0eNphcN6VpAWYIu5Dd6qFVkjRJipyvENKV66BTQfGokRvrdYVeb9_DAcYv8q4Ia5uoI-UojVoqFfk1Qis_ZgFKGOWGxiGmUFuNqn5k-HqZyYJxzIyzOij_7EKb8gjjm6GHFp3TA6265v4ljz0v7dXm_W7fPL-ABXFMm4
  priority: 102
  providerName: Directory of Open Access Journals
Title Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution
URI https://www.ncbi.nlm.nih.gov/pubmed/32939278
https://www.proquest.com/docview/2604483466
https://www.proquest.com/docview/2443878254
https://pubmed.ncbi.nlm.nih.gov/PMC7467176
https://doaj.org/article/93b68f9a8ca7414db67fd7d935e43bc8
Volume 7
WOSCitedRecordID wos000568664600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6apIfm0PfDbbqoUCgU3PghS_apZMuGlpJl6QO2JyPr0QaCnexuCj32n3dGK2_WBHLp1ZLtERrNjD6NvgF4jU7UKFSeWGpnYt6kRaycSmObauG0UVzqxBebkNNpOZ9XswC4LUNaZW8TvaE2nSaM_BDjbk7AlxDvzy9iqhpFp6uhhMYO7BFLApVu-Dx-d4WxoPdGjxkOM3Gjc_g1SzDgKDIiG0owMpgP3JFn7b9um7ec0zBxcssTHd_73zHch7shBmVHa6V5ALds-xD2t5gJH8HfSSiPE3uGJ-a5L_t7Si2jvFJm_bUrZj0JBXXSiz_d5IQR1ROjpEs0VYxwXkYYP_MfCAgw6xxbUi43iqFawwJB1hn-p18Lj-H78eTbh49xqNYQ6yLPVmipCE6tRCPSRhutbKmUzjAaK0yR-KJYSea0dBWRoplUmjS1wlp0jhKjTOPyJ7Dbdq19BkylTVrpnBvBDW8yXVaJzpxxlcJPCZFFkPSTVutAZU4VNc5qv6VJZH1tniN4u3nlfM3jcVPnMWnCpiNRcPsH3eJnHVZ0XeWNKFGkUivUMW4aIZ2RpsoLy_NGlxG8IT2qyVCgcFqF-w44RJqH-kjkoiB2tzyCg15d6mBBlvWVrkTwatOMa58OdFRru0vsw3leStrjR_B0rZkbmXOM46pMohhyoLODQQ1b2tNfnl-cKtCkUjy_WawXcCcj7MHn2x3A7mpxaV_Cbf17dbpcjGBHzssR7I0n09mXkUc6Rn5x4rPZp5PZj3_uVkMD
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDgl44PsjMMBIICSkaImT2MkDQgM6rdpaVWJI21NwbAcmTcloO9Ae-Yf4G7lzna7VpL3tgdfGcS_J7z58Pv8O4DU6UaMQPKHUtQnTKs5CVas4tLEWtTYqlTpyzSbkaJQfHBTjNfjbnYWhssrOJjpDbVpNOfJNjLtTSnwJ8eHkZ0hdo2h3tWuhMYfFrj37jUu26fvBZ_y-bzjf7u9_2gl9V4FQZwmfoUZR2q8QlYgrbbSyuVKaY9SQmSxyzZsiXmtZF0TeZWJp4tgKa9GIS4yGTJ3gvNdgPUWw5z1YHw-G48PzrA7GC-ij_fYpLq02v_AIQ5yME71RhLHIwYoDdH0CLnqDJXe4Wqq55Pu27_xvb-0u3PZRNtuaq8U9WLPNfbi1xL34AP70fQOg0HFYMcfu2Z3EahhVzjLrDpYx62g2aJCenLX9ISMyK0ZlpWiMGWWyGe1iMDeBz3GztmZTqlZHMVRjmKcAO8b_6bT9IXy9knfwCHpN29gnwFRcxYVOUiNSk1Zc50WkeW3qQuFUQvAAog4kpfZk7dQz5Lh0i7ZIlhdwFcC7xS0nc6aSywZ_JOQtBhLJuPuhnXwvvc0qi6QSOYqUa4WYTk0lZG2kKZLMpkml8wDeEm5LMoUonFb-RAc-In2HckskIiP-uiSAjQ6epbeR0_IcmwG8WlxG60ZbVqqx7SmOSdMkl5TFCODxXBMWMicYqRZcohhyRUdWHmr1SnP0wzGoU4-dWIqnl4v1Em7s7A_3yr3BaPcZ3OSUaXHVhRvQm01O7XO4rn_NjqaTF94MMPh21Tr0D0NAmvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron-event+representation+data+enable+efficient+cryoEM+file+storage+with+full+preservation+of+spatial+and+temporal+resolution&rft.jtitle=IUCrJ&rft.au=Guo%2C+Hui&rft.au=Franken%2C+Erik&rft.au=Deng%2C+Yuchen&rft.au=Benlekbir%2C+Samir&rft.date=2020-09-01&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=7&rft.issue=5&rft.spage=860&rft.epage=869&rft_id=info:doi/10.1107%2FS205225252000929X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S205225252000929X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon