Regulation of ROS signal transduction by NADPH oxidase 4 localization
Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase...
Uloženo v:
| Vydáno v: | The Journal of cell biology Ročník 181; číslo 7; s. 1129 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
30.06.2008
|
| Témata: | |
| ISSN: | 1540-8140, 1540-8140 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments. |
|---|---|
| AbstractList | Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments. Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments. |
| Author | Chen, Kai Keaney, Jr, John F Kirber, Michael T Xiao, Hui Yang, Yu |
| Author_xml | – sequence: 1 givenname: Kai surname: Chen fullname: Chen, Kai email: kai.chen@umassmed.edu organization: Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. kai.chen@umassmed.edu – sequence: 2 givenname: Michael T surname: Kirber fullname: Kirber, Michael T – sequence: 3 givenname: Hui surname: Xiao fullname: Xiao, Hui – sequence: 4 givenname: Yu surname: Yang fullname: Yang, Yu – sequence: 5 givenname: John F surname: Keaney, Jr fullname: Keaney, Jr, John F |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18573911$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LAzEYhINU7IcevUpO3rbmzWab7LHUaoVipep5ycebsiXdrZtdsP56pVbwNAPzzMAMSa-qKyTkGtgYmErvttaMOWOS5UzkZ2QAmWCJAsF6_3yfDGPcMsaEFOkF6YPKZJoDDMh8jZsu6LasK1p7ul690lhuKh1o2-gqus4eI3Ogz9P7lwWtP0unI1JBQ211KL-O1Uty7nWIeHXSEXl_mL_NFsly9fg0my4Tm6XQJs4zZ5UAtFZJjsDkhDnlMocmc7mRPtMpV2i1QAVKeuWtNQI0eiOlRctH5PZ3d9_UHx3GttiV0WIIusK6i8Uk5wo4pD_gzQnszA5dsW_KnW4Oxd9x_g13JFyK |
| CitedBy_id | crossref_primary_10_1089_ars_2010_3376 crossref_primary_10_3389_fphys_2025_1524100 crossref_primary_10_1038_nrm3801 crossref_primary_10_1089_ars_2009_3026 crossref_primary_10_1111_j_1742_4658_2012_08655_x crossref_primary_10_1002_cbin_10246 crossref_primary_10_1089_ars_2009_2857 crossref_primary_10_1089_ars_2019_7955 crossref_primary_10_1080_10498850_2022_2133582 crossref_primary_10_1111_j_1742_4658_2009_06985_x crossref_primary_10_4161_21565562_2014_979108 crossref_primary_10_1016_j_mam_2018_03_002 crossref_primary_10_1089_scd_2011_0561 crossref_primary_10_1111_j_1742_7843_2011_00785_x crossref_primary_10_1371_journal_ppat_1001194 crossref_primary_10_3389_fimmu_2023_1127088 crossref_primary_10_1089_ars_2013_5605 crossref_primary_10_1074_jbc_TM117_000257 crossref_primary_10_1016_j_prostaglandins_2011_10_002 crossref_primary_10_1089_ars_2013_5608 crossref_primary_10_1161_CIRCRESAHA_109_205138 crossref_primary_10_1016_j_freeradbiomed_2013_12_022 crossref_primary_10_1016_j_freeradbiomed_2014_06_015 crossref_primary_10_1016_j_ntt_2015_01_007 crossref_primary_10_1371_journal_pone_0116410 crossref_primary_10_3390_ijms23116129 crossref_primary_10_1089_ars_2008_2333 crossref_primary_10_1089_ars_2009_2625 crossref_primary_10_1016_j_freeradbiomed_2011_12_026 crossref_primary_10_3389_fonc_2022_997919 crossref_primary_10_1590_1806_9282_66_2_210 crossref_primary_10_1016_j_ijbiomac_2024_132594 crossref_primary_10_3390_plants8100395 crossref_primary_10_1002_jcb_24551 crossref_primary_10_3390_biom5021169 crossref_primary_10_1007_s00204_015_1476_y crossref_primary_10_1371_journal_pone_0066964 crossref_primary_10_1038_s41569_024_01062_6 crossref_primary_10_3390_ijms231911384 crossref_primary_10_1016_j_biopha_2018_04_187 crossref_primary_10_1016_j_freeradbiomed_2012_06_016 crossref_primary_10_1038_hr_2010_201 crossref_primary_10_1089_ars_2017_7273 crossref_primary_10_1073_pnas_0906805106 crossref_primary_10_1007_s00005_012_0176_z crossref_primary_10_1016_j_cellsig_2020_109699 crossref_primary_10_1073_pnas_1212596109 crossref_primary_10_1155_2021_8830880 crossref_primary_10_3987_COM_23_14829 crossref_primary_10_3390_antiox10121909 crossref_primary_10_3389_fcell_2017_00065 crossref_primary_10_3109_10409238_2013_790873 crossref_primary_10_1016_j_bbadis_2020_165811 crossref_primary_10_1152_ajpheart_00327_2012 crossref_primary_10_1016_j_bbrc_2009_08_110 crossref_primary_10_1161_CIRCRESAHA_109_216036 crossref_primary_10_1016_j_cmet_2009_08_009 crossref_primary_10_1089_ars_2023_0002 crossref_primary_10_3390_cells10092312 crossref_primary_10_1155_2013_680816 crossref_primary_10_1258_ebm_2012_012082 crossref_primary_10_3389_fphar_2014_00224 crossref_primary_10_1161_CIRCRESAHA_116_303584 crossref_primary_10_3389_fendo_2017_00087 crossref_primary_10_1016_j_freeradbiomed_2022_12_003 crossref_primary_10_1089_ars_2013_5703 crossref_primary_10_1089_ars_2009_2842 crossref_primary_10_1016_j_freeradbiomed_2011_04_022 crossref_primary_10_1016_j_tcb_2010_08_013 crossref_primary_10_1016_j_trsl_2017_09_005 crossref_primary_10_4330_wjc_v2_i12_408 crossref_primary_10_1016_j_freeradbiomed_2011_12_004 crossref_primary_10_3390_antiox10060890 crossref_primary_10_1016_j_molcel_2011_08_040 crossref_primary_10_1016_j_yjmcc_2016_01_020 crossref_primary_10_1089_ars_2009_2728 crossref_primary_10_1089_ars_2019_7725 crossref_primary_10_1089_ars_2008_2231 crossref_primary_10_1089_ars_2013_5262 crossref_primary_10_2337_db09_1057 crossref_primary_10_1073_pnas_1009700107 crossref_primary_10_1139_y2012_075 crossref_primary_10_1158_1541_7786_MCR_19_0673 crossref_primary_10_1139_y2012_073 crossref_primary_10_1161_CIRCRESAHA_109_193722 crossref_primary_10_1016_j_redox_2019_101125 crossref_primary_10_3390_molecules22081334 crossref_primary_10_1089_ars_2013_5374 crossref_primary_10_1161_CIRCRESAHA_111_243972 crossref_primary_10_1016_j_resp_2010_09_016 crossref_primary_10_1161_ATVBAHA_108_174219 crossref_primary_10_1002_glia_22540 crossref_primary_10_1016_j_freeradbiomed_2011_10_441 crossref_primary_10_1134_S1068162013040043 crossref_primary_10_1161_CIRCRESAHA_113_301787 crossref_primary_10_1038_hr_2010_235 crossref_primary_10_1038_onc_2010_200 crossref_primary_10_3390_ijms24076053 crossref_primary_10_1093_cvr_cvq355 crossref_primary_10_1016_j_tcb_2011_11_002 crossref_primary_10_1194_jlr_M800610_JLR200 crossref_primary_10_1111_febs_14671 crossref_primary_10_1177_1753465809369619 crossref_primary_10_3389_fmolb_2022_925755 crossref_primary_10_1016_j_tips_2010_11_006 crossref_primary_10_1083_jcb_1817iti2 crossref_primary_10_1111_exd_12497 crossref_primary_10_1186_s12885_016_2516_6 crossref_primary_10_1016_j_mvr_2018_12_005 crossref_primary_10_1016_j_bbrc_2011_06_025 crossref_primary_10_1016_j_bbadis_2017_02_004 crossref_primary_10_1016_j_freeradbiomed_2019_09_029 crossref_primary_10_3389_fcell_2021_628991 crossref_primary_10_1089_ars_2012_5028 crossref_primary_10_1007_s13277_016_4873_9 crossref_primary_10_1016_j_freeradbiomed_2012_02_037 crossref_primary_10_3390_biom5020318 crossref_primary_10_1016_j_abb_2017_01_008 crossref_primary_10_1089_ars_2010_3794 crossref_primary_10_1161_CIRCULATIONAHA_111_030775 crossref_primary_10_1242_jcs_089656 crossref_primary_10_1161_ATVBAHA_111_226621 crossref_primary_10_1016_j_freeradbiomed_2011_09_016 crossref_primary_10_1038_s41419_017_0105_5 crossref_primary_10_1093_jb_mvr104 crossref_primary_10_1155_2013_374963 crossref_primary_10_3390_ijms25158381 crossref_primary_10_1074_jbc_M113_456046 crossref_primary_10_1016_j_freeradbiomed_2015_07_004 crossref_primary_10_1080_14786419_2015_1085864 crossref_primary_10_1089_ars_2021_0135 crossref_primary_10_1111_boc_201800011 crossref_primary_10_1002_prp2_630 crossref_primary_10_1016_j_freeradbiomed_2009_07_023 crossref_primary_10_1016_j_coph_2008_10_001 crossref_primary_10_1111_j_1755_5922_2011_00310_x crossref_primary_10_1161_CIRCRESAHA_113_301319 crossref_primary_10_1089_ars_2009_2880 crossref_primary_10_1016_j_yjmcc_2015_11_013 crossref_primary_10_1155_2018_7607463 crossref_primary_10_1182_blood_2011_02_336446 crossref_primary_10_1111_j_1751_1097_2009_00611_x crossref_primary_10_1007_s00210_009_0413_0 crossref_primary_10_1016_j_freeradbiomed_2014_12_020 crossref_primary_10_1007_s12263_011_0252_8 crossref_primary_10_1016_j_ajpath_2017_05_006 crossref_primary_10_1074_jbc_RA120_014723 crossref_primary_10_1074_jbc_M111_293696 crossref_primary_10_1016_j_pharmthera_2020_107711 crossref_primary_10_3390_antiox11091689 crossref_primary_10_1007_s00391_015_0928_6 crossref_primary_10_1016_j_yjmcc_2009_04_004 crossref_primary_10_1111_febs_12224 crossref_primary_10_1016_j_lfs_2011_06_007 crossref_primary_10_3390_antiox8050126 crossref_primary_10_1111_bjd_17706 crossref_primary_10_1007_s00018_017_2546_5 crossref_primary_10_1016_j_celrep_2023_113361 crossref_primary_10_1096_fj_10_177147 crossref_primary_10_1083_jcb_201708007 crossref_primary_10_1128_MCB_01122_10 crossref_primary_10_1155_2021_4593496 crossref_primary_10_1089_ars_2010_3533 crossref_primary_10_1016_j_freeradbiomed_2014_01_040 crossref_primary_10_1089_ars_2009_2578 crossref_primary_10_15252_embj_201592394 crossref_primary_10_1089_ars_2017_7425 crossref_primary_10_1016_j_jnutbio_2012_07_012 crossref_primary_10_1038_s41467_017_01106_1 crossref_primary_10_1089_ars_2009_2579 crossref_primary_10_1016_j_biomaterials_2013_01_092 crossref_primary_10_1155_2015_963289 crossref_primary_10_1016_j_exger_2018_07_007 crossref_primary_10_1128_IAI_00725_09 crossref_primary_10_1016_j_cellsig_2012_03_011 crossref_primary_10_1016_j_freeradbiomed_2009_05_037 crossref_primary_10_1371_journal_pone_0170327 crossref_primary_10_1016_j_cophys_2019_04_026 crossref_primary_10_3390_cells9081849 crossref_primary_10_3389_fcvm_2022_1059576 crossref_primary_10_1186_s12916_020_01749_w crossref_primary_10_1089_ars_2009_2584 crossref_primary_10_1007_s00424_015_1731_3 crossref_primary_10_1016_j_lfs_2016_06_016 crossref_primary_10_1097_HJH_0000000000003478 crossref_primary_10_1042_BJ20121778 crossref_primary_10_1089_ars_2009_2587 crossref_primary_10_1089_ars_2011_4123 crossref_primary_10_1155_2016_4502846 crossref_primary_10_1074_jbc_R113_467738 crossref_primary_10_1016_j_critrevonc_2011_03_005 crossref_primary_10_1016_j_phrs_2016_01_029 crossref_primary_10_1165_rcmb_2011_0271OC crossref_primary_10_1038_nchembio_736 crossref_primary_10_1371_journal_pone_0088024 crossref_primary_10_1016_j_freeradbiomed_2015_02_019 crossref_primary_10_1089_ars_2010_3539 crossref_primary_10_1016_j_colsurfb_2017_05_052 crossref_primary_10_1161_ATVBAHA_108_181610 crossref_primary_10_1155_2013_180906 crossref_primary_10_1016_j_freeradbiomed_2012_10_546 crossref_primary_10_3390_biom10020320 crossref_primary_10_1016_j_semcancer_2017_04_005 crossref_primary_10_1016_j_hoc_2012_10_002 crossref_primary_10_1016_j_yjmcc_2014_02_006 crossref_primary_10_1021_ja2077137 crossref_primary_10_1161_ATVBAHA_112_300956 crossref_primary_10_3389_fcell_2024_1432668 crossref_primary_10_1002_dvdy_22001 crossref_primary_10_1007_s40883_019_00143_0 crossref_primary_10_1038_nrc3339 crossref_primary_10_1002_ange_202104308 crossref_primary_10_3390_biom5020702 crossref_primary_10_1177_19476035241245803 crossref_primary_10_1016_j_freeradbiomed_2011_06_011 crossref_primary_10_1089_ars_2013_5785 crossref_primary_10_1089_ars_2013_5302 crossref_primary_10_1586_17446651_2014_887984 crossref_primary_10_1242_jcs_080895 crossref_primary_10_1016_j_tibs_2011_05_004 crossref_primary_10_1038_sj_bjc_6605847 crossref_primary_10_1371_journal_pone_0126866 crossref_primary_10_1108_JABS_01_2019_0012 crossref_primary_10_1002_bdr2_1509 crossref_primary_10_1161_HYPERTENSIONAHA_109_133983 crossref_primary_10_1074_jbc_M115_710772 crossref_primary_10_1155_2015_101304 crossref_primary_10_1074_jbc_M110_193821 crossref_primary_10_1161_HYPERTENSIONAHA_110_151423 crossref_primary_10_1074_jbc_M111_303958 crossref_primary_10_1165_rcmb_2011_0411OC crossref_primary_10_1371_journal_pone_0048393 crossref_primary_10_1016_j_freeradbiomed_2017_05_024 crossref_primary_10_1016_j_cell_2011_08_036 crossref_primary_10_1073_pnas_1302891110 crossref_primary_10_1111_j_1471_4159_2009_06081_x crossref_primary_10_1016_j_bmc_2016_03_054 crossref_primary_10_1371_journal_pcbi_1004582 crossref_primary_10_1016_j_freeradbiomed_2020_11_021 crossref_primary_10_1016_j_freeradbiomed_2013_11_005 crossref_primary_10_1016_j_bbadis_2020_165912 crossref_primary_10_1016_j_tox_2013_01_019 crossref_primary_10_1371_journal_pone_0171613 crossref_primary_10_1089_ars_2010_3843 crossref_primary_10_1007_s12298_018_0509_4 crossref_primary_10_1038_srep16929 crossref_primary_10_1111_acel_14060 crossref_primary_10_1161_ATVBAHA_116_307922 crossref_primary_10_1038_srep32229 crossref_primary_10_1016_j_semnephrol_2009_07_002 crossref_primary_10_1074_jbc_M110_111732 crossref_primary_10_1128_JVI_01059_09 crossref_primary_10_1002_adbi_202200234 crossref_primary_10_1089_ars_2013_5643 crossref_primary_10_3390_antiox6020032 crossref_primary_10_1007_s00018_015_1928_9 crossref_primary_10_1007_s12013_011_9297_y crossref_primary_10_1021_bi9022285 crossref_primary_10_3109_07853890_2012_734111 crossref_primary_10_1016_j_freeradbiomed_2021_01_034 crossref_primary_10_4103_2045_8932_78101 crossref_primary_10_1007_s00018_021_03756_3 crossref_primary_10_1074_jbc_M113_510495 crossref_primary_10_1016_j_yjmcc_2016_09_002 crossref_primary_10_1002_bdrc_21134 crossref_primary_10_1038_s41569_019_0260_8 crossref_primary_10_1371_journal_pone_0054391 crossref_primary_10_1016_j_freeradbiomed_2016_02_030 crossref_primary_10_1016_j_bbadis_2014_10_007 crossref_primary_10_1089_ars_2010_3611 crossref_primary_10_1002_anie_202104308 crossref_primary_10_1089_ars_2010_3614 crossref_primary_10_1097_CRD_0b013e31819d813a crossref_primary_10_1089_ars_2017_7167 crossref_primary_10_1016_j_freeradbiomed_2015_01_025 crossref_primary_10_1089_ars_2009_2594 crossref_primary_10_1016_j_freeradbiomed_2015_09_015 crossref_primary_10_1016_j_freeradbiomed_2018_01_024 crossref_primary_10_14348_molcells_2016_2349 crossref_primary_10_1073_pnas_1007909107 crossref_primary_10_1089_ars_2008_2383 crossref_primary_10_1111_jcmm_12263 crossref_primary_10_1161_CIRCRESAHA_109_215392 crossref_primary_10_1128_MCB_01445_09 crossref_primary_10_1038_nchembio_607 crossref_primary_10_1016_j_freeradbiomed_2018_06_042 crossref_primary_10_1016_j_biochi_2010_11_001 crossref_primary_10_3389_fchem_2014_00082 crossref_primary_10_3389_fphar_2021_751845 crossref_primary_10_3389_fphys_2017_00150 crossref_primary_10_1016_j_yjmcc_2013_04_019 crossref_primary_10_1016_j_freeradbiomed_2015_01_032 crossref_primary_10_1161_ATVBAHA_111_238899 crossref_primary_10_1016_j_metabol_2019_153948 crossref_primary_10_1038_cddis_2011_96 crossref_primary_10_1016_j_bmcl_2008_10_133 crossref_primary_10_1089_ars_2012_4550 crossref_primary_10_1161_CIRCRESAHA_111_246371 crossref_primary_10_1097_MNH_0b013e32832923c3 crossref_primary_10_1074_jbc_M809761200 crossref_primary_10_1530_JOE_13_0588 crossref_primary_10_3390_biom10030422 crossref_primary_10_1016_j_freeradbiomed_2017_04_025 crossref_primary_10_1016_j_freeradbiomed_2009_09_026 crossref_primary_10_1016_j_freeradbiomed_2020_04_027 crossref_primary_10_1016_j_molmet_2020_101160 crossref_primary_10_1074_jbc_M110_192138 crossref_primary_10_1089_ars_2013_5619 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1083/jcb.200709049 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1540-8140 |
| ExternalDocumentID | 18573911 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG027081 – fundername: NIA NIH HHS grantid: AG027081 |
| GroupedDBID | --- -DZ -~X .55 0VX 123 18M 29K 2WC 34G 36B 39C 3O- 4.4 53G 85S 9QQ ABDNZ ABOCM ABPPZ ABRJW ABTAH ABZEH ACGFO ACGOD ACIWK ACKIV ACKOT ACNCT ACNKL ACPRK ADBBV AEILP AENEX AEUPB AFOSN AFRAH AGCDD AHJTV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A C45 CGR CS3 CUY CVF D-I D0L DIK DU5 E3Z EBS ECM EIF EJD EMB EMOBN F5P F9R FRP GX1 H13 HF~ HYE IH2 JENOY JST JZ9 KQ8 N9A NHB NPM O5R O5S OK1 P2P PQQKQ R.V RHF RHI RNS RPM RXW SJN SV3 TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT VQA VXZ W8F WH7 WOQ X7M YIN YKV YNH YOC YQT YSK YWH YZZ ZCA ZY4 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c531t-df0dc841ecc872e10760d8d5deb5d9b7f5a328eca4e8187f8fccb41aefb77cec2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 392 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257547200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-8140 |
| IngestDate | Fri Sep 05 11:38:56 EDT 2025 Wed Feb 19 02:04:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-df0dc841ecc872e10760d8d5deb5d9b7f5a328eca4e8187f8fccb41aefb77cec2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://rupress.org/jcb/article-pdf/181/7/1129/1337934/jcb_200709049.pdf |
| PMID | 18573911 |
| PQID | 69281213 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_69281213 pubmed_primary_18573911 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06-30 |
| PublicationDateYYYYMMDD | 2008-06-30 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-30 day: 30 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of cell biology |
| PublicationTitleAlternate | J Cell Biol |
| PublicationYear | 2008 |
| SSID | ssj0004743 |
| Score | 2.464362 |
| Snippet | Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1129 |
| SubjectTerms | Animals Antioxidants - pharmacology Cell Proliferation - drug effects Chlorocebus aethiops COS Cells Endoplasmic Reticulum - drug effects Endoplasmic Reticulum - enzymology Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - enzymology Epidermal Growth Factor - pharmacology ErbB Receptors - metabolism Humans Mice Mutation - genetics NADPH Oxidase 4 NADPH Oxidases - metabolism Oxidation-Reduction - drug effects Phosphorylation - drug effects Protein Transport - drug effects Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism Reactive Oxygen Species - metabolism Signal Transduction - drug effects Substrate Specificity - drug effects |
| Title | Regulation of ROS signal transduction by NADPH oxidase 4 localization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18573911 https://www.proquest.com/docview/69281213 |
| Volume | 181 |
| WOSCitedRecordID | wos000257547200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VChIL70d5emCN2jhJ7UhIqIJWHSBU5aFulXO2pTIkhRZE_z2-JJWYYGBxJkvWnX13yn33fQCX2gift5TyOBrrhZpHnmpz6xbL0Q98bBdyQC93IknkaBQPanC1nIUhWOUyJhaBWudI_8ib7ZhLoh-7nr55pBlFvdVKQGMF6oErZAjQJUY_uMIreD21_onXqWLYdDVH8xXTYgi9FbfCX2rLIsf0tv53um3YrGpL1ikvww7UTLYL66Xa5GIPusNSd955guWWDR8eGaE33I45JSxd8siydMGSzu2gz_KviXY5joWsSHjVwOY-PPe6Tzd9r1JR8NC9r7mnbUujDH3nKym48akVp6WOtEkjHafCRirg0qAKjUvewkqLmIa-MjYVAg3yA1jN8swcAQuUjLgQgaQBVIWpQkNs-rHmPir3acDF0jpjd0up9aAyk3_Mxkv7NOCwNPB4WpJpjImLKnAR9_jPvSewUYI1CKx3CnXr3qc5gzX8nE9m7-eF892aDO6_AU_quj8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+ROS+signal+transduction+by+NADPH+oxidase+4+localization&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chen%2C+Kai&rft.au=Kirber%2C+Michael+T&rft.au=Xiao%2C+Hui&rft.au=Yang%2C+Yu&rft.date=2008-06-30&rft.eissn=1540-8140&rft.volume=181&rft.issue=7&rft.spage=1129&rft_id=info:doi/10.1083%2Fjcb.200709049&rft_id=info%3Apmid%2F18573911&rft_id=info%3Apmid%2F18573911&rft.externalDocID=18573911 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon |