Sign Language Recognition by Combining Statistical DTW and Independent Classification

To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models (HMMs) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warpi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 30; H. 11; S. 2040 - 2046
Hauptverfasser: Lichtenauer, J.F., Hendriks, E.A., Reinders, M.J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.11.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models (HMMs) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modeling demands. To overcome these restrictions, we propose using statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed - combined discriminative feature detectors (CDFDs) and quadratic classification on DF Fisher mapping (Q-DFFM) - both using a selection of discriminative features (DFs), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that, also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.
AbstractList To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models (HMMs) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modeling demands. To overcome these restrictions, we propose using statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed - combined discriminative feature detectors (CDFDs) and quadratic classification on DF Fisher mapping (Q-DFFM) - both using a selection of discriminative features (DFs), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that, also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.
To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modelling demands. To overcome these restrictions, we propose to use Statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed (CDFD and Q-DFFM), both using a selection of discriminative features (DF), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modelling demands. To overcome these restrictions, we propose to use Statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed (CDFD and Q-DFFM), both using a selection of discriminative features (DF), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.
To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modelling demands. To overcome these restrictions, we propose to use Statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed (CDFD and Q-DFFM), both using a selection of discriminative features (DF), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.
To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) with discriminative classifiers. However, all methods rely directly on the likelihood [abstract truncated by publisher].
To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models (HMMs) with discriminative classifiers.
Author Hendriks, E.A.
Lichtenauer, J.F.
Reinders, M.J.
Author_xml – sequence: 1
  givenname: J.F.
  surname: Lichtenauer
  fullname: Lichtenauer, J.F.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft
– sequence: 2
  givenname: E.A.
  surname: Hendriks
  fullname: Hendriks, E.A.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft
– sequence: 3
  givenname: M.J.
  surname: Reinders
  fullname: Reinders, M.J.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20708172$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18787250$$D View this record in MEDLINE/PubMed
BookMark eNqF0stv1DAQB2ALFdFt4coFCUVIhVMWvx_Haimw0iIQ3Yqj5TiTyFXWWeLk0P8e74M9VIJe7IO_n-XxzAU6i30EhF4TPCcEm4_rH9fflnOKsZ4Typ6hGTHMlEwwc4ZmmEhaak31ObpI6R5jwgVmL9A50UorKvAM3d2GNhYrF9vJtVD8BN-3MYyhj0X1UCz6TRViiG1xO7oxpDF41xWf1r8KF-tiGWvYQl7iWCw6l1Jo8vku-xI9b1yX4NVxv0R3n2_Wi6_l6vuX5eJ6VXrByFg2vlaVdg1IoYD7RntGCK_rRgKm2EnWOGxAGcilem-AMuo5YE6qmjZSGHaJPhzu3Q797wnSaDcheeg6F6GfkjWYSa6k1E9KrQQWWiqZ5fv_SmkE54SaJyHjXFCqWYbvHsH7fhpi_hirJaVCyD16e0RTtYHaboewccOD_duqDK6OwKXchWZw0Yd0chQrrImi2fGD80Of0gCN9WHcd2UcXOgswXY3OXY_OXY3OTZPTo7NH8VOL_hX4M0hEADghHPJinLF_gDCrcuB
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s42979_021_00827_x
crossref_primary_10_1016_j_patrec_2013_02_007
crossref_primary_10_1109_TITS_2014_2342235
crossref_primary_10_1016_j_patcog_2010_03_007
crossref_primary_10_1016_j_ins_2021_05_011
crossref_primary_10_1109_TBCAS_2021_3099865
crossref_primary_10_1016_j_imavis_2014_04_012
crossref_primary_10_1109_TPAMI_2009_26
crossref_primary_10_1007_s12652_020_02396_y
crossref_primary_10_1088_1742_6596_1187_4_042008
crossref_primary_10_1007_s42979_023_02482_w
crossref_primary_10_1016_j_neucom_2015_10_112
crossref_primary_10_1016_j_neucom_2014_12_002
crossref_primary_10_1016_j_neucom_2015_04_017
crossref_primary_10_1109_TNSRE_2021_3137340
crossref_primary_10_1016_j_cviu_2015_08_004
crossref_primary_10_1109_TPAMI_2010_199
crossref_primary_10_1109_LRA_2021_3084882
crossref_primary_10_1155_2012_346951
crossref_primary_10_1016_j_patcog_2018_02_011
crossref_primary_10_1109_TCSVT_2015_2469551
crossref_primary_10_3390_app13179736
crossref_primary_10_3390_s22072656
crossref_primary_10_1109_TPAMI_2014_2316836
crossref_primary_10_1016_j_patcog_2023_109334
crossref_primary_10_1109_TMM_2014_2377553
crossref_primary_10_1109_TSMC_2015_2435702
crossref_primary_10_1016_j_eswa_2021_115657
crossref_primary_10_3390_w16010065
crossref_primary_10_1145_3328909
crossref_primary_10_3390_electronics14091793
crossref_primary_10_1007_s11042_011_0730_4
crossref_primary_10_32604_cmes_2024_047649
crossref_primary_10_1007_s11336_021_09757_2
crossref_primary_10_3390_s22124558
crossref_primary_10_1016_j_cviu_2010_11_001
crossref_primary_10_1016_j_patrec_2016_03_030
crossref_primary_10_1109_TIM_2024_3485401
crossref_primary_10_1007_s11042_019_08345_y
crossref_primary_10_5392_IJoC_2011_7_1_014
crossref_primary_10_1080_23311916_2016_1251730
crossref_primary_10_1109_ACCESS_2025_3574074
crossref_primary_10_1016_j_patrec_2011_07_009
crossref_primary_10_1177_1550147717721810
crossref_primary_10_3390_s20082190
crossref_primary_10_1007_s11517_009_0557_6
crossref_primary_10_1016_j_imavis_2009_02_005
crossref_primary_10_3233_JIFS_18681
crossref_primary_10_1007_s00521_020_05114_z
crossref_primary_10_1016_j_compeleceng_2024_109854
crossref_primary_10_3390_s22145305
crossref_primary_10_1109_TCSVT_2017_2721108
crossref_primary_10_3390_app9030528
crossref_primary_10_1109_TKDE_2015_2391109
crossref_primary_10_1007_s13042_017_0705_5
crossref_primary_10_1016_j_procs_2024_06_280
crossref_primary_10_1145_3617370
crossref_primary_10_1109_TSP_2019_2897958
crossref_primary_10_3390_en17040945
crossref_primary_10_1049_el_2010_1287
crossref_primary_10_3390_info14100569
crossref_primary_10_1162_NECO_a_00770
crossref_primary_10_1016_j_ins_2014_08_066
crossref_primary_10_1016_j_procs_2015_09_270
crossref_primary_10_1109_TBME_2009_2013200
crossref_primary_10_1145_3530259
crossref_primary_10_1016_j_patcog_2010_01_004
crossref_primary_10_1016_j_procs_2020_06_022
crossref_primary_10_1371_journal_pone_0272767
crossref_primary_10_5392_IJoC_2011_7_1_001
crossref_primary_10_1007_s11042_020_08961_z
crossref_primary_10_3390_s22134801
crossref_primary_10_1016_j_patcog_2010_12_014
crossref_primary_10_1049_iet_cvi_2017_0052
crossref_primary_10_1016_j_neucom_2014_08_032
crossref_primary_10_1007_s10209_024_01139_6
crossref_primary_10_1016_j_ast_2015_06_001
crossref_primary_10_1016_j_bspc_2021_102653
crossref_primary_10_1016_j_knosys_2016_05_043
crossref_primary_10_1016_j_imavis_2016_07_003
crossref_primary_10_1016_j_conbuildmat_2024_139700
crossref_primary_10_1145_3436996
crossref_primary_10_20965_jaciii_2017_p1240
crossref_primary_10_1007_s10055_016_0301_0
crossref_primary_10_1016_j_eswa_2022_118838
crossref_primary_10_1007_s13369_020_04758_2
crossref_primary_10_1007_s11042_013_1591_9
crossref_primary_10_1145_1870076_1870083
crossref_primary_10_1016_j_neunet_2012_10_001
crossref_primary_10_1109_TKDE_2014_2316521
crossref_primary_10_1109_TPAMI_2023_3269220
crossref_primary_10_3389_fnins_2023_1168888
Cites_doi 10.1109/NNSP.1994.366034
10.1109/TPAMI.2004.1262308
10.1109/IJCNN.2000.860762
10.1109/AVSS.2007.4425352
10.1002/j.1538-7305.1981.tb00272.x
10.1007/978-3-642-82447-0_15
10.1109/IWFHR.2002.1030883
10.1109/ACVMOT.2005.110
10.1109/tassp.1976.1162779
10.1109/TPAMI.2007.70717
10.1109/ICIG.2004.44
10.1109/RATFG.2001.938914
10.1109/CVPR.2006.126
10.1109/tpami.2008.123
10.1007/11848035_23
10.1109/ICASSP.1990.115720
10.1093/deafed/eni001
10.1109/CVPR.2007.383347
10.1111/j.1469-1809.1936.tb02137.x
10.1109/CVPRW.2006.165
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2008.123
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
MEDLINE

Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 2046
ExternalDocumentID 2322662931
18787250
20708172
10_1109_TPAMI_2008_123
4527247
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c531t-fcd7b8afe657e4cf8c3114ddf6e020a63fa09e79e110cc9e232c4e041bd2f6593
IEDL.DBID RIE
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259110000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 09 14:06:32 EST 2025
Thu Oct 02 12:13:45 EDT 2025
Sat Sep 27 20:08:35 EDT 2025
Sun Sep 28 04:43:25 EDT 2025
Mon Jun 30 04:15:18 EDT 2025
Thu Apr 03 06:56:51 EDT 2025
Mon Jul 21 09:15:35 EDT 2025
Sat Nov 29 08:09:20 EST 2025
Tue Nov 18 22:30:52 EST 2025
Tue Aug 26 16:47:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Time series analysis
Artificial Intelligence
Markov processes
Vision and Scene Understanding
Real-time systems
Computing Methodology
Face and gesture recognition
Classifier design and evaluation
3D/stereo scene analysis
Markov process
Warping
classifier design and evaluation
statistical dynamic programming
Modeling
Classification
Facies
Hybrid model
Dynamic programming
Stereopsis
Pattern analysis
Time analysis
Multimodel
Statistical analysis
Probabilistic approach
Gesture recognition
Time series
Markov model
Real time system
face and gesture recognition
Sign language
Scene analysis
real-time systems
Hidden Markov model
Manuscript character
Artificial intelligence
Facial expression
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-fcd7b8afe657e4cf8c3114ddf6e020a63fa09e79e110cc9e232c4e041bd2f6593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18787250
PQID 862255683
PQPubID 23500
PageCount 7
ParticipantIDs proquest_journals_862255683
crossref_primary_10_1109_TPAMI_2008_123
pascalfrancis_primary_20708172
proquest_miscellaneous_34452283
pubmed_primary_18787250
ieee_primary_4527247
proquest_miscellaneous_69544129
crossref_citationtrail_10_1109_TPAMI_2008_123
proquest_miscellaneous_875058676
proquest_miscellaneous_903647668
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2008
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
Gavrila (ref7)
Starner (ref6) 1995
ref11
ten Holt (ref13) 2006
ref2
ref17
ref16
ref19
ref18
Sakoe (ref1); 3
van der Kooij (ref12) 2002
ref24
ref23
ref26
Stokoe (ref10) 1960; 8
ref25
ref20
ref22
ref21
ref8
ref9
ref4
ref3
ref5
References_xml – ident: ref16
  doi: 10.1109/NNSP.1994.366034
– ident: ref5
  doi: 10.1109/TPAMI.2004.1262308
– ident: ref17
  doi: 10.1109/IJCNN.2000.860762
– ident: ref14
  doi: 10.1109/AVSS.2007.4425352
– ident: ref3
  doi: 10.1002/j.1538-7305.1981.tb00272.x
– volume-title: master’s thesis
  year: 1995
  ident: ref6
  article-title: Visual Recognition of American Sign Language Using Hidden Markov Models
– volume: 8
  year: 1960
  ident: ref10
  article-title: Sign Language Structure: An Outline of the Visual Communication System of the American Deaf
  publication-title: Studies in Linguistics: Occasional Papers
– ident: ref4
  doi: 10.1007/978-3-642-82447-0_15
– ident: ref20
  doi: 10.1109/IWFHR.2002.1030883
– ident: ref21
  doi: 10.1109/ACVMOT.2005.110
– ident: ref2
  doi: 10.1109/tassp.1976.1162779
– ident: ref25
  doi: 10.1109/TPAMI.2007.70717
– ident: ref18
  doi: 10.1109/ICIG.2004.44
– volume-title: Theoretical Issues in Sign Language Research 9
  year: 2006
  ident: ref13
  article-title: How Much of a Sign Do We Really Need? Recognising Parts of Sign Language Signs
– ident: ref8
  doi: 10.1109/RATFG.2001.938914
– ident: ref9
  doi: 10.1109/CVPR.2006.126
– ident: ref23
  doi: 10.1109/tpami.2008.123
– ident: ref19
  doi: 10.1007/11848035_23
– ident: ref15
  doi: 10.1109/ICASSP.1990.115720
– volume: 3
  start-page: 65
  volume-title: Proc. Seventh Int’l Congress on Acoustics (ICA ’71)
  ident: ref1
  article-title: A Dynamic Programming Approach to Continuous Speech Recognition
– ident: ref11
  doi: 10.1093/deafed/eni001
– ident: ref22
  doi: 10.1109/CVPR.2007.383347
– ident: ref24
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume-title: PhD dissertation
  year: 2002
  ident: ref12
  article-title: Phonological Categories in Sign Language of the Netherlands. The Role of Phonetic Implementation and Iconicity
– start-page: 272
  volume-title: Proc. IEEE Int’l Workshop Face and Gesture Recognition (FG ’95)
  ident: ref7
  article-title: Towards 3-D Model-Based Tracking and Recognition of Human Movement: A Multi-View Approach
– ident: ref26
  doi: 10.1109/CVPRW.2006.165
SSID ssj0014503
Score 2.3842082
Snippet To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models...
To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2040
SubjectTerms 3D/stereo scene analysis
Algorithms
Applied sciences
Artificial Intelligence
Classification
Classifier design and evaluation
Classifiers
Computer science; control theory; systems
Computer vision
Computing Methodology
Data Interpretation, Statistical
Degradation
Detectors
Distortion
Exact sciences and technology
Face and gesture recognition
Face recognition
Feature recognition
Handicapped aids
Handwriting recognition
Hidden Markov models
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Mapping
Markov processes
Mathematical models
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Real-time systems
Recognition
Shape
Sign language
Speech and sound recognition and synthesis. Linguistics
Speech recognition
Time series analysis
Vision and Scene Understanding
Warpage
Warping
Title Sign Language Recognition by Combining Statistical DTW and Independent Classification
URI https://ieeexplore.ieee.org/document/4527247
https://www.ncbi.nlm.nih.gov/pubmed/18787250
https://www.proquest.com/docview/862255683
https://www.proquest.com/docview/34452283
https://www.proquest.com/docview/69544129
https://www.proquest.com/docview/875058676
https://www.proquest.com/docview/903647668
Volume 30
WOSCitedRecordID wos000259110000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4UGh5hNLFh0q9EJpNHD-OFW1FpVJVdCv2Fk38QEgoi7q7SPx7xo43LRKL1FukTF7-ZpKZePx9AAfWozJVWeccJQZSbZNrK0QeiEEKp9ApG1VLLuTlpZpO9dUGvB_WwjjnYvOZ-xA241y-nZll-FV2xOtSllxuwqaUol-rNcwY8DqqIFMGQxFOZUQiaBwX-mhydfz5vG-bpPd0oAlV5KZlWGp_71sUxVVCayTOaXR8L2uxPu-M35-z7Yfd-TN4mvJMdtw7xnPYcN0ObK80HFgK6R14co-QcBdurr9_69hF-ofJvqy6i2Yda38zOrqNehIspKiR4ZkucTL5yrCz7HwQ1F2wKLUZmpAi7i_g5ux08vFTnoQXckMhuci9sbJV6J2opePGE5pUNlnrhaPsEkXlsdBOakfDa4x2lJUZ7go-bm3pRa2rl7DVzTr3GpiWyCtEhePWhA4c5Irb0vgWrawt2gzyFQSNSazkQRzjRxOrk0I3Eb1eLZPQy-BwsP_Z83GstdwNOAxWCYIMRn8hPOwv6eWnKJ3LYG8FeZPied5Q3Re52uis74a9FIhhdgU7N1vOm4oHcvr_WQgdBN9KnQFbY0HFY1ErIcV6Ex0mjqUQKoNXvT_ejUNy6zf_fvI9eBybXeJCyrewtbhdun14ZH6Rw9yOKKamahRj6g-h7R28
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VggQcKLQ8TKHdAxIX3Dr2eh_HCqgakUYVpKI3a7wPhIQc1CRI_Htm1xtTJILEzZLHr_1m7Bnv7PcBvLIelanKOucoMZBqm1xbIfJADFI4hU7ZqFoykdOpurrSF1vwZlgL45yLzWfuKGzGuXw7N6vwq-yY16UsubwFt4NyVlqtNcwZ8DrqIFMOQzFOhUSiaBwV-nh2cXI-7hsn6U0diEIVOWoZFtvf-BpFeZXQHIkLGh_fC1tszjzjF-h05__u_SE8SJkmO-ld4xFsuW4XdtYqDiwF9S7cv0FJuAeXn75-6dgk_cVkH9f9RfOOtT8ZHd1GRQkWktTI8UyXeDf7zLCzbDxI6i5ZFNsMbUgR-cdwefp-9vYsT9ILuaGgXObeWNkq9E7U0nHjCU8qnKz1wlF-iaLyWGgntaPhNUY7yssMdwUftbb0otbVE9ju5p17BkxL5BWiwlFrQg8OcsVtaXyLVtYWbQb5GoLGJF7yII_xrYn1SaGbiF6vl0noZfB6sP_eM3JstNwLOAxWCYIMDv5AeNhf0utPUUKXwf4a8iZF9KKhyi-ytdFZD4e9FIphfgU7N18tmooHevp_WQgdHLfUGbANFlQ-FrUSUmw20WHqWAqhMnja--PvcUhu_fzvT34Id89m55NmMp5-2Id7sfUlLqt8AdvL65V7CXfMD3Ke64MYWb8A4b8gHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sign+Language+Recognition+by+Combining+Statistical+DTW+and+Independent+Classification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=LICHTENAUER%2C+Jeroen+F&rft.au=HENDRIKS%2C+Emile+A&rft.au=REINDERS%2C+Marcel+J.+T&rft.date=2008-11-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=30&rft.issue=11&rft.spage=2040&rft.epage=2046&rft_id=info:doi/10.1109%2FTPAMI.2008.123&rft.externalDBID=n%2Fa&rft.externalDocID=20708172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon