Regulation of ROS signal transduction by NADPH oxidase 4 localization

Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology Vol. 181; no. 7; p. 1129
Main Authors: Chen, Kai, Kirber, Michael T, Xiao, Hui, Yang, Yu, Keaney, Jr, John F
Format: Journal Article
Language:English
Published: United States 30.06.2008
Subjects:
ISSN:1540-8140, 1540-8140
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.
AbstractList Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.
Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.
Author Chen, Kai
Keaney, Jr, John F
Kirber, Michael T
Xiao, Hui
Yang, Yu
Author_xml – sequence: 1
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  email: kai.chen@umassmed.edu
  organization: Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. kai.chen@umassmed.edu
– sequence: 2
  givenname: Michael T
  surname: Kirber
  fullname: Kirber, Michael T
– sequence: 3
  givenname: Hui
  surname: Xiao
  fullname: Xiao, Hui
– sequence: 4
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
– sequence: 5
  givenname: John F
  surname: Keaney, Jr
  fullname: Keaney, Jr, John F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18573911$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LAzEYhINU7IcevUpO3rbmzWab7LHUaoVipep5ycebsiXdrZtdsP56pVbwNAPzzMAMSa-qKyTkGtgYmErvttaMOWOS5UzkZ2QAmWCJAsF6_3yfDGPcMsaEFOkF6YPKZJoDDMh8jZsu6LasK1p7ul690lhuKh1o2-gqus4eI3Ogz9P7lwWtP0unI1JBQ211KL-O1Uty7nWIeHXSEXl_mL_NFsly9fg0my4Tm6XQJs4zZ5UAtFZJjsDkhDnlMocmc7mRPtMpV2i1QAVKeuWtNQI0eiOlRctH5PZ3d9_UHx3GttiV0WIIusK6i8Uk5wo4pD_gzQnszA5dsW_KnW4Oxd9x_g13JFyK
CitedBy_id crossref_primary_10_1089_ars_2010_3376
crossref_primary_10_3389_fphys_2025_1524100
crossref_primary_10_1038_nrm3801
crossref_primary_10_1089_ars_2009_3026
crossref_primary_10_1111_j_1742_4658_2012_08655_x
crossref_primary_10_1002_cbin_10246
crossref_primary_10_1089_ars_2009_2857
crossref_primary_10_1089_ars_2019_7955
crossref_primary_10_1080_10498850_2022_2133582
crossref_primary_10_1111_j_1742_4658_2009_06985_x
crossref_primary_10_4161_21565562_2014_979108
crossref_primary_10_1016_j_mam_2018_03_002
crossref_primary_10_1089_scd_2011_0561
crossref_primary_10_1111_j_1742_7843_2011_00785_x
crossref_primary_10_1371_journal_ppat_1001194
crossref_primary_10_3389_fimmu_2023_1127088
crossref_primary_10_1089_ars_2013_5605
crossref_primary_10_1074_jbc_TM117_000257
crossref_primary_10_1016_j_prostaglandins_2011_10_002
crossref_primary_10_1089_ars_2013_5608
crossref_primary_10_1161_CIRCRESAHA_109_205138
crossref_primary_10_1016_j_freeradbiomed_2013_12_022
crossref_primary_10_1016_j_freeradbiomed_2014_06_015
crossref_primary_10_1016_j_ntt_2015_01_007
crossref_primary_10_1371_journal_pone_0116410
crossref_primary_10_3390_ijms23116129
crossref_primary_10_1089_ars_2008_2333
crossref_primary_10_1089_ars_2009_2625
crossref_primary_10_1016_j_freeradbiomed_2011_12_026
crossref_primary_10_3389_fonc_2022_997919
crossref_primary_10_1590_1806_9282_66_2_210
crossref_primary_10_1016_j_ijbiomac_2024_132594
crossref_primary_10_3390_plants8100395
crossref_primary_10_1002_jcb_24551
crossref_primary_10_3390_biom5021169
crossref_primary_10_1007_s00204_015_1476_y
crossref_primary_10_1371_journal_pone_0066964
crossref_primary_10_1038_s41569_024_01062_6
crossref_primary_10_3390_ijms231911384
crossref_primary_10_1016_j_biopha_2018_04_187
crossref_primary_10_1016_j_freeradbiomed_2012_06_016
crossref_primary_10_1038_hr_2010_201
crossref_primary_10_1089_ars_2017_7273
crossref_primary_10_1073_pnas_0906805106
crossref_primary_10_1007_s00005_012_0176_z
crossref_primary_10_1016_j_cellsig_2020_109699
crossref_primary_10_1073_pnas_1212596109
crossref_primary_10_1155_2021_8830880
crossref_primary_10_3987_COM_23_14829
crossref_primary_10_3390_antiox10121909
crossref_primary_10_3389_fcell_2017_00065
crossref_primary_10_3109_10409238_2013_790873
crossref_primary_10_1016_j_bbadis_2020_165811
crossref_primary_10_1152_ajpheart_00327_2012
crossref_primary_10_1016_j_bbrc_2009_08_110
crossref_primary_10_1161_CIRCRESAHA_109_216036
crossref_primary_10_1016_j_cmet_2009_08_009
crossref_primary_10_1089_ars_2023_0002
crossref_primary_10_3390_cells10092312
crossref_primary_10_1155_2013_680816
crossref_primary_10_1258_ebm_2012_012082
crossref_primary_10_3389_fphar_2014_00224
crossref_primary_10_1161_CIRCRESAHA_116_303584
crossref_primary_10_3389_fendo_2017_00087
crossref_primary_10_1016_j_freeradbiomed_2022_12_003
crossref_primary_10_1089_ars_2013_5703
crossref_primary_10_1089_ars_2009_2842
crossref_primary_10_1016_j_freeradbiomed_2011_04_022
crossref_primary_10_1016_j_tcb_2010_08_013
crossref_primary_10_1016_j_trsl_2017_09_005
crossref_primary_10_4330_wjc_v2_i12_408
crossref_primary_10_1016_j_freeradbiomed_2011_12_004
crossref_primary_10_3390_antiox10060890
crossref_primary_10_1016_j_molcel_2011_08_040
crossref_primary_10_1016_j_yjmcc_2016_01_020
crossref_primary_10_1089_ars_2009_2728
crossref_primary_10_1089_ars_2019_7725
crossref_primary_10_1089_ars_2008_2231
crossref_primary_10_1089_ars_2013_5262
crossref_primary_10_2337_db09_1057
crossref_primary_10_1073_pnas_1009700107
crossref_primary_10_1139_y2012_075
crossref_primary_10_1158_1541_7786_MCR_19_0673
crossref_primary_10_1139_y2012_073
crossref_primary_10_1161_CIRCRESAHA_109_193722
crossref_primary_10_1016_j_redox_2019_101125
crossref_primary_10_3390_molecules22081334
crossref_primary_10_1089_ars_2013_5374
crossref_primary_10_1161_CIRCRESAHA_111_243972
crossref_primary_10_1016_j_resp_2010_09_016
crossref_primary_10_1161_ATVBAHA_108_174219
crossref_primary_10_1002_glia_22540
crossref_primary_10_1016_j_freeradbiomed_2011_10_441
crossref_primary_10_1134_S1068162013040043
crossref_primary_10_1161_CIRCRESAHA_113_301787
crossref_primary_10_1038_hr_2010_235
crossref_primary_10_1038_onc_2010_200
crossref_primary_10_3390_ijms24076053
crossref_primary_10_1093_cvr_cvq355
crossref_primary_10_1016_j_tcb_2011_11_002
crossref_primary_10_1194_jlr_M800610_JLR200
crossref_primary_10_1111_febs_14671
crossref_primary_10_1177_1753465809369619
crossref_primary_10_3389_fmolb_2022_925755
crossref_primary_10_1016_j_tips_2010_11_006
crossref_primary_10_1083_jcb_1817iti2
crossref_primary_10_1111_exd_12497
crossref_primary_10_1186_s12885_016_2516_6
crossref_primary_10_1016_j_mvr_2018_12_005
crossref_primary_10_1016_j_bbrc_2011_06_025
crossref_primary_10_1016_j_bbadis_2017_02_004
crossref_primary_10_1016_j_freeradbiomed_2019_09_029
crossref_primary_10_3389_fcell_2021_628991
crossref_primary_10_1089_ars_2012_5028
crossref_primary_10_1007_s13277_016_4873_9
crossref_primary_10_1016_j_freeradbiomed_2012_02_037
crossref_primary_10_3390_biom5020318
crossref_primary_10_1016_j_abb_2017_01_008
crossref_primary_10_1089_ars_2010_3794
crossref_primary_10_1161_CIRCULATIONAHA_111_030775
crossref_primary_10_1242_jcs_089656
crossref_primary_10_1161_ATVBAHA_111_226621
crossref_primary_10_1016_j_freeradbiomed_2011_09_016
crossref_primary_10_1038_s41419_017_0105_5
crossref_primary_10_1093_jb_mvr104
crossref_primary_10_1155_2013_374963
crossref_primary_10_3390_ijms25158381
crossref_primary_10_1074_jbc_M113_456046
crossref_primary_10_1016_j_freeradbiomed_2015_07_004
crossref_primary_10_1080_14786419_2015_1085864
crossref_primary_10_1089_ars_2021_0135
crossref_primary_10_1111_boc_201800011
crossref_primary_10_1002_prp2_630
crossref_primary_10_1016_j_freeradbiomed_2009_07_023
crossref_primary_10_1016_j_coph_2008_10_001
crossref_primary_10_1111_j_1755_5922_2011_00310_x
crossref_primary_10_1161_CIRCRESAHA_113_301319
crossref_primary_10_1089_ars_2009_2880
crossref_primary_10_1016_j_yjmcc_2015_11_013
crossref_primary_10_1155_2018_7607463
crossref_primary_10_1182_blood_2011_02_336446
crossref_primary_10_1111_j_1751_1097_2009_00611_x
crossref_primary_10_1007_s00210_009_0413_0
crossref_primary_10_1016_j_freeradbiomed_2014_12_020
crossref_primary_10_1007_s12263_011_0252_8
crossref_primary_10_1016_j_ajpath_2017_05_006
crossref_primary_10_1074_jbc_RA120_014723
crossref_primary_10_1074_jbc_M111_293696
crossref_primary_10_1016_j_pharmthera_2020_107711
crossref_primary_10_3390_antiox11091689
crossref_primary_10_1007_s00391_015_0928_6
crossref_primary_10_1016_j_yjmcc_2009_04_004
crossref_primary_10_1111_febs_12224
crossref_primary_10_1016_j_lfs_2011_06_007
crossref_primary_10_3390_antiox8050126
crossref_primary_10_1111_bjd_17706
crossref_primary_10_1007_s00018_017_2546_5
crossref_primary_10_1016_j_celrep_2023_113361
crossref_primary_10_1096_fj_10_177147
crossref_primary_10_1083_jcb_201708007
crossref_primary_10_1128_MCB_01122_10
crossref_primary_10_1155_2021_4593496
crossref_primary_10_1089_ars_2010_3533
crossref_primary_10_1016_j_freeradbiomed_2014_01_040
crossref_primary_10_1089_ars_2009_2578
crossref_primary_10_15252_embj_201592394
crossref_primary_10_1089_ars_2017_7425
crossref_primary_10_1016_j_jnutbio_2012_07_012
crossref_primary_10_1038_s41467_017_01106_1
crossref_primary_10_1089_ars_2009_2579
crossref_primary_10_1016_j_biomaterials_2013_01_092
crossref_primary_10_1155_2015_963289
crossref_primary_10_1016_j_exger_2018_07_007
crossref_primary_10_1128_IAI_00725_09
crossref_primary_10_1016_j_cellsig_2012_03_011
crossref_primary_10_1016_j_freeradbiomed_2009_05_037
crossref_primary_10_1371_journal_pone_0170327
crossref_primary_10_1016_j_cophys_2019_04_026
crossref_primary_10_3390_cells9081849
crossref_primary_10_3389_fcvm_2022_1059576
crossref_primary_10_1186_s12916_020_01749_w
crossref_primary_10_1089_ars_2009_2584
crossref_primary_10_1007_s00424_015_1731_3
crossref_primary_10_1016_j_lfs_2016_06_016
crossref_primary_10_1097_HJH_0000000000003478
crossref_primary_10_1042_BJ20121778
crossref_primary_10_1089_ars_2009_2587
crossref_primary_10_1089_ars_2011_4123
crossref_primary_10_1155_2016_4502846
crossref_primary_10_1074_jbc_R113_467738
crossref_primary_10_1016_j_critrevonc_2011_03_005
crossref_primary_10_1016_j_phrs_2016_01_029
crossref_primary_10_1165_rcmb_2011_0271OC
crossref_primary_10_1038_nchembio_736
crossref_primary_10_1371_journal_pone_0088024
crossref_primary_10_1016_j_freeradbiomed_2015_02_019
crossref_primary_10_1089_ars_2010_3539
crossref_primary_10_1016_j_colsurfb_2017_05_052
crossref_primary_10_1161_ATVBAHA_108_181610
crossref_primary_10_1155_2013_180906
crossref_primary_10_1016_j_freeradbiomed_2012_10_546
crossref_primary_10_3390_biom10020320
crossref_primary_10_1016_j_semcancer_2017_04_005
crossref_primary_10_1016_j_hoc_2012_10_002
crossref_primary_10_1016_j_yjmcc_2014_02_006
crossref_primary_10_1021_ja2077137
crossref_primary_10_1161_ATVBAHA_112_300956
crossref_primary_10_3389_fcell_2024_1432668
crossref_primary_10_1002_dvdy_22001
crossref_primary_10_1007_s40883_019_00143_0
crossref_primary_10_1038_nrc3339
crossref_primary_10_1002_ange_202104308
crossref_primary_10_3390_biom5020702
crossref_primary_10_1177_19476035241245803
crossref_primary_10_1016_j_freeradbiomed_2011_06_011
crossref_primary_10_1089_ars_2013_5785
crossref_primary_10_1089_ars_2013_5302
crossref_primary_10_1586_17446651_2014_887984
crossref_primary_10_1242_jcs_080895
crossref_primary_10_1016_j_tibs_2011_05_004
crossref_primary_10_1038_sj_bjc_6605847
crossref_primary_10_1371_journal_pone_0126866
crossref_primary_10_1108_JABS_01_2019_0012
crossref_primary_10_1002_bdr2_1509
crossref_primary_10_1161_HYPERTENSIONAHA_109_133983
crossref_primary_10_1074_jbc_M115_710772
crossref_primary_10_1155_2015_101304
crossref_primary_10_1074_jbc_M110_193821
crossref_primary_10_1161_HYPERTENSIONAHA_110_151423
crossref_primary_10_1074_jbc_M111_303958
crossref_primary_10_1165_rcmb_2011_0411OC
crossref_primary_10_1371_journal_pone_0048393
crossref_primary_10_1016_j_freeradbiomed_2017_05_024
crossref_primary_10_1016_j_cell_2011_08_036
crossref_primary_10_1073_pnas_1302891110
crossref_primary_10_1111_j_1471_4159_2009_06081_x
crossref_primary_10_1016_j_bmc_2016_03_054
crossref_primary_10_1371_journal_pcbi_1004582
crossref_primary_10_1016_j_freeradbiomed_2020_11_021
crossref_primary_10_1016_j_freeradbiomed_2013_11_005
crossref_primary_10_1016_j_bbadis_2020_165912
crossref_primary_10_1016_j_tox_2013_01_019
crossref_primary_10_1371_journal_pone_0171613
crossref_primary_10_1089_ars_2010_3843
crossref_primary_10_1007_s12298_018_0509_4
crossref_primary_10_1038_srep16929
crossref_primary_10_1111_acel_14060
crossref_primary_10_1161_ATVBAHA_116_307922
crossref_primary_10_1038_srep32229
crossref_primary_10_1016_j_semnephrol_2009_07_002
crossref_primary_10_1074_jbc_M110_111732
crossref_primary_10_1128_JVI_01059_09
crossref_primary_10_1002_adbi_202200234
crossref_primary_10_1089_ars_2013_5643
crossref_primary_10_3390_antiox6020032
crossref_primary_10_1007_s00018_015_1928_9
crossref_primary_10_1007_s12013_011_9297_y
crossref_primary_10_1021_bi9022285
crossref_primary_10_3109_07853890_2012_734111
crossref_primary_10_1016_j_freeradbiomed_2021_01_034
crossref_primary_10_4103_2045_8932_78101
crossref_primary_10_1007_s00018_021_03756_3
crossref_primary_10_1074_jbc_M113_510495
crossref_primary_10_1016_j_yjmcc_2016_09_002
crossref_primary_10_1002_bdrc_21134
crossref_primary_10_1038_s41569_019_0260_8
crossref_primary_10_1371_journal_pone_0054391
crossref_primary_10_1016_j_freeradbiomed_2016_02_030
crossref_primary_10_1016_j_bbadis_2014_10_007
crossref_primary_10_1089_ars_2010_3611
crossref_primary_10_1002_anie_202104308
crossref_primary_10_1089_ars_2010_3614
crossref_primary_10_1097_CRD_0b013e31819d813a
crossref_primary_10_1089_ars_2017_7167
crossref_primary_10_1016_j_freeradbiomed_2015_01_025
crossref_primary_10_1089_ars_2009_2594
crossref_primary_10_1016_j_freeradbiomed_2015_09_015
crossref_primary_10_1016_j_freeradbiomed_2018_01_024
crossref_primary_10_14348_molcells_2016_2349
crossref_primary_10_1073_pnas_1007909107
crossref_primary_10_1089_ars_2008_2383
crossref_primary_10_1111_jcmm_12263
crossref_primary_10_1161_CIRCRESAHA_109_215392
crossref_primary_10_1128_MCB_01445_09
crossref_primary_10_1038_nchembio_607
crossref_primary_10_1016_j_freeradbiomed_2018_06_042
crossref_primary_10_1016_j_biochi_2010_11_001
crossref_primary_10_3389_fchem_2014_00082
crossref_primary_10_3389_fphar_2021_751845
crossref_primary_10_3389_fphys_2017_00150
crossref_primary_10_1016_j_yjmcc_2013_04_019
crossref_primary_10_1016_j_freeradbiomed_2015_01_032
crossref_primary_10_1161_ATVBAHA_111_238899
crossref_primary_10_1016_j_metabol_2019_153948
crossref_primary_10_1038_cddis_2011_96
crossref_primary_10_1016_j_bmcl_2008_10_133
crossref_primary_10_1089_ars_2012_4550
crossref_primary_10_1161_CIRCRESAHA_111_246371
crossref_primary_10_1097_MNH_0b013e32832923c3
crossref_primary_10_1074_jbc_M809761200
crossref_primary_10_1530_JOE_13_0588
crossref_primary_10_3390_biom10030422
crossref_primary_10_1016_j_freeradbiomed_2017_04_025
crossref_primary_10_1016_j_freeradbiomed_2009_09_026
crossref_primary_10_1016_j_freeradbiomed_2020_04_027
crossref_primary_10_1016_j_molmet_2020_101160
crossref_primary_10_1074_jbc_M110_192138
crossref_primary_10_1089_ars_2013_5619
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.200709049
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
ExternalDocumentID 18573911
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG027081
– fundername: NIA NIH HHS
  grantid: AG027081
GroupedDBID ---
-DZ
-~X
.55
0VX
123
18M
29K
2WC
34G
36B
39C
3O-
4.4
53G
85S
9QQ
ABDNZ
ABOCM
ABPPZ
ABRJW
ABTAH
ABZEH
ACGFO
ACGOD
ACIWK
ACKIV
ACKOT
ACNCT
ACNKL
ACPRK
ADBBV
AEILP
AENEX
AEUPB
AFOSN
AFRAH
AGCDD
AHJTV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
EMOBN
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JENOY
JST
JZ9
KQ8
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHF
RHI
RNS
RPM
RXW
SJN
SV3
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
VQA
VXZ
W8F
WH7
WOQ
X7M
YIN
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
ZY4
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c531t-df0dc841ecc872e10760d8d5deb5d9b7f5a328eca4e8187f8fccb41aefb77cec2
IEDL.DBID 7X8
ISICitedReferencesCount 392
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257547200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-8140
IngestDate Fri Sep 05 11:38:56 EDT 2025
Wed Feb 19 02:04:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-df0dc841ecc872e10760d8d5deb5d9b7f5a328eca4e8187f8fccb41aefb77cec2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://rupress.org/jcb/article-pdf/181/7/1129/1337934/jcb_200709049.pdf
PMID 18573911
PQID 69281213
PQPubID 23479
ParticipantIDs proquest_miscellaneous_69281213
pubmed_primary_18573911
PublicationCentury 2000
PublicationDate 2008-06-30
PublicationDateYYYYMMDD 2008-06-30
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-30
  day: 30
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2008
SSID ssj0004743
Score 2.464438
Snippet Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1129
SubjectTerms Animals
Antioxidants - pharmacology
Cell Proliferation - drug effects
Chlorocebus aethiops
COS Cells
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - enzymology
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - enzymology
Epidermal Growth Factor - pharmacology
ErbB Receptors - metabolism
Humans
Mice
Mutation - genetics
NADPH Oxidase 4
NADPH Oxidases - metabolism
Oxidation-Reduction - drug effects
Phosphorylation - drug effects
Protein Transport - drug effects
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism
Reactive Oxygen Species - metabolism
Signal Transduction - drug effects
Substrate Specificity - drug effects
Title Regulation of ROS signal transduction by NADPH oxidase 4 localization
URI https://www.ncbi.nlm.nih.gov/pubmed/18573911
https://www.proquest.com/docview/69281213
Volume 181
WOSCitedRecordID wos000257547200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYGA4kL78d45sC1Wt9JJSQ0waYdoEzjod2q5iWNQzvYQOzf4zStxAkOXHpLFNmxP6e2PwNc8jh2c01jJ0EsdvC9gTaXh2hXCB5UeQGLqikKL3c0TdlkkoxacNX0wpiyysYnVo5alsL8I-_Gic8M_dj17M0xM6NMbrUeoLEC7QADGVPQRSc_uMLr8nqT-je8TjXDJsYc3VfBqyZ0N3HDX2LLCmMGW_873TZs1rEl6dnLsAMtVezCup02udyD_tjOnUdNkFKT8cMjMdUbuGJhAEtaHlnClyTt3Y6GpPyaSsQ4EpIK8OqGzX14HvSfboZOPUXBEWhfC0dqVwoWeqgrRn3lmVScZDKSikcy4VRHeeAzJfJQIXhTzbQQPPRypTmlQgn_AFaLslBHQHQQ8kjjBoIh-LkSHSXjHj5zqdCedL0OXDTSyfCWmtRDXqjyY5418unAoRVwNrNkGpnhogpwo-M_157Ahi3WMMV6p9DWaJ_qDNbE52I6fz-vlI_fdHT_DVVvuEk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+ROS+signal+transduction+by+NADPH+oxidase+4+localization&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chen%2C+Kai&rft.au=Kirber%2C+Michael+T&rft.au=Xiao%2C+Hui&rft.au=Yang%2C+Yu&rft.date=2008-06-30&rft.eissn=1540-8140&rft.volume=181&rft.issue=7&rft.spage=1129&rft_id=info:doi/10.1083%2Fjcb.200709049&rft_id=info%3Apmid%2F18573911&rft_id=info%3Apmid%2F18573911&rft.externalDocID=18573911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon