An efficient binary salp swarm algorithm for user selection in multiuser MIMO antenna systems
The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 16421 - 17 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
12.05.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. |
|---|---|
| AbstractList | The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system's total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits.The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system's total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. Abstract The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO antenna system must accommodate many subscribers without additional bandwidth or energy. User scheduling becomes a critical strategy to take advantage of multiuser heterogeneity and acquire maximum gain in systems where the total number of recipients exceeds the number of transmitting antennas. Due to their high computational cost, many user selection methods currently in use, such as greedy algorithms and exhaustive search are unsuitable for MU-MIMO systems. A suitable scheduling mechanism is essential for the various users in an MU-MIMO system to utilise bandwidth and enhance the system’s total rate effectively. In this article, we proposed a user and antenna scheduling with a population-based meta-heuristic approach, namely the binary salp swarm algorithm (binary SSA), to increase the system sum rate with low computing complexity. We specifically used a population-based meta-heuristics optimisation technique to simulate the user scheduling problem in MU-MIMO systems, characterising complicated issues with binary decisions. Additionally, binary SSA significantly outperforms existing population-based models, such as the binary bat algorithm (binary BA), PSO, SSA, FPA and binary flower pollination algorithm (binary FPA), regarding system throughput/sum rate. The proposed binary SSA technique also effectively achieves a system sum rate compared to a random search scheme and other existing suboptimal scheduling methods. Compared to binary BA and binary FPA approaches, the binary SSA has a higher convergence rate and superior searching capabilities. The simulation outcomes show the proposed binary SSA-based scheduling scheme delivers noticeable performance benefits. |
| ArticleNumber | 16421 |
| Author | Xiong, Guojiang Sasikumar, A. Mohamed, Ali Wagdy Mousavirad, Seyed Jalaleddin Almazyad, Abdulaziz S. De, Shuvodeep Devarajan, Malathi Ravi, Logesh |
| Author_xml | – sequence: 1 givenname: A. surname: Sasikumar fullname: Sasikumar, A. organization: Department of Data Science and Business Systems, Faculty of Engineering and Technology, SRM Institute of Science and Technology – sequence: 2 givenname: Logesh surname: Ravi fullname: Ravi, Logesh organization: Centre for Advanced Data Science, School of Electronics Engineering, Vellore Institute of Technology – sequence: 3 givenname: Malathi surname: Devarajan fullname: Devarajan, Malathi organization: School of Computer Science and Engineering, Vellore Institute of Technology – sequence: 4 givenname: Abdulaziz S. surname: Almazyad fullname: Almazyad, Abdulaziz S. organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University – sequence: 5 givenname: Shuvodeep surname: De fullname: De, Shuvodeep organization: Virginia Tech – sequence: 6 givenname: Guojiang surname: Xiong fullname: Xiong, Guojiang organization: Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University – sequence: 7 givenname: Seyed Jalaleddin surname: Mousavirad fullname: Mousavirad, Seyed Jalaleddin email: seyedjalaleddin.mousavirad@miun.se organization: Department of Computer and Electrical Engineering, Mid Sweden University – sequence: 8 givenname: Ali Wagdy surname: Mohamed fullname: Mohamed, Ali Wagdy organization: Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Applied Science Research Center, Applied Science Private University, Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40355606$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-54443$$DView record from Swedish Publication Index (Mittuniversitetet) |
| BookMark | eNp9kstu1DAUhi1UREvpC7BAltiwCTi-5LJCo0JhpFbdADtkOc7J1KPEHmyHqm_f05mhdFjgjS37O7__c3lJjnzwQMjrkr0vmWg-JFmqtikYVwVjdc0L_oyccCZVwQXnR0_Ox-QspTXDpXgry_YFOZZMKFWx6oT8XHgKw-CsA59p57yJdzSZcUPTrYkTNeMqRJdvJjqESOcEkSYYwWYXPHWeTvOY3fb6anl1TY3P4L2h6S5lmNIr8nwwY4Kz_X5Kvl98_nb-tbi8_rI8X1wWVgmeC25Nq1THTcWZ6gYB9SAq4D1TZW164Kauuh7tKiZaPFloJGAqFjox4LsVp2S50-2DWetNdBOmoYNxensR4kqbmJ0dQTemMWaoJbd9Izujuor3dVOWXWM5E8BQq9hppVvYzN2B2if3Y7FVm9zstZJSCuQ_7niEJ0BzPkczHoQdvnh3o1fhty45q1rMChXe7RVi-DVDyiifLIyj8RDmpAUaE0xUqkH07T_oOszRY20fKGyrkKpE6s1TS49e_rQdAb4DbAwpRRgekZLph_HSu_HSOF56O16aY5DYFwZhv4L49-__RN0DyYjS-w |
| Cites_doi | 10.1109/MNET.2005.1509951 10.3390/electronics9030468 10.1109/WCNCW49093.2021.9420034 10.1016/j.advengsoft.2017.07.002 10.1007/s10776-022-00567-6 10.1109/TIFS.2021.3063632 10.1016/j.asoc.2014.06.018 10.1023/A:1008889222784 10.1007/s11277-021-08688-6 10.1109/TBC.2023.3264863 10.1109/TCOMM.2020.3014153 10.1109/ACCESS.2024.3370860 10.1109/TWC.2020.2976004 10.1007/s00521-019-04629-4 10.1007/s00521-018-3613-z 10.1109/WAMS59642.2024.10527862 10.1109/SYNCHROINFO57872.2023.10178432 10.1109/JSAC.2025.3531530 10.1007/s00521-013-1525-5 10.1016/j.mee.2022.111829 10.1002/9781394228331.ch5 10.3390/technologies13030092 10.1063/1.5020999 10.1002/dac.4975 10.1109/MWC.005.2300457 10.1109/TCOMM.2025.3529263 10.1039/D2TC03736J 10.1109/TCOMM.2021.3053040 10.1109/JSEN.2025.3546431 10.1109/ACTS49415.2020.9350505 10.1017/S1759078722000599 10.1109/TIFS.2020.3002386 10.1016/j.asoc.2015.08.053 10.23919/EuCAP57121.2023.10133572 10.55730/1300-0632.3851 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AKRZP AOWAS D8T DG5 ZZAVC DOA |
| DOI | 10.1038/s41598-025-00772-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database Download PDF from ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Mittuniversitetet full text SwePub Articles SWEPUB Freely available online SWEPUB Mittuniversitetet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_8a8aaf742cd84ba5b62d7811b8c203e0 oai_DiVA_org_miun_54443 PMC12069606 40355606 10_1038_s41598_025_00772_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Mid Sweden University |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADTPV AKRZP AOWAS D8T DG5 EJD IPNFZ RIG ZZAVC |
| ID | FETCH-LOGICAL-c532t-2ca955b2a6205bf3e7f36e2d0517ade2a76bd60650396bdce84e294ceb3fadec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486824200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Nov 04 17:02:32 EST 2025 Tue Nov 04 02:03:38 EST 2025 Fri Sep 05 16:49:19 EDT 2025 Tue Oct 07 07:56:44 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Sat Nov 29 07:55:10 EST 2025 Tue May 13 01:10:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | User scheduling Multiuser MIMO Binary salp swarm algorithm Metaheuristics optimization Antenna |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c532t-2ca955b2a6205bf3e7f36e2d0517ade2a76bd60650396bdce84e294ceb3fadec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8a8aaf742cd84ba5b62d7811b8c203e0 |
| PMID | 40355606 |
| PQID | 3204033451 |
| PQPubID | 2041939 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a8aaf742cd84ba5b62d7811b8c203e0 swepub_primary_oai_DiVA_org_miun_54443 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12069606 proquest_miscellaneous_3203303658 proquest_journals_3204033451 pubmed_primary_40355606 crossref_primary_10_1038_s41598_025_00772_2 springer_journals_10_1038_s41598_025_00772_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-12 |
| PublicationDateYYYYMMDD | 2025-05-12 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 772_CR27 X Lin (772_CR19) 2025 772_CR5 772_CR2 T Gong (772_CR3) 2024; 31 MA Alsultan (772_CR8) 2025; 25 S Mirjalili (772_CR31) 2017; 114 NR Challa (772_CR11) 2021; 121 Z Shen (772_CR17) 2020; 15 W Ajibi (772_CR26) 2005; 19 GJ Foschini (772_CR23) 1998; 6 X Ju (772_CR14) 2025; 43 772_CR13 Z Shen (772_CR18) 2021; 16 W Yang (772_CR7) 2023; 11 772_CR10 J Mohanty (772_CR35) 2022; 30 J Kang (772_CR16) 2023; 69 S Mirjalili (772_CR34) 2014; 25 M Singh (772_CR4) 2022; 262 PK Gkonis (772_CR15) 2020; 9 SH Kiani (772_CR1) 2024; 12 RM Rizk-Allah (772_CR33) 2019; 31 P Pattanayak (772_CR30) 2015; 37 J Mohanty (772_CR28) 2021; 34 H Singh (772_CR6) 2023; 15 F Elias (772_CR12) 2025; 13 Y Zhang (772_CR25) 2021; 69 L Abualigah (772_CR32) 2020; 32 S Asaithambi (772_CR29) 2018; 89 X Yong (772_CR21) 2022; 2205 M Naeem (772_CR36) 2014; 23 772_CR24 Y Mao (772_CR22) 2020; 68 MA Matheen (772_CR9) 2022; 29 Z Zhou (772_CR20) 2020; 19 |
| References_xml | – volume: 19 start-page: 43 year: 2005 ident: 772_CR26 publication-title: IEEE Netw. doi: 10.1109/MNET.2005.1509951 – volume: 9 start-page: 468 issue: 3 year: 2020 ident: 772_CR15 publication-title: Electronics doi: 10.3390/electronics9030468 – ident: 772_CR24 doi: 10.1109/WCNCW49093.2021.9420034 – volume: 114 start-page: 163 year: 2017 ident: 772_CR31 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 29 start-page: 407 issue: 4 year: 2022 ident: 772_CR9 publication-title: Int. J. Wireless Inf. Netw. doi: 10.1007/s10776-022-00567-6 – volume: 16 start-page: 2727 year: 2021 ident: 772_CR18 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2021.3063632 – volume: 23 start-page: 366 year: 2014 ident: 772_CR36 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.018 – volume: 6 start-page: 311 year: 1998 ident: 772_CR23 publication-title: Wireless Pers. Commun. doi: 10.1023/A:1008889222784 – volume: 121 start-page: 1627 year: 2021 ident: 772_CR11 publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-021-08688-6 – volume: 69 start-page: 589 year: 2023 ident: 772_CR16 publication-title: IEEE Trans. Broadcasting doi: 10.1109/TBC.2023.3264863 – volume: 68 start-page: 6775 issue: 11 year: 2020 ident: 772_CR22 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3014153 – volume: 12 start-page: 34467 year: 2024 ident: 772_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3370860 – volume: 19 start-page: 3712 issue: 6 year: 2020 ident: 772_CR20 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2020.2976004 – volume: 32 start-page: 11195 year: 2020 ident: 772_CR32 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04629-4 – volume: 31 start-page: 1641 year: 2019 ident: 772_CR33 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3613-z – ident: 772_CR2 doi: 10.1109/WAMS59642.2024.10527862 – ident: 772_CR13 doi: 10.1109/SYNCHROINFO57872.2023.10178432 – volume: 43 start-page: 883 year: 2025 ident: 772_CR14 publication-title: IEEE J. Select. Commun. doi: 10.1109/JSAC.2025.3531530 – volume: 2205 start-page: 012004 issue: 1 year: 2022 ident: 772_CR21 publication-title: J. Phys.: Conf.e Ser. – volume: 25 start-page: 663 issue: 4 year: 2014 ident: 772_CR34 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1525-5 – volume: 262 year: 2022 ident: 772_CR4 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2022.111829 – ident: 772_CR10 doi: 10.1002/9781394228331.ch5 – volume: 13 start-page: 92 issue: 3 year: 2025 ident: 772_CR12 publication-title: Technologies doi: 10.3390/technologies13030092 – volume: 89 start-page: 054702 issue: 5 year: 2018 ident: 772_CR29 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5020999 – volume: 34 issue: 17 year: 2021 ident: 772_CR28 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4975 – volume: 31 start-page: 108 issue: 3 year: 2024 ident: 772_CR3 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.005.2300457 – year: 2025 ident: 772_CR19 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2025.3529263 – volume: 11 start-page: 406 issue: 2 year: 2023 ident: 772_CR7 publication-title: J. Mater. Chem. C doi: 10.1039/D2TC03736J – volume: 69 start-page: 3039 issue: 5 year: 2021 ident: 772_CR25 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2021.3053040 – volume: 25 start-page: 13974 issue: 8 year: 2025 ident: 772_CR8 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2025.3546431 – ident: 772_CR27 doi: 10.1109/ACTS49415.2020.9350505 – volume: 15 start-page: 535 issue: 3 year: 2023 ident: 772_CR6 publication-title: Int. J. Microw. Wirel. Technol. doi: 10.1017/S1759078722000599 – volume: 15 start-page: 3760 year: 2020 ident: 772_CR17 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3002386 – volume: 37 start-page: 545 year: 2015 ident: 772_CR30 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.053 – ident: 772_CR5 doi: 10.23919/EuCAP57121.2023.10133572 – volume: 30 start-page: 1317 issue: 4 year: 2022 ident: 772_CR35 publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.3851 |
| SSID | ssj0000529419 |
| Score | 2.4550157 |
| Snippet | The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An MU-MIMO... Abstract The past ten years have seen notable research activity and significant advancements in multiuser multiple-input multiple-output (MU-MIMO) antennas. An... |
| SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 16421 |
| SubjectTerms | 639/166/987 639/705/1042 Algorithms Antenna Antennas Binary salp swarm algorithm Heterogeneity Humanities and Social Sciences Metaheuristics optimization multidisciplinary Multiuser MIMO Pollination Problem solving Scheduling Science Science (multidisciplinary) User scheduling |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJEQF7CajO3EOaHlUYHElh6g6gVZjmO3kbrZZbML4t8zdrKpFlAv3CI7Thx_M5mxx_6GkOdok70zWckMSMUEzz0Ldp1heV1yNFA-8hQcfSoODtTxcXk4LLh1w7bKzT8x_qjruQ1r5HscUNw4FzJ7vfjOQtaoEF0dUmhcJlfQs8nClq4pHI5rLCGKJbJyOCuTcrXXob0KZ8pAskBkAwy27FGk7f-Xr_n3lskxbvoHx2i0S_s3__eLbpEbg0dKJ70I3SaXXHuHXOtzVP66S75NWuoizwT2iVbx-C7tzNmCdj_NckbN2Qk-dHU6o-j-0rDmQbuYWwcBp01L447FWDz9OP1MA5Bta2jPIN3dI1_33395-4ENORmYlRxWDKwppazA5JDKynNXeJ47qAPVl6kdmCKv6jz4fbzEK-uUcAiCxTm7x3rL75Oddt66h4SKUkFtvJPCS2FxGiQ9T8HjC4SVhc8S8nKDjF701Bs6hsy50j2OGnHUEUcNCXkTwBvvDLTZsWC-PNGDFmpllDG-EGBrJSojqxzqcNS2UhZS7tKE7G6g0oMud_ocp4Q8G6tRC0NoxbRuvo738OAMSJWQB72kjD3BxhL9yjwhakuGtrq6XdM2p5HpO4M0L2PTVxtxO-_XRWPxohfJrVe8a44mcTRmzbrVUgjBH138vY_JdYiqIlkGu2RntVy7J-Sq_bFquuXTqGu_AUdjMfQ priority: 102 providerName: ProQuest |
| Title | An efficient binary salp swarm algorithm for user selection in multiuser MIMO antenna systems |
| URI | https://link.springer.com/article/10.1038/s41598-025-00772-2 https://www.ncbi.nlm.nih.gov/pubmed/40355606 https://www.proquest.com/docview/3204033451 https://www.proquest.com/docview/3203303658 https://pubmed.ncbi.nlm.nih.gov/PMC12069606 https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-54443 https://doaj.org/article/8a8aaf742cd84ba5b62d7811b8c203e0 |
| Volume | 15 |
| WOSCitedRecordID | wos001486824200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgA4mXiW8yRmUkxAtES8524jx2sIlJtEQIpvKALCexWaQ1nZoWxH_P2UnLAgheeLEi24kvd-fcXez7mZBnaJOt0XEWahAy5CyxobPrIdZXGUMDZT1OwdnbdDqVs1mWXznqy-0J6-CBO8YdSi21thjAlZXkhRZFApXLjixkCREzPlqP0uxKMNWhekPG46zPkomYPGzRUrlsMhChg7CBEAaWyAP2_8nL_H2z5HbF9Bd0UW-RTm6Tvd6VpOPuFe6Qa6a5S252h0t-v0c-jxtqPEAEPpIWPu-Wtvrikrbf9HJO9cWXxbJenc8p-q3U_aygrT8UByVF64b6rYa-enI6eUedBJpG0w76ub1PPp4cf3j1JuwPUwhLwWAVQqkzIQrQCUSisMykliUGKofRpSsDOk2KKnEOG8vwqjSSG-RhicG2xfaSPSA7zaIxjwjlmYRKWyO4FbzE-EVYFoHFAXgpUhsH5MWGseqyw8xQfq2bSdWJQaEYlBeDgoAcOd5vezq8a1-BWqB6LVD_0oKAHGwkp_pJ2CoG-IVijAuk6Om2GaePWxPRjVmsfR_mrLiQAXnYCXpLCd4s0CFMAiIHKjAgddjS1OceojuGKMn8rS832vKTrr_x4nmnUYMhXtdnY8-Neb1ulOCcs_3_wbTH5Bb4-SDCGA7Izmq5Nk_IjfLrqm6XI3I9naW-lCOye3Q8zd-P_CTDcgK5K1Msd_PTSf7pB0KuK34 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90tggJGAF7CWHNuJ84BQYUyr1pY9jGkvyDiOvVVa09K0TPtT_EZsp-lUQHvbA2-RnYvtfOfiy_kOQq-cTbZGJTlRwAVhNLXE23XiysucOgNlA0_BQS8bDMThYb63hn61sTD-WGWrE4OiLsfar5FvUnBwo5Tx5MPkB_FZo_zuaptCo4HFrjk7dVO2-n13y_3f1wDbn_c_7ZBFVgGiOYUZAa1yzgtQKcS8sNRklqYGSk9WpUoDKkuLMvWeC83dlTaCGciZdrNO6-o1de-9gq4yzyzmjwrC3nJNx--asSRfxObEVGzWzj76GDbgxBPnAIEV-xfSBPzLt_37iOZyn_YPTtNgB7dv_28jeAfdWnjcuNOIyF20Zqp76HqTg_PsPvrWqbAJPBpuDHARwpNxrU4muD5V0xFWJ0euE7PjEXbuPfZrOrgOuYMcoPGwwuFEZijud_tfsAdqVSncMGTXD9DXS-nbQ7RejSvzGGGWCyiVNZxZzrSb5nFLY7DuA0zzzCYRetsiQU4aahEZjgRQIRvcSIcbGXAjIUIfPViWd3pa8FAwnh7JhZaRQgmlbMZAl4IVihcplD6UuBAaYmriCG200JALXVXLc1xE6OWy2mkZv3WkKjOeh3uod3a4iNCjBpnLlriHufOb0wiJFcyuNHW1phoeBybzBOI0D4--a-F93q6LxuJNIwIrn9gaHnTCaIyG80pyxhh9cnF_X6AbO_v9nux1B7tP0U0IYspJAhtofTadm2fomv45G9bT50HOMfp-2WLxG17ekTc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGLdGB4gL70dggJGAC1hN_EidA0KFUlFtLT3ANA7IOIm9VVrT0rRM-9f46_jsJJ0KaLcduEV-JLbz-x62vwdCz0EmW6OjhGgqJOEstsTJdQLlecJAQFkfp2B_rzMayYODZLyFfjW-MM6ssuGJnlHns8ydkbcZBbgxxkXUtrVZxLjXfzv_QVwGKXfT2qTTqCCya05PYPtWvhn04F-_oLT_4fP7j6TOMEAyweiS0EwnQqRUxzQUqWWmY1lsaO4CV-ncUN2J0zx2WgxL4Ckzkhua8Ax2oBbqMwbvvYS2QSXntIW2x4Ph-Ov6hMfdofEoqT11QibbJUhL59FGBXFhdCihG9LQJw34l6b7t8Hm-tb2jwinXir2b_zP63kTXa91cdytiOcW2jLFbXSlys55egd96xbY-AgbsB449Y7LuNTHc1ye6MUU6-NDmMTyaIpB8cfutAeXPqsQQB1PCuxtNX3xcDD8hB2Ei0LjKnZ2eRd9uZC53UOtYlaYBwjzRNJcWyO4FTyDDaCwLKQWPsAz0bFRgF41qFDzKuiI8sYCTKoKQwowpDyGFA3QOwecdUsXMNwXzBaHquY_SmqptQWYZrnkqRZpTHPnZJzKjIbMhAHaaWCiai5WqjOMBOjZuhr4j7tU0oWZrXwb5tQgIQN0v0LpeiTQWYBGHQdIbuB3Y6ibNcXkyMc4j2gYJ77r6wbqZ-M6by1eVuSw8YneZL_rV2M6WRVKcM7Zw_Pn-xRdBWpQe4PR7iN0jXqKFSSiO6i1XKzMY3Q5-7mclIsnNdFj9P2i6eI3tiebgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+binary+salp+swarm+algorithm+for+user+selection+in+multiuser+MIMO+antenna+systems&rft.jtitle=Scientific+reports&rft.au=A.+Sasikumar&rft.au=Logesh+Ravi&rft.au=Malathi+Devarajan&rft.au=Abdulaziz+S.+Almazyad&rft.date=2025-05-12&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1038%2Fs41598-025-00772-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a8aaf742cd84ba5b62d7811b8c203e0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |