Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body
Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infection...
Uloženo v:
| Vydáno v: | Frontiers in immunology Ročník 12; s. 578386 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media S.A
26.02.2021
|
| Témata: | |
| ISSN: | 1664-3224, 1664-3224 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host–microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host’s metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota–host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the
in vitro
and
in vivo
demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies. |
|---|---|
| AbstractList | Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host–microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host’s metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota–host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the
in vitro
and
in vivo
demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies. Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host–microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host’s metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota–host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the in vitro and in vivo demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies. Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host-microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host's metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota-host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the in vitro and in vivo demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies.Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host-microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host's metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota-host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the in vitro and in vivo demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies. Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant bacterial population inside intestinal tissues may face potential health problems such as inflammation and infections. Therefore, the immune system has evolved to sustain the host-microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis, the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A field of great interest is the association of either microbiota or probiotics with the immune system concerning clinical uses. This microbial community regulates some of the host's metabolic and physiological functions and drives early-life immune system maturation, contributing to their homeostasis throughout life. Changes in gut microbiota can occur through modification in function, composition (dysbiosis), or microbiota-host interplays. Studies on animals and humans show that probiotics can have a pivotal effect on the modulation of immune and inflammatory mechanisms; however, the precise mechanisms have not yet been well defined. Diet, age, BMI (body mass index), medications, and stress may confound the benefits of probiotic intake. In addition to host gut functions (permeability and physiology), all these agents have profound implications for the gut microbiome composition. The use of probiotics could improve the gut microbial population, increase mucus-secretion, and prevent the destruction of tight junction proteins by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and intestinal leakage after probiotic therapy may minimize the development of inflammatory biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics improve the differentiation of T-cells against Th2 and development of Th2 cytokines such as IL-4 and IL-10. The present narrative review explores the interactions between gut microflora/probiotics and the immune system starting from the general perspective of a biological plausibility to get to the and demonstrations of a probiotic-based approach up to the possible uses for novel therapeutic strategies. |
| Author | Dargenio, Costantino Barone, Michele Francavilla, Ruggiero Cristofori, Fernanda Miniello, Vito Leonardo Dargenio, Vanessa Nadia |
| AuthorAffiliation | 1 Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro , Bari , Italy 2 Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro , Bari , Italy |
| AuthorAffiliation_xml | – name: 2 Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro , Bari , Italy – name: 1 Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro , Bari , Italy |
| Author_xml | – sequence: 1 givenname: Fernanda surname: Cristofori fullname: Cristofori, Fernanda – sequence: 2 givenname: Vanessa Nadia surname: Dargenio fullname: Dargenio, Vanessa Nadia – sequence: 3 givenname: Costantino surname: Dargenio fullname: Dargenio, Costantino – sequence: 4 givenname: Vito Leonardo surname: Miniello fullname: Miniello, Vito Leonardo – sequence: 5 givenname: Michele surname: Barone fullname: Barone, Michele – sequence: 6 givenname: Ruggiero surname: Francavilla fullname: Francavilla, Ruggiero |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33717063$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1rFTEUhoNUbK39AW4kSzf3Np-TjAvhWmt7oaALXYdMPtqUmaQmGeH-e9M7bWkFAyGHk_M-55C8b8FBTNEB8B6jNaWyP_VhmuY1QQSvuZBUdq_AEe46tqKEsINn8SE4KeUWtcV6Sil_Aw4pFVigjh4Bu4k1rLbRj3qadE15B3W0cNvYMU3JzuOSPPfemVpg8vBHTkNINZgCQ4QXc4VP8pDiJ7iBX1PKsCZYbxz8kuzuHXjt9VjcycN5DH59O_95drm6-n6xPdtcrQynuK48c9T6nktHsEUDIW1bY7xDFndW80EYLq0QEgvfeSnkQKTU3EtmHWdO02OwXbg26Vt1l8Ok804lHdQ-kfK10rkNPjpFsdHG8R5bTlmPpCSS91q7niHn2jSN9Xlh3c3D5KxxsWY9voC-vInhRl2nP0r0nKJONMDHB0BOv2dXqppCMW4cdXRpLopwhJkQrCet9MPzXk9NHr-pFYilwORUSnZemVD3z91ah1FhpO49ofaeUPeeUIsnmhL_o3yE_1_zF9_4vAk |
| CitedBy_id | crossref_primary_10_1007_s00394_022_02802_5 crossref_primary_10_1016_j_gendis_2025_101592 crossref_primary_10_1016_j_phrs_2022_106397 crossref_primary_10_3390_nu17152504 crossref_primary_10_3390_nu17152501 crossref_primary_10_3389_fnut_2023_1186724 crossref_primary_10_2174_0109298673314861240429072352 crossref_primary_10_1002_mnfr_70222 crossref_primary_10_3390_jpm14020217 crossref_primary_10_3389_fmicb_2023_1213370 crossref_primary_10_3390_nu15132837 crossref_primary_10_17721_1728_2748_2021_87_38_44 crossref_primary_10_3389_fnut_2025_1650883 crossref_primary_10_3390_ijms26168099 crossref_primary_10_1186_s13020_023_00781_1 crossref_primary_10_1002_jsfa_70168 crossref_primary_10_1016_j_micres_2024_127913 crossref_primary_10_1038_s41598_024_52642_y crossref_primary_10_1177_03000605251349922 crossref_primary_10_1039_D4FO00279B crossref_primary_10_3389_fnut_2022_1008514 crossref_primary_10_1002_mnfr_202200884 crossref_primary_10_38124_ijisrt_25jul144 crossref_primary_10_1016_j_lfs_2023_121685 crossref_primary_10_3390_app13063448 crossref_primary_10_3389_fmicb_2023_1273444 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1007_s10068_024_01638_5 crossref_primary_10_1007_s12602_023_10093_3 crossref_primary_10_1016_j_jff_2025_106660 crossref_primary_10_3389_fcimb_2022_973563 crossref_primary_10_1002_fsn3_71003 crossref_primary_10_3389_fimmu_2021_607178 crossref_primary_10_3390_cells12010184 crossref_primary_10_3389_fmicb_2025_1495274 crossref_primary_10_3390_microorganisms13071545 crossref_primary_10_3389_fnut_2023_1266725 crossref_primary_10_1016_j_ifset_2022_103196 crossref_primary_10_1093_bib_bbab477 crossref_primary_10_3390_nu16234173 crossref_primary_10_15407_oncology_2025_02_129 crossref_primary_10_20538_1682_0363_2025_2_5_13 crossref_primary_10_1038_s41380_025_03020_1 crossref_primary_10_1007_s10787_025_01718_w crossref_primary_10_3390_microorganisms12091864 crossref_primary_10_3390_microorganisms13040944 crossref_primary_10_3389_fcimb_2023_1220877 crossref_primary_10_1016_j_psj_2025_105130 crossref_primary_10_1016_j_jff_2025_106992 crossref_primary_10_1016_j_bcdf_2024_100407 crossref_primary_10_1186_s12967_024_04894_5 crossref_primary_10_4103_ejpi_EJPI_D_24_00112 crossref_primary_10_3390_biomedicines11020294 crossref_primary_10_1186_s13075_023_03049_z crossref_primary_10_3390_foods14050837 crossref_primary_10_1111_ics_12845 crossref_primary_10_3390_jof8050444 crossref_primary_10_1111_liv_15463 crossref_primary_10_3390_plants11101334 crossref_primary_10_1016_j_nbd_2025_107032 crossref_primary_10_1039_D3FO04556K crossref_primary_10_3390_children9070978 crossref_primary_10_3389_fmicb_2024_1369627 crossref_primary_10_3390_nu17010052 crossref_primary_10_3390_ijms232113268 crossref_primary_10_1002_mbo3_1434 crossref_primary_10_1007_s12602_023_10116_z crossref_primary_10_3390_foods14152675 crossref_primary_10_1016_j_fsi_2024_109459 crossref_primary_10_3389_fped_2022_856951 crossref_primary_10_3389_fimmu_2025_1604837 crossref_primary_10_3389_fmicb_2024_1401597 crossref_primary_10_1186_s10020_024_00873_0 crossref_primary_10_1016_j_virusres_2022_198954 crossref_primary_10_1038_s41366_023_01375_5 crossref_primary_10_1016_j_crbiot_2025_100282 crossref_primary_10_3390_antiox13070764 crossref_primary_10_3390_gels9030244 crossref_primary_10_7554_eLife_93423_4 crossref_primary_10_1016_j_ijbiomac_2025_145364 crossref_primary_10_1016_j_gene_2024_148811 crossref_primary_10_1007_s11274_023_03626_z crossref_primary_10_1007_s12602_023_10084_4 crossref_primary_10_1139_cjm_2023_0038 crossref_primary_10_1016_j_tim_2021_07_007 crossref_primary_10_1016_j_biopha_2023_114985 crossref_primary_10_3389_fnut_2023_1205526 crossref_primary_10_1016_j_tox_2024_153751 crossref_primary_10_3390_life13071468 crossref_primary_10_3390_diseases13080267 crossref_primary_10_3390_nutraceuticals5030021 crossref_primary_10_1016_j_crfs_2025_101061 crossref_primary_10_1016_j_micres_2024_127838 crossref_primary_10_3389_fcimb_2024_1476564 crossref_primary_10_1016_j_jff_2024_106167 crossref_primary_10_2147_JAA_S504571 crossref_primary_10_4014_jmb_2304_04020 crossref_primary_10_1002_jcsm_12964 crossref_primary_10_64902_ajavas_2025_100002 crossref_primary_10_1007_s11010_023_04853_6 crossref_primary_10_1016_j_fbio_2023_103002 crossref_primary_10_3390_cells14171347 crossref_primary_10_1007_s00424_024_03041_9 crossref_primary_10_1002_mnfr_70013 crossref_primary_10_3390_cells11091445 crossref_primary_10_1016_j_aquatox_2023_106671 crossref_primary_10_1016_j_cbi_2024_111009 crossref_primary_10_3389_fimmu_2024_1346035 crossref_primary_10_1016_j_clim_2023_109872 crossref_primary_10_1016_j_jad_2024_03_117 crossref_primary_10_3389_fimmu_2025_1602235 crossref_primary_10_1371_journal_pone_0317202 crossref_primary_10_22207_JPAM_17_4_50 crossref_primary_10_1093_jambio_lxad168 crossref_primary_10_1002_biot_202400428 crossref_primary_10_1007_s12602_025_10501_w crossref_primary_10_2147_IJN_S492651 crossref_primary_10_3390_molecules28031242 crossref_primary_10_1038_s42003_022_04380_y crossref_primary_10_23934_2223_9022_2025_14_2_371_378 crossref_primary_10_3389_fmicb_2024_1523397 crossref_primary_10_3390_ijms26010122 crossref_primary_10_1002_mnfr_70047 crossref_primary_10_3389_fcimb_2025_1537576 crossref_primary_10_1186_s12888_023_05324_4 crossref_primary_10_1007_s10123_023_00398_2 crossref_primary_10_1093_imammb_dqae017 crossref_primary_10_1002_imo2_70020 crossref_primary_10_3389_fnins_2025_1594179 crossref_primary_10_3389_fcimb_2024_1430586 crossref_primary_10_3389_fmicb_2023_1147945 crossref_primary_10_4103_ohbl_ohbl_66_25 crossref_primary_10_1080_00952990_2024_2361442 crossref_primary_10_3389_fnut_2023_1205434 crossref_primary_10_1007_s11033_025_10737_3 crossref_primary_10_1080_1744666X_2022_2052045 crossref_primary_10_1007_s11033_024_09334_7 crossref_primary_10_1007_s12602_025_10449_x crossref_primary_10_1016_j_ijbiomac_2024_138633 crossref_primary_10_1016_j_reval_2023_103766 crossref_primary_10_1186_s40104_022_00783_3 crossref_primary_10_3389_fphys_2024_1460414 crossref_primary_10_1111_jfbc_14043 crossref_primary_10_3390_antiox13060703 crossref_primary_10_1016_j_tips_2025_02_004 crossref_primary_10_3390_medicina60040592 crossref_primary_10_1097_JN9_0000000000000049 crossref_primary_10_1186_s12887_023_04349_8 crossref_primary_10_1007_s12602_024_10235_1 crossref_primary_10_3390_fermentation8090425 crossref_primary_10_1515_oncologie_2023_0511 crossref_primary_10_3390_foods13223676 crossref_primary_10_3390_ijms22189700 crossref_primary_10_3389_fmicb_2022_930928 crossref_primary_10_14814_phy2_16047 crossref_primary_10_3390_foods13244134 crossref_primary_10_3389_fmed_2023_1141355 crossref_primary_10_3390_biom12121781 crossref_primary_10_3390_microorganisms12061135 crossref_primary_10_3389_fimmu_2024_1348010 crossref_primary_10_3390_ani14202957 crossref_primary_10_3389_fonc_2022_970967 crossref_primary_10_1186_s42269_023_01098_7 crossref_primary_10_26599_FSHW_2024_9250201 crossref_primary_10_1002_fsn3_3835 crossref_primary_10_3390_jcm11154464 crossref_primary_10_3390_foods12203847 crossref_primary_10_3389_fmicb_2024_1487641 crossref_primary_10_7759_cureus_81067 crossref_primary_10_1007_s11259_024_10445_6 crossref_primary_10_1016_j_microb_2024_100160 crossref_primary_10_3390_foods13152386 crossref_primary_10_1016_j_clnesp_2024_11_011 crossref_primary_10_1039_D4FO03671A crossref_primary_10_3389_fendo_2025_1553655 crossref_primary_10_3390_nu15071620 crossref_primary_10_1007_s00210_024_03636_0 crossref_primary_10_1016_j_fbio_2025_106462 crossref_primary_10_3390_jcm11133758 crossref_primary_10_1093_jambio_lxac032 crossref_primary_10_3390_microorganisms11030771 crossref_primary_10_1016_j_pharmthera_2023_108443 crossref_primary_10_3390_medicina60081235 crossref_primary_10_3390_covid5040048 crossref_primary_10_1038_s41522_024_00618_1 crossref_primary_10_1016_j_semerg_2025_102575 crossref_primary_10_1016_j_biopha_2021_112147 crossref_primary_10_3389_fimmu_2025_1559480 crossref_primary_10_1186_s12866_023_02866_1 crossref_primary_10_3390_clinpract15090159 crossref_primary_10_1007_s11010_023_04836_7 crossref_primary_10_1002_aro2_7 crossref_primary_10_1016_j_ijfoodmicro_2025_111436 crossref_primary_10_1038_s41598_025_91301_8 crossref_primary_10_1186_s12950_022_00324_9 crossref_primary_10_3389_fendo_2024_1277921 crossref_primary_10_3390_ijms242115584 crossref_primary_10_1002_osp4_759 crossref_primary_10_2478_ebtj_2024_0014 crossref_primary_10_1002_bab_2584 crossref_primary_10_1111_ijfs_17188 crossref_primary_10_1186_s12967_025_06527_x crossref_primary_10_1007_s12602_024_10253_z crossref_primary_10_3389_fmed_2025_1620079 crossref_primary_10_1007_s40883_025_00412_1 crossref_primary_10_3389_fmolb_2024_1456053 crossref_primary_10_3390_pathogens12111340 crossref_primary_10_1016_j_biopha_2025_117975 crossref_primary_10_1039_D4FO05988C crossref_primary_10_1039_D3FO00152K crossref_primary_10_3389_fcimb_2025_1575798 crossref_primary_10_3389_fnut_2023_1126579 crossref_primary_10_3390_nu15245049 crossref_primary_10_1080_17474124_2023_2221433 crossref_primary_10_3390_ijms232012289 crossref_primary_10_1186_s43014_023_00200_w crossref_primary_10_3390_microorganisms12122488 crossref_primary_10_5498_wjp_v15_i5_103751 crossref_primary_10_1016_j_envpol_2024_125437 crossref_primary_10_1186_s12989_022_00452_3 crossref_primary_10_1007_s11259_024_10609_4 crossref_primary_10_3390_biomedicines12081716 crossref_primary_10_3390_nu15061518 crossref_primary_10_3390_biomedicines12102340 crossref_primary_10_3390_fishes9050157 crossref_primary_10_3390_nu16213655 crossref_primary_10_1016_j_cger_2022_04_004 crossref_primary_10_1111_joim_20089 crossref_primary_10_3390_nu15092114 crossref_primary_10_1016_j_ejphar_2025_177521 crossref_primary_10_1016_j_psj_2024_103946 crossref_primary_10_1038_s41467_024_48128_0 crossref_primary_10_3389_fmicb_2023_1086471 crossref_primary_10_3390_nu16203510 crossref_primary_10_3390_agriculture12020304 crossref_primary_10_3390_nu16183061 crossref_primary_10_1096_fj_202101972RR crossref_primary_10_1155_2024_6632209 crossref_primary_10_3390_ijms222212159 crossref_primary_10_1007_s11427_024_2885_4 crossref_primary_10_1007_s10068_025_01881_4 crossref_primary_10_1016_j_isci_2023_108481 crossref_primary_10_3390_metabo15040267 crossref_primary_10_1016_j_prmcm_2025_100655 crossref_primary_10_3390_ani11113174 crossref_primary_10_3390_molecules28010297 crossref_primary_10_1007_s00210_025_04155_2 crossref_primary_10_1111_1756_185X_14888 crossref_primary_10_3389_fmicb_2023_1296447 crossref_primary_10_3390_nu16060789 crossref_primary_10_1128_aem_00312_24 crossref_primary_10_7759_cureus_57055 crossref_primary_10_1007_s00394_023_03307_5 crossref_primary_10_3390_dermato5030017 crossref_primary_10_1177_11795549231188225 crossref_primary_10_3390_fermentation11080458 crossref_primary_10_1016_j_fhfh_2025_100218 crossref_primary_10_3390_microorganisms11030791 crossref_primary_10_3390_nu16213675 crossref_primary_10_3389_fpubh_2023_1139113 crossref_primary_10_3390_microorganisms11051359 crossref_primary_10_1007_s42770_023_01093_0 crossref_primary_10_3390_biomedicines10123180 crossref_primary_10_3389_fnut_2022_899842 crossref_primary_10_3390_nu16060790 crossref_primary_10_3390_fermentation8120672 crossref_primary_10_3390_ijms25169096 crossref_primary_10_1016_j_fm_2023_104418 crossref_primary_10_3390_biomedicines10092236 crossref_primary_10_1016_j_clnu_2023_03_017 crossref_primary_10_1155_2022_1482811 crossref_primary_10_32604_biocell_2023_030853 crossref_primary_10_1016_j_puhe_2025_02_040 crossref_primary_10_3389_fncel_2025_1623576 crossref_primary_10_1371_journal_pone_0317197 crossref_primary_10_1016_j_heliyon_2024_e37279 crossref_primary_10_3390_genes13101860 crossref_primary_10_3390_nu16244405 crossref_primary_10_1007_s11010_025_05325_9 crossref_primary_10_1016_j_heliyon_2024_e31747 crossref_primary_10_3389_fmicb_2024_1456848 crossref_primary_10_4014_jmb_2309_09007 crossref_primary_10_3390_microorganisms9122620 crossref_primary_10_3390_nu15081822 crossref_primary_10_1186_s13568_025_01869_7 crossref_primary_10_3390_fermentation8050220 crossref_primary_10_3390_ijms24098134 crossref_primary_10_1080_19490976_2024_2397874 crossref_primary_10_3390_ijms24109034 crossref_primary_10_3390_biomedicines12020382 crossref_primary_10_3390_microorganisms13061284 crossref_primary_10_1080_87559129_2025_2551296 crossref_primary_10_1111_1750_3841_17460 crossref_primary_10_1186_s12879_024_10202_9 crossref_primary_10_1371_journal_pone_0311799 crossref_primary_10_1007_s12602_024_10411_3 crossref_primary_10_1186_s12866_025_04008_1 crossref_primary_10_3389_fphar_2021_711788 crossref_primary_10_3389_fmicb_2022_864720 crossref_primary_10_3390_microorganisms11071714 crossref_primary_10_3389_fcell_2022_880544 crossref_primary_10_3390_ijms26041773 crossref_primary_10_1111_1758_2229_13233 crossref_primary_10_3390_ijms26020614 crossref_primary_10_1097_JS9_0000000000002147 crossref_primary_10_3390_ijms24098264 crossref_primary_10_3389_fmicb_2025_1550749 crossref_primary_10_3390_ijms241813783 crossref_primary_10_1177_09287329241301680 crossref_primary_10_3390_nu16223830 crossref_primary_10_1016_j_molmed_2024_12_005 crossref_primary_10_1007_s00431_022_04459_y crossref_primary_10_3390_microorganisms12050851 crossref_primary_10_1016_j_jtcme_2023_01_003 crossref_primary_10_1016_j_scitotenv_2022_156641 crossref_primary_10_3389_fmicb_2025_1539972 crossref_primary_10_1007_s11033_023_08596_x crossref_primary_10_3390_nu14010080 crossref_primary_10_1016_j_neuropharm_2023_109480 crossref_primary_10_3389_fnut_2025_1544713 crossref_primary_10_1016_j_intimp_2025_114227 crossref_primary_10_3390_ijms232214478 crossref_primary_10_1007_s11274_024_04112_w crossref_primary_10_3389_fphys_2023_1114231 crossref_primary_10_1007_s12088_025_01451_6 crossref_primary_10_3390_cancers17172736 crossref_primary_10_3390_vaccines11071170 crossref_primary_10_3389_fimmu_2024_1482765 crossref_primary_10_1007_s12602_025_10605_3 crossref_primary_10_1016_j_ijoes_2025_101178 crossref_primary_10_3389_fpsyg_2023_1215674 crossref_primary_10_32352_0367_3057_2_25_08 crossref_primary_10_2147_JPR_S486259 crossref_primary_10_31073_onehealthjournal2025_III_03 crossref_primary_10_3390_microorganisms10122515 crossref_primary_10_1186_s12944_024_02107_y crossref_primary_10_1093_ijfood_vvaf074 crossref_primary_10_1016_j_phrs_2024_107456 crossref_primary_10_3389_froh_2025_1485028 crossref_primary_10_3390_microorganisms12112284 crossref_primary_10_3390_bioengineering11010045 crossref_primary_10_1016_j_biopha_2022_114195 crossref_primary_10_3389_fimmu_2024_1384270 crossref_primary_10_3390_cimb46100636 crossref_primary_10_1016_j_arbres_2024_04_030 crossref_primary_10_3390_nu13124201 crossref_primary_10_7554_eLife_93423 crossref_primary_10_3390_microorganisms11010104 crossref_primary_10_3390_ijms26062688 crossref_primary_10_2147_PHMT_S287719 crossref_primary_10_1139_apnm_2021_0557 crossref_primary_10_3389_fphar_2023_1184183 crossref_primary_10_1016_j_animal_2024_101220 crossref_primary_10_1177_17448069211022952 crossref_primary_10_1186_s12876_024_03562_8 crossref_primary_10_3390_ijms26020808 crossref_primary_10_3389_fmicb_2025_1596990 crossref_primary_10_3390_nu13124412 crossref_primary_10_1038_s41598_022_27300_w crossref_primary_10_1016_j_biomaterials_2022_121573 crossref_primary_10_1016_j_fbio_2025_107400 crossref_primary_10_3390_nu16121921 crossref_primary_10_3390_app13084726 crossref_primary_10_3390_microorganisms12112159 crossref_primary_10_1016_j_micpath_2025_107882 crossref_primary_10_2478_acve_2022_0014 crossref_primary_10_3389_fsysb_2025_1561047 crossref_primary_10_3390_metabo13030415 crossref_primary_10_1038_s41598_024_74400_w crossref_primary_10_3390_nu16071039 crossref_primary_10_3390_cancers16101928 crossref_primary_10_3389_fimmu_2022_1002674 crossref_primary_10_3389_fvets_2025_1524658 crossref_primary_10_1007_s12602_024_10443_9 crossref_primary_10_1097_MOT_0000000000000958 crossref_primary_10_1111_bph_16200 crossref_primary_10_3389_fnut_2025_1597894 crossref_primary_10_1007_s12602_025_10695_z crossref_primary_10_3390_medicina61040589 crossref_primary_10_1097_MD_0000000000032412 crossref_primary_10_3390_pharmaceutics17070805 crossref_primary_10_3390_cancers15072101 crossref_primary_10_3389_fimmu_2024_1335975 crossref_primary_10_4014_jmb_2403_03056 crossref_primary_10_1186_s12964_023_01141_0 crossref_primary_10_3390_nu15051102 crossref_primary_10_1016_j_micpath_2023_106290 crossref_primary_10_3390_cells12212538 crossref_primary_10_1080_19390211_2024_2363199 crossref_primary_10_1007_s00384_024_04624_9 crossref_primary_10_52361_fsbh_2022_2_e30 crossref_primary_10_1186_s12889_025_23013_7 crossref_primary_10_7759_cureus_32313 crossref_primary_10_1016_j_afres_2025_101193 crossref_primary_10_3390_metabo15070478 crossref_primary_10_37349_eds_2025_1008105 crossref_primary_10_3390_ijms25147697 crossref_primary_10_3389_fnut_2021_778289 crossref_primary_10_1017_gmb_2024_12 crossref_primary_10_3389_fmicb_2022_822912 crossref_primary_10_3390_microorganisms13081738 crossref_primary_10_1016_j_intimp_2024_111937 crossref_primary_10_3389_fphar_2022_1042189 crossref_primary_10_1155_ijfo_5567567 crossref_primary_10_1111_odi_15046 crossref_primary_10_3390_bioengineering12090944 crossref_primary_10_4103_abr_abr_157_24 crossref_primary_10_52361_fsbh_2023_3_e21 crossref_primary_10_1021_acs_jafc_5c02086 crossref_primary_10_1039_D3FO04419J crossref_primary_10_1021_acs_jafc_4c11506 crossref_primary_10_1038_s41579_023_00888_0 crossref_primary_10_1016_j_lfs_2024_122748 crossref_primary_10_3389_fnut_2024_1390433 crossref_primary_10_3390_vetsci12050484 crossref_primary_10_1080_14787210_2022_2128765 crossref_primary_10_1016_j_foodres_2024_115183 crossref_primary_10_3389_fnut_2025_1552358 crossref_primary_10_2174_0113892029317403240815044408 crossref_primary_10_1038_s41598_022_24483_0 crossref_primary_10_1080_13813455_2025_2507749 crossref_primary_10_1002_jsfa_13329 crossref_primary_10_3389_fimmu_2024_1331486 crossref_primary_10_3390_antiox12101850 crossref_primary_10_3390_ijms26189065 crossref_primary_10_1002_mnfr_202200253 crossref_primary_10_3390_nu15010228 crossref_primary_10_1007_s12017_024_08783_4 crossref_primary_10_1371_journal_pone_0300316 crossref_primary_10_3390_nu14173651 crossref_primary_10_3390_pathogens12070874 crossref_primary_10_1080_10408398_2022_2103090 crossref_primary_10_3389_fnut_2024_1496616 crossref_primary_10_1007_s12602_023_10042_0 crossref_primary_10_1016_j_focha_2025_100919 crossref_primary_10_3390_ani15101500 crossref_primary_10_3390_jcm12124150 crossref_primary_10_1016_j_nxnano_2025_100184 crossref_primary_10_12688_f1000research_166421_1 crossref_primary_10_1016_j_micpath_2025_107906 crossref_primary_10_3390_biology14030286 crossref_primary_10_3389_fimmu_2025_1513531 crossref_primary_10_3390_nu14030480 crossref_primary_10_3390_ijms24043756 crossref_primary_10_3390_nu16132055 crossref_primary_10_1038_s41423_023_01070_5 crossref_primary_10_1016_j_jpsychires_2024_10_028 crossref_primary_10_1515_biol_2022_0741 crossref_primary_10_1016_j_nut_2024_112591 crossref_primary_10_1016_j_envres_2024_118305 crossref_primary_10_3389_fnut_2023_1189522 crossref_primary_10_3390_nu14020380 crossref_primary_10_1002_ibra_12153 crossref_primary_10_3389_fnins_2025_1597170 crossref_primary_10_3389_fimmu_2024_1410928 crossref_primary_10_3390_microorganisms13010122 crossref_primary_10_3390_biomedicines10112998 crossref_primary_10_1007_s10311_022_01520_y crossref_primary_10_31083_j_fbl2905180 crossref_primary_10_1016_j_ijrobp_2024_03_003 crossref_primary_10_3390_biomedicines13071554 crossref_primary_10_1002_mco2_656 crossref_primary_10_31083_j_fbl2905182 crossref_primary_10_3389_fimmu_2022_1016578 crossref_primary_10_3389_fcell_2022_792490 crossref_primary_10_1007_s11947_024_03334_y crossref_primary_10_3390_ijms252212395 crossref_primary_10_1007_s10482_025_02162_0 crossref_primary_10_1186_s12903_023_03756_8 crossref_primary_10_1007_s12602_022_09949_x crossref_primary_10_3390_ijms26189251 crossref_primary_10_3389_fmicb_2022_858036 crossref_primary_10_3390_cosmetics12040176 crossref_primary_10_1155_2022_8968494 crossref_primary_10_3389_fphar_2025_1511701 crossref_primary_10_1007_s12223_024_01155_2 crossref_primary_10_1186_s13005_025_00514_9 crossref_primary_10_1038_s41598_024_71264_y crossref_primary_10_1186_s13098_022_00858_1 crossref_primary_10_3389_fimmu_2022_1007737 crossref_primary_10_1093_jambio_lxae086 crossref_primary_10_1007_s12094_023_03184_8 crossref_primary_10_1016_j_nut_2024_112371 crossref_primary_10_3390_biomedicines12040740 crossref_primary_10_3390_onco5030041 crossref_primary_10_1016_j_ijantimicag_2023_106969 crossref_primary_10_1186_s12865_024_00632_0 crossref_primary_10_1007_s00203_025_04410_3 crossref_primary_10_1007_s11882_021_01020_z crossref_primary_10_3390_cells12222599 crossref_primary_10_3389_fmicb_2022_996031 crossref_primary_10_1002_aro2_70027 crossref_primary_10_1002_iid3_1045 crossref_primary_10_21926_obm_genet_2304206 |
| Cites_doi | 10.1016/j.jprot.2012.09.005 10.1371/journal.pone.0059470 10.3748/wjg.v25.i36.5469 10.1186/1471-230X-13-100 10.1159/000490847 10.1007/s40263-016-0370-3 10.3390/nu7115470 10.1111/apt.14203 10.1097/MPG.0b013e31817d80ca 10.1002/ajpa.10398 10.1111/obr.12626 10.1016/j.nut.2016.05.003 10.1111/1471-0528.12129 10.1155/2018/1756308 10.1080/19490976.2015.1035855 10.1073/pnas.0500098102 10.1111/j.1365-2672.2010.04922.x 10.1053/j.gastro.2011.01.054 10.1111/j.1365-2249.2007.03522.x 10.1038/nrmicro.2017.58 10.1371/journal.pone.0028032 10.1007/s40519-020-00983-8 10.1016/j.anaerobe.2013.07.003 10.3390/nu12020495 10.1186/s12876-017-0605-x 10.1128/mBio.01011-14 10.1542/peds.2006-3624 10.1097/MCG.0b013e3181cb4233 10.1007/s12602-020-09642-x 10.1111/nmo.13037 10.1053/j.gastro.2004.01.063 10.1093/gerona/63.2.196 10.1159/000068362 10.1126/science.1198469 10.1159/000480005 10.1186/1471-2431-12-179 10.1038/s41586-019-1237-9 10.1155/2013/963748 10.1038/s41531-020-0112-6 10.1128/AEM.00376-17 10.1034/j.1600-0706.2000.880110.x 10.1002/ibd.20602 10.1007/s00394-013-0568-9 10.1136/bmj.299.6710.1259 10.3390/nu11081761 10.1038/nri3112 10.1097/MCO.0000000000000044 10.1126/science.aar3318 10.1038/nature10209 10.3389/fmicb.2020.00532 10.1136/gut.53.1.108 10.1111/j.1365-2036.2006.02927.x 10.1073/pnas.1000082107 10.3748/wjg.v22.i24.5505 10.1097/MPG.0000000000001220 10.1016/j.crohns.2013.04.002 10.3389/fimmu.2019.00969 10.1186/s12876-016-0470-z 10.1016/j.intimp.2006.08.015 10.1007/s00125-013-2929-6 10.1136/gutjnl-2012-303249 10.1016/j.jff.2018.10.039 10.2337/dc08-1239 10.3748/wjg.v12.i37.5978 10.1080/17474124.2020.1745630 10.1111/apt.12517 10.3390/nu10121824 10.1099/jmm.0.000222 10.1146/annurev.anthro.27.1.247 10.1017/S000711451400169X 10.1007/s10068-019-00717-2 10.1017/S0007114514000609 10.1016/j.cmet.2015.07.026 10.1053/j.gastro.2016.09.049 10.1007/s00281-003-0148-9 10.1002/14651858.CD005573.pub3 10.1007/164_2016_115 10.1111/obr.12551 10.1503/cmaj.121189 10.1038/ajg.2014.202 10.3390/nu11050969 10.1271/bbb.80445 10.1016/j.immuni.2010.06.001 10.1016/j.jada.2007.03.006 10.1161/CIRCULATIONAHA.115.018585 10.1111/j.2047-6310.2013.00151.x 10.1007/978-94-017-2027-4_9 10.1053/gast.2000.9370 10.1038/nrgastro.2012.152 10.1038/labinvest.2012.13 10.1186/1472-6882-10-13 10.1038/srep34561 10.1053/j.gastro.2004.11.050 10.1016/j.bbi.2013.12.005 10.1186/s12934-017-0691-z 10.1111/j.1365-2036.2011.04939.x 10.1007/s00430-002-0112-7 10.3389/fimmu.2017.01036 10.1016/S0140-6736(16)32126-2 10.1007/s10620-015-3769-7 10.1053/j.gastro.2016.02.031 10.1136/gut.2005.073817 10.1016/j.jnutbio.2010.07.009 10.1371/journal.pone.0090153 10.1038/nri.2017.7 10.1093/ajcn/87.3.534 10.1073/pnas.0501470103 10.1097/MCG.0000000000001023 10.1590/s2317-17822013000200017 10.1146/annurev.med.60.051407.123757 10.1002/14651858.CD004826.pub2 10.2217/fmb.11.142 10.1155/2015/909514 10.1016/S2214-109X(14)70381-X 10.1016/j.immuni.2014.06.014 10.1111/apm.12556 10.1016/j.dld.2017.01.142 10.1016/j.physbeh.2014.10.033 10.1097/MEG.0000000000000094 10.1016/S2468-1253(17)30147-4 10.1155/2011/473097 10.1016/j.jpsychires.2019.05.019 10.1016/j.intimp.2016.03.033 10.1371/journal.pone.0167410 10.1038/ijo.2008.155 10.1016/j.bbadis.2010.12.017 10.1002/mds.27326 10.3390/nu11081925 10.1016/j.nut.2015.11.001 10.1097/MCG.0000000000000924 10.1128/IAI.68.2.752-759.2000 10.1007/s00702-017-1686-y 10.1111/j.1398-9995.1998.tb04953.x 10.1038/nrgastro.2010.4 10.1016/S2213-8587(14)70134-2 10.1002/mnfr.201700144 10.1128/mBio.01358-15 10.1038/445153a 10.1002/oby.22175 10.1126/science.1091334 10.1016/j.jaci.2005.03.036 10.1016/j.ajhg.2012.05.020 10.3920/BM2010.0027 10.1053/j.gastro.2019.03.049 10.3389/fimmu.2016.00096 10.1038/ajg.2010.218 10.1136/gut.2003.037747 10.1111/obr.12107 10.1038/nrmicro2974 10.1371/journal.pone.0076993 10.1016/j.jaci.2013.05.043 10.1053/j.gastro.2016.10.012 10.1089/jmf.2017.3990 10.3109/00365521.2014.926982 10.1038/nature03711 10.3920/BM2015.0147 10.1126/science.1206095 10.3168/jds.2018-16197 10.1152/ajpgi.00217.2011 10.1073/pnas.1313731110 10.1038/nature11053 10.3945/ajcn.113.079533 10.1073/pnas.0904055107 10.1002/ibd.20448 10.1007/s13679-019-00352-2 10.1186/1757-4749-6-33 10.1016/j.imlet.2008.04.006 10.1055/s-2008-1027463 10.1016/j.jaci.2012.11.019 10.1172/JCI94601 10.1053/j.gastro.2004.04.061 10.3945/ajcn.110.010132 10.1097/MPG.0000000000002497 10.1002/14651858.CD007443.pub3 10.4049/jimmunol.174.6.3158 10.1038/nature09944 10.1111/j.1365-2249.2008.03635.x 10.1053/j.gastro.2016.02.015 10.1186/s12866-019-1525-4 10.1093/intimm/dxm103 10.3389/fimmu.2016.00273 10.3168/jds.2019-16840 10.1111/cea.12332 10.1016/S0955-2863(96)00147-7 10.1111/den.12553 10.1136/bmjopen-2017-017995 10.1016/j.clnu.2018.06.931 10.1111/j.1365-3083.2011.02582.x 10.1053/j.gastro.2010.08.049 10.1016/j.mehy.2011.04.032 10.1016/j.clnu.2018.05.018 10.1038/s41598-019-55568-y 10.1152/ajpgi.00452.2013 10.26355/eurrev-201811-16301 10.1126/science.296.5567.490 10.1016/j.cgh.2009.07.016 10.1016/S1567-5769(01)00025-X 10.4161/gmic.20169 10.1371/journal.pone.0159705 10.1111/j.1365-2222.2010.03629.x 10.1111/j.1365-2249.2009.03878.x 10.1002/ibd.20369 10.3389/fimmu.2019.00845 10.1371/journal.pone.0110027 10.1016/j.nut.2018.02.005 10.1016/S0016-5085(03)00171-9 10.1038/nature11550 10.1371/journal.pone.0030744 10.1111/j.1462-5822.2009.01381.x 10.1099/jmm.0.46101-0 10.1016/j.jnutbio.2019.03.021 10.1126/science.aah5825 10.1073/pnas.0706625104 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla. Copyright © 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla |
| Copyright_xml | – notice: Copyright © 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla. – notice: Copyright © 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2021.578386 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_31cace591d53490882859aae940ee531 PMC7953067 33717063 10_3389_fimmu_2021_578386 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c531t-f4e3df958e21d0b220b2dccfe0d16da5b7c58d77817f6f878b288a5f84de54ea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 556 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627756100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:43:03 EDT 2025 Tue Sep 30 16:37:27 EDT 2025 Wed Oct 01 13:54:27 EDT 2025 Thu Jan 02 22:56:54 EST 2025 Tue Nov 18 20:49:11 EST 2025 Sat Nov 29 02:49:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | microbiota inflammation irritable bowel syndrome celiac disease autism spectrum disorders inflammatory bowel disease obesity probiotics |
| Language | English |
| License | Copyright © 2021 Cristofori, Dargenio, Dargenio, Miniello, Barone and Francavilla. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-f4e3df958e21d0b220b2dccfe0d16da5b7c58d77817f6f878b288a5f84de54ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Mucosal Immunity, a section of the journal Frontiers in Immunology Edited by: Alessio Fasano, Massachusetts General Hospital and Harvard Medical School, United States Reviewed by: Yogesh Singh, Tübingen University Hospital, Germany; Michael Kogut, United States Department of Agriculture, United States |
| OpenAccessLink | https://doaj.org/article/31cace591d53490882859aae940ee531 |
| PMID | 33717063 |
| PQID | 2501477492 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_31cace591d53490882859aae940ee531 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7953067 proquest_miscellaneous_2501477492 pubmed_primary_33717063 crossref_citationtrail_10_3389_fimmu_2021_578386 crossref_primary_10_3389_fimmu_2021_578386 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-26 |
| PublicationDateYYYYMMDD | 2021-02-26 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Hod (B171) 2017; 29 Bhupathiraju (B45) 2014; 100 Lin (B86) 2008; 14 Henker (B141) 2008; 46 Dogi (B105) 2016; 7 Smith (B70) 2016; 11 Gao (B101) 2015; 6 Barrett (B4) 1998; 12 Eslami (B67) 2016; 124 Rook (B27) 2013; 110 Lloyd-Price (B129) 2019; 569 Jumpertz (B180) 2011; 94 Imamura (B41) 2015; 3 Loftus (B134) 2004; 126 Francavilla (B33) 2018; 73 Simrén (B163) 2010; 7 de Theije (B206) 2014; 37 Compare (B72) 2017; 17 Czajeczny (B198) 2020 Håkansson (B120) 2019; 11 Gionchetti (B150) 2000; 119 Francavilla (B113) 2017; 83 Aattouri (B77) 1997; 8 Panagiotakos (B46) 2007; 107 Darfeuille-Michaud (B156) 2004; 127 Giorgi (B126) 2020; 12 Sanikhani (B207) 2020; 12 Martin (B12) 2010; 1 Lapaquette (B157) 2010; 12 Papista (B117) 2012; 92 Kruis (B147) 2004; 53 Park (B92) 2007; 7 Landy (B153) 2013; 38 Atarashi (B16) 2011; 331 Koutnikova (B196) 2019; 9 Wu (B21) 2010; 32 Cristofori (B111) 2018; 10 Rook (B9) 2002; 49 Thakur (B66) 2016; 36 Guslandi (B143) 2010; 44 Willing (B155) 2010; 139 Liu (B165) 2017; 49 Pittayanon (B166) 2019; 157 Prescott (B1) 2013; 131 Tang (B107) 2017; 33 Kwon (B83) 2010; 107 De Angelis (B210) 2015; 6 Bray (B178) 2017; 18 Naito (B187) 2011; 110 D’Arienzo (B116) 2011; 74 Smits (B64) 2005; 115 Kaur (B139) 2020; 3 Sundin (B167) 2014; 49 Helwig (B61) 2006; 12 Laparra (B119) 2012; 7 Magistrelli (B215) 2019; 10 Kieper (B18) 2005; 174 Souza (B146) 2016; 65 Iheozor-Ejiofor (B148) 2020; 3 Wold (B28) 1998; 53 Mariman (B84) 2014; 112 Oliva (B137) 2012; 35 Torres-Fuentes (B186) 2017; 2 Karlström (B37) 2013; 120 Zhang (B172) 2016; 16 LeBlanc (B95) 2017; 16 De Marco (B73) 2018; 2018 Lindfors (B118) 2008; 152 Zhou (B98) 2019; 102 Hyams (B161) 2016; 150 Johansson (B69) 2016; 7 Tenorio-Jiménez (B195) 2019; 11 Medina (B62) 2007; 150 Park (B97) 2018; 21 Griet (B87) 2014; 9 Gionchetti (B149) 2003; 124 Derwa (B158) 2017; 46 Francavilla (B125) 2019; 53 Lacy (B160) 2016; 150 Primec (B122) 2019; 38 Huang (B106) 2019; 19 Monteiro (B42) 2013; 14 Wallen (B214) 2020; 6 Arumugam (B47) 2011; 473 Lisciandro (B8) 2010; 40 Matthes (B136) 2010; 10 Ben Salah (B190) 2013; 23 Abraham (B19) 2009; 60 Thomas (B89) 2011; 301 Qiu (B102) 2013; 7 Mimura (B151) 2004; 53 Macpherson (B15) 2004; 303 Rodríguez-Nogales (B103) 2017; 61 Parracho (B201) 2005; 54 Fouhy (B31) 2012; 3 Kanda (B104) 2016; 11 McFall-Ngai (B14) 2007; 445 Sommer (B23) 2013; 11 Tamaki (B138) 2016; 28 Everard (B193) 2014; 5 Radon (B11) 2007; 120 Fink (B59) 2007; 19 Tap (B164) 2017; 152 Zocco (B140) 2006; 23 Bernini (B194) 2016; 32 Sood (B144) 2009; 7 Downs (B168) 2017; 51 Kim (B169) 2020; 29 Rea (B162) 2017; 239 Cross (B79) 2001; 1 Kolokotroni (B38) 2012; 12 Atkinson (B44) 2008; 31 Srivastav (B216) 2019; 69 Pronio (B152) 2008; 14 Rolfe (B159) 2006 Lee (B20) 2011; 108 Vallianou (B183) 2019; 8 West (B32) 2014; 17 Mi (B108) 2017; 42 Mozaffarian (B43) 2016; 133 Renz (B22) 2012; 12 Haller (B78) 2000; 68 Khor (B128) 2011; 474 Husby (B110) 2020; 70 Klemenak (B121) 2015; 60 Abbas (B176) 2014; 26 Theoharides (B204) 2012; 1822 Li (B39) 2014; 9 Ke (B2) 2012; 91 Manichanh (B127) 2012; 9 Tursi (B145) 2010; 105 Levy (B53) 2017; 17 D’Arienzo (B115) 2008; 119 Sartor (B131) 2017; 152 Battle (B199) 2013; 25 Azad (B34) 2013; 185 Lochmiller (B5) 2000; 88 Borgeraas (B197) 2018; 19 Ferrarese (B188) 2018; 22 Wang (B175) 2014; 9 Kespohl (B93) 2017; 8 Sivieri (B94) 2013; 13 Tysnes (B211) 2017; 124 De Angelis (B209) 2013; 8 Sommer (B52) 2017; 15 Parracho (B208) 2010; 5 Venkatesh (B96) 2014; 41 Douglas (B54) 2020; 10 Saghazadeh (B205) 2019; 115 Luerce (B81) 2014; 6 Penders (B36) 2013; 132 Miyoshi (B191) 2014; 53 West (B25) 2015; 45 Ungaro (B135) 2017; 389 Finegold (B202) 2011; 77 Zhao (B174) 2019; 25 Ruemmele (B63) 2009; 48 Koeth (B49) 2019; 129 Vinolo (B91) 2011; 22 Sichetti (B74) 2018; 53 Jakobsson (B35) 2014; 63 Caesar (B51) 2015; 22 Yazdanbakhsh (B10) 2002; 296 Tomova (B203) 2015; 138 Blum (B60) 1999; 76 Leonard (B112) 2015; 7 Frank (B130) 2007; 104 Cross (B80) 2002; 191 Scaldaferri (B142) 2016; 22 Cox (B185) 2015; 3 Angelakis (B181) 2012; 7 Li (B75) 2019; 11 Yatsunenko (B29) 2012; 486 Ejtahed (B189) 2019; 52 Lozupone (B30) 2012; 489 Yang (B55) 2005; 436 Garn (B24) 2013; 131 Ford (B173) 2014; 109 Good (B82) 2014; 306 Cervantes-Barragan (B109) 2017; 357 Stene (B40) 2013; 56 Crimmins (B3) 2006; 103 Sherwin (B200) 2016; 30 O’Mahony (B170) 2005; 128 Duncan (B182) 2008; 32 Soria (B88) 2008; 72 Manichanh (B154) 2006; 55 Round (B17) 2011; 332 Mohamadzadeh (B58) 2005; 102 Choi (B99) 2019; 102 Guarino (B177) 2016; 63 Haileselassie (B68) 2016; 7 Kalliomäki (B184) 2008; 87 Ren (B71) 2016; 6 Buc (B48) 2013; 2013 Olivares (B123) 2014; 112 Rook (B13) 2004; 25 Kawano (B85) 2019; 112 Ng (B56) 2009; 15 Thaiss (B50) 2018; 359 Gurven (B7) 2008; 63 Thomas (B90) 2009; 156 Ferlazzo (B57) 2011; 2011 Sagheddu (B76) 2020; 11 McDade (B6) 2003; 122 Fiorucci (B133) 2002; 66 Chassaing (B132) 2011; 140 Park (B192) 2013; 8 Houser (B213) 2018; 33 Rastelli (B179) 2018; 26 Olivares (B124) 2012; 77 Pan (B65) 2010; 21 Francavilla (B114) 2020; 14 Tamtaji (B217) 2019; 38 Strachan (B26) 1989; 299 Chen (B100) 2015; 2015 Forsyth (B212) 2011; 6 |
| References_xml | – volume: 77 year: 2012 ident: B124 article-title: Oral administration of Bifidobacterium longum CECT 7347 modulates jejunal proteome in an in vivo gliadin-induced enteropathy animal model publication-title: J Proteomics doi: 10.1016/j.jprot.2012.09.005 – volume: 8 year: 2013 ident: B192 article-title: Supplementation of Lactobacillus curvatus KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity publication-title: PloS One doi: 10.1371/journal.pone.0059470 – volume: 25 start-page: 5469−82 year: 2019 ident: B174 article-title: Clostridium butyricum alleviates intestinal low-grade inflamm TNBS-induced irritable bowel syndrome in mice by regulating functional status of lamina propria dendritic cells publication-title: World J Gastroenterol Baishideng Publishing Group Co Limited doi: 10.3748/wjg.v25.i36.5469 – volume: 13 start-page: 100 year: 2013 ident: B94 article-title: Lactobacillus acidophilus CRL 1014 improved « gut health » in the SHIME® reactor publication-title: BMC Gastroenterol doi: 10.1186/1471-230X-13-100 – volume: 73 start-page: 33−9 year: 2018 ident: B33 article-title: Intervention for Dysbiosis in Children Born by C-Section publication-title: Ann Nutr Metab doi: 10.1159/000490847 – volume: 30 start-page: 1019−41 year: 2016 ident: B200 article-title: May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry publication-title: CNS Drugs doi: 10.1007/s40263-016-0370-3 – volume: 7 year: 2015 ident: B112 article-title: Celiac disease genomic, environmental, microbiome, and metabolomic (CDGEMM) study design: Approach to the future of personalized prevention of celiac disease publication-title: Nutrients doi: 10.3390/nu7115470 – volume: 46 start-page: 389−400 year: 2017 ident: B158 article-title: Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease publication-title: Alimentary Pharmacol Ther Blackwell Publishing Ltd doi: 10.1111/apt.14203 – volume: 48 start-page: 126−41 year: 2009 ident: B63 article-title: Clinical evidence for immunomodulatory effects of probiotic bacteria publication-title: J Pediatr Gastroenterol Nutr J Pediatr Gastroenterol Nutr doi: 10.1097/MPG.0b013e31817d80ca – volume: 122 start-page: 100−25 year: 2003 ident: B6 article-title: Life History Theory and the Immune System: Steps Toward a Human Ecological Immunology publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.10398 – volume: 19 start-page: 219−32 year: 2018 ident: B197 article-title: Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials publication-title: Obes Rev Blackwell Publishing Ltd doi: 10.1111/obr.12626 – volume: 33 start-page: 96 year: 2017 ident: B107 article-title: Administration of probiotic mixture DM1 ameliorated 5-fluorouracil–induced intestinal mucositis and dysbiosis in rats publication-title: Nutrition doi: 10.1016/j.nut.2016.05.003 – volume: 120 start-page: 479−86 year: 2013 ident: B37 article-title: Maternal and infant outcome after caesarean section without recorded medical indication: Findings from a Swedish case-control study publication-title: BJOG Int J Obstet Gynaecol doi: 10.1111/1471-0528.12129 – volume: 2018 year: 2018 ident: B73 article-title: Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS publication-title: Evidence-Based Complement Altern Med doi: 10.1155/2018/1756308 – volume: 6 start-page: 207−13 year: 2015 ident: B210 article-title: Autism spectrum disorders and intestinal microbiota publication-title: Gut Microbes doi: 10.1080/19490976.2015.1035855 – volume: 102 start-page: 2880−5 year: 2005 ident: B58 article-title: Lactobacilli active human dendritic cells that skew T cells toward T helper 1 polarization publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.0500098102 – volume: 110 start-page: 650−7 year: 2011 ident: B187 article-title: Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2010.04922.x – volume: 140 start-page: 1720 year: 2011 ident: B132 article-title: The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2011.01.054 – volume: 150 start-page: 531−8 year: 2007 ident: B62 article-title: Differential immunomodulatory properties of Bifidobacterium logum strains: Relevance to probiotic selection and clinical applications publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2007.03522.x – volume: 15 start-page: 630−8 year: 2017 ident: B52 article-title: The resilience of the intestinal microbiota influences health and disease publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.58 – volume: 6 year: 2011 ident: B212 article-title: Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease publication-title: PloS One doi: 10.1371/journal.pone.0028032 – start-page: 1−9 year: 2020 ident: B198 article-title: Does probiotic supplementation aid weight loss? A randomized, single-blind, placebo-controlled study with Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation publication-title: Eat Weight Disord doi: 10.1007/s40519-020-00983-8 – volume: 23 start-page: 55−61 year: 2013 ident: B190 article-title: Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat publication-title: Anaerobe doi: 10.1016/j.anaerobe.2013.07.003 – volume: 12 start-page: 495 year: 2020 ident: B126 article-title: A probiotic preparation hydrolyzes gliadin and protects intestinal cells from the toxicity of pro-inflammatory peptides publication-title: Nutrients MDPI AG doi: 10.3390/nu12020495 – volume: 17 start-page: 53 year: 2017 ident: B72 article-title: and its postbiotic reduce the inflammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome publication-title: BMC Gastroenterol BioMed Cent Ltd doi: 10.1186/s12876-017-0605-x – volume: 5 year: 2014 ident: B193 article-title: Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice publication-title: MBio Am Soc Microbiol doi: 10.1128/mBio.01011-14 – volume: 120 start-page: 354−61 year: 2007 ident: B11 article-title: Contact with farm animals in early life and juvenile inflammatory bowel disease: A case-control study publication-title: Pediatrics doi: 10.1542/peds.2006-3624 – volume: 44 start-page: 385 year: 2010 ident: B143 article-title: Saccharomyces boulardii plus rifaximin in mesalamine-intolerant ulcerative colitis publication-title: J Clin Gastroenterol doi: 10.1097/MCG.0b013e3181cb4233 – volume: 12 year: 2020 ident: B207 article-title: The Effect of Lactobacillus casei Consumption in Improvement of Obsessive–Compulsive Disorder: an Animal Study publication-title: Probiot Antimicrob Proteins doi: 10.1007/s12602-020-09642-x – volume: 29 year: 2017 ident: B171 article-title: A double-blind, placebo-controlled study to assess the effect of a probiotic mixture on symptoms and inflammatory markers in women with diarrhea-predominant IBS publication-title: Neurogastroenterol Motil Blackwell Publishing Ltd doi: 10.1111/nmo.13037 – volume: 126 start-page: 1504−17 year: 2004 ident: B134 article-title: Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2004.01.063 – volume: 63 start-page: 196−9 year: 2008 ident: B7 article-title: Aging and inflammation in two epidemiological worlds publication-title: J Gerontol Ser A Biol Sci Med Sci doi: 10.1093/gerona/63.2.196 – volume: 66 start-page: 246−56 year: 2002 ident: B133 article-title: Inhibition of intestinal bacterial translocation with rifaximin modulates lamina propria monocytic cells reactivity and protects against inflammation in a rodent model of colitis publication-title: Digestion doi: 10.1159/000068362 – volume: 331 start-page: 337−41 year: 2011 ident: B16 article-title: Induction of colonic regulatory T cells by indigenous Clostridium species publication-title: Sci (80- ) doi: 10.1126/science.1198469 – volume: 42 year: 2017 ident: B108 article-title: Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats publication-title: Cell Physiol Biochem doi: 10.1159/000480005 – volume: 12 start-page: 179 year: 2012 ident: B38 article-title: Asthma and atopy in children born by caesarean section: effect modification by family history of allergies - a population based cross-sectional study publication-title: BMC Pediatr doi: 10.1186/1471-2431-12-179 – volume: 569 start-page: 655−62 year: 2019 ident: B129 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature Nat Publishing Group doi: 10.1038/s41586-019-1237-9 – volume: 2013 start-page: 1−11 year: 2013 ident: B48 article-title: Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis publication-title: Mediators Inflammation doi: 10.1155/2013/963748 – volume: 6 start-page: 11 year: 2020 ident: B214 article-title: Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens publication-title: NPJ Park Dis doi: 10.1038/s41531-020-0112-6 – volume: 83 year: 2017 ident: B113 article-title: Selected probiotic lactobacilli have the capacity to hydrolyze gluten peptides during simulated gastrointestinal digestion publication-title: Appl Environ Microbiol Am Soc Microbiol doi: 10.1128/AEM.00376-17 – volume: 88 start-page: 87−98 year: 2000 ident: B5 article-title: Trade-offs in evolutionary immunology: Just what is the cost of immunity publication-title: Oikos doi: 10.1034/j.1600-0706.2000.880110.x – volume: 15 start-page: 300−10 year: 2009 ident: B56 article-title: Mechanisms of action of probiotics: Recent advances publication-title: Inflammatory Bowel Dis Inflammation Bowel Dis doi: 10.1002/ibd.20602 – volume: 53 start-page: 599−606 year: 2014 ident: B191 article-title: Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice publication-title: Eur J Nutr doi: 10.1007/s00394-013-0568-9 – volume: 299 start-page: 1259−60 year: 1989 ident: B26 article-title: Hay fever, hygiene, and household size publication-title: Br Med J doi: 10.1136/bmj.299.6710.1259 – volume: 11 start-page: 1761 year: 2019 ident: B195 article-title: Lactobacillus reuteri v3401 reduces inflammatory biomarkers and modifies the gastrointestinal microbiome in adults with metabolic syndrome: The PROSIR study publication-title: Nutrients doi: 10.3390/nu11081761 – volume: 12 start-page: 9−23 year: 2012 ident: B22 article-title: The impact of perinatal immune development on mucosal homeostasis and chronic inflammation publication-title: Nat Rev Immunol doi: 10.1038/nri3112 – volume: 17 start-page: 261−6 year: 2014 ident: B32 article-title: Gut microbiota and allergic disease: New findings publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/MCO.0000000000000044 – volume: 359 start-page: 1376−83 year: 2018 ident: B50 article-title: Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection publication-title: Sci (80- ) doi: 10.1126/science.aar3318 – volume: 474 start-page: 307−17 year: 2011 ident: B128 article-title: Genetics and pathogenesis of inflammatory bowel disease publication-title: Nature doi: 10.1038/nature10209 – volume: 11 year: 2020 ident: B76 article-title: The Biotherapeutic Potential of Lactobacillus reuteri Characterized Using a Target-Specific Selection Process publication-title: Front Microbiol Front Media S A doi: 10.3389/fmicb.2020.00532 – volume: 53 start-page: 108−14 year: 2004 ident: B151 article-title: Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis publication-title: Gut doi: 10.1136/gut.53.1.108 – volume: 23 start-page: 1567−74 year: 2006 ident: B140 article-title: Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis publication-title: Aliment Pharmacol Ther doi: 10.1111/j.1365-2036.2006.02927.x – volume: 108 start-page: 4615−22 year: 2011 ident: B20 article-title: Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.1000082107 – volume: 22 start-page: 5505−11 year: 2016 ident: B142 article-title: Role and mechanisms of action of Escherichia coli nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update publication-title: World J Gastroenterol Baishideng Publishing Group Co Limited doi: 10.3748/wjg.v22.i24.5505 – volume: 63 start-page: S1−2 year: 2016 ident: B177 article-title: Probiotics in Childhood Diseases: From Basic Science to Guidelines in 20 Years of Research and Development publication-title: J Pediatr Gastroenterol Nutr doi: 10.1097/MPG.0000000000001220 – volume: 7 year: 2013 ident: B102 article-title: Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis publication-title: J Crohn’s Colitis doi: 10.1016/j.crohns.2013.04.002 – volume: 10 year: 2019 ident: B215 article-title: Probiotics may have beneficial effects in Parkinson’s disease: In vitro evidence publication-title: Front Immunol doi: 10.3389/fimmu.2019.00969 – volume: 16 start-page: 62 year: 2016 ident: B172 article-title: Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: A meta-analysis publication-title: BMC Gastroenterol BioMed Cent Ltd doi: 10.1186/s12876-016-0470-z – volume: 7 year: 2007 ident: B92 article-title: Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2006.08.015 – volume: 56 start-page: 1888−97 year: 2013 ident: B40 article-title: The prenatal environment and type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-013-2929-6 – volume: 63 start-page: 559−66 year: 2014 ident: B35 article-title: Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section publication-title: Gut doi: 10.1136/gutjnl-2012-303249 – volume: 52 start-page: 228−42 year: 2019 ident: B189 article-title: Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials publication-title: J Funct Foods Elsevier Ltd doi: 10.1016/j.jff.2018.10.039 – volume: 31 start-page: 2281−3 year: 2008 ident: B44 article-title: International tables of glycemic index and glycemic load values: 2008 publication-title: Diabetes Care doi: 10.2337/dc08-1239 – volume: 12 start-page: 5978−86 year: 2006 ident: B61 article-title: Lactobacilli, bifidobacteria and E. coli nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells publication-title: World J Gastroenterol WJG Press doi: 10.3748/wjg.v12.i37.5978 – volume: 14 year: 2020 ident: B114 article-title: Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease publication-title: Expert Rev Gastroenterol Hepatol doi: 10.1080/17474124.2020.1745630 – volume: 38 start-page: 1405−6 year: 2013 ident: B153 article-title: Invited Commentaries: Commentary: the effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis publication-title: Alimentary Pharmacol Ther Aliment Pharmacol Ther doi: 10.1111/apt.12517 – volume: 10 start-page: 1824 year: 2018 ident: B111 article-title: Probiotics in celiac disease publication-title: Nutrients doi: 10.3390/nu10121824 – volume: 65 start-page: 201−10 year: 2016 ident: B146 article-title: Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model publication-title: J Med Microbiol doi: 10.1099/jmm.0.000222 – volume: 12 year: 1998 ident: B4 article-title: Emerging and re-emerging infectious diseases: the third epidemiologic transition publication-title: Emerg Re-emerg Infect Dis: Third Epidemiol Transition doi: 10.1146/annurev.anthro.27.1.247 – volume: 112 start-page: 1088−97 year: 2014 ident: B84 article-title: The probiotic mixture VSL3 mediates both pro- and anti-inflammatory responses in bone marrow-derived dendritic cells from C57BL/6 and BALB/c mice publication-title: Br J Nutr Cambridge Univ Press doi: 10.1017/S000711451400169X – volume: 29 start-page: 837−44 year: 2020 ident: B169 article-title: Probiotic treatment induced change of inflammation related metabolites in IBS-D patients/double-blind, randomized, placebo-controlled trial publication-title: Food Sci Biotechnol Korean Soc Food Sci Technol doi: 10.1007/s10068-019-00717-2 – volume: 112 start-page: 30 year: 2014 ident: B123 article-title: Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease publication-title: Br J Nutr doi: 10.1017/S0007114514000609 – volume: 22 start-page: 658−68 year: 2015 ident: B51 article-title: Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling publication-title: Cell Metab doi: 10.1016/j.cmet.2015.07.026 – volume: 152 start-page: 111 year: 2017 ident: B164 article-title: Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2016.09.049 – volume: 25 start-page: 237−55 year: 2004 ident: B13 article-title: Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders publication-title: Springer Semin Immunopathol doi: 10.1007/s00281-003-0148-9 – volume: 3 year: 2020 ident: B139 article-title: Probiotics for induction of remission in ulcerative colitis publication-title: Cochrane Database Systematic Rev NLM (Medline) doi: 10.1002/14651858.CD005573.pub3 – volume: 239 year: 2017 ident: B162 article-title: The role of the gastrointestinal microbiota in visceral pain publication-title: Handb Exp Pharmacol Springer New Y LLC doi: 10.1007/164_2016_115 – volume: 18 start-page: 715−23 year: 2017 ident: B178 article-title: Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation publication-title: Obes Rev Blackwell Publishing Ltd doi: 10.1111/obr.12551 – volume: 185 start-page: 385−94 year: 2013 ident: B34 article-title: Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months publication-title: CMAJ doi: 10.1503/cmaj.121189 – volume: 109 start-page: 1547−62 year: 2014 ident: B173 article-title: Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis publication-title: Am J Gastroenterol doi: 10.1038/ajg.2014.202 – volume: 11 start-page: 969 year: 2019 ident: B75 article-title: Combination of lactobacillus acidophilus and bifidobacterium animalis subsp. Lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells publication-title: Nutrients MDPI AG doi: 10.3390/nu11050969 – volume: 72 start-page: 3293−6 year: 2008 ident: B88 article-title: Disruption of lipid rafts enhances the effect of lactobacilli on the production of tumor necrosis factor-alpha in mononuclear blood cells publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.80445 – volume: 32 start-page: 815−27 year: 2010 ident: B21 article-title: Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells publication-title: Immunity doi: 10.1016/j.immuni.2010.06.001 – volume: 107 start-page: 979−87 year: 2007 ident: B46 article-title: {A figure is presented}The Association between Food Patterns and the Metabolic Syndrome Using Principal Components Analysis: The ATTICA Study publication-title: J Am Diet Assoc doi: 10.1016/j.jada.2007.03.006 – volume: 133 start-page: 187−225 year: 2016 ident: B43 article-title: Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.018585 – volume: 9 start-page: 10−6 year: 2014 ident: B39 article-title: Caesarean delivery, caesarean delivery on maternal request and childhood overweight: A Chinese birth cohort study of 181380 children publication-title: Pediatr Obes doi: 10.1111/j.2047-6310.2013.00151.x – volume: 76 start-page: 199 year: 1999 ident: B60 article-title: Intestinal microflora and the interaction with immunocompetent cells publication-title: Lactic Acid Bacteria: Genetics, Metabolism and Applications. doi: 10.1007/978-94-017-2027-4_9 – volume: 119 start-page: 305−9 year: 2000 ident: B150 article-title: Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial publication-title: Gastroenterology doi: 10.1053/gast.2000.9370 – volume: 9 start-page: 599 year: 2012 ident: B127 article-title: The gut microbiota in IBD publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2012.152 – volume: 49 start-page: 145−9 year: 2002 ident: B9 article-title: Give us this day our daily germs publication-title: Biologist – volume: 92 year: 2012 ident: B117 article-title: Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics publication-title: Lab Investig doi: 10.1038/labinvest.2012.13 – volume: 10 start-page: 13 year: 2010 ident: B136 article-title: Clinical trial: Probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN) publication-title: BMC Complement Altern Med BMC Complement Altern Med doi: 10.1186/1472-6882-10-13 – volume: 6 year: 2016 ident: B71 article-title: Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation publication-title: Sci Rep Nat Publishing Group doi: 10.1038/srep34561 – volume: 128 start-page: 541−51 year: 2005 ident: B170 article-title: Lactobacillus and Bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2004.11.050 – volume: 37 start-page: 197−206 year: 2014 ident: B206 article-title: Altered gut microbiota and activity in a murine model of autism spectrum disorders publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2013.12.005 – volume: 16 start-page: 79 year: 2017 ident: B95 article-title: Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria publication-title: Microbial Cell doi: 10.1186/s12934-017-0691-z – volume: 35 start-page: 327−34 year: 2012 ident: B137 article-title: Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis publication-title: Aliment Pharmacol Ther doi: 10.1111/j.1365-2036.2011.04939.x – volume: 191 start-page: 49−53 year: 2002 ident: B80 article-title: Dietary intake of Lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen-primed mice publication-title: Med Microbiol Immunol doi: 10.1007/s00430-002-0112-7 – volume: 8 year: 2017 ident: B93 article-title: The microbial metabolite butyrate induces expression of Th1- associated factors in cD4+ T cells publication-title: Front Immunol doi: 10.3389/fimmu.2017.01036 – volume: 389 start-page: 1756−70 year: 2017 ident: B135 article-title: Ulcerative colitis publication-title: Lancet Lancet Publishing Group doi: 10.1016/S0140-6736(16)32126-2 – volume: 60 year: 2015 ident: B121 article-title: Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease publication-title: Dig Dis Sci doi: 10.1007/s10620-015-3769-7 – volume: 150 start-page: 1393 year: 2016 ident: B160 article-title: Bowel disorders publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2016.02.031 – volume: 55 start-page: 205−11 year: 2006 ident: B154 article-title: Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach publication-title: Gut doi: 10.1136/gut.2005.073817 – volume: 22 year: 2011 ident: B91 article-title: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.07.009 – volume: 9 year: 2014 ident: B175 article-title: Are there any different effects of Bifidobacterium, Lactobacillus and Streptococcus on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model publication-title: PloS One Public Library Sci doi: 10.1371/journal.pone.0090153 – volume: 17 start-page: 219−32 year: 2017 ident: B53 article-title: Dysbiosis and the immune system publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.7 – volume: 87 start-page: 534−8 year: 2008 ident: B184 article-title: Early differences in fecal microbiota composition in children may predict overweight publication-title: Am J Clin Nutr doi: 10.1093/ajcn/87.3.534 – volume: 103 start-page: 498−503 year: 2006 ident: B3 article-title: Infection, inflammation, height, and longevity publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.0501470103 – volume: 53 year: 2019 ident: B125 article-title: Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients with Persistent IBS-type Symptoms: A Randomized, Double-Blind, Placebo-controlled, Multicenter Trial publication-title: J Clin Gastroenterol doi: 10.1097/MCG.0000000000001023 – volume: 25 start-page: 191−2 year: 2013 ident: B199 article-title: Diagnostic and Statistical Manual of Mental Disorders (DSM) publication-title: CoDAS Am Psychiatr Assoc doi: 10.1590/s2317-17822013000200017 – volume: 60 start-page: 97−110 year: 2009 ident: B19 article-title: IL-23 and Autoimmunity: New Insights into the Pathogenesis of Inflammatory Bowel Disease publication-title: Annu Rev Med doi: 10.1146/annurev.med.60.051407.123757 – volume-title: Cochrane Database Systematic Rev John Wiley Sons Ltd year: 2006 ident: B159 article-title: Probiotics for maintenance of remission in Crohn’s disease doi: 10.1002/14651858.CD004826.pub2 – volume: 7 start-page: 91−109 year: 2012 ident: B181 article-title: The relationship between gut microbiota and weight gain in humans publication-title: Future Microbiol doi: 10.2217/fmb.11.142 – volume: 2015 year: 2015 ident: B100 article-title: Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis publication-title: J Immunol Res Hindawi Publishing Corporation doi: 10.1155/2015/909514 – volume: 3 start-page: e132−42 year: 2015 ident: B41 article-title: Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment publication-title: Lancet Glob Heal doi: 10.1016/S2214-109X(14)70381-X – volume: 41 start-page: 296−310 year: 2014 ident: B96 article-title: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4 publication-title: Immunity Cell Press doi: 10.1016/j.immuni.2014.06.014 – volume: 124 start-page: 697−710 year: 2016 ident: B67 article-title: Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs publication-title: APMIS Blackwell Munksgaard doi: 10.1111/apm.12556 – volume: 49 start-page: 331−7 year: 2017 ident: B165 article-title: Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis publication-title: Digest Liver Dis Elsevier B V doi: 10.1016/j.dld.2017.01.142 – volume: 138 start-page: 179−87 year: 2015 ident: B203 article-title: Gastrointestinal microbiota in children with autism in Slovakia publication-title: Physiol Behav doi: 10.1016/j.physbeh.2014.10.033 – volume: 26 start-page: 630−9 year: 2014 ident: B176 article-title: Cytokine and clinical response to Saccharomyces boulardii therapy in diarrhea-dominant irritable bowel syndrome: A randomized trial publication-title: Eur J Gastroenterol Hepatol Lippincott Williams Wilkins doi: 10.1097/MEG.0000000000000094 – volume: 2 start-page: 747−56 year: 2017 ident: B186 article-title: The microbiota–gut–brain axis in obesity publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(17)30147-4 – volume: 2011 year: 2011 ident: B57 article-title: Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics publication-title: J BioMed Biotechnol doi: 10.1155/2011/473097 – volume: 115 start-page: 90−102 year: 2019 ident: B205 article-title: A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude publication-title: J Psychiatr doi: 10.1016/j.jpsychires.2019.05.019 – volume: 36 start-page: 39−50 year: 2016 ident: B66 article-title: Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response publication-title: Int Immunopharmacol Elsevier B V doi: 10.1016/j.intimp.2016.03.033 – volume: 11 year: 2016 ident: B70 article-title: Kluyveromyces marxianus and Saccharomyces boulardii induce distinct levels of dendritic cell cytokine secretion and significantly different T cell responses in vitro publication-title: PloS One Public Library Sci doi: 10.1371/journal.pone.0167410 – volume: 32 start-page: 1720−4 year: 2008 ident: B182 article-title: Human colonic microbiota associated with diet, obesity and weight loss publication-title: Int J Obes doi: 10.1038/ijo.2008.155 – volume: 1822 start-page: 34−41 year: 2012 ident: B204 article-title: Mast cell activation and autism publication-title: Biochim Biophys Acta Mol Basis Dis Biochim Biophys Acta doi: 10.1016/j.bbadis.2010.12.017 – volume: 33 start-page: 793−804 year: 2018 ident: B213 article-title: Stool Immune Profiles Evince Gastrointestinal Inflammation in Parkinson’s Disease publication-title: Mov Disord doi: 10.1002/mds.27326 – volume: 11 start-page: 1925 year: 2019 ident: B120 article-title: Effects of lactobacillus plantarum and lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: A randomized, double-blind, placebo-controlled clinical trial publication-title: Nutrients MDPI AG doi: 10.3390/nu11081925 – volume: 32 start-page: 716−9 year: 2016 ident: B194 article-title: Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial publication-title: Effects Probiot Metab Syndrome doi: 10.1016/j.nut.2015.11.001 – volume: 51 start-page: 869−77 year: 2017 ident: B168 article-title: Postinfection Irritable Bowel Syndrome: The Links between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease publication-title: J Clin Gastroenterol Lippincott Williams Wilkins doi: 10.1097/MCG.0000000000000924 – volume: 68 start-page: 752−9 year: 2000 ident: B78 article-title: Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: Evidence of NK cells as primary targets publication-title: Infect Immun Am Soc Microbiol J doi: 10.1128/IAI.68.2.752-759.2000 – volume: 124 start-page: 901−5 year: 2017 ident: B211 article-title: Epidemiology of Parkinson’s disease publication-title: J Neural Transm doi: 10.1007/s00702-017-1686-y – volume: 53 start-page: 20−5 year: 1998 ident: B28 article-title: The hygiene hypothesisi revised: Is the rising frequency of allergy due to changes in rising the intestinal flora publication-title: Allergy Eur J Allergy Clin Immunol doi: 10.1111/j.1398-9995.1998.tb04953.x – volume: 7 start-page: 163−73 year: 2010 ident: B163 article-title: Pathogenesis of IBS: Role of inflammation, immunity and neuroimmune interactions publication-title: Nat Rev Gastroenterol Hepatol Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2010.4 – volume: 3 start-page: 207−15 year: 2015 ident: B185 article-title: Obesity, inflammation, and the gut microbiota publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(14)70134-2 – volume: 61 year: 2017 ident: B103 article-title: Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201700144 – volume: 6 year: 2015 ident: B101 article-title: Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic lactobacillus reuteri. MBio publication-title: Am Soc Microbiol doi: 10.1128/mBio.01358-15 – volume: 445 start-page: 153 year: 2007 ident: B14 article-title: Adaptive immunity: Care for the community publication-title: Nature doi: 10.1038/445153a – volume: 26 start-page: 792−800 year: 2018 ident: B179 article-title: Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders publication-title: Obes Blackwell Publishing Inc doi: 10.1002/oby.22175 – volume: 303 start-page: 1662−5 year: 2004 ident: B15 article-title: Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria publication-title: Sci (80- ) doi: 10.1126/science.1091334 – volume: 115 start-page: 1260−7 year: 2005 ident: B64 article-title: Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2005.03.036 – volume: 91 start-page: 185−92 year: 2012 ident: B2 article-title: Presence of multiple independent effects in risk loci of common complex human diseases publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2012.05.020 – volume: 1 start-page: 367−82 year: 2010 ident: B12 article-title: Early life: Gut microbiota and immune development in infancy publication-title: Benef Microbes doi: 10.3920/BM2010.0027 – volume: 157 start-page: 97−108 year: 2019 ident: B166 article-title: Gut Microbiota in Patients With Irritable Bowel Syndrome—A Systematic Review publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2019.03.049 – volume: 7 year: 2016 ident: B68 article-title: Postbiotic modulation of retinoic acid imprinted mucosal-like dendritic cells by probiotic Lactobacillus reuteri 17938 in vitro publication-title: Front Immunol doi: 10.3389/fimmu.2016.00096 – volume: 105 start-page: 2218−27 year: 2010 ident: B145 article-title: Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study publication-title: Am J Gastroenterol doi: 10.1038/ajg.2010.218 – volume: 53 start-page: 1617−23 year: 2004 ident: B147 article-title: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine publication-title: Gut doi: 10.1136/gut.2003.037747 – volume: 14 start-page: 21−8 year: 2013 ident: B42 article-title: Ultra-processed products are becoming dominant in the global food system publication-title: Obes Rev Obes Rev doi: 10.1111/obr.12107 – volume: 131 start-page: 1465−78 year: 2013 ident: B24 article-title: Effect of barrier microbes on organ-based inflammation publication-title: J Allergy Clin Immunol doi: 10.1038/nrmicro2974 – volume: 8 year: 2013 ident: B209 article-title: Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified publication-title: PloS One doi: 10.1371/journal.pone.0076993 – volume: 132 start-page: 601 year: 2013 ident: B36 article-title: Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.05.043 – volume: 152 start-page: 327 year: 2017 ident: B131 article-title: Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2016.10.012 – volume: 21 year: 2018 ident: B97 article-title: Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development publication-title: J Med Food doi: 10.1089/jmf.2017.3990 – volume: 49 start-page: 1068−75 year: 2014 ident: B167 article-title: Aberrant mucosal lymphocyte number and subsets in the colon of post-infectious irritable bowel syndrome patients publication-title: Scand J Gastroenterol Informa Healthcare doi: 10.3109/00365521.2014.926982 – volume: 436 start-page: 356−62 year: 2005 ident: B55 article-title: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes publication-title: Nature doi: 10.1038/nature03711 – volume: 7 year: 2016 ident: B105 article-title: Lactobacillus rhamnosus RC007 intended for feed additive: Immune-stimulatory properties and ameliorating effects on TNBS-induced colitis publication-title: Benef Microbes doi: 10.3920/BM2015.0147 – volume: 332 start-page: 974−7 year: 2011 ident: B17 article-title: The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota publication-title: Sci (80- ) doi: 10.1126/science.1206095 – volume: 102 start-page: 6718−25 year: 2019 ident: B99 article-title: Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium–induced colitis animal model publication-title: J Dairy Sci doi: 10.3168/jds.2018-16197 – volume: 301 year: 2011 ident: B89 article-title: Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and ulcerative colitis publication-title: Am J Physiol Gastrointest Liver Physiol Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00217.2011 – volume: 110 start-page: 18360−7 year: 2013 ident: B27 article-title: Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health publication-title: Proc Natl Acad Sci United States America doi: 10.1073/pnas.1313731110 – volume: 486 start-page: 222−7 year: 2012 ident: B29 article-title: Human gut microbiome viewed across age and geography publication-title: Nature doi: 10.1038/nature11053 – volume: 100 start-page: 218−32 year: 2014 ident: B45 article-title: Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large US cohorts and an updated meta-analysis publication-title: Am J Clin Nutr doi: 10.3945/ajcn.113.079533 – volume: 107 start-page: 2159−64 year: 2010 ident: B83 article-title: Generation of regulatory dendritic cells and CD4+Foxp3 + T cells by probiotics administration suppresses immune disorders publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.0904055107 – volume: 14 start-page: 1068−83 year: 2008 ident: B86 article-title: Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun publication-title: Inflammation Bowel Dis doi: 10.1002/ibd.20448 – volume: 8 start-page: 317−32 year: 2019 ident: B183 article-title: Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives publication-title: Curr Obes Rep doi: 10.1007/s13679-019-00352-2 – volume: 6 start-page: 33 year: 2014 ident: B81 article-title: Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis publication-title: Gut Pathog BioMed Cent Ltd doi: 10.1186/1757-4749-6-33 – volume: 119 start-page: 78 year: 2008 ident: B115 article-title: Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity publication-title: Immunol Lett doi: 10.1016/j.imlet.2008.04.006 – volume: 46 start-page: 874−5 year: 2008 ident: B141 article-title: Probiotic Escherichia coli Nissle 1917 (EcN) for successful remission maintenance of ulcerative colitis in children and adolescents: An open-label pilot study publication-title: Z Gastroenterol doi: 10.1055/s-2008-1027463 – volume: 131 start-page: 23−30 year: 2013 ident: B1 article-title: Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2012.11.019 – volume: 129 start-page: 373−87 year: 2019 ident: B49 article-title: L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans publication-title: J Clin Invest doi: 10.1172/JCI94601 – volume: 127 start-page: 412−21 year: 2004 ident: B156 article-title: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2004.04.061 – volume: 94 start-page: 58−65 year: 2011 ident: B180 article-title: Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans publication-title: Am J Clin Nutr doi: 10.3945/ajcn.110.010132 – volume: 70 year: 2020 ident: B110 article-title: European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020 publication-title: J Pediatr Gastroenterol Nutr doi: 10.1097/MPG.0000000000002497 – volume: 3 year: 2020 ident: B148 article-title: Probiotics for maintenance of remission in ulcerative colitis publication-title: Cochrane Database Systematic Rev NLM (Medline) doi: 10.1002/14651858.CD007443.pub3 – volume: 174 start-page: 3158−63 year: 2005 ident: B18 article-title: Cutting Edge: Recent Immune Status Determines the Source of Antigens That Drive Homeostatic T Cell Expansion publication-title: J Immunol doi: 10.4049/jimmunol.174.6.3158 – volume: 473 start-page: 174−80 year: 2011 ident: B47 article-title: Enterotypes of the human gut microbiome publication-title: Nature doi: 10.1038/nature09944 – volume: 11 start-page: 227−38 year: 2013 ident: B23 article-title: The gut microbiota-masters of host development and physiology publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2974 – volume: 152 year: 2008 ident: B118 article-title: Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2008.03635.x – volume: 150 start-page: 1456 year: 2016 ident: B161 article-title: Childhood functional gastrointestinal disorders: Child/adolescent publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2016.02.015 – volume: 19 start-page: 170 year: 2019 ident: B106 article-title: Lactobacillus plantarum C88 protects against aflatoxin B1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis publication-title: BMC Microbiol doi: 10.1186/s12866-019-1525-4 – volume: 19 start-page: 1319−27 year: 2007 ident: B59 article-title: Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses response via potent stimulation of IFN-g production in NK cells. Combining IFN-g-inducing and non-inducing LAB completely abrogates DC-mediated IFN-g production by NK cells, and therefore LAB modulating IFN-g production in NK cells may be important regulators of the immune response publication-title: Int Immunol doi: 10.1093/intimm/dxm103 – volume: 7 year: 2016 ident: B69 article-title: Probiotic lactobacilli modulate Staphylococcus aureus-induced activation of conventional and unconventional T cells and NK cells publication-title: Front Immunol doi: 10.3389/fimmu.2016.00273 – volume: 102 year: 2019 ident: B98 article-title: Protective effect of Lactobacillus fermentum CQPC04 on dextran sulfate sodium–induced colitis in mice is associated with modulation of the nuclear factor-κB signaling pathway publication-title: J Dairy Sci doi: 10.3168/jds.2019-16840 – volume: 45 start-page: 43−53 year: 2015 ident: B25 article-title: The gut microbiota and its role in the development of allergic disease: A wider perspective publication-title: Clin Exp Allergy Blackwell Publishing Ltd doi: 10.1111/cea.12332 – volume: 8 start-page: 25−31 year: 1997 ident: B77 article-title: Production of interferon induced by Streptococcus thermophilus: Role of CD4+ and CD8+ lymphocytes publication-title: J Nutr Biochem Elsevier doi: 10.1016/S0955-2863(96)00147-7 – volume: 28 start-page: 67−74 year: 2016 ident: B138 article-title: Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial publication-title: Dig Endosc Blackwell Publishing doi: 10.1111/den.12553 – volume: 9 year: 2019 ident: B196 article-title: Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials publication-title: BMJ Open doi: 10.1136/bmjopen-2017-017995 – volume: 5 start-page: 69−74 year: 2010 ident: B208 article-title: A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders publication-title: Int J Probiot Prebiot – volume: 38 start-page: 1373−81 year: 2019 ident: B122 article-title: Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids publication-title: Clin Nutr doi: 10.1016/j.clnu.2018.06.931 – volume: 74 year: 2011 ident: B116 article-title: Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy publication-title: Scand J Immunol doi: 10.1111/j.1365-3083.2011.02582.x – volume: 139 year: 2010 ident: B155 article-title: A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes publication-title: Gastroenterol W B Saunders doi: 10.1053/j.gastro.2010.08.049 – volume: 77 start-page: 270−4 year: 2011 ident: B202 article-title: Desulfovibrio species are potentially important in regressive autism publication-title: Med Hypotheses doi: 10.1016/j.mehy.2011.04.032 – volume: 38 start-page: 1031−5 year: 2019 ident: B217 article-title: Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial publication-title: Clin Nutr doi: 10.1016/j.clnu.2018.05.018 – volume: 10 start-page: 123 year: 2020 ident: B54 article-title: DNA extraction approaches substantially influence the assessment of the human breast milk microbiome publication-title: Sci Rep doi: 10.1038/s41598-019-55568-y – volume: 21 year: 2010 ident: B65 article-title: Probiotics and allergy in children - An update review publication-title: Pediatr Allergy Immunol Pediatr Allergy Immunol – volume: 306 year: 2014 ident: B82 article-title: Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: Evidence in mice for a role of TLR9 publication-title: Am J Physiol Gastrointest Liver Physiol Am Physiol Soc doi: 10.1152/ajpgi.00452.2013 – volume: 22 start-page: 7588−605 year: 2018 ident: B188 article-title: Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era publication-title: Eur Rev Med Pharmacol Sci doi: 10.26355/eurrev-201811-16301 – volume: 296 start-page: 490−4 year: 2002 ident: B10 article-title: Immunology: Allergy, parasites, and the hygiene hypothesis publication-title: Science doi: 10.1126/science.296.5567.490 – volume: 7 year: 2009 ident: B144 article-title: The Probiotic Preparation, VSL3 Induces Remission in Patients With Mild-to-Moderately Active Ulcerative Colitis publication-title: Clin Gastroenterol Hepatol W B Saunders doi: 10.1016/j.cgh.2009.07.016 – volume: 1 start-page: 891−901 year: 2001 ident: B79 article-title: Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria publication-title: Int Immunopharmacol doi: 10.1016/S1567-5769(01)00025-X – volume: 3 start-page: 203−20 year: 2012 ident: B31 article-title: Composition of the early intestinal microbiota:Knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps publication-title: Gut Microbes doi: 10.4161/gmic.20169 – volume: 11 year: 2016 ident: B104 article-title: Enterococcus durans TN-3 induces regulatory T cells and suppresses the development of dextran sulfate sodium (DSS)-induced experimental colitis publication-title: PloS One doi: 10.1371/journal.pone.0159705 – volume: 40 start-page: 1719−31 year: 2010 ident: B8 article-title: Neonatal immune function and inflammatory illnesses in later life: Lessons to be learnt from the developing world publication-title: Clin Exp Allergy doi: 10.1111/j.1365-2222.2010.03629.x – volume: 156 start-page: 78−87 year: 2009 ident: B90 article-title: Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2009.03878.x – volume: 14 start-page: 662−8 year: 2008 ident: B152 article-title: Probiotic administration in patients with ileal pouch-anal anastomosis for ulcerative colitis is associated with expansion of mucosal regulatory cells publication-title: Inflammation Bowel Dis doi: 10.1002/ibd.20369 – volume: 112 year: 2019 ident: B85 article-title: Lactobacillus helveticus SBT2171 induces A20 expression via toll-like receptor 2 signaling and inhibits the lipopolysaccharide-induced activation of nuclear factor-kappa B and mitogen-activated protein kinases in peritoneal macrophages publication-title: Front Immunol Front Media S A doi: 10.3389/fimmu.2019.00845 – volume: 9 year: 2014 ident: B87 article-title: Soluble factors from Lactobacillus reuteri CRL1098 have anti-inflammatory effects in acute lung injury induced by lipopolysaccharide in mice publication-title: PloS One Public Library Sci doi: 10.1371/journal.pone.0110027 – volume: 53 start-page: 95−102 year: 2018 ident: B74 article-title: Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum) publication-title: Nutr Elsevier Inc doi: 10.1016/j.nut.2018.02.005 – volume: 124 start-page: 1202−9 year: 2003 ident: B149 article-title: Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial publication-title: Gastroenterol W B Saunders doi: 10.1016/S0016-5085(03)00171-9 – volume: 489 start-page: 220−30 year: 2012 ident: B30 article-title: Diversity, stability and resilience of the human gut microbiota publication-title: Nature doi: 10.1038/nature11550 – volume: 7 year: 2012 ident: B119 article-title: Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model publication-title: PloS One doi: 10.1371/journal.pone.0030744 – volume: 12 start-page: 99−113 year: 2010 ident: B157 article-title: Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01381.x – volume: 54 start-page: 987−91 year: 2005 ident: B201 article-title: Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children publication-title: J Med Microbiol doi: 10.1099/jmm.0.46101-0 – volume: 69 start-page: 73−86 year: 2019 ident: B216 article-title: Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2019.03.021 – volume: 357 year: 2017 ident: B109 article-title: Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells publication-title: Sci (80- ) doi: 10.1126/science.aah5825 – volume: 104 start-page: 13780−5 year: 2007 ident: B130 article-title: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.0706625104 |
| SSID | ssj0000493335 |
| Score | 2.696116 |
| SecondaryResourceType | review_article |
| Snippet | Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of... Hosting millions of microorganisms, the digestive tract is the primary and most important part of bacterial colonization. On one side, in cases of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 578386 |
| SubjectTerms | celiac disease Immunology inflammation inflammatory bowel disease irritable bowel syndrome microbiota probiotics |
| Title | Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33717063 https://www.proquest.com/docview/2501477492 https://pubmed.ncbi.nlm.nih.gov/PMC7953067 https://doaj.org/article/31cace591d53490882859aae940ee531 |
| Volume | 12 |
| WOSCitedRecordID | wos000627756100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4t1QqIzECSk0ieO1zW0LLfRA1QNIe4scP0QQa1e7WaRe-O2dsberXYTgwiE5OHZifTOWZzKebwh5rWTbW1nxsrHgm7RctaXs8TecBo8IdhAwsmUqNiHOz-Vspi62Sn3hmbBMD5yBO2K10ZgqVFvO0qEcZFzT2qm2co6nDOoGrJ4tZ-p7tnsZYzyHMcELU0d-mM9X4A829VtQUoa501sbUeLr_5OR-ftZya3N5_QBub-2Guk0z_YhueXCI3I315G8ekzsNIxDeRY8iHeewuZUB0vPMPcjzqPFEl3YmKmKlzR6epH4l5CjmQ6BflyNdDMcJPWOTumHGBd0jBQsRHoc7dUT8vX05Mv7T-W6fEJpAJex9K1j1isuXVPbqm8auKwx3lW2nljNe2G4tELIWviJl0L2jZSae9lax1un2VOyF2Jw-4T2qodX6lpJI1oMJrZG98qA-D3s_8YXpLrBsjNrbnEscfGjAx8D4e8S_B3C32X4C_JmM-QyE2v8rfMxCmjTETmxUwNoSrfWlO5fmlKQVzfi7WANYWBEBxdXy67B4CrYwaopyLMs7s2nGBPIMMQKInYUYWcuu0_C8C3xdAvF0SF7_j8mf0DuIR4pmX7yguyNi5V7Se6Yn-OwXByS22ImD9MSgPvnXyfXIRELzg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Inflammatory+and+Immunomodulatory+Effects+of+Probiotics+in+Gut+Inflammation%3A+A+Door+to+the+Body&rft.jtitle=Frontiers+in+immunology&rft.au=Cristofori%2C+Fernanda&rft.au=Dargenio%2C+Vanessa+Nadia&rft.au=Dargenio%2C+Costantino&rft.au=Miniello%2C+Vito+Leonardo&rft.date=2021-02-26&rft.eissn=1664-3224&rft.volume=12&rft.spage=578386&rft_id=info:doi/10.3389%2Ffimmu.2021.578386&rft_id=info%3Apmid%2F33717063&rft.externalDocID=33717063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |