An efficient binary salp swarm algorithm for user selection in multiuser MIMO antenna systems

The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 16421 - 17
Main Authors: Sasikumar, A., Ravi, Logesh, Devarajan, Malathi, Almazyad, Abdulaziz S., De, Shuvodeep, Xiong, Guojiang, Mousavirad, Seyed Jalaleddin, Mohamed, Ali Wagdy
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 12.05.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.
AbstractList The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.
The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. 
The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system's total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system's total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.
Abstract The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.
ArticleNumber 16421
Author Xiong, Guojiang
Sasikumar, A.
Mohamed, Ali Wagdy
Mousavirad, Seyed Jalaleddin
Almazyad, Abdulaziz S.
De, Shuvodeep
Devarajan, Malathi
Ravi, Logesh
Author_xml – sequence: 1
  givenname: A.
  surname: Sasikumar
  fullname: Sasikumar, A.
  organization: Department of Data Science and Business Systems, Faculty of Engineering and Technology, SRM Institute of Science and Technology
– sequence: 2
  givenname: Logesh
  surname: Ravi
  fullname: Ravi, Logesh
  organization: Centre for Advanced Data Science, School of Electronics Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Malathi
  surname: Devarajan
  fullname: Devarajan, Malathi
  organization: School of Computer Science and Engineering, Vellore Institute of Technology
– sequence: 4
  givenname: Abdulaziz S.
  surname: Almazyad
  fullname: Almazyad, Abdulaziz S.
  organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University
– sequence: 5
  givenname: Shuvodeep
  surname: De
  fullname: De, Shuvodeep
  organization: Virginia Tech
– sequence: 6
  givenname: Guojiang
  surname: Xiong
  fullname: Xiong, Guojiang
  organization: Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University
– sequence: 7
  givenname: Seyed Jalaleddin
  surname: Mousavirad
  fullname: Mousavirad, Seyed Jalaleddin
  email: seyedjalaleddin.mousavirad@miun.se
  organization: Department of Computer and Electrical Engineering, Mid Sweden University
– sequence: 8
  givenname: Ali Wagdy
  surname: Mohamed
  fullname: Mohamed, Ali Wagdy
  organization: Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Applied Science Research Center, Applied Science Private University, Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40355606$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-54443$$DView record from Swedish Publication Index (Mittuniversitetet)
BookMark eNp9kstu1DAUhi1UREvpC7BAltiwCTi-5LJCo0JhpFbdADtkOc7J1KPEHmyHqm_f05mhdFjgjS37O7__c3lJjnzwQMjrkr0vmWg-JFmqtikYVwVjdc0L_oyccCZVwQXnR0_Ox-QspTXDpXgry_YFOZZMKFWx6oT8XHgKw-CsA59p57yJdzSZcUPTrYkTNeMqRJdvJjqESOcEkSYYwWYXPHWeTvOY3fb6anl1TY3P4L2h6S5lmNIr8nwwY4Kz_X5Kvl98_nb-tbi8_rI8X1wWVgmeC25Nq1THTcWZ6gYB9SAq4D1TZW164Kauuh7tKiZaPFloJGAqFjox4LsVp2S50-2DWetNdBOmoYNxensR4kqbmJ0dQTemMWaoJbd9Izujuor3dVOWXWM5E8BQq9hppVvYzN2B2if3Y7FVm9zstZJSCuQ_7niEJ0BzPkczHoQdvnh3o1fhty45q1rMChXe7RVi-DVDyiifLIyj8RDmpAUaE0xUqkH07T_oOszRY20fKGyrkKpE6s1TS49e_rQdAb4DbAwpRRgekZLph_HSu_HSOF56O16aY5DYFwZhv4L49-__RN0DyYjS-w
Cites_doi 10.1109/MNET.2005.1509951
10.3390/electronics9030468
10.1109/WCNCW49093.2021.9420034
10.1016/j.advengsoft.2017.07.002
10.1007/s10776-022-00567-6
10.1109/TIFS.2021.3063632
10.1016/j.asoc.2014.06.018
10.1023/A:1008889222784
10.1007/s11277-021-08688-6
10.1109/TBC.2023.3264863
10.1109/TCOMM.2020.3014153
10.1109/ACCESS.2024.3370860
10.1109/TWC.2020.2976004
10.1007/s00521-019-04629-4
10.1007/s00521-018-3613-z
10.1109/WAMS59642.2024.10527862
10.1109/SYNCHROINFO57872.2023.10178432
10.1109/JSAC.2025.3531530
10.1007/s00521-013-1525-5
10.1016/j.mee.2022.111829
10.1002/9781394228331.ch5
10.3390/technologies13030092
10.1063/1.5020999
10.1002/dac.4975
10.1109/MWC.005.2300457
10.1109/TCOMM.2025.3529263
10.1039/D2TC03736J
10.1109/TCOMM.2021.3053040
10.1109/JSEN.2025.3546431
10.1109/ACTS49415.2020.9350505
10.1017/S1759078722000599
10.1109/TIFS.2020.3002386
10.1016/j.asoc.2015.08.053
10.23919/EuCAP57121.2023.10133572
10.55730/1300-0632.3851
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AKRZP
AOWAS
D8T
DG5
ZZAVC
DOA
DOI 10.1038/s41598-025-00772-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Mittuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Mittuniversitetet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_8a8aaf742cd84ba5b62d7811b8c203e0
oai_DiVA_org_miun_54443
PMC12069606
40355606
10_1038_s41598_025_00772_2
Genre Journal Article
GrantInformation_xml – fundername: Mid Sweden University
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADTPV
AKRZP
AOWAS
D8T
DG5
EJD
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c532t-2ca955b2a6205bf3e7f36e2d0517ade2a76bd60650396bdce84e294ceb3fadec3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486824200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Nov 04 17:02:32 EST 2025
Tue Nov 04 02:03:38 EST 2025
Fri Sep 05 16:49:19 EDT 2025
Tue Oct 07 07:56:44 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Sat Nov 29 07:55:10 EST 2025
Tue May 13 01:10:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords User scheduling
Multiuser MIMO
Binary salp swarm algorithm
Metaheuristics optimization
Antenna
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-2ca955b2a6205bf3e7f36e2d0517ade2a76bd60650396bdce84e294ceb3fadec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3204033451?pq-origsite=%requestingapplication%
PMID 40355606
PQID 3204033451
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_8a8aaf742cd84ba5b62d7811b8c203e0
swepub_primary_oai_DiVA_org_miun_54443
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12069606
proquest_miscellaneous_3203303658
proquest_journals_3204033451
pubmed_primary_40355606
crossref_primary_10_1038_s41598_025_00772_2
springer_journals_10_1038_s41598_025_00772_2
PublicationCentury 2000
PublicationDate 2025-05-12
PublicationDateYYYYMMDD 2025-05-12
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 772_CR27
X Lin (772_CR19) 2025
772_CR5
772_CR2
T Gong (772_CR3) 2024; 31
MA Alsultan (772_CR8) 2025; 25
S Mirjalili (772_CR31) 2017; 114
NR Challa (772_CR11) 2021; 121
Z Shen (772_CR17) 2020; 15
W Ajibi (772_CR26) 2005; 19
GJ Foschini (772_CR23) 1998; 6
X Ju (772_CR14) 2025; 43
772_CR13
Z Shen (772_CR18) 2021; 16
W Yang (772_CR7) 2023; 11
772_CR10
J Mohanty (772_CR35) 2022; 30
J Kang (772_CR16) 2023; 69
S Mirjalili (772_CR34) 2014; 25
M Singh (772_CR4) 2022; 262
PK Gkonis (772_CR15) 2020; 9
SH Kiani (772_CR1) 2024; 12
RM Rizk-Allah (772_CR33) 2019; 31
P Pattanayak (772_CR30) 2015; 37
J Mohanty (772_CR28) 2021; 34
H Singh (772_CR6) 2023; 15
F Elias (772_CR12) 2025; 13
Y Zhang (772_CR25) 2021; 69
L Abualigah (772_CR32) 2020; 32
S Asaithambi (772_CR29) 2018; 89
X Yong (772_CR21) 2022; 2205
M Naeem (772_CR36) 2014; 23
772_CR24
Y Mao (772_CR22) 2020; 68
MA Matheen (772_CR9) 2022; 29
Z Zhou (772_CR20) 2020; 19
References_xml – volume: 19
  start-page: 43
  year: 2005
  ident: 772_CR26
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2005.1509951
– volume: 9
  start-page: 468
  issue: 3
  year: 2020
  ident: 772_CR15
  publication-title: Electronics
  doi: 10.3390/electronics9030468
– ident: 772_CR24
  doi: 10.1109/WCNCW49093.2021.9420034
– volume: 114
  start-page: 163
  year: 2017
  ident: 772_CR31
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 29
  start-page: 407
  issue: 4
  year: 2022
  ident: 772_CR9
  publication-title: Int. J. Wireless Inf. Netw.
  doi: 10.1007/s10776-022-00567-6
– volume: 16
  start-page: 2727
  year: 2021
  ident: 772_CR18
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3063632
– volume: 23
  start-page: 366
  year: 2014
  ident: 772_CR36
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.018
– volume: 6
  start-page: 311
  year: 1998
  ident: 772_CR23
  publication-title: Wireless Pers. Commun.
  doi: 10.1023/A:1008889222784
– volume: 121
  start-page: 1627
  year: 2021
  ident: 772_CR11
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-021-08688-6
– volume: 69
  start-page: 589
  year: 2023
  ident: 772_CR16
  publication-title: IEEE Trans. Broadcasting
  doi: 10.1109/TBC.2023.3264863
– volume: 68
  start-page: 6775
  issue: 11
  year: 2020
  ident: 772_CR22
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3014153
– volume: 12
  start-page: 34467
  year: 2024
  ident: 772_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3370860
– volume: 19
  start-page: 3712
  issue: 6
  year: 2020
  ident: 772_CR20
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.2976004
– volume: 32
  start-page: 11195
  year: 2020
  ident: 772_CR32
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04629-4
– volume: 31
  start-page: 1641
  year: 2019
  ident: 772_CR33
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3613-z
– ident: 772_CR2
  doi: 10.1109/WAMS59642.2024.10527862
– ident: 772_CR13
  doi: 10.1109/SYNCHROINFO57872.2023.10178432
– volume: 43
  start-page: 883
  year: 2025
  ident: 772_CR14
  publication-title: IEEE J. Select. Commun.
  doi: 10.1109/JSAC.2025.3531530
– volume: 2205
  start-page: 012004
  issue: 1
  year: 2022
  ident: 772_CR21
  publication-title: J. Phys.: Conf.e Ser.
– volume: 25
  start-page: 663
  issue: 4
  year: 2014
  ident: 772_CR34
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1525-5
– volume: 262
  year: 2022
  ident: 772_CR4
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2022.111829
– ident: 772_CR10
  doi: 10.1002/9781394228331.ch5
– volume: 13
  start-page: 92
  issue: 3
  year: 2025
  ident: 772_CR12
  publication-title: Technologies
  doi: 10.3390/technologies13030092
– volume: 89
  start-page: 054702
  issue: 5
  year: 2018
  ident: 772_CR29
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5020999
– volume: 34
  issue: 17
  year: 2021
  ident: 772_CR28
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4975
– volume: 31
  start-page: 108
  issue: 3
  year: 2024
  ident: 772_CR3
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.005.2300457
– year: 2025
  ident: 772_CR19
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2025.3529263
– volume: 11
  start-page: 406
  issue: 2
  year: 2023
  ident: 772_CR7
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC03736J
– volume: 69
  start-page: 3039
  issue: 5
  year: 2021
  ident: 772_CR25
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2021.3053040
– volume: 25
  start-page: 13974
  issue: 8
  year: 2025
  ident: 772_CR8
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2025.3546431
– ident: 772_CR27
  doi: 10.1109/ACTS49415.2020.9350505
– volume: 15
  start-page: 535
  issue: 3
  year: 2023
  ident: 772_CR6
  publication-title: Int. J. Microw. Wirel. Technol.
  doi: 10.1017/S1759078722000599
– volume: 15
  start-page: 3760
  year: 2020
  ident: 772_CR17
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3002386
– volume: 37
  start-page: 545
  year: 2015
  ident: 772_CR30
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.053
– ident: 772_CR5
  doi: 10.23919/EuCAP57121.2023.10133572
– volume: 30
  start-page: 1317
  issue: 4
  year: 2022
  ident: 772_CR35
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.3851
SSID ssj0000529419
Score 2.4550157
Snippet The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO...
Abstract The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16421
SubjectTerms 639/166/987
639/705/1042
Algorithms
Antenna
Antennas
Binary salp swarm algorithm
Heterogeneity
Humanities and Social Sciences
Metaheuristics optimization
multidisciplinary
Multiuser MIMO
Pollination
Problem solving
Scheduling
Science
Science (multidisciplinary)
User scheduling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUZCXCBqMn7EPi6PCiRaOEDVC7Jsx6GRut5qs9uKf48f2aUBBBdukR-JM4_MTOz5BqFnwYOQVLZ1yU0sYUYbVmouRemcqLQ1tm1SjaWjD83hoTg-lp8ulfqKZ8IyPHAm3J7QQusuBHC2FdRoZji0MTvSCAsVcSlarxp5KZjKqN4gaS3HLJmKiL0hWKqYTQasjBA2UMLEEiXA_j95mb8fltzumP6CLpos0v5NdGN0JfEsv8ItdMX52-haLi75_Q76OvPYJYCIcEtsUt4tHvTpGR4u9HKO9em3xbJfncxx8Ftx_FmBh1QUJ3AK9x6no4ap-eD9wUccOeC9xhn6ebiLvuy__fz6XTkWUygtI7AqwWrJmAHNoWKmI67pCHfQRowu3TrQDTctjw4bkeHKOkFdoKENwXYX-i25h3b8wrsHCHc2AkhpMIJYKoKDwrmIYbZuwreyI02BXmwIq84yZoZKe91EqMwGFdigEhsUFOhVpP12ZMS7Tg1BCtQoBepfUlCg3Q3n1KiEgyIQvlCEUFYX6Om2O6hP3BPR3i3WaQyJVpyJAt3PjN6uJExmwSHkBRITEZgsddrj-5ME0V1DxWWa-nIjLT_X9TdaPM8SNXnEm_5olqgx79deMUopefg_iPYIXYekD6ysYRftrJZr9xhdteerflg-SQr1A2IqJLE
  priority: 102
  providerName: Directory of Open Access Journals
Title An efficient binary salp swarm algorithm for user selection in multiuser MIMO antenna systems
URI https://link.springer.com/article/10.1038/s41598-025-00772-2
https://www.ncbi.nlm.nih.gov/pubmed/40355606
https://www.proquest.com/docview/3204033451
https://www.proquest.com/docview/3203303658
https://pubmed.ncbi.nlm.nih.gov/PMC12069606
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-54443
https://doaj.org/article/8a8aaf742cd84ba5b62d7811b8c203e0
Volume 15
WOSCitedRecordID wos001486824200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSRexjcERmUkxAtES_ydJ9TBJibRUiGYygOyHMfZKq1p17Qg_ntsJ81UQHvhxYrifDj53dnnO_t3AC-dBZHRrEhjnvsUZlSwWPNMxtbKRJvcFCLkWDr9KEYjOZlk49bhVrfLKjd9Yuioi7nxPvIDgp24EUJZ-nZxGfusUT662qbQ2IGes2xSv6RriMedj8VHsWiatXtlEiIPajde-T1lmMWeyAbHeGs8CrT9_7I1_14y2cVN_-AYDePS8Z3__aK7sNdapGjQiNA9uGGr-3CryVH56wF8H1TIBp4J1yaUh-27qNYXC1T_1MsZ0hdn7qGr8xly5i_yPg9Uh9w6DnA0rVBYsRhOD0-Gn5AHsqo0ahik64fw9fjoy7sPcZuTITaM4FWMjc4Yy7HmOGF5SawoCbe48FRfurBYC54X3Nt9JHNHxkpqHQjGzdlLV2_II9it5pV9Aqg0nodK41wSQ6WzcziXfrauhetySyIieL1BRi0a6g0VQuZEqgZH5XBUAUeFIzj04HVXetrscGK-PFOtFiqppdaloNgUkuaa5RwXfqttLg1OiE0i2N9ApVpdrtUVThG86KqdFvrQiq7sfB2uId4YYDKCx42kdC1xNzNnV_II5JYMbTV1u6aangem7xQnPAu3vtmI21W7rvsXrxqR3HrF--npIPyN2XRdKUYpJU-v_95ncBsHVWFxivdhd7Vc2-dw0_xYTetlH3bERIRS9qF3eDQaf-4Hl0Y_aKEvhSt745Ph-NtvFs85LA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAwQXvj8CA4wEXCBa-mwnzgGhwphWrS07jGkXZBzH2SKtaWlapv1T_I3YTtOpgHbbgVtkx4nt_N7zi_3e7wG8shZEytK8E8aZS2HGEh6qOBWhMSJSOtN54nMsHfST4VAcHqZ7a_CrjYVxbpWtTvSKOh9rt0e-SdHCjVLGOx8mP0KXNcqdrrYpNBpY7JqzU_vLVr_vbdnv-xpx-_P-p51wkVUg1JziLEStUs4zVDFGPCuoSQoaG8wdWZXKDaokzvLYWS40tVfaCGYwZdr-dRa2XlP73CtwlTlmMecqiHvLPR13asY66SI2J6Jis7bro4thQx464hwMcWX982kC_mXb_u2iuTyn_YPT1K-D27f_txm8A7cWFjfpNiJyF9ZMdQ-uNzk4z-7Dt25FjOfRsHNAMh-eTGp1MiH1qZqOiDo5soOYHY-INe-J29Mhtc8dZAFNyop4j0xfPOgNvhAH1KpSpGHIrh_A10sZ20NYr8aVeQyk0I5nS2EmqGbC2nFxLNxuhErsklLQJIC3LRLkpKEWkd4lgArZ4EZa3EiPG4kBfHRgWd7paMF9wXh6JBdaRgollCoShjoXLFM8izF3ocSZ0BhREwWw0UJDLnRVLc9xEcDLZbXVMu7oSFVmPPf3UGfscBHAowaZy57YxtzazXEAYgWzK11dranKY89k3sEoTn3Tdy28z_t10Vy8aURg5RVb5UHXz8aonFeSM8bok4vH-wJu7OwP-rLfG-4-hZvoxZSHHdyA9dl0bp7BNf1zVtbT517OCXy_bLH4DWXskWo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuF8CA4wEvEDU1Lc4DwgVSkW1tfQBpvGAjOM4W6U1LU3LtL_Gr8N2kk4FtLc98FbFSWu73zn-Yp_zHYDnlkEkNMk6IU9dCTMas1DxRITGiEjpVGexr7G0vxePRuLgIBlvwa8mF8aFVTY-0TvqbKbdHnmbYAs3QijrtPM6LGLc67-d_whdBSl30tqU06ggsmtOT-zrW_lm0LP_9QuM-x8-v_8Y1hUGQs0IXoZYq4SxFCuOI5bmxMQ54QZnTrhKZQarmKcZdyyGJPaTNoIanFBt30Bz266J_d5LsG0pOcUt2B4PhuOv6x0ed4ZGO0mdqRMR0S7tauky2jALnYwODvHGauiLBvyL6f4dsLk-tf1D4dSviv0b__N83oTrNRdH3cp4bsGWKW7Dlao65-kd-NYtkPEKG3Y-UOoTl1GpjueoPFGLKVLHh3YQy6MpssQfud0eVPqqQhbqaFIgH6vpLw8Hw0_IQbgoFKq0s8u78OVCxnYPWsWsMA8A5dopcCmcCqKpsAyPc-H2KVRsF5ucxAG8alAh55XoiPTBAkTICkPSYkh6DEkcwDsHnPWdTjDcX5gtDmXtf6RQQqncwlRngqaKpRxnLsk4FRpHxEQB7DQwkbUXK-UZRgJ4tm62_scdKqnCzFb-HuJoEBMB3K9Quu6JfZhZRs0DEBv43ejqZksxOfIa5x0c8cQ_-rqB-lm_zpuLl5U5bPxEb7Lf9bMxnawKySil5OH5430KV601yL3BaPcRXMPeYlnYwTvQWi5W5jFc1j-Xk3LxpDZ6BN8v2i5-A8u6m7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+binary+salp+swarm+algorithm+for+user+selection+in+multiuser+MIMO+antenna+systems&rft.jtitle=Scientific+reports&rft.date=2025-05-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=16421&rft_id=info:doi/10.1038%2Fs41598-025-00772-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon