Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counti...
Uložené v:
| Vydané v: | IUCrJ Ročník 7; číslo 5; s. 860 - 869 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
International Union of Crystallography
01.09.2020
|
| Predmet: | |
| ISSN: | 2052-2525, 2052-2525 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. |
|---|---|
| AbstractList | Electron-event representation is a new data format for cryoEM that preserves the full temporal and spatial resolution of movies from direct detector device cameras. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. Keywords: electron-event representation; cryoEM; direct detector device. Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras. |
| Audience | Academic |
| Author | Tan, Yong Zi Franken, Erik Deng, Yuchen Guo, Hui Singla Lezcano, Garbi Yu, Lingbo Ripstein, Zev A. Benlekbir, Samir Janssen, Bart Rubinstein, John L. |
| Author_xml | – sequence: 1 givenname: Hui orcidid: 0000-0001-7007-2876 surname: Guo fullname: Guo, Hui – sequence: 2 givenname: Erik surname: Franken fullname: Franken, Erik – sequence: 3 givenname: Yuchen surname: Deng fullname: Deng, Yuchen – sequence: 4 givenname: Samir orcidid: 0000-0001-5079-0547 surname: Benlekbir fullname: Benlekbir, Samir – sequence: 5 givenname: Garbi surname: Singla Lezcano fullname: Singla Lezcano, Garbi – sequence: 6 givenname: Bart surname: Janssen fullname: Janssen, Bart – sequence: 7 givenname: Lingbo surname: Yu fullname: Yu, Lingbo – sequence: 8 givenname: Zev A. orcidid: 0000-0003-3601-0596 surname: Ripstein fullname: Ripstein, Zev A. – sequence: 9 givenname: Yong Zi orcidid: 0000-0001-6656-6320 surname: Tan fullname: Tan, Yong Zi – sequence: 10 givenname: John L. orcidid: 0000-0003-0566-2209 surname: Rubinstein fullname: Rubinstein, John L. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32939278$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1v1DAQhiNUREvpD-CCInHhkhJ_xE4uSFW1QKUiDoDEzXLs8dYrb7zYyVY98s-ZNC1qi5APHo3feewZvy-LgyEOUBSvSX1KSC3ff6N1Q2mDq67rjnY_nxVHc6qacwcP4sPiJOcNigihjeTkRXHIaMc6Ktuj4vcqgBlTHCrYwzCWCXYJMkZ69HEorR51CYPuA5TgnDd-Fpl0E1dfSucxm8eY9BrKaz9elW4KobwFpP0CiK7MOwx1KPVgyxG2O9QHvCfHMM2SV8Vzp0OGk7v9uPjxcfX9_HN1-fXTxfnZZWUaRseKSWCk7UQvSG-s0dBqbShnTWObmtMOp0Cdka6jDeeWSEsICAAuiSQdtY4dFxcL10a9UbvktzrdqKi9uk3EtFY6jd4EUB3rRes63RqN8-K2F9JZaTvWAGe9aZH1YWHtpn4L1uBQsKlH0Mcng79S67hXkgt8kEDAuztAir8myKPa-mwgBD1AnLKinLNWttgLSt8-kW7ilAYclaKi5rxlXMzA00W11tiAH1zEew0uC1tv0DnzZ6kzwURDBBcMC948bOHv2--tgQK5CEyKOSdwyvjFFUj2QZFazT5U__gQK8mTynv4_2v-AEB24DM |
| CitedBy_id | crossref_primary_10_1016_j_jsb_2022_107911 crossref_primary_10_1016_j_jsb_2022_107875 crossref_primary_10_26508_lsa_202201527 crossref_primary_10_1016_j_jsb_2023_107958 crossref_primary_10_1093_micmic_ozad064 crossref_primary_10_1093_pnasnexus_pgac153 crossref_primary_10_1038_s41594_024_01348_w crossref_primary_10_1038_s42003_023_05122_4 crossref_primary_10_1016_j_ultramic_2021_113423 crossref_primary_10_3390_ijms241914785 crossref_primary_10_1038_s41598_025_88055_8 crossref_primary_10_1093_mam_ozae044_363 crossref_primary_10_1016_j_jsb_2023_108015 crossref_primary_10_1007_s00401_023_02598_6 crossref_primary_10_1007_s00401_024_02807_w crossref_primary_10_1007_s00401_024_02741_x crossref_primary_10_1017_S0033583521000020 crossref_primary_10_1016_j_jsb_2022_107905 crossref_primary_10_1038_s41586_024_07739_9 crossref_primary_10_1038_s42003_021_01999_1 crossref_primary_10_1038_s41594_021_00619_0 crossref_primary_10_1038_s41594_022_00905_5 crossref_primary_10_1093_jmicro_dfab016 crossref_primary_10_1038_s41467_025_59009_5 crossref_primary_10_1126_science_adp5577 crossref_primary_10_1038_s41467_020_20694_z crossref_primary_10_1042_BST20210360 crossref_primary_10_1016_j_ultramic_2025_114206 crossref_primary_10_1017_S2633903X23000107 crossref_primary_10_1038_s41594_025_01498_5 crossref_primary_10_7554_eLife_81702 crossref_primary_10_1107_S2052252524005530 crossref_primary_10_1016_j_jbc_2024_107166 crossref_primary_10_1016_j_cmpb_2022_106799 crossref_primary_10_1017_S1431927621001288 crossref_primary_10_1038_s41467_023_43634_z crossref_primary_10_1107_S205225252401217X crossref_primary_10_1186_s40478_023_01565_2 crossref_primary_10_1038_s41594_025_01575_9 crossref_primary_10_1016_j_str_2023_10_011 crossref_primary_10_1107_S2052252522000069 crossref_primary_10_1126_science_abm9609 crossref_primary_10_1017_S003358352000013X crossref_primary_10_1038_s41586_025_08624_9 crossref_primary_10_1107_S2052252520011616 crossref_primary_10_1107_S2059798321009475 crossref_primary_10_1073_pnas_2509329122 crossref_primary_10_1016_j_str_2025_07_007 crossref_primary_10_1038_s41594_024_01295_6 crossref_primary_10_1016_j_molcel_2020_11_043 crossref_primary_10_1038_s42003_022_03284_1 crossref_primary_10_1016_j_jsb_2022_107843 crossref_primary_10_1109_MSP_2021_3120981 crossref_primary_10_1038_s41586_020_2829_0 crossref_primary_10_1038_s41586_021_03911_7 crossref_primary_10_1016_j_ddtec_2020_12_003 crossref_primary_10_1073_pnas_2306767120 crossref_primary_10_1016_j_cell_2024_10_012 crossref_primary_10_1134_S0006297924040138 crossref_primary_10_1016_j_biocel_2024_106536 crossref_primary_10_1073_pnas_2414511121 crossref_primary_10_1016_j_jsb_2025_108206 crossref_primary_10_1146_annurev_biochem_032620_110705 crossref_primary_10_1038_s41467_021_24650_3 crossref_primary_10_1017_S1431927622000617 crossref_primary_10_1038_s41467_024_54912_9 crossref_primary_10_1016_j_celrep_2024_114511 |
| Cites_doi | 10.1016/j.jsb.2015.08.008 10.1107/S205225251801463X 10.1016/j.jsb.2015.04.002 10.1016/j.jsb.2015.08.015 10.1038/nmeth.4169 10.1016/j.ultramic.2009.04.002 10.1016/bs.mie.2016.05.056 10.1016/j.jsb.2015.08.007 10.7554/eLife.06980 10.1016/j.jsb.2012.09.006 10.1016/j.jsb.2013.11.002 10.1002/j.1538-7305.1948.tb01338.x 10.1002/anie.201802731 10.1038/nmeth.2472 10.1016/j.jsb.2019.04.013 10.1016/j.str.2017.02.005 10.7554/eLife.03665 10.1016/j.jsb.2012.02.003 10.1016/j.jsb.2009.11.014 10.1016/j.str.2012.08.026 10.1016/j.ultramic.2009.05.005 10.7554/eLife.00461 10.1109/MC.1984.1659158 10.1016/bs.mie.2016.04.009 10.1038/nmeth.4193 10.1107/S2052252520000081 |
| ContentType | Journal Article |
| Copyright | Hui Guo et al. 2020. COPYRIGHT 2020 International Union of Crystallography 2020. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Hui Guo et al. 2020 2020 |
| Copyright_xml | – notice: Hui Guo et al. 2020. – notice: COPYRIGHT 2020 International Union of Crystallography – notice: 2020. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Hui Guo et al. 2020 2020 |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO EHMNL HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1107/S205225252000929X |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central UK & Ireland Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX UK & Ireland Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Electron-event representation |
| EISSN | 2052-2525 |
| EndPage | 869 |
| ExternalDocumentID | oai_doaj_org_article_93b68f9a8ca7414db67fd7d935e43bc8 PMC7467176 A636516463 32939278 10_1107_S205225252000929X |
| Genre | Journal Article |
| GeographicLocations | Ontario |
| GeographicLocations_xml | – name: Ontario |
| GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Ontario Graduate Scholarship – fundername: Canada Research Chairs – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: Thermo Fisher Scientific – fundername: Canada Graduate Scholarship |
| GroupedDBID | 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION D1I EBS EHMNL GROUPED_DOAJ H13 HCIFZ HYE IAO ITC KB. KQ8 M48 M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RCJ ROL RPM ZBA NPM 7SR 7U5 8BQ 8FD AZQEC DWQXO JG9 L7M PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c532t-37e31896b61bcdcae8aac24355d504292002fc7f92544d17d11e6ee4717192df3 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568664600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-2525 |
| IngestDate | Tue Oct 14 19:03:33 EDT 2025 Tue Nov 04 01:57:59 EST 2025 Sun Nov 09 09:49:07 EST 2025 Fri Jul 25 12:04:38 EDT 2025 Tue Nov 04 17:57:22 EST 2025 Thu Apr 03 07:05:55 EDT 2025 Sat Nov 29 01:43:47 EST 2025 Tue Nov 18 22:32:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | electron-event representation cryoEM direct detector device |
| Language | English |
| License | Hui Guo et al. 2020. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c532t-37e31896b61bcdcae8aac24355d504292002fc7f92544d17d11e6ee4717192df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. |
| ORCID | 0000-0003-3601-0596 0000-0001-5079-0547 0000-0003-0566-2209 0000-0001-7007-2876 0000-0001-6656-6320 |
| OpenAccessLink | https://www.proquest.com/docview/2604483466?pq-origsite=%requestingapplication% |
| PMID | 32939278 |
| PQID | 2604483466 |
| PQPubID | 2035043 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_93b68f9a8ca7414db67fd7d935e43bc8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7467176 proquest_miscellaneous_2443878254 proquest_journals_2604483466 gale_infotracacademiconefile_A636516463 pubmed_primary_32939278 crossref_citationtrail_10_1107_S205225252000929X crossref_primary_10_1107_S205225252000929X |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chester |
| PublicationTitle | IUCrJ |
| PublicationTitleAlternate | IUCrJ |
| PublicationYear | 2020 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Shannon (fq5014_bb24) 1948; 27 Grant (fq5014_bb11) 2015; 4 Cheng (fq5014_bb6) 2015; 192 Rohou (fq5014_bb20) 2015; 192 McMullan (fq5014_bb15) 2009; 109 Scheres (fq5014_bb22) 2014; 3 Campbell (fq5014_bb4) 2012; 20 Baker (fq5014_bb2) 2010; 169 fq5014_bb5 Rubinstein (fq5014_bb21) 2015; 192 Brilot (fq5014_bb3) 2012; 177 Zivanov (fq5014_bb27) 2019; 6 Feng (fq5014_bb10) 2017; 25 Marr (fq5014_bb14) 2014; 185 Feathers (fq5014_bb9) 2019 McMullan (fq5014_bb16) 2016; 579 Bai (fq5014_bb1) 2013; 2 Henderson (fq5014_bb12) 2018; 57 Zheng (fq5014_bb26) 2017; 14 Li (fq5014_bb13) 2013; 10 Welch (fq5014_bb25) 1984; 17 Punjani (fq5014_bb18) 2017; 14 Chiu (fq5014_bb7) 2015; 192 McMullan (fq5014_bb17) 2009; 109 Zivanov (fq5014_bb28) 2020; 7 Ripstein (fq5014_bb19) 2016; 579 Eng (fq5014_bb8) 2019; 207 Scheres (fq5014_bb23) 2012; 180 |
| References_xml | – volume: 192 start-page: 216 year: 2015 ident: fq5014_bb20 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 6 start-page: 5 year: 2019 ident: fq5014_bb27 publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 192 start-page: 146 year: 2015 ident: fq5014_bb6 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.04.002 – volume: 192 start-page: 163 year: 2015 ident: fq5014_bb7 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.015 – volume: 14 start-page: 290 year: 2017 ident: fq5014_bb18 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 109 start-page: 1126 year: 2009 ident: fq5014_bb15 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.04.002 – ident: fq5014_bb5 – volume: 579 start-page: 1 year: 2016 ident: fq5014_bb16 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.05.056 – volume: 192 start-page: 188 year: 2015 ident: fq5014_bb21 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.007 – volume: 4 start-page: e06980 year: 2015 ident: fq5014_bb11 publication-title: eLife doi: 10.7554/eLife.06980 – volume: 180 start-page: 519 year: 2012 ident: fq5014_bb23 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 185 start-page: 42 year: 2014 ident: fq5014_bb14 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.11.002 – volume: 27 start-page: 379 year: 1948 ident: fq5014_bb24 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 57 start-page: 10804 year: 2018 ident: fq5014_bb12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802731 – volume: 10 start-page: 584 year: 2013 ident: fq5014_bb13 publication-title: Nat. Methods doi: 10.1038/nmeth.2472 – volume: 207 start-page: 49 year: 2019 ident: fq5014_bb8 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2019.04.013 – volume: 25 start-page: 663 year: 2017 ident: fq5014_bb10 publication-title: Structure doi: 10.1016/j.str.2017.02.005 – volume: 3 start-page: e03665 year: 2014 ident: fq5014_bb22 publication-title: eLife doi: 10.7554/eLife.03665 – volume: 177 start-page: 630 year: 2012 ident: fq5014_bb3 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.02.003 – volume: 169 start-page: 431 year: 2010 ident: fq5014_bb2 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.11.014 – volume: 20 start-page: 1823 year: 2012 ident: fq5014_bb4 publication-title: Structure doi: 10.1016/j.str.2012.08.026 – volume: 109 start-page: 1144 year: 2009 ident: fq5014_bb17 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.05.005 – start-page: 675397 year: 2019 ident: fq5014_bb9 publication-title: BioRxiv – volume: 2 start-page: e00461 year: 2013 ident: fq5014_bb1 publication-title: eLife doi: 10.7554/eLife.00461 – volume: 17 start-page: 8 year: 1984 ident: fq5014_bb25 publication-title: Computer doi: 10.1109/MC.1984.1659158 – volume: 579 start-page: 103 year: 2016 ident: fq5014_bb19 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.04.009 – volume: 14 start-page: 331 year: 2017 ident: fq5014_bb26 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 7 start-page: 253 year: 2020 ident: fq5014_bb28 publication-title: IUCrJ doi: 10.1107/S2052252520000081 |
| SSID | ssj0001125741 |
| Score | 2.4596362 |
| Snippet | Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of... Electron-event representation is a new data format for cryoEM that preserves the full temporal and spatial resolution of movies from direct detector device... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 860 |
| SubjectTerms | Cameras cryoem Detection equipment direct detector device electron-event representation Electrons Format Frames per second Image analysis Image processing Motion pictures Quantum efficiency Radiation damage Recording Representations Research Papers Temporal resolution |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSvp2mhYVCoWCifW2jknY0EtDoS3szch60EDwlt1NIcf8887I2sUm0F56lbVePT5pHp75hpAPIESDA_DUxqdQy56p2iXH6si8Tj44aXyTi02Yy8t2ubRfJ6W-MCZspAceF-7Eil63ybrWOxB-MvTapGCCFSpK0fuc5gtaz8SYyt4VkNsml63kjeI1V1yVT5pg7px8w0ZswzwV0A-WM6GUufvv39ATETUPn5zIo4tD8qQokvR0nMBT8iAOz8jjCb3gc3K3KDVu6kzTRDOB5S7ZaKAYHEpjzp2iMTNJYCe_vl0tvlDka6IYOQn3DUVnLUVHPc0vKG5cukp0gwHZMAw3BFpYrq7hf3aAfkF-XCy-n3-uS8mF2ivBt3DdoE_U6l6z3gfvYuuc56BSqaCaXNmq4cmbZJHZLDATGIs6RpBwBlTFkMRLcjCshviaUMd6Zr2QQcsge-5b23ieAmwlvEprXpFmt-adL3zkWBbjust2SWO6e9tUkU_7n_wayTj-1vkMN3LfEXm0cwOgqyvo6v6Frop8RBh0eNphcN6VpAWYIu5Dd6qFVkjRJipyvENKV66BTQfGokRvrdYVeb9_DAcYv8q4Ia5uoI-UojVoqFfk1Qis_ZgFKGOWGxiGmUFuNqn5k-HqZyYJxzIyzOij_7EKb8gjjm6GHFp3TA6265v4ljz0v7dXm_W7fPL-ABXFMm4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32939278 https://www.proquest.com/docview/2604483466 https://www.proquest.com/docview/2443878254 https://pubmed.ncbi.nlm.nih.gov/PMC7467176 https://doaj.org/article/93b68f9a8ca7414db67fd7d935e43bc8 |
| Volume | 7 |
| WOSCitedRecordID | wos000568664600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: KB. dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: UK & Ireland Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: EHMNL dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/ukireland providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6apIfm0PfDbbqoUCgU3PghS_apZMuGlpJl6QO2JyPr0QaCnexuCj32n3dGK2_WBHLp1ZLtERrNjD6NvgF4jU7UKFSeWGpnYt6kRaycSmObauG0UVzqxBebkNNpOZ9XswC4LUNaZW8TvaE2nSaM_BDjbk7AlxDvzy9iqhpFp6uhhMYO7BFLApVu-Dx-d4WxoPdGjxkOM3Gjc_g1SzDgKDIiG0owMpgP3JFn7b9um7ec0zBxcssTHd_73zHch7shBmVHa6V5ALds-xD2t5gJH8HfSSiPE3uGJ-a5L_t7Si2jvFJm_bUrZj0JBXXSiz_d5IQR1ROjpEs0VYxwXkYYP_MfCAgw6xxbUi43iqFawwJB1hn-p18Lj-H78eTbh49xqNYQ6yLPVmipCE6tRCPSRhutbKmUzjAaK0yR-KJYSea0dBWRoplUmjS1wlp0jhKjTOPyJ7Dbdq19BkylTVrpnBvBDW8yXVaJzpxxlcJPCZFFkPSTVutAZU4VNc5qv6VJZH1tniN4u3nlfM3jcVPnMWnCpiNRcPsH3eJnHVZ0XeWNKFGkUivUMW4aIZ2RpsoLy_NGlxG8IT2qyVCgcFqF-w44RJqH-kjkoiB2tzyCg15d6mBBlvWVrkTwatOMa58OdFRru0vsw3leStrjR_B0rZkbmXOM46pMohhyoLODQQ1b2tNfnl-cKtCkUjy_WawXcCcj7MHn2x3A7mpxaV_Cbf17dbpcjGBHzssR7I0n09mXkUc6Rn5x4rPZp5PZj3_uVkMD |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDgl44PsjMMBIICSkaImT2MkDQgM6rdpaVWJI21NwbAcmTcloO9Ae-Yf4G7lzna7VpL3tgdfGcS_J7z58Pv8O4DU6UaMQPKHUtQnTKs5CVas4tLEWtTYqlTpyzSbkaJQfHBTjNfjbnYWhssrOJjpDbVpNOfJNjLtTSnwJ8eHkZ0hdo2h3tWuhMYfFrj37jUu26fvBZ_y-bzjf7u9_2gl9V4FQZwmfoUZR2q8QlYgrbbSyuVKaY9SQmSxyzZsiXmtZF0TeZWJp4tgKa9GIS4yGTJ3gvNdgPUWw5z1YHw-G48PzrA7GC-ij_fYpLq02v_AIQ5yME71RhLHIwYoDdH0CLnqDJXe4Wqq55Pu27_xvb-0u3PZRNtuaq8U9WLPNfbi1xL34AP70fQOg0HFYMcfu2Z3EahhVzjLrDpYx62g2aJCenLX9ISMyK0ZlpWiMGWWyGe1iMDeBz3GztmZTqlZHMVRjmKcAO8b_6bT9IXy9knfwCHpN29gnwFRcxYVOUiNSk1Zc50WkeW3qQuFUQvAAog4kpfZk7dQz5Lh0i7ZIlhdwFcC7xS0nc6aSywZ_JOQtBhLJuPuhnXwvvc0qi6QSOYqUa4WYTk0lZG2kKZLMpkml8wDeEm5LMoUonFb-RAc-In2HckskIiP-uiSAjQ6epbeR0_IcmwG8WlxG60ZbVqqx7SmOSdMkl5TFCODxXBMWMicYqRZcohhyRUdWHmr1SnP0wzGoU4-dWIqnl4v1Em7s7A_3yr3BaPcZ3OSUaXHVhRvQm01O7XO4rn_NjqaTF94MMPh21Tr0D0NAmvU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron-event+representation+data+enable+efficient+cryoEM+file+storage+with+full+preservation+of+spatial+and+temporal+resolution&rft.jtitle=IUCrJ&rft.au=Guo%2C+Hui&rft.au=Franken%2C+Erik&rft.au=Deng%2C+Yuchen&rft.au=Benlekbir%2C+Samir&rft.date=2020-09-01&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=7&rft.issue=5&rft.spage=860&rft.epage=869&rft_id=info:doi/10.1107%2FS205225252000929X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S205225252000929X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon |