Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle th...
Uložené v:
| Vydané v: | International journal of computer vision Ročník 123; číslo 1; s. 32 - 73 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2017
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked “What vehicle is the person riding?”, computers will need to identify the objects in an image as well as the relationships
riding(man, carriage)
and
pulling(horse, carriage)
to answer correctly that “the person is riding a horse-drawn carriage.” In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of
35
objects,
26
attributes, and
21
pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs. |
|---|---|
| AbstractList | Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) to answer correctly that "the person is riding a horse-drawn carriage." In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of [Formula omitted] objects, [Formula omitted] attributes, and [Formula omitted] pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) to answer correctly that "the person is riding a horse-drawn carriage." In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of ... objects, ... attributes, and ... pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs. Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked “What vehicle is the person riding?”, computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) to answer correctly that “the person is riding a horse-drawn carriage.” In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of 35 objects, 26 attributes, and 21 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs. |
| Audience | Academic |
| Author | Hata, Kenji Li, Li-Jia Zhu, Yuke Kravitz, Joshua Shamma, David A. Johnson, Justin Fei-Fei, Li Kalantidis, Yannis Bernstein, Michael S. Krishna, Ranjay Groth, Oliver Chen, Stephanie |
| Author_xml | – sequence: 1 givenname: Ranjay orcidid: 0000-0001-8784-2531 surname: Krishna fullname: Krishna, Ranjay email: ranjaykrishna@cs.stanford.edu organization: Stanford University – sequence: 2 givenname: Yuke surname: Zhu fullname: Zhu, Yuke organization: Stanford University – sequence: 3 givenname: Oliver surname: Groth fullname: Groth, Oliver organization: Dresden University of Technology – sequence: 4 givenname: Justin surname: Johnson fullname: Johnson, Justin organization: Stanford University – sequence: 5 givenname: Kenji surname: Hata fullname: Hata, Kenji organization: Stanford University – sequence: 6 givenname: Joshua surname: Kravitz fullname: Kravitz, Joshua organization: Stanford University – sequence: 7 givenname: Stephanie surname: Chen fullname: Chen, Stephanie organization: Stanford University – sequence: 8 givenname: Yannis surname: Kalantidis fullname: Kalantidis, Yannis organization: Yahoo Inc – sequence: 9 givenname: Li-Jia surname: Li fullname: Li, Li-Jia organization: Snapchat Inc – sequence: 10 givenname: David A. surname: Shamma fullname: Shamma, David A. organization: Centrum Wiskunde & Informatica (CWI) – sequence: 11 givenname: Michael S. surname: Bernstein fullname: Bernstein, Michael S. organization: Stanford University – sequence: 12 givenname: Li surname: Fei-Fei fullname: Fei-Fei, Li organization: Stanford University |
| BookMark | eNp9kU2L1TAUhoOM4J3RH-Cu4EYXHXPy0TbuLldn5sIFQR1xF9L0tGRokzFpUf-9KXXhDChZBJLnOck57zk588EjIS-BXgKl9dsEwCpeUqhKqhoo6ydkB7LmJQgqz8iOKkZLWSl4Rs5TuqOUsobxHfn21aXFjMU1-jDhu-IQvEc7Oz8UJ-OHxQxYGN8VGXPBF7dpvTnE8KNLYYkWu-I9-oTFcVrJvfdhNnMm03PytDdjwhd_9gtye_Xhy-GmPH28Ph72p9JKDnPZScu7lvVCcLQcABBFK1nHFa26jlqrTMVq02LT0pZjY5tGMVUL2Us0wjB-QV5vde9j-L5gmvXkksVxNB7DkjQoKpgQtBIZffUIvcs9-Pw7DbkqcKaalbrcqMGMqJ3vwxyNzavDydk89d7l872UVEkALrPw5oGQmRl_zoNZUtLHz58esvXG2hhSithr67aB5UfcqIHqNU69xalznHqNU9fZhEfmfXSTib_-67DNSZn1A8a_Gv6n9BumDrIM |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108949 crossref_primary_10_1016_j_eswa_2025_126965 crossref_primary_10_1016_j_inffus_2025_103047 crossref_primary_10_1109_TIP_2020_2993403 crossref_primary_10_1109_TIP_2025_3543114 crossref_primary_10_1145_3687973 crossref_primary_10_3390_math13101622 crossref_primary_10_1016_j_ijhm_2022_103146 crossref_primary_10_1007_s11263_021_01465_9 crossref_primary_10_1016_j_eswa_2022_117174 crossref_primary_10_1145_3648370 crossref_primary_10_1145_3742434 crossref_primary_10_1016_j_patcog_2025_112439 crossref_primary_10_1109_TKDE_2022_3142821 crossref_primary_10_1007_s41109_019_0226_0 crossref_primary_10_1016_j_autcon_2020_103116 crossref_primary_10_1016_j_knosys_2025_113532 crossref_primary_10_1016_j_patcog_2019_01_038 crossref_primary_10_1109_TCSVT_2019_2947482 crossref_primary_10_1145_3705006 crossref_primary_10_3390_rs12234003 crossref_primary_10_1073_pnas_2115730119 crossref_primary_10_1111_cogs_13448 crossref_primary_10_1007_s40747_024_01746_z crossref_primary_10_1038_s41551_020_0577_y crossref_primary_10_3390_app12094674 crossref_primary_10_3390_rs14225839 crossref_primary_10_1007_s11263_024_02049_z crossref_primary_10_1007_s11227_021_04283_5 crossref_primary_10_1016_j_neucom_2018_11_004 crossref_primary_10_4218_etrij_2019_0093 crossref_primary_10_1016_j_jbi_2025_104888 crossref_primary_10_1109_TPAMI_2024_3432552 crossref_primary_10_1016_j_eswa_2024_125108 crossref_primary_10_1109_TII_2021_3089689 crossref_primary_10_3233_SW_233510 crossref_primary_10_1109_ACCESS_2022_3165617 crossref_primary_10_1007_s11263_018_1125_z crossref_primary_10_1109_TGRS_2021_3079918 crossref_primary_10_1007_s11042_020_10466_8 crossref_primary_10_1145_3604557 crossref_primary_10_1016_j_neucom_2021_04_069 crossref_primary_10_1016_j_ins_2020_04_034 crossref_primary_10_1109_ACCESS_2022_3230590 crossref_primary_10_1145_3716389 crossref_primary_10_1016_j_neucom_2022_04_126 crossref_primary_10_1145_3686899 crossref_primary_10_1007_s10489_022_03795_8 crossref_primary_10_1007_s11633_022_1386_4 crossref_primary_10_1007_s11263_023_01929_0 crossref_primary_10_1155_2018_5847460 crossref_primary_10_3390_app13085107 crossref_primary_10_1109_TGRS_2025_3534288 crossref_primary_10_1109_ACCESS_2024_3450908 crossref_primary_10_1109_ACCESS_2021_3137893 crossref_primary_10_1109_LRA_2022_3221310 crossref_primary_10_3390_fi15020070 crossref_primary_10_1007_s11042_024_19315_4 crossref_primary_10_1007_s11390_020_0305_9 crossref_primary_10_1145_3707447 crossref_primary_10_1007_s11760_024_03027_1 crossref_primary_10_1371_journal_pone_0260784 crossref_primary_10_1109_TIP_2021_3118983 crossref_primary_10_1109_ACCESS_2020_3018546 crossref_primary_10_1109_TPAMI_2024_3508072 crossref_primary_10_1145_3687957 crossref_primary_10_1007_s10462_021_10104_1 crossref_primary_10_1109_TIP_2018_2877939 crossref_primary_10_1145_3617833 crossref_primary_10_3390_electronics11111778 crossref_primary_10_1109_TPAMI_2021_3132034 crossref_primary_10_1016_j_inffus_2019_03_005 crossref_primary_10_1109_TIP_2023_3275870 crossref_primary_10_1109_TIP_2024_3391692 crossref_primary_10_1109_TMM_2022_3141603 crossref_primary_10_1007_s13748_023_00295_9 crossref_primary_10_1016_j_knosys_2025_113300 crossref_primary_10_1016_j_displa_2024_102941 crossref_primary_10_1109_TMM_2020_3037461 crossref_primary_10_1109_TCYB_2022_3142013 crossref_primary_10_1007_s10462_025_11163_4 crossref_primary_10_1007_s11227_023_05318_9 crossref_primary_10_1109_LRA_2022_3142401 crossref_primary_10_1109_TMM_2019_2931815 crossref_primary_10_1007_s11042_021_11722_1 crossref_primary_10_1109_TCSVT_2023_3268997 crossref_primary_10_1016_j_imavis_2020_103968 crossref_primary_10_1007_s10958_024_07434_0 crossref_primary_10_1109_JBHI_2022_3214086 crossref_primary_10_1162_tacl_a_00409 crossref_primary_10_1016_j_neucom_2021_10_016 crossref_primary_10_1162_tacl_a_00408 crossref_primary_10_1109_TCSVT_2024_3374786 crossref_primary_10_1016_j_neucom_2021_10_014 crossref_primary_10_1109_TPAMI_2023_3339628 crossref_primary_10_1109_JPROC_2023_3279374 crossref_primary_10_1109_TMM_2023_3345172 crossref_primary_10_1016_j_ocecoaman_2022_106244 crossref_primary_10_1109_TASLP_2023_3304468 crossref_primary_10_1061_JCCEE5_CPENG_5473 crossref_primary_10_1109_TCSVT_2024_3443417 crossref_primary_10_1088_1757_899X_1116_1_012184 crossref_primary_10_1016_j_compag_2024_109452 crossref_primary_10_3390_math13111874 crossref_primary_10_3390_info15120766 crossref_primary_10_1007_s10489_024_05389_y crossref_primary_10_1016_j_patcog_2025_111781 crossref_primary_10_1002_ail2_55 crossref_primary_10_1145_3572833 crossref_primary_10_1016_j_patcog_2024_111039 crossref_primary_10_1109_TMM_2023_3266897 crossref_primary_10_1016_j_future_2022_02_016 crossref_primary_10_3233_NAI_240712 crossref_primary_10_1007_s13042_022_01538_2 crossref_primary_10_1016_j_jvcir_2018_12_027 crossref_primary_10_1145_3697349 crossref_primary_10_1016_j_rineng_2025_105397 crossref_primary_10_1016_j_displa_2021_102069 crossref_primary_10_1080_15732479_2024_2355929 crossref_primary_10_1016_j_ijpe_2020_107663 crossref_primary_10_1109_TIP_2022_3199089 crossref_primary_10_1109_TMM_2023_3254205 crossref_primary_10_1109_LRA_2020_2967677 crossref_primary_10_3233_MGS_230132 crossref_primary_10_1109_TMM_2022_3214090 crossref_primary_10_1109_ACCESS_2021_3114968 crossref_primary_10_1109_TMM_2024_3385997 crossref_primary_10_1016_j_patcog_2024_110399 crossref_primary_10_1109_ACCESS_2019_2919342 crossref_primary_10_1109_TVCG_2025_3585077 crossref_primary_10_1080_10447318_2024_2406053 crossref_primary_10_1049_iet_cvi_2018_5226 crossref_primary_10_1016_j_knosys_2023_110951 crossref_primary_10_1145_3615868 crossref_primary_10_1016_j_patcog_2024_110398 crossref_primary_10_1016_j_eswa_2022_118285 crossref_primary_10_1007_s10489_023_04722_1 crossref_primary_10_1007_s11704_021_1248_1 crossref_primary_10_1145_3485042 crossref_primary_10_3390_electronics11213556 crossref_primary_10_1007_s42524_024_4074_y crossref_primary_10_3390_rs13112038 crossref_primary_10_1016_j_knosys_2025_113355 crossref_primary_10_1109_TPAMI_2020_3040591 crossref_primary_10_1109_TIP_2024_3448248 crossref_primary_10_1109_TMM_2024_3521785 crossref_primary_10_1002_eng2_12785 crossref_primary_10_1007_s13369_023_07687_y crossref_primary_10_1016_j_compind_2024_104171 crossref_primary_10_1109_ACCESS_2023_3332098 crossref_primary_10_1109_TMM_2019_2896516 crossref_primary_10_1109_TMM_2023_3327537 crossref_primary_10_1109_TPAMI_2021_3139957 crossref_primary_10_1016_j_patcog_2020_107707 crossref_primary_10_1016_j_engappai_2021_104574 crossref_primary_10_1109_TASLP_2021_3138719 crossref_primary_10_1109_TPAMI_2023_3327677 crossref_primary_10_1109_TNNLS_2020_2986029 crossref_primary_10_1016_j_eswa_2025_127407 crossref_primary_10_1016_j_patcog_2022_109015 crossref_primary_10_1016_j_neucom_2021_12_076 crossref_primary_10_1007_s41019_022_00200_9 crossref_primary_10_1109_TMM_2021_3120194 crossref_primary_10_1007_s11042_022_13592_7 crossref_primary_10_1016_j_neucom_2020_09_089 crossref_primary_10_1109_ACCESS_2025_3549478 crossref_primary_10_1109_TIP_2021_3139234 crossref_primary_10_1109_TMM_2022_3207581 crossref_primary_10_1109_TPAMI_2021_3052490 crossref_primary_10_3390_data6020012 crossref_primary_10_1109_ACCESS_2020_2975594 crossref_primary_10_1109_TCYB_2023_3310892 crossref_primary_10_1007_s41095_021_0247_3 crossref_primary_10_3390_app142311470 crossref_primary_10_1109_JSTSP_2020_2989701 crossref_primary_10_1109_TPAMI_2021_3054048 crossref_primary_10_1145_3700877 crossref_primary_10_1016_j_ipm_2024_103772 crossref_primary_10_1016_j_patrec_2024_06_008 crossref_primary_10_3390_math12020286 crossref_primary_10_1016_j_engappai_2023_107732 crossref_primary_10_1007_s10994_017_5674_0 crossref_primary_10_1007_s11063_023_11190_8 crossref_primary_10_1109_ACCESS_2025_3574298 crossref_primary_10_1109_TPAMI_2023_3339661 crossref_primary_10_1007_s00371_024_03618_6 crossref_primary_10_1007_s10489_023_05235_7 crossref_primary_10_1016_j_isprsjprs_2017_07_010 crossref_primary_10_3390_app11073009 crossref_primary_10_1038_s41598_024_60832_x crossref_primary_10_1145_3365003 crossref_primary_10_1016_j_patcog_2022_109272 crossref_primary_10_1109_ACCESS_2021_3067607 crossref_primary_10_1016_j_eswa_2025_129602 crossref_primary_10_1145_3701733 crossref_primary_10_1109_TNNLS_2022_3184821 crossref_primary_10_1109_TCSVT_2022_3233042 crossref_primary_10_1145_3767328 crossref_primary_10_3390_rs16071168 crossref_primary_10_1016_j_cviu_2024_104154 crossref_primary_10_1371_journal_pone_0325543 crossref_primary_10_1007_s10044_023_01199_z crossref_primary_10_1109_MCI_2017_2708559 crossref_primary_10_1109_TAFFC_2022_3171091 crossref_primary_10_1109_TITS_2025_3527011 crossref_primary_10_1016_j_imavis_2025_105723 crossref_primary_10_1007_s11042_023_15779_y crossref_primary_10_1007_s11280_023_01202_x crossref_primary_10_1109_TCYB_2020_2979258 crossref_primary_10_1109_TMM_2020_3043084 crossref_primary_10_1016_j_knosys_2023_110773 crossref_primary_10_1016_j_patcog_2023_110084 crossref_primary_10_1007_s10791_020_09386_w crossref_primary_10_1016_j_advengsoft_2024_103779 crossref_primary_10_1109_TNNLS_2023_3276796 crossref_primary_10_1109_TPAMI_2024_3506283 crossref_primary_10_1016_j_patcog_2025_111766 crossref_primary_10_1109_TPAMI_2024_3404450 crossref_primary_10_1109_TVCG_2022_3225327 crossref_primary_10_1109_TMM_2023_3239229 crossref_primary_10_1145_3415176 crossref_primary_10_1007_s11263_023_01949_w crossref_primary_10_1016_j_ipm_2024_103990 crossref_primary_10_1080_13658816_2025_2506533 crossref_primary_10_1109_ACCESS_2020_3021312 crossref_primary_10_1016_j_patcog_2022_109044 crossref_primary_10_3389_fnbot_2019_00093 crossref_primary_10_1038_s42256_022_00516_1 crossref_primary_10_3390_computers10090105 crossref_primary_10_1155_2023_8600853 crossref_primary_10_1109_TIP_2024_3384096 crossref_primary_10_1109_TCYB_2021_3052522 crossref_primary_10_3233_NAI_240719 crossref_primary_10_1016_j_neucom_2021_03_084 crossref_primary_10_1038_s41598_025_04384_8 crossref_primary_10_1049_iet_cvi_2019_0896 crossref_primary_10_1007_s41095_021_0234_8 crossref_primary_10_3390_app11167426 crossref_primary_10_1016_j_ins_2021_01_049 crossref_primary_10_1016_j_knosys_2022_109239 crossref_primary_10_1016_j_knosys_2023_110505 crossref_primary_10_1049_ipr2_12367 crossref_primary_10_1109_TIP_2024_3396063 crossref_primary_10_1088_1742_6596_1748_4_042060 crossref_primary_10_14778_3611540_3611600 crossref_primary_10_1016_j_patcog_2017_09_028 crossref_primary_10_1109_TIP_2023_3334099 crossref_primary_10_1109_ACCESS_2024_3424230 crossref_primary_10_1109_TMM_2021_3120544 crossref_primary_10_1007_s11263_021_01458_8 crossref_primary_10_1109_TPAMI_2023_3292266 crossref_primary_10_1007_s11042_023_14596_7 crossref_primary_10_1007_s11042_023_15272_6 crossref_primary_10_1109_TGRS_2021_3130436 crossref_primary_10_1016_j_eswa_2023_120698 crossref_primary_10_1109_ACCESS_2020_3042484 crossref_primary_10_1007_s13278_021_00821_4 crossref_primary_10_1109_TMM_2021_3098988 crossref_primary_10_1109_TGRS_2024_3413174 crossref_primary_10_1109_TNNLS_2021_3104937 crossref_primary_10_1109_TPAMI_2023_3234170 crossref_primary_10_3390_s24061796 crossref_primary_10_1016_j_patrec_2020_09_014 crossref_primary_10_1016_j_dsp_2025_105459 crossref_primary_10_1109_TPAMI_2021_3117983 crossref_primary_10_1145_3715093 crossref_primary_10_3390_app9194130 crossref_primary_10_1109_TCDS_2021_3079278 crossref_primary_10_1109_TCSVT_2021_3107035 crossref_primary_10_1007_s00530_024_01608_1 crossref_primary_10_1016_j_bdr_2020_100175 crossref_primary_10_1016_j_patcog_2020_107563 crossref_primary_10_1109_TIP_2023_3330304 crossref_primary_10_1109_TIP_2024_3390984 crossref_primary_10_1007_s11263_025_02436_0 crossref_primary_10_1016_j_media_2024_103264 crossref_primary_10_1016_j_patcog_2021_107847 crossref_primary_10_1109_TPAMI_2023_3343736 crossref_primary_10_3389_fdata_2021_736709 crossref_primary_10_1016_j_eswa_2023_120267 crossref_primary_10_1109_TIP_2022_3197972 crossref_primary_10_1109_TMM_2023_3248160 crossref_primary_10_3390_a16020097 crossref_primary_10_1002_mar_21876 crossref_primary_10_1016_j_neunet_2024_107028 crossref_primary_10_1109_TNNLS_2020_2967597 crossref_primary_10_1007_s11263_023_01871_1 crossref_primary_10_1109_TIP_2025_3540296 crossref_primary_10_1007_s11760_024_03449_x crossref_primary_10_1016_j_dsp_2025_105220 crossref_primary_10_3390_buildings12060857 crossref_primary_10_1007_s10489_024_05383_4 crossref_primary_10_1002_widm_70024 crossref_primary_10_1109_TPAMI_2023_3282889 crossref_primary_10_1007_s11042_023_15317_w crossref_primary_10_1016_j_eswa_2023_122698 crossref_primary_10_1016_j_neucom_2021_03_073 crossref_primary_10_1109_TMM_2021_3092187 crossref_primary_10_1007_s13735_021_00208_3 crossref_primary_10_1109_TCYB_2023_3243999 crossref_primary_10_1109_TPAMI_2025_3531452 crossref_primary_10_1109_TCSVT_2023_3344569 crossref_primary_10_1007_s11263_021_01547_8 crossref_primary_10_1016_j_ijhm_2018_03_017 crossref_primary_10_1109_TNNLS_2024_3388094 crossref_primary_10_1109_ACCESS_2023_3347192 crossref_primary_10_1109_TPAMI_2023_3273712 crossref_primary_10_1186_s12880_022_00800_x crossref_primary_10_1109_TGRS_2024_3449154 crossref_primary_10_1109_TIP_2023_3348297 crossref_primary_10_1007_s11771_021_4641_x crossref_primary_10_1016_j_inffus_2025_103260 crossref_primary_10_1109_TPAMI_2019_2950025 crossref_primary_10_1016_j_bdr_2020_100159 crossref_primary_10_1109_TMM_2021_3062543 crossref_primary_10_1007_s13735_019_00178_7 crossref_primary_10_3390_make6020055 crossref_primary_10_1016_j_inffus_2023_01_008 crossref_primary_10_1145_3587267 crossref_primary_10_1016_j_imavis_2024_105259 crossref_primary_10_1007_s41060_024_00536_7 crossref_primary_10_3390_sym12040511 crossref_primary_10_1016_j_ipm_2024_103716 crossref_primary_10_1016_j_neunet_2024_107002 crossref_primary_10_1016_j_patcog_2024_110562 crossref_primary_10_1109_TMM_2024_3407695 crossref_primary_10_1145_3708350 crossref_primary_10_3390_app12178453 crossref_primary_10_1145_3638558 crossref_primary_10_1007_s10115_024_02166_8 crossref_primary_10_1109_TMM_2023_3297312 crossref_primary_10_1007_s00521_022_08048_w crossref_primary_10_1016_j_knosys_2020_106639 crossref_primary_10_1109_TPAMI_2019_2909864 crossref_primary_10_1016_j_inffus_2021_07_009 crossref_primary_10_1016_j_inffus_2023_101940 crossref_primary_10_1038_s43586_022_00125_7 crossref_primary_10_3390_s24082567 crossref_primary_10_1016_j_inffus_2025_103009 crossref_primary_10_1109_ACCESS_2025_3577519 crossref_primary_10_1109_TCSVT_2023_3277827 crossref_primary_10_1007_s13748_025_00370_3 crossref_primary_10_1016_j_ipm_2022_103008 crossref_primary_10_1109_TPAMI_2020_3013834 crossref_primary_10_1007_s11280_021_00976_2 crossref_primary_10_1016_j_cviu_2023_103857 crossref_primary_10_1016_j_knosys_2020_106150 crossref_primary_10_3390_app131910894 crossref_primary_10_1109_TPAMI_2025_3568644 crossref_primary_10_1109_JSTSP_2023_3323654 crossref_primary_10_1109_TCSVT_2020_2991866 crossref_primary_10_1007_s11063_023_11314_0 crossref_primary_10_1109_ACCESS_2021_3138168 crossref_primary_10_3390_s20236758 crossref_primary_10_1007_s10115_024_02087_6 crossref_primary_10_1016_j_neucom_2022_02_069 crossref_primary_10_1109_ACCESS_2021_3139000 crossref_primary_10_1016_j_bdr_2023_100380 crossref_primary_10_1109_ACCESS_2023_3243952 crossref_primary_10_1109_ACCESS_2024_3394530 crossref_primary_10_1155_2022_4378553 crossref_primary_10_1007_s11042_022_13796_x crossref_primary_10_1145_3415203 crossref_primary_10_1016_j_neucom_2022_01_022 crossref_primary_10_1007_s11042_022_12317_0 crossref_primary_10_1109_TPAMI_2020_3025814 crossref_primary_10_1371_journal_pone_0287557 crossref_primary_10_1016_j_knosys_2025_113083 crossref_primary_10_1007_s11771_021_4808_5 crossref_primary_10_1016_j_knosys_2024_111401 crossref_primary_10_1109_TNNLS_2020_3002583 crossref_primary_10_1109_TPAMI_2023_3305243 crossref_primary_10_1016_j_knosys_2023_110253 crossref_primary_10_1111_coin_12202 crossref_primary_10_1007_s10846_021_01566_0 crossref_primary_10_1109_TPAMI_2021_3121705 crossref_primary_10_1016_j_cviu_2022_103557 crossref_primary_10_3389_fnbot_2022_844753 crossref_primary_10_1145_3701229 crossref_primary_10_1162_neco_a_01552 crossref_primary_10_1109_TIFS_2022_3226905 crossref_primary_10_1016_j_inffus_2025_103623 crossref_primary_10_1109_TCSVT_2023_3296889 crossref_primary_10_1016_j_ipm_2022_103154 crossref_primary_10_3390_s22176419 crossref_primary_10_1016_j_dsp_2021_103134 crossref_primary_10_1007_s11063_024_11609_w crossref_primary_10_1007_s00521_024_10318_8 crossref_primary_10_1016_j_asoc_2022_109077 crossref_primary_10_1109_ACCESS_2025_3558429 crossref_primary_10_3390_s23031307 crossref_primary_10_1088_1742_6596_1961_1_012005 crossref_primary_10_1109_TPAMI_2021_3075846 crossref_primary_10_3233_IDT_240297 crossref_primary_10_3389_fbuil_2020_00097 crossref_primary_10_1109_TGRS_2025_3589986 crossref_primary_10_1016_j_knosys_2023_111318 crossref_primary_10_1016_j_knosys_2021_107313 crossref_primary_10_1016_j_robot_2022_104183 crossref_primary_10_3390_s24010292 crossref_primary_10_3390_buildings14103194 crossref_primary_10_1145_3460474 crossref_primary_10_1109_TMM_2023_3241517 crossref_primary_10_1007_s11042_023_15291_3 crossref_primary_10_1080_01431161_2019_1594439 crossref_primary_10_1007_s11263_025_02388_5 crossref_primary_10_1148_radiol_2019190613 crossref_primary_10_1016_j_eswa_2021_116159 crossref_primary_10_1093_jigpal_jzae026 crossref_primary_10_1109_TCSVT_2021_3121062 crossref_primary_10_1016_j_neucom_2022_01_042 crossref_primary_10_1016_j_neucom_2024_128851 crossref_primary_10_1007_s11042_023_15798_9 crossref_primary_10_1007_s11263_025_02499_z crossref_primary_10_1109_TMM_2021_3073624 crossref_primary_10_1109_TNNLS_2021_3135655 crossref_primary_10_1109_ACCESS_2019_2901118 crossref_primary_10_1016_j_cviu_2021_103257 crossref_primary_10_1007_s11227_025_07246_2 crossref_primary_10_1109_TIM_2022_3229702 crossref_primary_10_1109_TMM_2018_2885228 crossref_primary_10_1109_TCSVT_2024_3443097 crossref_primary_10_1016_j_inffus_2024_102270 crossref_primary_10_1109_TPAMI_2020_3021025 crossref_primary_10_3390_app15105608 crossref_primary_10_1007_s11042_023_17945_8 crossref_primary_10_1007_s41095_021_0252_6 crossref_primary_10_1109_TPAMI_2020_3042192 crossref_primary_10_1007_s10489_022_03845_1 crossref_primary_10_1016_j_jvcir_2020_102762 crossref_primary_10_3390_app13095658 crossref_primary_10_3390_app13095657 crossref_primary_10_1109_TNNLS_2023_3309104 crossref_primary_10_1109_TPAMI_2023_3328298 crossref_primary_10_1016_j_knosys_2024_111433 crossref_primary_10_1007_s11263_025_02564_7 crossref_primary_10_1145_3711680 crossref_primary_10_1016_j_adapen_2025_100212 crossref_primary_10_1109_TCSVT_2022_3220426 crossref_primary_10_1016_j_neucom_2025_130496 crossref_primary_10_1007_s11633_022_1414_4 crossref_primary_10_1016_j_eswa_2024_123526 crossref_primary_10_3390_data7020013 crossref_primary_10_1109_TCSVT_2024_3408256 crossref_primary_10_1109_TCSVT_2020_2990989 crossref_primary_10_1109_TIP_2022_3145158 crossref_primary_10_1109_TIP_2022_3183434 crossref_primary_10_1109_TNNLS_2021_3105284 crossref_primary_10_32604_cmc_2025_060363 crossref_primary_10_1007_s11042_023_17956_5 crossref_primary_10_1109_TPAMI_2024_3411595 crossref_primary_10_1109_TCSVT_2022_3207228 crossref_primary_10_1109_TCSS_2022_3223539 crossref_primary_10_1109_TMM_2023_3338078 crossref_primary_10_1016_j_neunet_2023_08_052 crossref_primary_10_1109_TMM_2024_3381835 crossref_primary_10_1016_j_ipm_2025_104379 crossref_primary_10_1109_TMM_2024_3369968 crossref_primary_10_1111_lnc3_12417 crossref_primary_10_1007_s10489_024_05437_7 crossref_primary_10_1016_j_patrec_2025_01_008 crossref_primary_10_1016_j_cag_2021_04_033 crossref_primary_10_1109_TMM_2020_3031062 crossref_primary_10_1109_TIP_2024_3374644 crossref_primary_10_3390_s22062245 crossref_primary_10_1109_ACCESS_2023_3310544 crossref_primary_10_1016_j_knosys_2023_110280 crossref_primary_10_1007_s11263_024_02127_2 crossref_primary_10_1016_j_patrec_2025_02_014 crossref_primary_10_1109_ACCESS_2024_3360113 crossref_primary_10_1109_TCSS_2023_3264696 crossref_primary_10_1016_j_inffus_2025_103419 crossref_primary_10_3390_electronics14071427 crossref_primary_10_1007_s11263_023_01912_9 crossref_primary_10_1109_TPAMI_2022_3230934 crossref_primary_10_26599_BDMA_2024_9020026 crossref_primary_10_1016_j_inffus_2025_103652 crossref_primary_10_1016_j_cviu_2023_103821 crossref_primary_10_1111_coin_12624 crossref_primary_10_1007_s00138_025_01697_6 crossref_primary_10_1016_j_inffus_2024_102269 crossref_primary_10_1109_TIP_2024_3459800 crossref_primary_10_1016_j_patcog_2019_107075 crossref_primary_10_1145_3618320 crossref_primary_10_1109_TAI_2023_3266183 crossref_primary_10_1109_TCSVT_2021_3068214 crossref_primary_10_1016_j_neucom_2024_128895 crossref_primary_10_1016_j_jvcir_2019_03_004 crossref_primary_10_1038_s41598_022_21149_9 crossref_primary_10_1016_j_neucom_2022_03_071 crossref_primary_10_1109_ACCESS_2025_3602396 crossref_primary_10_1109_ACCESS_2025_3541194 crossref_primary_10_1145_3585010 crossref_primary_10_3390_electronics12245007 crossref_primary_10_1109_TMM_2021_3060948 crossref_primary_10_3390_app131911103 crossref_primary_10_1016_j_knosys_2024_111469 crossref_primary_10_1109_TPAMI_2018_2844853 crossref_primary_10_1007_s11042_022_12860_w crossref_primary_10_1038_s44387_025_00002_0 crossref_primary_10_1007_s11042_023_15078_6 crossref_primary_10_1007_s11042_019_7732_z crossref_primary_10_1109_ACCESS_2021_3074937 crossref_primary_10_1016_j_eswa_2022_118669 crossref_primary_10_1016_j_patcog_2021_108214 crossref_primary_10_1109_ACCESS_2024_3416370 crossref_primary_10_1016_j_patcog_2023_109548 crossref_primary_10_1109_TIP_2021_3093784 crossref_primary_10_1016_j_imavis_2023_104864 crossref_primary_10_1109_TNNLS_2018_2792062 crossref_primary_10_1145_3575865 crossref_primary_10_1007_s11263_025_02397_4 crossref_primary_10_1109_TMM_2021_3090595 crossref_primary_10_1016_j_chb_2023_107997 crossref_primary_10_1016_j_neucom_2023_127052 crossref_primary_10_3390_electronics14010009 crossref_primary_10_1109_TASLP_2021_3130972 crossref_primary_10_1007_s13735_022_00258_1 crossref_primary_10_1007_s11263_023_01976_7 crossref_primary_10_1109_TIP_2022_3148867 crossref_primary_10_1109_TVCG_2021_3114770 crossref_primary_10_1016_j_eswa_2020_113656 crossref_primary_10_1016_j_compeleceng_2024_109626 crossref_primary_10_1016_j_patcog_2022_108980 crossref_primary_10_1145_3447651 crossref_primary_10_1016_j_jvcir_2022_103529 crossref_primary_10_1155_2021_2662064 crossref_primary_10_1016_j_neunet_2021_02_001 crossref_primary_10_1109_TGRS_2024_3360089 crossref_primary_10_1016_j_imavis_2022_104570 crossref_primary_10_1109_TCSVT_2023_3284812 crossref_primary_10_1109_TIP_2020_3029901 crossref_primary_10_1109_LRA_2023_3332554 crossref_primary_10_1007_s10489_022_04022_0 crossref_primary_10_1007_s11432_024_4234_4 crossref_primary_10_1109_TCSVT_2020_2965966 crossref_primary_10_1109_TPAMI_2024_3437288 crossref_primary_10_3390_ijgi10070488 crossref_primary_10_1038_sdata_2018_251 crossref_primary_10_1145_3640014 crossref_primary_10_1007_s11042_023_15321_0 crossref_primary_10_1007_s10462_025_11337_0 crossref_primary_10_1016_j_neucom_2018_02_065 crossref_primary_10_1145_3447685 crossref_primary_10_1109_TFUZZ_2024_3425664 crossref_primary_10_1007_s10489_022_04259_9 crossref_primary_10_1007_s11042_020_09001_6 crossref_primary_10_1109_ACCESS_2021_3131393 crossref_primary_10_1109_TNNLS_2022_3226871 crossref_primary_10_1109_TPAMI_2022_3181116 crossref_primary_10_1145_3564702 crossref_primary_10_1109_TPAMI_2022_3180025 crossref_primary_10_1007_s11063_023_11403_0 crossref_primary_10_1016_j_isprsjprs_2025_05_002 crossref_primary_10_1007_s00521_022_08072_w crossref_primary_10_1016_j_imavis_2023_104840 crossref_primary_10_1108_IJCS_12_2018_0026 crossref_primary_10_1109_ACCESS_2025_3549781 crossref_primary_10_1109_ACCESS_2020_2979742 crossref_primary_10_1007_s11063_022_10980_w crossref_primary_10_1109_TNNLS_2022_3227717 crossref_primary_10_1007_s41060_025_00827_7 crossref_primary_10_1109_TASE_2024_3378010 crossref_primary_10_1016_j_eswa_2024_125769 crossref_primary_10_1109_TGRS_2022_3185678 crossref_primary_10_1007_s10489_022_04202_y crossref_primary_10_1016_j_neucom_2020_12_099 crossref_primary_10_1109_TASE_2024_3368696 crossref_primary_10_1109_TCSVT_2023_3307554 crossref_primary_10_1109_TNNLS_2022_3152990 crossref_primary_10_1109_JSAC_2022_3221990 crossref_primary_10_1007_s11263_022_01692_8 crossref_primary_10_1016_j_neucom_2020_12_029 crossref_primary_10_1109_TMM_2023_3238514 crossref_primary_10_1109_TKDE_2023_3270328 crossref_primary_10_1016_j_inffus_2025_102951 crossref_primary_10_1007_s10032_020_00361_1 crossref_primary_10_1080_23311916_2022_2104333 crossref_primary_10_1016_j_cose_2021_102452 crossref_primary_10_32604_cmc_2024_052618 crossref_primary_10_1016_j_knosys_2022_109861 crossref_primary_10_1109_LRA_2024_3497718 crossref_primary_10_1109_TMM_2021_3128744 crossref_primary_10_1007_s11263_023_01858_y crossref_primary_10_1016_j_neucom_2022_09_136 crossref_primary_10_32604_cmes_2025_059192 crossref_primary_10_1109_LRA_2024_3524910 crossref_primary_10_1109_TMM_2024_3361157 crossref_primary_10_1109_TPAMI_2020_3015894 crossref_primary_10_1145_3554727 crossref_primary_10_1016_j_buildenv_2024_112174 crossref_primary_10_1145_3583682 crossref_primary_10_1007_s10844_022_00695_8 crossref_primary_10_1016_j_neucom_2024_128460 crossref_primary_10_1162_tacl_a_00010 crossref_primary_10_1016_j_cviu_2023_103646 crossref_primary_10_1038_s41598_021_98390_1 crossref_primary_10_1016_j_compag_2025_109908 crossref_primary_10_1016_j_neucom_2022_01_068 crossref_primary_10_1109_JSTSP_2022_3180220 crossref_primary_10_1109_TMM_2024_3521844 crossref_primary_10_1016_j_patcog_2021_108485 crossref_primary_10_1017_S1351324918000104 crossref_primary_10_1007_s11042_023_17577_y crossref_primary_10_1109_TMM_2023_3277279 crossref_primary_10_1007_s13218_021_00719_5 crossref_primary_10_1109_TCSVT_2024_3525158 crossref_primary_10_1007_s10462_022_10258_6 crossref_primary_10_32604_cmc_2023_038264 crossref_primary_10_1007_s10462_023_10488_2 crossref_primary_10_1145_3514250 crossref_primary_10_1016_j_patcog_2022_108545 crossref_primary_10_1109_ACCESS_2022_3145465 crossref_primary_10_3233_AIC_210172 crossref_primary_10_1109_ACCESS_2025_3572529 crossref_primary_10_1016_j_displa_2022_102329 crossref_primary_10_1007_s11263_024_02343_w crossref_primary_10_1016_j_eswa_2025_126943 crossref_primary_10_1016_j_knosys_2021_107347 crossref_primary_10_1016_j_patrec_2021_12_013 crossref_primary_10_1109_TIP_2022_3205212 crossref_primary_10_3390_s22186816 crossref_primary_10_1016_j_biocon_2019_01_023 crossref_primary_10_1016_j_patcog_2025_112013 crossref_primary_10_1145_3717612 crossref_primary_10_1007_s41060_025_00836_6 crossref_primary_10_1109_TNNLS_2021_3086066 crossref_primary_10_1145_3374217 crossref_primary_10_1016_j_asoc_2024_111395 crossref_primary_10_1109_TCSVT_2023_3281507 crossref_primary_10_1109_TPAMI_2023_3243306 crossref_primary_10_1109_TCYB_2020_3015084 crossref_primary_10_1016_j_imavis_2021_104280 crossref_primary_10_1016_j_imavis_2021_104281 crossref_primary_10_1109_TPAMI_2023_3275585 crossref_primary_10_3389_fpls_2024_1452551 crossref_primary_10_1109_ACCESS_2025_3605490 crossref_primary_10_1145_3514041 crossref_primary_10_1016_j_engappai_2023_107123 crossref_primary_10_1109_LRA_2020_2969921 crossref_primary_10_1109_ACCESS_2023_3334791 crossref_primary_10_1109_ACCESS_2024_3521032 crossref_primary_10_1109_TMM_2025_3557703 crossref_primary_10_1016_j_iswa_2025_200578 crossref_primary_10_1109_TETCI_2024_3518613 crossref_primary_10_3390_app14031169 crossref_primary_10_1016_j_jml_2025_104624 crossref_primary_10_1017_S0263574722001205 crossref_primary_10_1093_jcde_qwac084 crossref_primary_10_1007_s10489_022_04355_w crossref_primary_10_1109_ACCESS_2024_3493193 crossref_primary_10_1109_TIP_2020_2992888 crossref_primary_10_1145_3701031 crossref_primary_10_1016_j_ipm_2019_102152 crossref_primary_10_1109_TASLP_2020_3010650 crossref_primary_10_1016_j_knosys_2025_113986 crossref_primary_10_1155_2021_9922697 crossref_primary_10_1016_j_neucom_2025_129642 crossref_primary_10_1016_j_patcog_2024_111096 crossref_primary_10_3390_app12147053 crossref_primary_10_1109_TCYB_2020_3041595 crossref_primary_10_3390_s22239399 crossref_primary_10_1109_ACCESS_2021_3113781 crossref_primary_10_1016_j_inffus_2021_02_022 crossref_primary_10_3390_s25113252 crossref_primary_10_1007_s41060_025_00835_7 crossref_primary_10_1109_TCSVT_2022_3183648 crossref_primary_10_3389_frai_2023_1067125 crossref_primary_10_1007_s11263_023_01885_9 crossref_primary_10_1109_TPAMI_2025_3562422 crossref_primary_10_1007_s10844_022_00722_8 crossref_primary_10_1109_JSAC_2022_3221950 crossref_primary_10_1155_2022_2315341 crossref_primary_10_1007_s10115_025_02384_8 crossref_primary_10_7717_peerj_cs_353 crossref_primary_10_1016_j_artmed_2022_102346 crossref_primary_10_1016_j_jml_2023_104459 crossref_primary_10_1109_TIP_2024_3485518 crossref_primary_10_1109_ACCESS_2025_3554728 crossref_primary_10_1007_s00530_023_01175_x crossref_primary_10_1007_s11263_025_02524_1 crossref_primary_10_1016_j_patcog_2020_107806 crossref_primary_10_1007_s00530_025_01681_0 crossref_primary_10_1016_j_neucom_2020_03_098 crossref_primary_10_1109_TCSVT_2024_3399933 crossref_primary_10_1007_s11263_025_02502_7 crossref_primary_10_1109_TIP_2022_3226624 crossref_primary_10_1109_ACCESS_2023_3338548 crossref_primary_10_1109_ACCESS_2021_3101789 crossref_primary_10_1186_s40648_020_00181_2 crossref_primary_10_1007_s00530_022_01012_7 crossref_primary_10_1162_tacl_a_00566 crossref_primary_10_1016_j_patcog_2020_107812 crossref_primary_10_1109_TCSVT_2023_3251395 crossref_primary_10_1016_j_knosys_2025_113884 crossref_primary_10_1016_j_neucom_2025_129867 crossref_primary_10_1016_j_patrec_2023_11_023 crossref_primary_10_1109_TPAMI_2022_3148210 crossref_primary_10_3233_SW_243660 crossref_primary_10_3390_app12188947 crossref_primary_10_32604_cmc_2023_036564 crossref_primary_10_1109_JSAC_2025_3559115 crossref_primary_10_3390_info16030203 crossref_primary_10_3390_jimaging7080125 crossref_primary_10_1007_s00521_024_09914_5 crossref_primary_10_3390_jimaging7080123 crossref_primary_10_1002_rob_21826 crossref_primary_10_1109_JSTARS_2025_3571939 crossref_primary_10_3390_math11173751 crossref_primary_10_1016_j_sigpro_2025_110177 crossref_primary_10_1016_j_neucom_2020_02_041 crossref_primary_10_1007_s43681_024_00517_3 crossref_primary_10_3390_app13074571 crossref_primary_10_1007_s11263_024_02144_1 crossref_primary_10_1007_s00146_020_01091_y crossref_primary_10_1016_j_neucom_2024_128042 crossref_primary_10_1109_TIP_2022_3220051 crossref_primary_10_1109_TKDE_2024_3384270 crossref_primary_10_1017_S1351324918000086 crossref_primary_10_1016_j_patcog_2024_111176 crossref_primary_10_1109_TPAMI_2025_3581174 crossref_primary_10_1109_TKDE_2024_3399746 crossref_primary_10_1007_s11548_024_03257_1 crossref_primary_10_1109_TMM_2022_3219642 crossref_primary_10_1145_3282469 crossref_primary_10_3390_s20174897 crossref_primary_10_1109_TPAMI_2024_3420239 crossref_primary_10_3389_fmed_2022_1070072 crossref_primary_10_1016_j_neucom_2025_130827 crossref_primary_10_1109_TPAMI_2022_3198965 crossref_primary_10_1007_s00521_024_10211_4 crossref_primary_10_1007_s11042_024_20271_2 crossref_primary_10_1109_LRA_2024_3390588 crossref_primary_10_1109_TMM_2018_2812605 crossref_primary_10_1109_TPAMI_2022_3173208 crossref_primary_10_1109_TCSVT_2022_3181490 crossref_primary_10_1109_TPAMI_2021_3137605 crossref_primary_10_3390_s21237982 crossref_primary_10_1109_TSMC_2023_3319964 crossref_primary_10_1007_s00530_021_00864_9 crossref_primary_10_1145_3548688 crossref_primary_10_1007_s41095_020_0158_8 crossref_primary_10_1016_j_patcog_2017_05_015 crossref_primary_10_1007_s11063_022_10766_0 crossref_primary_10_3389_fnbot_2020_00043 crossref_primary_10_1016_j_neucom_2021_03_104 crossref_primary_10_1007_s42979_020_00238_4 crossref_primary_10_1109_JIOT_2024_3492066 crossref_primary_10_1109_TMI_2019_2893944 crossref_primary_10_32604_cmc_2023_037463 crossref_primary_10_1109_TIP_2022_3192709 crossref_primary_10_1007_s00371_024_03469_1 crossref_primary_10_3389_frai_2023_1084740 crossref_primary_10_1109_TIP_2021_3096333 crossref_primary_10_1007_s11263_020_01291_5 crossref_primary_10_1016_j_procs_2024_10_207 crossref_primary_10_1007_s11042_023_14344_x crossref_primary_10_1016_j_neucom_2022_05_003 crossref_primary_10_1109_TIP_2024_3358726 crossref_primary_10_1007_s00530_022_01010_9 crossref_primary_10_1145_3722449_3722467 crossref_primary_10_1109_TIP_2023_3270040 crossref_primary_10_1007_s11263_022_01624_6 crossref_primary_10_1038_s41467_024_48114_6 crossref_primary_10_1145_3451390 crossref_primary_10_1109_TPAMI_2023_3275156 crossref_primary_10_1016_j_patrec_2025_07_020 crossref_primary_10_1145_3706423 crossref_primary_10_3390_s24134329 crossref_primary_10_1109_TIP_2022_3177318 crossref_primary_10_1145_3362065 crossref_primary_10_1016_j_neunet_2021_07_019 crossref_primary_10_1109_TPAMI_2019_2894139 crossref_primary_10_1145_3538649 crossref_primary_10_1109_TPAMI_2024_3479776 crossref_primary_10_1016_j_neucom_2024_128082 crossref_primary_10_1109_TIP_2024_3514352 crossref_primary_10_3390_e25040553 crossref_primary_10_1016_j_eswa_2023_119773 crossref_primary_10_1109_TCSVT_2021_3130197 crossref_primary_10_1007_s11042_023_14333_0 crossref_primary_10_1142_S1469026824500342 crossref_primary_10_1177_0278364917713117 crossref_primary_10_1016_j_jvcir_2023_103923 crossref_primary_10_1007_s42452_025_07045_7 crossref_primary_10_1109_TAFFC_2024_3396144 crossref_primary_10_1016_j_isprsjprs_2024_05_001 crossref_primary_10_1109_TPAMI_2025_3537283 crossref_primary_10_3390_jimaging10120300 crossref_primary_10_3390_s20247080 crossref_primary_10_1007_s11265_021_01664_0 crossref_primary_10_1038_s41598_023_48916_6 crossref_primary_10_1016_j_eswa_2025_128857 crossref_primary_10_1145_3580366 crossref_primary_10_1016_j_neucom_2023_126605 crossref_primary_10_1016_j_neucom_2021_10_121 crossref_primary_10_1109_TCSVT_2024_3444895 crossref_primary_10_1145_3634918 crossref_primary_10_1109_TCYB_2019_2956975 crossref_primary_10_1016_j_eswa_2023_122955 crossref_primary_10_1109_ACCESS_2024_3486153 crossref_primary_10_1007_s00530_023_01162_2 crossref_primary_10_1109_ACCESS_2022_3154423 crossref_primary_10_1109_TPAMI_2017_2723009 crossref_primary_10_1007_s00371_022_02695_9 crossref_primary_10_1109_TPAMI_2024_3386891 crossref_primary_10_1017_dsj_2022_7 crossref_primary_10_1109_TPAMI_2022_3148470 crossref_primary_10_1007_s11042_023_15967_w crossref_primary_10_1007_s13735_023_00283_8 crossref_primary_10_1007_s11263_020_01316_z crossref_primary_10_1109_ACCESS_2022_3186471 crossref_primary_10_1109_TCSVT_2023_3235704 crossref_primary_10_1016_j_cviu_2021_103333 crossref_primary_10_3390_electronics14061158 crossref_primary_10_1145_3723879 crossref_primary_10_1109_TPAMI_2022_3210780 crossref_primary_10_1016_j_patrec_2021_01_024 crossref_primary_10_1109_TIP_2021_3106813 crossref_primary_10_1007_s10462_022_10151_2 crossref_primary_10_1016_j_inffus_2022_09_012 crossref_primary_10_7717_peerj_cs_2639 crossref_primary_10_3233_SW_233469 crossref_primary_10_1109_TCSVT_2023_3310296 crossref_primary_10_1109_TPAMI_2018_2799846 crossref_primary_10_1145_3617592 crossref_primary_10_1007_s11042_018_6389_3 crossref_primary_10_1007_s11263_023_01817_7 crossref_primary_10_1007_s10791_023_09422_5 crossref_primary_10_1109_ACCESS_2021_3090981 crossref_primary_10_1109_ACCESS_2023_3268744 crossref_primary_10_1109_TPAMI_2018_2890628 crossref_primary_10_1109_TCSVT_2024_3497997 crossref_primary_10_1145_3316767 crossref_primary_10_1007_s00371_024_03343_0 crossref_primary_10_1109_TNNLS_2020_2979270 crossref_primary_10_1109_TMM_2023_3318289 crossref_primary_10_1109_TNNLS_2019_2945133 crossref_primary_10_1016_j_robot_2018_12_009 crossref_primary_10_1016_j_patrec_2023_05_035 crossref_primary_10_1007_s11263_022_01622_8 crossref_primary_10_1007_s00236_021_00400_2 crossref_primary_10_1007_s11704_023_2525_y crossref_primary_10_1007_s11063_021_10618_3 crossref_primary_10_1016_j_eswa_2025_126692 crossref_primary_10_1177_30504554251319445 crossref_primary_10_1016_j_engappai_2025_110358 crossref_primary_10_3390_app13137868 crossref_primary_10_1007_s11042_019_08021_1 crossref_primary_10_1016_j_cviu_2022_103617 crossref_primary_10_1109_TMM_2025_3535303 crossref_primary_10_1145_3649503 crossref_primary_10_1109_TMM_2023_3237166 crossref_primary_10_1038_s41586_020_2669_y crossref_primary_10_1007_s11633_022_1369_5 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_1016_j_patcog_2025_111641 crossref_primary_10_3390_s25103072 crossref_primary_10_1016_j_aei_2023_101889 crossref_primary_10_1109_TPAMI_2020_3029008 crossref_primary_10_1109_TPAMI_2023_3261659 crossref_primary_10_1109_TMM_2023_3237164 crossref_primary_10_1007_s11548_023_03022_w crossref_primary_10_1007_s41745_019_0099_3 crossref_primary_10_1016_j_jksuci_2023_03_021 crossref_primary_10_1007_s11042_022_12264_w crossref_primary_10_1093_cercor_bhac117 crossref_primary_10_1109_TCSVT_2022_3155795 crossref_primary_10_1109_ACCESS_2024_3467062 crossref_primary_10_1016_j_neucom_2022_11_003 crossref_primary_10_1631_FITEE_2400250 crossref_primary_10_1007_s12559_024_10345_6 crossref_primary_10_1145_3186549_3186562 crossref_primary_10_3390_su142013236 crossref_primary_10_1007_s13735_019_00188_5 crossref_primary_10_3390_s22093433 crossref_primary_10_1109_TPAMI_2024_3402143 crossref_primary_10_1016_j_cviu_2023_103901 crossref_primary_10_1109_TMM_2022_3185900 crossref_primary_10_1016_j_eswa_2025_126478 crossref_primary_10_1109_TPAMI_2021_3114582 crossref_primary_10_1109_TPAMI_2024_3507000 crossref_primary_10_1016_j_cag_2021_04_003 crossref_primary_10_1016_j_isprsjprs_2024_06_002 crossref_primary_10_1007_s00500_020_05539_7 crossref_primary_10_1016_j_neucom_2019_08_042 crossref_primary_10_1109_TIP_2020_3011807 crossref_primary_10_1109_TMM_2022_3216770 crossref_primary_10_1109_LRA_2024_3477129 crossref_primary_10_1145_3472291 crossref_primary_10_1007_s00530_025_01696_7 crossref_primary_10_3390_robotics12040114 crossref_primary_10_1145_3473140 crossref_primary_10_1007_s11263_025_02577_2 crossref_primary_10_1007_s11263_021_01546_9 crossref_primary_10_1016_j_inffus_2025_103124 crossref_primary_10_1007_s42979_025_04277_7 crossref_primary_10_1109_TMM_2020_3026892 crossref_primary_10_1016_j_knosys_2024_112912 crossref_primary_10_1109_TIP_2022_3224872 crossref_primary_10_1109_TKDE_2024_3373500 crossref_primary_10_1007_s10489_021_02304_7 crossref_primary_10_3390_make5010018 crossref_primary_10_1016_j_cpet_2021_09_010 crossref_primary_10_1016_j_autcon_2022_104535 crossref_primary_10_1016_j_patcog_2020_107680 crossref_primary_10_1016_j_neucom_2023_126684 crossref_primary_10_1007_s12652_021_03075_2 crossref_primary_10_1016_j_neucom_2023_126440 crossref_primary_10_1016_j_knosys_2020_106504 crossref_primary_10_32604_cmc_2023_037861 crossref_primary_10_1155_2022_5884625 crossref_primary_10_1007_s42979_024_02791_8 crossref_primary_10_1007_s00371_024_03563_4 crossref_primary_10_1080_2150704X_2020_1722330 crossref_primary_10_1016_j_engappai_2024_109040 crossref_primary_10_1109_TPAMI_2021_3078577 crossref_primary_10_1007_s11263_020_01295_1 crossref_primary_10_3390_math10142525 crossref_primary_10_1109_TMM_2021_3097502 crossref_primary_10_1109_TMM_2021_3109430 crossref_primary_10_1145_3580501 crossref_primary_10_1016_j_knosys_2024_112925 crossref_primary_10_1016_j_eswa_2025_129525 crossref_primary_10_1109_TPAMI_2023_3291237 crossref_primary_10_3233_SW_212959 crossref_primary_10_1007_s11633_022_1410_8 crossref_primary_10_1109_TPAMI_2024_3357503 crossref_primary_10_1145_3394955 crossref_primary_10_1155_2021_5538927 crossref_primary_10_1145_3615355 crossref_primary_10_1145_3590773 crossref_primary_10_1109_TNNLS_2020_3045034 crossref_primary_10_1007_s11063_022_10844_3 crossref_primary_10_1016_j_imavis_2024_105105 crossref_primary_10_1038_s41467_025_62385_7 crossref_primary_10_1109_TPAMI_2024_3413013 crossref_primary_10_3390_electronics9111882 crossref_primary_10_1145_3545572 crossref_primary_10_1007_s00371_024_03608_8 crossref_primary_10_1016_j_ipm_2022_103106 crossref_primary_10_1142_S0219467825500445 crossref_primary_10_1109_TNNLS_2022_3159990 crossref_primary_10_1049_ipr2_13124 crossref_primary_10_1109_TCSVT_2023_3303945 crossref_primary_10_1109_TMM_2022_3217414 crossref_primary_10_1007_s11042_021_11293_1 crossref_primary_10_1007_s11063_022_11106_y crossref_primary_10_1016_j_artmed_2023_102611 crossref_primary_10_3390_robotics12060158 crossref_primary_10_1016_j_procir_2022_05_084 crossref_primary_10_1109_LSP_2020_3025128 crossref_primary_10_1038_s41467_019_11012_3 crossref_primary_10_1109_TCSVT_2022_3181604 crossref_primary_10_1007_s10032_021_00367_3 crossref_primary_10_1016_j_patcog_2020_107427 crossref_primary_10_3390_biomimetics7030127 crossref_primary_10_1109_TPAMI_2019_2956930 crossref_primary_10_1109_TCYB_2019_2931042 crossref_primary_10_1109_TMM_2024_3358696 crossref_primary_10_1016_j_media_2025_103644 crossref_primary_10_1016_j_autcon_2025_106490 crossref_primary_10_1109_TIP_2023_3311917 crossref_primary_10_1109_TMM_2022_3154149 crossref_primary_10_1109_TMM_2022_3190686 crossref_primary_10_1016_j_neucom_2019_09_055 crossref_primary_10_3390_rs14133118 crossref_primary_10_1016_j_patrec_2021_02_015 crossref_primary_10_1109_ACCESS_2025_3540388 crossref_primary_10_1016_j_cviu_2019_05_001 crossref_primary_10_1145_3522689 crossref_primary_10_1109_TCSVT_2023_3243725 crossref_primary_10_1109_TGRS_2023_3250471 crossref_primary_10_7717_peerj_cs_974 crossref_primary_10_1109_TNNLS_2022_3183827 crossref_primary_10_1016_j_neucom_2022_04_020 crossref_primary_10_1007_s12369_020_00657_6 crossref_primary_10_1109_ACCESS_2025_3551267 crossref_primary_10_3390_info11100479 crossref_primary_10_1016_j_eswa_2025_129784 crossref_primary_10_1109_TPAMI_2023_3329339 crossref_primary_10_1109_TPAMI_2024_3387349 crossref_primary_10_1126_science_ade7981 crossref_primary_10_15625_1813_9663_20929 crossref_primary_10_3390_electronics10030325 crossref_primary_10_1109_TIP_2021_3123553 crossref_primary_10_1109_TMM_2022_3192729 crossref_primary_10_1109_TPAMI_2024_3366154 crossref_primary_10_1016_j_eswa_2023_121391 crossref_primary_10_1109_TPAMI_2024_3389030 crossref_primary_10_1007_s10489_024_05416_y crossref_primary_10_1007_s41109_020_00282_2 crossref_primary_10_3390_ijgi9060354 crossref_primary_10_1007_s11263_020_01353_8 crossref_primary_10_1109_TIP_2021_3097180 crossref_primary_10_1109_TPAMI_2024_3462996 crossref_primary_10_1109_TMM_2023_3265816 crossref_primary_10_1109_TMM_2020_3046855 crossref_primary_10_1109_TMM_2020_3024822 crossref_primary_10_1145_3585388 crossref_primary_10_1109_TCSVT_2023_3282349 crossref_primary_10_1016_j_eswa_2025_128344 crossref_primary_10_1016_j_neucom_2023_03_020 crossref_primary_10_1109_TPAMI_2024_3438887 crossref_primary_10_1109_TPAMI_2025_3571946 crossref_primary_10_1109_TCSVT_2021_3085907 crossref_primary_10_1007_s44163_025_00482_8 crossref_primary_10_1109_TAFFC_2024_3428704 crossref_primary_10_1109_TCSVT_2020_3032650 crossref_primary_10_1016_j_jfranklin_2024_106942 crossref_primary_10_1016_j_neucom_2025_131021 crossref_primary_10_1109_TMM_2023_3261443 crossref_primary_10_12677_sa_2025_142041 crossref_primary_10_1631_FITEE_2100116 crossref_primary_10_1145_3532627 crossref_primary_10_1145_3550278 crossref_primary_10_1016_j_autcon_2022_104580 crossref_primary_10_1016_j_cviu_2023_103721 crossref_primary_10_1007_s00530_022_00962_2 crossref_primary_10_1007_s00530_024_01470_1 crossref_primary_10_1109_TASE_2025_3593344 crossref_primary_10_1007_s10846_024_02124_0 crossref_primary_10_1109_TCSVT_2023_3297842 crossref_primary_10_1016_j_eswa_2024_123847 crossref_primary_10_1007_s11042_023_17594_x crossref_primary_10_1145_3657631 crossref_primary_10_1109_ACCESS_2023_3299877 crossref_primary_10_1016_j_neucom_2022_10_079 crossref_primary_10_1016_j_compbiomed_2023_106646 crossref_primary_10_3390_app10196942 crossref_primary_10_1007_s13735_022_00228_7 crossref_primary_10_1016_j_compeleceng_2024_110000 crossref_primary_10_1109_TCSVT_2024_3392619 crossref_primary_10_1109_TKDE_2022_3224228 crossref_primary_10_1007_s00138_025_01683_y crossref_primary_10_1016_j_eswa_2023_121168 crossref_primary_10_1109_TPAMI_2023_3286760 crossref_primary_10_1109_JAS_2022_105734 crossref_primary_10_1016_j_neucom_2019_02_065 crossref_primary_10_1145_3673902 crossref_primary_10_1007_s13369_024_09067_6 crossref_primary_10_1109_LRA_2023_3320014 crossref_primary_10_1016_j_eswa_2024_125817 crossref_primary_10_3390_systems13010038 crossref_primary_10_1007_s00521_022_07726_z crossref_primary_10_1007_s12369_024_01157_7 crossref_primary_10_1109_LGRS_2020_3038569 crossref_primary_10_1016_j_imavis_2024_105293 crossref_primary_10_1016_j_eswa_2025_129216 crossref_primary_10_1016_j_imavis_2021_104126 crossref_primary_10_1080_01969722_2021_2018543 crossref_primary_10_1016_j_rse_2024_114573 crossref_primary_10_1109_TMM_2025_3557624 crossref_primary_10_1016_j_patcog_2023_110221 crossref_primary_10_1108_RIA_09_2022_0226 crossref_primary_10_1145_3505244 crossref_primary_10_1007_s11548_024_03141_y crossref_primary_10_1109_TMM_2018_2888822 crossref_primary_10_1007_s00530_024_01287_y crossref_primary_10_1016_j_neucom_2024_128969 crossref_primary_10_1109_TMM_2022_3233258 crossref_primary_10_1016_j_patcog_2020_107359 crossref_primary_10_1016_j_engappai_2025_111984 crossref_primary_10_1007_s40747_025_01823_x crossref_primary_10_3390_rs11161901 crossref_primary_10_1145_3716846 crossref_primary_10_1109_TMM_2022_3214989 crossref_primary_10_38124_ijisrt_IJISRT24MAR1602 crossref_primary_10_1038_s41467_025_61040_5 crossref_primary_10_1016_j_datak_2024_102285 crossref_primary_10_1145_3458281 crossref_primary_10_1016_j_imavis_2024_105283 crossref_primary_10_1109_TCSVT_2023_3336371 crossref_primary_10_1109_TPAMI_2021_3119754 crossref_primary_10_1016_j_neunet_2024_106642 crossref_primary_10_1109_TPAMI_2024_3369699 crossref_primary_10_1109_TMM_2020_3011317 crossref_primary_10_1016_j_robot_2022_104294 crossref_primary_10_1007_s00530_024_01604_5 crossref_primary_10_1007_s12559_019_09686_4 crossref_primary_10_1109_LRA_2022_3157567 crossref_primary_10_1007_s11263_025_02369_8 crossref_primary_10_1109_ACCESS_2022_3213652 crossref_primary_10_3390_electronics14040816 crossref_primary_10_1109_TCSVT_2019_2953692 crossref_primary_10_1007_s10489_025_06717_6 crossref_primary_10_1016_j_aei_2024_102678 crossref_primary_10_1016_j_neucom_2023_126287 crossref_primary_10_1145_3565572 crossref_primary_10_1007_s00371_025_03981_y crossref_primary_10_1016_j_aei_2024_102671 crossref_primary_10_1007_s12559_019_09697_1 crossref_primary_10_1145_3329188 crossref_primary_10_1016_j_eswa_2025_129479 crossref_primary_10_1007_s10462_020_09832_7 crossref_primary_10_3390_robotics13080112 crossref_primary_10_1016_j_cviu_2017_08_006 crossref_primary_10_1016_j_knosys_2024_111550 crossref_primary_10_1145_3563390 crossref_primary_10_1016_j_array_2025_100394 crossref_primary_10_1109_TPAMI_2023_3268066 crossref_primary_10_1145_3656580 crossref_primary_10_1016_j_media_2020_101872 crossref_primary_10_1007_s10514_023_10098_5 crossref_primary_10_1109_JRFID_2022_3207017 crossref_primary_10_1109_TIM_2024_3413183 crossref_primary_10_1109_TMM_2024_3395901 crossref_primary_10_1016_j_patrec_2018_04_031 crossref_primary_10_1007_s00371_022_02524_z crossref_primary_10_1109_TIP_2021_3076556 crossref_primary_10_1016_j_cviu_2024_104071 crossref_primary_10_1016_j_neunet_2022_05_008 crossref_primary_10_1155_2021_6383646 crossref_primary_10_1109_TCSVT_2022_3164230 crossref_primary_10_1109_TNNLS_2022_3192475 crossref_primary_10_3390_computers13120305 crossref_primary_10_1109_TIP_2021_3113563 crossref_primary_10_1109_TNNLS_2022_3196831 crossref_primary_10_1016_j_patcog_2025_112186 crossref_primary_10_1016_j_neucom_2023_126274 crossref_primary_10_1016_j_patcog_2025_112183 crossref_primary_10_1007_s11063_019_09997_5 crossref_primary_10_1109_TMM_2020_3033125 crossref_primary_10_1016_j_patrec_2022_12_011 crossref_primary_10_1109_TPAMI_2019_2943456 crossref_primary_10_1109_TMM_2024_3369863 crossref_primary_10_3390_e26100876 crossref_primary_10_1155_2022_9400999 crossref_primary_10_3390_buildings13020377 crossref_primary_10_1109_ACCESS_2024_3482107 crossref_primary_10_1016_j_eswa_2025_129250 crossref_primary_10_1016_j_patcog_2024_110708 crossref_primary_10_1145_3439734 crossref_primary_10_1007_s11831_024_10190_8 crossref_primary_10_1109_TMM_2023_3328189 crossref_primary_10_1109_TCSVT_2023_3343520 crossref_primary_10_1145_3386725 crossref_primary_10_1145_3604284 crossref_primary_10_1109_ACCESS_2021_3129782 crossref_primary_10_1007_s11042_020_09865_8 crossref_primary_10_1109_TIP_2023_3318949 crossref_primary_10_1109_LSP_2022_3178899 crossref_primary_10_1109_TCSVT_2023_3324595 crossref_primary_10_1109_TCSVT_2024_3364153 crossref_primary_10_1016_j_imavis_2021_104327 crossref_primary_10_1016_j_imavis_2021_104328 crossref_primary_10_3390_electronics9122038 crossref_primary_10_1016_j_patcog_2021_108300 crossref_primary_10_1109_TPAMI_2020_3004830 crossref_primary_10_1109_TNNLS_2023_3333542 crossref_primary_10_1109_ACCESS_2020_3024639 crossref_primary_10_1109_TCSVT_2025_3528657 crossref_primary_10_1109_TASLP_2021_3120644 crossref_primary_10_1016_j_cviu_2024_104095 crossref_primary_10_1016_j_patcog_2022_108848 crossref_primary_10_1109_TKDE_2020_2998805 crossref_primary_10_1016_j_neucom_2020_04_066 crossref_primary_10_1016_j_neucom_2024_127686 crossref_primary_10_1109_TMM_2023_3331583 crossref_primary_10_3233_JCM_226762 crossref_primary_10_1007_s11042_024_20235_6 crossref_primary_10_1016_j_neunet_2024_106200 crossref_primary_10_1049_cvi2_12087 crossref_primary_10_1007_s00766_021_00366_0 crossref_primary_10_1109_TIP_2020_3038354 crossref_primary_10_1145_3689637 crossref_primary_10_1016_j_eswa_2024_124785 crossref_primary_10_1016_j_patcog_2023_109420 crossref_primary_10_1049_cvi2_12099 crossref_primary_10_4018_IJSWIS_309421 crossref_primary_10_1109_TMM_2022_3173131 crossref_primary_10_1109_TIP_2023_3310332 crossref_primary_10_1016_j_asoc_2025_113310 crossref_primary_10_1109_JIOT_2022_3158088 crossref_primary_10_1109_TCSS_2023_3244068 crossref_primary_10_1109_ACCESS_2021_3070212 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_1016_j_neunet_2024_106813 crossref_primary_10_1109_ACCESS_2020_3048693 crossref_primary_10_1007_s40747_023_01170_9 crossref_primary_10_1109_TPAMI_2020_2973983 crossref_primary_10_1049_cvi2_12093 crossref_primary_10_1145_3577925 crossref_primary_10_1007_s10489_022_04010_4 crossref_primary_10_1109_TMM_2022_3160060 crossref_primary_10_1109_TNNLS_2019_2899045 crossref_primary_10_1038_s41598_025_11237_x crossref_primary_10_1109_TPAMI_2023_3346405 crossref_primary_10_1109_TPAMI_2024_3429301 crossref_primary_10_1007_s00521_024_09693_z crossref_primary_10_1007_s11063_020_10314_8 crossref_primary_10_1016_j_knosys_2021_108107 crossref_primary_10_1007_s11263_020_01300_7 crossref_primary_10_1109_TCSVT_2022_3162650 crossref_primary_10_1109_TCSVT_2023_3278492 crossref_primary_10_1109_TNNLS_2024_3418857 crossref_primary_10_1109_TPAMI_2023_3332246 crossref_primary_10_1145_3728635 crossref_primary_10_1007_s00354_024_00243_8 crossref_primary_10_3390_app13127115 crossref_primary_10_1016_j_imavis_2021_104194 crossref_primary_10_1016_j_neucom_2025_129345 crossref_primary_10_1109_TIFS_2024_3360880 crossref_primary_10_1016_j_imavis_2022_104451 crossref_primary_10_1016_j_imavis_2023_104751 crossref_primary_10_1016_j_patcog_2025_112381 crossref_primary_10_1109_TMM_2020_2976552 crossref_primary_10_1145_3383465 crossref_primary_10_1145_3295748 crossref_primary_10_1007_s00138_022_01361_3 crossref_primary_10_1088_1742_6596_2003_1_012001 crossref_primary_10_7746_jkros_2023_18_4_436 crossref_primary_10_1109_TCSVT_2024_3508752 crossref_primary_10_1007_s10489_022_03317_6 crossref_primary_10_1142_S0218126625501142 crossref_primary_10_1109_ACCESS_2023_3255887 crossref_primary_10_1109_TNNLS_2018_2813306 crossref_primary_10_1145_3306346_3322941 crossref_primary_10_1109_TAI_2022_3194869 crossref_primary_10_1145_3558391 crossref_primary_10_1016_j_neucom_2022_07_028 crossref_primary_10_1109_TMM_2021_3093725 crossref_primary_10_1016_j_compbiomed_2025_110729 crossref_primary_10_1145_3538533 crossref_primary_10_1007_s10994_024_06610_2 crossref_primary_10_1016_j_patcog_2021_108358 crossref_primary_10_1109_TCSVT_2022_3231437 crossref_primary_10_1109_ACCESS_2022_3229654 crossref_primary_10_3390_electronics9030380 crossref_primary_10_1016_j_neunet_2022_01_011 crossref_primary_10_1016_j_eswa_2024_123231 crossref_primary_10_1109_TNNLS_2024_3458898 crossref_primary_10_1016_j_patcog_2023_109634 crossref_primary_10_1016_j_cviu_2017_05_001 crossref_primary_10_1111_cgf_14683 crossref_primary_10_1016_j_jag_2024_103672 crossref_primary_10_1111_cgf_14687 crossref_primary_10_1007_s42979_022_01322_7 crossref_primary_10_1109_TMM_2022_3142413 crossref_primary_10_1016_j_eswa_2022_118998 crossref_primary_10_3390_s22031045 crossref_primary_10_1016_j_patcog_2021_108106 crossref_primary_10_1109_TIP_2023_3266887 crossref_primary_10_1109_TCSVT_2021_3067449 crossref_primary_10_1016_j_neucom_2019_03_035 crossref_primary_10_1109_TCSVT_2020_3030656 crossref_primary_10_1007_s11432_023_4230_2 crossref_primary_10_1016_j_ipm_2020_102432 crossref_primary_10_1007_s13735_022_00246_5 crossref_primary_10_1109_TCSVT_2021_3051277 crossref_primary_10_1098_rsfs_2018_0020 crossref_primary_10_1016_j_cviu_2019_102829 crossref_primary_10_1038_s41551_025_01497_3 crossref_primary_10_1109_TMM_2023_3314153 crossref_primary_10_1109_TPAMI_2022_3178485 crossref_primary_10_1109_ACCESS_2020_2975093 crossref_primary_10_1109_TPAMI_2018_2883466 crossref_primary_10_1007_s00371_018_1566_y crossref_primary_10_1007_s11263_020_01355_6 crossref_primary_10_3233_IDT_24027 crossref_primary_10_1007_s00530_024_01481_y crossref_primary_10_1109_JPROC_2024_3525147 crossref_primary_10_1016_j_displa_2022_102210 crossref_primary_10_1109_TCSS_2024_3402270 crossref_primary_10_1109_TPAMI_2023_3285009 crossref_primary_10_1109_TPAMI_2020_2992222 crossref_primary_10_1016_j_patrec_2018_02_013 crossref_primary_10_1016_j_heliyon_2024_e36272 crossref_primary_10_1007_s10489_022_03559_4 crossref_primary_10_1016_j_patcog_2025_112348 crossref_primary_10_1109_TMM_2024_3521729 crossref_primary_10_1109_TIP_2019_2952085 crossref_primary_10_3390_fi16070247 crossref_primary_10_1016_j_patcog_2021_108367 crossref_primary_10_1109_TVCG_2023_3340679 crossref_primary_10_1109_TMM_2019_2951226 crossref_primary_10_1109_TCSVT_2023_3317447 crossref_primary_10_1016_j_patcog_2024_110900 crossref_primary_10_1109_ACCESS_2019_2908035 crossref_primary_10_1109_TPAMI_2024_3442301 crossref_primary_10_1016_j_inffus_2019_08_009 crossref_primary_10_1007_s11042_022_13793_0 crossref_primary_10_1177_18479790221078130 crossref_primary_10_1016_j_inffus_2022_11_011 crossref_primary_10_1007_s11263_025_02365_y crossref_primary_10_1109_TMM_2022_3169061 crossref_primary_10_1109_ACCESS_2023_3283495 crossref_primary_10_1109_TIP_2023_3263110 crossref_primary_10_1177_0278364919897133 crossref_primary_10_1109_TKDE_2025_3584054 crossref_primary_10_1109_TMM_2022_3169065 crossref_primary_10_1134_S1054661820030256 crossref_primary_10_1007_s00530_024_01394_w crossref_primary_10_1007_s11263_025_02572_7 crossref_primary_10_1109_TPAMI_2019_2947440 crossref_primary_10_1109_TNNLS_2022_3185320 crossref_primary_10_1016_j_cviu_2023_103799 crossref_primary_10_1016_j_neunet_2025_108094 crossref_primary_10_1109_TPAMI_2023_3326851 crossref_primary_10_1093_llc_fqae029 crossref_primary_10_1016_j_inffus_2021_02_006 crossref_primary_10_1109_ACCESS_2019_2912792 crossref_primary_10_1007_s11633_022_1408_2 crossref_primary_10_1109_TVCG_2021_3114683 crossref_primary_10_1109_TIP_2022_3181511 crossref_primary_10_1145_3725352 crossref_primary_10_3390_app10010391 crossref_primary_10_1109_MIS_2023_3265176 crossref_primary_10_32604_cmc_2023_038177 crossref_primary_10_1016_j_artint_2024_104147 crossref_primary_10_3390_sym12091504 crossref_primary_10_1109_LRA_2022_3145964 crossref_primary_10_1109_TPAMI_2019_2922396 crossref_primary_10_1109_TPAMI_2023_3274139 crossref_primary_10_1007_s00521_022_07617_3 crossref_primary_10_3390_drones8090421 crossref_primary_10_1007_s11042_024_20220_z crossref_primary_10_1016_j_patcog_2023_109848 crossref_primary_10_1109_TPAMI_2024_3368158 crossref_primary_10_1145_3366710 crossref_primary_10_1109_TPAMI_2022_3170302 crossref_primary_10_1007_s11063_022_10796_8 crossref_primary_10_1016_j_cviu_2017_06_005 crossref_primary_10_1109_JIOT_2024_3396285 crossref_primary_10_1109_TMM_2024_3521708 crossref_primary_10_1016_j_eswa_2025_127926 crossref_primary_10_1109_TIP_2020_2967584 crossref_primary_10_1016_j_inffus_2024_102302 crossref_primary_10_1007_s11042_022_13279_z crossref_primary_10_1016_j_datak_2021_101975 crossref_primary_10_1007_s10489_025_06372_x crossref_primary_10_1109_TPAMI_2024_3409772 crossref_primary_10_1016_j_cviu_2021_103187 crossref_primary_10_1145_2897824_2925939 crossref_primary_10_1109_TSC_2024_3407588 crossref_primary_10_1007_s11042_023_17685_9 crossref_primary_10_1109_TMM_2022_3155928 crossref_primary_10_1007_s10489_020_02115_2 crossref_primary_10_1109_ACCESS_2023_3347988 crossref_primary_10_1007_s11760_024_03013_7 crossref_primary_10_1109_TCSS_2023_3270164 crossref_primary_10_1007_s11432_024_4231_5 crossref_primary_10_1109_TCSVT_2024_3425513 crossref_primary_10_1002_cpe_6866 crossref_primary_10_1109_ACCESS_2021_3069041 crossref_primary_10_1109_TGRS_2023_3280546 crossref_primary_10_1016_j_neucom_2020_07_091 crossref_primary_10_1109_TPAMI_2017_2754246 crossref_primary_10_1007_s11042_022_12776_5 crossref_primary_10_1109_TKDE_2023_3267036 crossref_primary_10_1162_tacl_a_00385 |
| Cites_doi | 10.1109/ICCV.2015.279 10.1109/TPAMI.2011.158 10.1007/978-3-319-10605-2_27 10.1145/2812802 10.1109/CVPR.2014.319 10.1007/978-0-387-35602-0_8 10.1145/219717.219748 10.1145/1526709.1526724 10.1109/CVPR.2012.6248095 10.3115/1220575.1220666 10.1109/ICCV.2013.178 10.4324/9780203781036 10.1109/CVPR.2008.4587462 10.1109/CVPR.2015.7298878 10.3115/v1/W14-3348 10.1007/978-3-642-33715-4_54 10.1159/000276535 10.1109/CVPR.2009.5206772 10.1109/CVPR.2014.37 10.1109/CVPR.2015.7298752 10.1109/CVPR.2015.7298856 10.1109/CVPR.2014.81 10.1109/CVPR.2015.7298932 10.1016/0004-3702(84)90038-9 10.1109/TPAMI.2011.155 10.1109/CVPR.2015.7298935 10.1109/CVPR.2013.387 10.1007/978-3-540-74198-5_14 10.1109/CVPR.2015.7298990 10.3115/v1/D14-1110 10.3115/1219840.1219893 10.1145/2858036.2858115 10.1007/978-3-642-15561-1_2 10.1109/CVPR.2015.7298713 10.1109/CVPR.2009.5206848 10.1145/2702123.2702508 10.1109/ICCV.2015.292 10.1109/CVPR.2015.7299087 10.5244/C.29.52 10.18653/v1/W15-2812 10.1109/CVPR.2010.5539970 10.1109/CVPR.2015.7298594 10.1109/ICCV.2015.9 10.1109/ICCV.2015.169 10.1016/j.cviu.2005.09.012 10.1109/CVPR.2013.12 10.3115/1218955.1219009 10.3115/v1/W14-2404 10.1007/978-3-319-10593-2_27 10.1109/CVPR.2015.7298744 10.1109/TPAMI.2008.128 10.1007/s11263-015-0816-y 10.1073/pnas.1422953112 10.1109/CVPR.2010.5540235 10.3115/1225403.1225421 10.1109/5254.708428 10.1613/jair.3994 10.3115/1613715.1613751 10.1007/s11263-013-0695-z 10.1162/tacl_a_00166 10.1007/978-3-319-10602-1_48 10.1007/s11263-005-4635-4 10.1007/s11263-007-0090-8 10.1109/TPAMI.2009.83 10.1109/CVPR.2009.5206594 10.1007/s11263-009-0275-4 10.4018/jswis.2012070103 10.1609/aimag.v31i3.2303 10.1109/CVPR.2011.5995711 10.1007/978-3-642-15561-1_11 10.1007/978-3-540-88682-2_3 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2015.7298754 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 COPYRIGHT 2017 Springer International Journal of Computer Vision is a copyright of Springer, 2017. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Springer – notice: International Journal of Computer Vision is a copyright of Springer, 2017. |
| DBID | C6C AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1007/s11263-016-0981-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 73 |
| ExternalDocumentID | 4322015771 A550951135 10_1007_s11263_016_0981_7 |
| Genre | Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Stanford University Computer Science Department – fundername: Brown Institute for Media Innovation (US) – fundername: Yahoo Inc. – fundername: Toyota USA funderid: http://dx.doi.org/10.13039/100004362 – fundername: Office of Naval Research funderid: http://dx.doi.org/10.13039/100000006 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U PUEGO |
| ID | FETCH-LOGICAL-c531t-d5c3db2f443ec3111ee4b52d3906dd0cc9a627abe8b0b3e8c88929745f5ea4a23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3442 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400276400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Thu Sep 04 19:58:07 EDT 2025 Tue Nov 04 22:22:54 EST 2025 Sat Nov 29 10:25:22 EST 2025 Wed Nov 26 10:08:05 EST 2025 Sat Nov 29 06:42:27 EST 2025 Tue Nov 18 21:52:22 EST 2025 Fri Feb 21 02:26:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Crowdsourcing Computer vision Relationships Scene graph Language Dataset Objects Attributes Question answering Image Knowledge |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-d5c3db2f443ec3111ee4b52d3906dd0cc9a627abe8b0b3e8c88929745f5ea4a23 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8784-2531 |
| OpenAccessLink | https://link.springer.com/10.1007/s11263-016-0981-7 |
| PQID | 1892132984 |
| PQPubID | 1456341 |
| PageCount | 42 |
| ParticipantIDs | proquest_miscellaneous_1904244064 proquest_journals_1892132984 gale_infotracacademiconefile_A550951135 gale_incontextgauss_ISR_A550951135 crossref_citationtrail_10_1007_s11263_016_0981_7 crossref_primary_10_1007_s11263_016_0981_7 springer_journals_10_1007_s11263_016_0981_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Ronchi, M. R., & Perona, P. (2015). Describing common human visual actions in images. In X. Xie, M. W. Jones, & G. K. L. Tam (Eds.), Proceedings of the British machine vision conference (BMVC 2015) (pp. 52.1–52.12). BMVA Press. Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., et al. (2010). Every picture tells a story: Generating sentences from images. In Computer vision–ECCV 2010 (pp. 15–29). Springer. RussellBCTorralbaAMurphyKPFreemanWTLabelme: A database and web-based tool for image annotationInternational Journal of Computer Vision2008771–315717310.1007/s11263-007-0090-8 Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations (pp. 55–60). Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley framenet project. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 1, ACL’98 (pp. 86–90). Stroudsburg, PA: Association for Computational Linguistics. Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3128–3137). Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311–318). Association for Computational Linguistics. Sadeghi, F., Divvala, S. K., & Farhadi, A. (2015). Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1456–1464). Mihalcea, R., Chklovski, T. A., & Kilgarriff, A. (2004). The senseval-3 English lexical sample task. Association for Computational Linguistics, UNT Digital Library. Ren, M., Kiros, R., & Zemel, R. (2015a). Image question answering: A visual semantic embedding model and a new dataset. arXiv:1505.02074. Bird, S. (2006). NLTK: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions (pp. 69–72). Association for Computational Linguistics. Choi, W., Chao, Y.-W., Pantofaru, C., & Savarese, S. (2013). Understanding indoor scenes using 3D geometric phrases. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 33–40). IEEE. Zhu, J., Nie, Z., Liu, X., Zhang, B., & Wen, J.-R. (2009). Statsnowball: A statistical approach to extracting entity relationships. In Proceedings of the 18th international conference on world wide web (pp. 101–110). ACM. Yang, Y., Baker, S., Kannan, A., & Ramanan, D. (2012). Recognizing proxemics in personal photos. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3522–3529). IEEE. Hayes, P. J. (1978). The naive physics manifesto. Geneva: Institut pour les études sémantiques et cognitives/Université de Genève. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Gupta, A., & Davis, L. S. (2008). Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In Computer vision–ECCV 2008 (pp. 16–29). Springer. Ma, L., Lu, Z., & Li, H. (2015). Learning to answer questions from image using convolutional neural network. arXiv:1506.00333. Krishna, R., Hata, K., Chen, S., Kravitz, J., Shamma, D. A., Fei-Fei, L., et al. (2016). Embracing error to enable rapid crowdsourcing. In CHI’16-SIGCHI conference on human factors in computing system. Malisiewicz, T., Efros, A., et al. (2008). Recognition by association via learning per-exemplar distances. In IEEE conference on computer vision and pattern recognition, 2008 (CVPR 2008) (pp. 1–8). IEEE. Kiros, R., Salakhutdinov, R., & Zemel, R. (2014). Multimodal neural language models. In Proceedings of the 31st international conference on machine learning (ICML-14) (pp. 595–603). Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollar, P., et al. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv:1504.00325. Isola, P., Lim, J. J., & Adelson, E. H. (2015). Discovering states and transformations in image collections. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1383–1391). Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology. YoungPLaiAHodoshMHockenmaierJFrom image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptionsTransactions of the Association for Computational Linguistics201426778 Chen, X., Shrivastava, A., & Gupta, A. (2013). Neil: Extracting visual knowledge from web data. In 2013 IEEE international conference on computer vision (ICCV) (pp. 1409–1416). IEEE. Ren, S., He, K., Girshick, R., & Sun, J. (2015b). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91–99). FerrucciDBrownEChu-CarrollJFanJGondekDKalyanpurAALallyAMurdockJWNybergEPragerJBuilding watson: An overview of the deepqa projectAI Magazine20103135979 Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2014). Relation classification via convolutional deep neural network. In Proceedings of COLING (pp. 2335–2344). ForbusKDQualitative process theoryArtificial Intelligence19842418516810.1016/0004-3702(84)90038-9 Mao, J., Xu, W., Yang, Y., Wang, J., & Yuille, A. L. (2014). Explain images with multimodal recurrent neural networks. arXiv:1410.1090. Lebret, R., Pinheiro, P. O., & Collobert, R. (2015). Phrase-based image captioning. arXiv:1502.03671. Denkowski, M., & Lavie, A. (2014). Meteor universal: Language specific translation evaluation for any target language. In Proceedings of the ninth workshop on statistical machine translation. Citeseer. Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Technical Report 7694. Ramanathan, V., Li, C., Deng, J., Han, W., Li, Z., Gu, K., et al. (2015). Learning semantic relationships for better action retrieval in images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1100–1109). Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440–1448). Ordonez, V., Kulkarni, G., & Berg, T. L. (2011). Im2text: Describing images using 1 million captioned photographs. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.), Advances in neural information processing systems (Vol. 24, pp. 1143–1151). Red Hook: Curran Associates, Inc. Chang, A. X., Savva, M., & Manning, C. D. (2014). Semantic parsing for text to 3D scene generation. In ACL 2014 (p. 17). Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categoriesComputer Vision and Image Understanding20071061597010.1016/j.cviu.2005.09.012 Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. CoRR. arXiv:1502.03044. Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction. In Proceedings of the 42nd annual meeting on association for computational linguistics (p. 423). Association for Computational Linguistics. Chen, X., Liu, Z., & Sun, M. (2014). A unified model for word sense representation and disambiguation. In EMNLP (pp. 1025–1035). Citeseer. Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D. A., Bernstein, M., et al. (2015). Image retrieval using scene graphs. In IEEE conference on computer vision and pattern recognition (CVPR). Vedantam, R., Lawrence Zitnick, C., & Parikh, D. (2015a). Cider: Consensus-based image description evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4566–4575). Vedantam, R., Lin, X., Batra, T., Lawrence Zitnick, C., & Parikh, D. (2015b). Learning common sense through visual abstraction. In Proceedings of the IEEE international conference on computer vision (pp. 2542–2550). Zhou, G., Zhang, M., Ji, D. H., & Zhu, Q. (2007). Tree kernel-based relation extraction with context-sensitive structured parse tree information. In EMNLP-CoNLL 2007 (p. 728). Zitnick, C. L., & Parikh, D. (2013). Bringing semantics into focus using visual abstraction. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3009–3016). IEEE. Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In KDD workshop on text mining, Boston (Vol. 400, pp. 525–526). Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fast—But is it good?: Evaluating non-expert annotations for natural language tasks. In Proceedings of the conference on empirical methods in natural language processing (pp. 254–263). Association for Computational Linguistics. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft COCO: Common objects in context. In Computer vision–ECCV 2014 (pp. 740–755). Springer. Izadinia, H., Sadeghi, F., & Farhadi, A. (2014). Incorporating scene context and object layout into appearance modeling. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 232–239). IEEE. Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., et al. (2015). From captions to visual concepts and back. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1473–1482). PattersonGXuCSuHHaysJThe sun attribute database: Beyond categories for dee 981_CR50 981_CR58 981_CR57 981_CR56 981_CR55 981_CR54 981_CR52 981_CR51 D Ferrucci (981_CR26) 2010; 31 981_CR101 981_CR102 981_CR49 981_CR48 981_CR100 981_CR106 981_CR103 981_CR104 M Varma (981_CR95) 2005; 62 981_CR109 981_CR107 981_CR108 981_CR47 981_CR46 981_CR45 BC Russell (981_CR79) 2008; 77 B Thomee (981_CR93) 2016; 59 981_CR44 981_CR43 A Torralba (981_CR94) 2008; 30 981_CR112 981_CR39 981_CR38 981_CR110 981_CR111 M Everingham (981_CR20) 2010; 88 981_CR36 981_CR35 981_CR34 981_CR33 981_CR32 981_CR31 981_CR29 981_CR27 L Fei-Fei (981_CR24) 2007; 106 A Gupta (981_CR37) 2009; 31 981_CR1 981_CR3 981_CR2 981_CR5 981_CR25 981_CR4 981_CR7 981_CR23 981_CR22 981_CR9 981_CR21 981_CR8 981_CR19 981_CR17 981_CR16 981_CR15 981_CR92 981_CR91 981_CR90 981_CR14 981_CR13 J Bruner (981_CR6) 1990; 33 981_CR12 981_CR11 981_CR99 981_CR10 981_CR98 MA Hearst (981_CR40) 1998; 13 981_CR97 981_CR96 S Hochreiter (981_CR41) 1997; 9 P Dollar (981_CR18) 2012; 34 981_CR83 981_CR82 981_CR81 981_CR80 M Hodosh (981_CR42) 2013; 47 981_CR89 981_CR88 981_CR87 981_CR86 981_CR85 981_CR84 P Young (981_CR105) 2014; 2 KD Forbus (981_CR28) 1984; 24 GA Miller (981_CR65) 1995; 38 C Leacock (981_CR53) 1998; 24 981_CR71 G Patterson (981_CR70) 2014; 108 981_CR78 981_CR77 981_CR76 981_CR75 981_CR74 981_CR73 D Geman (981_CR30) 2015; 112 981_CR61 981_CR60 981_CR69 981_CR68 981_CR67 981_CR64 981_CR63 981_CR62 981_CR59 F Niu (981_CR66) 2012; 8 A Prest (981_CR72) 2012; 34 |
| References_xml | – reference: Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces in ’real-life’ images: Detection, alignment, and recognition. – reference: Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes by between-class attribute transfer. In IEEE conference on computer vision and pattern recognition, 2009 (CVPR 2009) (pp. 951–958). IEEE. – reference: MillerGAWordnet: a lexical database for englishCommunications of the ACM19953811394110.1145/219717.219748 – reference: Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., et al. (2015). From captions to visual concepts and back. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1473–1482). – reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft COCO: Common objects in context. In Computer vision–ECCV 2014 (pp. 740–755). Springer. – reference: Zhou, G., Zhang, M., Ji, D. H., & Zhu, Q. (2007). Tree kernel-based relation extraction with context-sensitive structured parse tree information. In EMNLP-CoNLL 2007 (p. 728). – reference: Chang, A. X., Savva, M., & Manning, C. D. (2014). Semantic parsing for text to 3D scene generation. In ACL 2014 (p. 17). – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735 – reference: PrestASchmidCFerrariVWeakly supervised learning of interactions between humans and objectsIEEE Transactions on Pattern Analysis and Machine Intelligence201234360161410.1109/TPAMI.2011.158 – reference: Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations (pp. 55–60). – reference: FerrucciDBrownEChu-CarrollJFanJGondekDKalyanpurAALallyAMurdockJWNybergEPragerJBuilding watson: An overview of the deepqa projectAI Magazine20103135979 – reference: Mihalcea, R., Chklovski, T. A., & Kilgarriff, A. (2004). The senseval-3 English lexical sample task. Association for Computational Linguistics, UNT Digital Library. – reference: ForbusKDQualitative process theoryArtificial Intelligence19842418516810.1016/0004-3702(84)90038-9 – reference: Vedantam, R., Lin, X., Batra, T., Lawrence Zitnick, C., & Parikh, D. (2015b). Learning common sense through visual abstraction. In Proceedings of the IEEE international conference on computer vision (pp. 2542–2550). – reference: Sadeghi, M. A., & Farhadi, A. (2011). Recognition using visual phrases. In 2011 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1745–1752). IEEE. – reference: TorralbaAFergusRFreemanWT80 million tiny images: A large data set for nonparametric object and scene recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence200830111958197010.1109/TPAMI.2008.128 – reference: Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley framenet project. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 1, ACL’98 (pp. 86–90). Stroudsburg, PA: Association for Computational Linguistics. – reference: NiuFZhangCRéCShavlikJElementary: Large-scale knowledge-base construction via machine learning and statistical inferenceInternational Journal on Semantic Web and Information Systems (IJSWIS)201283427310.4018/jswis.2012070103 – reference: Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., & Xu, W. (2015). Are you talking to a machine? Dataset and methods for multilingual image question. In Advances in neural information processing systems (pp. 2296–2304). – reference: Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311–318). Association for Computational Linguistics. – reference: Salehi, N., Irani, L. C., & Bernstein, M. S. (2015). We are dynamo: Overcoming stalling and friction in collective action for crowd workers. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 1621–1630). ACM. – reference: Ramanathan, V., Li, C., Deng, J., Han, W., Li, Z., Gu, K., et al. (2015). Learning semantic relationships for better action retrieval in images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1100–1109). – reference: Dauphin, Y., de Vries, H., & Bengio, Y. (2015). Equilibrated adaptive learning rates for non-convex optimization. In Advances in neural information processing systems (pp. 1504–1512). – reference: Farhadi, A., Endres, I., Hoiem, D., & Forsyth, D. (2009). Describing objects by their attributes. In IEEE conference on computer vision and pattern recognition, 2009 (CVPR 2009) (pp. 1778–1785). IEEE. – reference: Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D. A., Bernstein, M., et al. (2015). Image retrieval using scene graphs. In IEEE conference on computer vision and pattern recognition (CVPR). – reference: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 580–587). IEEE. – reference: Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156–3164). – reference: Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In KDD workshop on text mining, Boston (Vol. 400, pp. 525–526). – reference: Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning (pp. 1201–1211). Association for Computational Linguistics. – reference: Hayes, P. J. (1985). The second naive physics manifesto. Theories of the commonsense world (pp. 1–36). – reference: Ren, S., He, K., Girshick, R., & Sun, J. (2015b). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91–99). – reference: Lu, C., Krishna, R., Bernstein, M., & Fei-Fei, L. (2016). Visual relationship detection using language priors. In European conference on computer vision (ECCV). IEEE. – reference: Isola, P., Lim, J. J., & Adelson, E. H. (2015). Discovering states and transformations in image collections. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1383–1391). – reference: Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology. – reference: Zhu, Y., Fathi, A., & Fei-Fei, L. (2014). Reasoning about object affordances in a knowledge base representation. In European conference on computer vision. – reference: Bunescu, R. C., & Mooney, R. J. (2005). A shortest path dependency kernel for relation extraction. In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 724–731). Association for Computational Linguistics. – reference: GemanDGemanSHallonquistNYounesLVisual turing test for computer vision systemsProceedings of the National Academy of Sciences20151121236183623 – reference: Malisiewicz, T., Efros, A., et al. (2008). Recognition by association via learning per-exemplar distances. In IEEE conference on computer vision and pattern recognition, 2008 (CVPR 2008) (pp. 1–8). IEEE. – reference: Chen, X., Liu, Z., & Sun, M. (2014). A unified model for word sense representation and disambiguation. In EMNLP (pp. 1025–1035). Citeseer. – reference: Ferrari, V., & Zisserman, A. (2007). Learning visual attributes. In Advances in neural information processing systems (pp. 433–440). – reference: Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fast—But is it good?: Evaluating non-expert annotations for natural language tasks. In Proceedings of the conference on empirical methods in natural language processing (pp. 254–263). Association for Computational Linguistics. – reference: Pal, A. R., & Saha, D. (2015). Word sense disambiguation: A survey. arXiv:1508.01346. – reference: Gupta, A., & Davis, L. S. (2008). Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In Computer vision–ECCV 2008 (pp. 16–29). Springer. – reference: GuoDong, Z., Jian, S., Jie, Z., & Min, Z. (2005). Exploring various knowledge in relation extraction. In Proceedings of the 43rd annual meeting on association for computational linguistics (pp. 427–434). Association for Computational Linguistics. – reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. – reference: Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction. In Proceedings of the 42nd annual meeting on association for computational linguistics (p. 423). Association for Computational Linguistics. – reference: Kiros, R., Salakhutdinov, R., & Zemel, R. (2014). Multimodal neural language models. In Proceedings of the 31st international conference on machine learning (ICML-14) (pp. 595–603). – reference: PattersonGXuCSuHHaysJThe sun attribute database: Beyond categories for deeper scene understandingInternational Journal of Computer Vision20141081–2598110.1007/s11263-013-0695-z – reference: Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollar, P., et al. (2015). Microsoft COCO captions: Data collection and evaluation server. arXiv:1504.00325. – reference: Malinowski, M., Rohrbach, M., & Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In Proceedings of the IEEE international conference on computer vision (pp. 1–9). – reference: DollarPWojekCSchieleBPeronaPPedestrian detection: An evaluation of the state of the artIEEE Transactions on Pattern Analysis and Machine Intelligence201234474376110.1109/TPAMI.2011.155 – reference: GuptaAKembhaviADavisLSObserving human–object interactions: Using spatial and functional compatibility for recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence200931101775178910.1109/TPAMI.2009.83 – reference: Schuler, K. K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA (AAI3179808). – reference: Chen, X., & Lawrence Zitnick, C. (2015). Mind’s eye: A recurrent visual representation for image caption generation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2422–2431). – reference: Ren, M., Kiros, R., & Zemel, R. (2015a). Image question answering: A visual semantic embedding model and a new dataset. arXiv:1505.02074. – reference: Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. International journal of computer vision (IJCV) (pp. 1–42). – reference: Perronnin, F., Sánchez, J., & Mensink, T. (2010). Improving the fisher kernel for large-scale image classification. In Computer vision–ECCV 2010 (pp. 143–156). Springer. – reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229. – reference: Yu, L., Park, E., Berg, A. C., & Berg, T. L. (2015). Visual madlibs: Fill in the blank image generation and question answering. arXiv:1506.00278. – reference: Zhu, J., Nie, Z., Liu, X., Zhang, B., & Wen, J.-R. (2009). Statsnowball: A statistical approach to extracting entity relationships. In Proceedings of the 18th international conference on world wide web (pp. 101–110). ACM. – reference: Hou, C.-S. J., Noy, N. F., & Musen, M. A. (2002). A template-based approach toward acquisition of logical sentences. In Intelligent information processing (pp. 77–89). Springer. – reference: Choi, W., Chao, Y.-W., Pantofaru, C., & Savarese, S. (2013). Understanding indoor scenes using 3D geometric phrases. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 33–40). IEEE. – reference: Malinowski, M., & Fritz, M. (2014). A multi-world approach to question answering about real-world scenes based on uncertain input. In Advances in neural information processing systems (pp. 1682–1690). – reference: Ma, L., Lu, Z., & Li, H. (2015). Learning to answer questions from image using convolutional neural network. arXiv:1506.00333. – reference: Izadinia, H., Sadeghi, F., & Farhadi, A. (2014). Incorporating scene context and object layout into appearance modeling. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 232–239). IEEE. – reference: ThomeeBShammaDAFriedlandGElizaldeBNiKPolandDBorthDLiL-JYFCC100M: The new data in multimedia researchCommunications of the ACM2016592647310.1145/2812802 – reference: Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., et al. (2015). VQA: Visual question answering. In International conference on computer vision (ICCV). – reference: LeacockCMillerGAChodorowMUsing corpus statistics and wordnet relations for sense identificationComputational Linguistics1998241147165 – reference: RussellBCTorralbaAMurphyKPFreemanWTLabelme: A database and web-based tool for image annotationInternational Journal of Computer Vision2008771–315717310.1007/s11263-007-0090-8 – reference: Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2014). Relation classification via convolutional deep neural network. In Proceedings of COLING (pp. 2335–2344). – reference: Betteridge, J., Carlson, A., Hong, S. A., Hruschka, E. R, Jr., Law, E. L., Mitchell, T. M., et al. (2009). Toward never ending language learning. In AAAI spring symposium: Learning by reading and learning to read (pp. 1–2). – reference: Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440–1448). – reference: Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Technical Report 7694. – reference: Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for top-down effects. Behavioral and brain sciences (pp. 1–72). – reference: Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., & Manning, C. D. (2015). Generating semantically precise scene graphs from textual descriptions for improved image retrieval. In Proceedings of the fourth workshop on vision and language (pp. 70–80). Citeseer. – reference: HearstMADumaisSTOsmanEPlattJScholkopfBSupport vector machinesIEEE Intelligent Systems and their Applications1998134182810.1109/5254.708428 – reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (VOC) challengeInternational Journal of Computer Vision201088230333810.1007/s11263-009-0275-4 – reference: Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., et al. (2010). Every picture tells a story: Generating sentences from images. In Computer vision–ECCV 2010 (pp. 15–29). Springer. – reference: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105). – reference: Rothe, S., & Schütze, H. (2015). Autoextend: Extending word embeddings to embeddings for synsets and lexemes. arXiv:1507.01127. – reference: Chen, X., Shrivastava, A., & Gupta, A. (2013). Neil: Extracting visual knowledge from web data. In 2013 IEEE international conference on computer vision (ICCV) (pp. 1409–1416). IEEE. – reference: BrunerJCulture and human development: A new lookHuman Development199033634435510.1159/000276535 – reference: Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., et al. (2015). Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2625–2634). – reference: Fei-FeiLFergusRPeronaPLearning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categoriesComputer Vision and Image Understanding20071061597010.1016/j.cviu.2005.09.012 – reference: Sadeghi, F., Divvala, S. K., & Farhadi, A. (2015). Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1456–1464). – reference: Ronchi, M. R., & Perona, P. (2015). Describing common human visual actions in images. In X. Xie, M. W. Jones, & G. K. L. Tam (Eds.), Proceedings of the British machine vision conference (BMVC 2015) (pp. 52.1–52.12). BMVA Press. – reference: Yang, Y., Baker, S., Kannan, A., & Ramanan, D. (2012). Recognizing proxemics in personal photos. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3522–3529). IEEE. – reference: Yao, B., & Fei-Fei, L. (2010). Modeling mutual context of object and human pose in human–object interaction activities. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 17–24). IEEE. – reference: Denkowski, M., & Lavie, A. (2014). Meteor universal: Language specific translation evaluation for any target language. In Proceedings of the ninth workshop on statistical machine translation. Citeseer. – reference: Antol, S., Zitnick, C. L., & Parikh, D. (2014). Zero-shot learning via visual abstraction. In European conference on computer vision (pp. 401–416). Springer. – reference: Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from RGBD images. In ECCV. – reference: Zitnick, C. L., & Parikh, D. (2013). Bringing semantics into focus using visual abstraction. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3009–3016). IEEE. – reference: Vedantam, R., Lawrence Zitnick, C., & Parikh, D. (2015a). Cider: Consensus-based image description evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4566–4575). – reference: Bird, S. (2006). NLTK: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions (pp. 69–72). Association for Computational Linguistics. – reference: Mao, J., Xu, W., Yang, Y., Wang, J., & Yuille, A. L. (2014). Explain images with multimodal recurrent neural networks. arXiv:1410.1090. – reference: Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. CoRR. arXiv:1502.03044. – reference: Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781. – reference: Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A., et al. (2010). Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3485–3492). IEEE. – reference: Zhu, Y., Zhang, C., Ré, C., & Fei-Fei, L. (2015). Building a large-scale multimodal knowledge base system for answering visual queries. arXiv:1507.05670. – reference: Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3128–3137). – reference: Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In IEEE conference on computer vision and pattern recognition, 2009 (CVPR 2009) (pp. 248–255). IEEE. – reference: Yao, B., Yang, X., & Zhu, S.-C. (2007). Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In Energy minimization methods in computer vision and pattern recognition (pp. 169–183). Springer. – reference: YoungPLaiAHodoshMHockenmaierJFrom image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptionsTransactions of the Association for Computational Linguistics201426778 – reference: Lebret, R., Pinheiro, P. O., & Collobert, R. (2015). Phrase-based image captioning. arXiv:1502.03671. – reference: Ordonez, V., Kulkarni, G., & Berg, T. L. (2011). Im2text: Describing images using 1 million captioned photographs. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.), Advances in neural information processing systems (Vol. 24, pp. 1143–1151). Red Hook: Curran Associates, Inc. – reference: VarmaMZissermanAA statistical approach to texture classification from single imagesInternational Journal of Computer Vision2005621–2618110.1007/s11263-005-4635-4 – reference: Hayes, P. J. (1978). The naive physics manifesto. Geneva: Institut pour les études sémantiques et cognitives/Université de Genève. – reference: HodoshMYoungPHockenmaierJFraming image description as a ranking task: Data, models and evaluation metricsJournal of Artificial Intelligence Research201347185389931042791270.68347 – reference: Goering, C., Rodner, E., Freytag, A., & Denzler, J. (2014). Nonparametric part transfer for fine-grained recognition. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2489–2496). IEEE. – reference: Schank, R. C., & Abelson, R. P. (2013). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Hove: Psychology Press. – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9). – reference: Krishna, R., Hata, K., Chen, S., Kravitz, J., Shamma, D. A., Fei-Fei, L., et al. (2016). Embracing error to enable rapid crowdsourcing. In CHI’16-SIGCHI conference on human factors in computing system. – ident: 981_CR111 – ident: 981_CR1 doi: 10.1109/ICCV.2015.279 – volume: 34 start-page: 601 issue: 3 year: 2012 ident: 981_CR72 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.158 – ident: 981_CR110 doi: 10.1007/978-3-319-10605-2_27 – volume: 59 start-page: 64 issue: 2 year: 2016 ident: 981_CR93 publication-title: Communications of the ACM doi: 10.1145/2812802 – ident: 981_CR27 – ident: 981_CR51 – ident: 981_CR33 doi: 10.1109/CVPR.2014.319 – ident: 981_CR88 – ident: 981_CR43 doi: 10.1007/978-0-387-35602-0_8 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 981_CR65 publication-title: Communications of the ACM doi: 10.1145/219717.219748 – ident: 981_CR4 – ident: 981_CR39 – ident: 981_CR109 doi: 10.1145/1526709.1526724 – ident: 981_CR108 – ident: 981_CR102 doi: 10.1109/CVPR.2012.6248095 – ident: 981_CR56 – ident: 981_CR7 doi: 10.3115/1220575.1220666 – ident: 981_CR12 doi: 10.1109/ICCV.2013.178 – ident: 981_CR83 doi: 10.4324/9780203781036 – ident: 981_CR60 doi: 10.1109/CVPR.2008.4587462 – ident: 981_CR19 doi: 10.1109/CVPR.2015.7298878 – ident: 981_CR62 – volume: 24 start-page: 147 issue: 1 year: 1998 ident: 981_CR53 publication-title: Computational Linguistics – ident: 981_CR17 doi: 10.3115/v1/W14-3348 – ident: 981_CR87 doi: 10.1007/978-3-642-33715-4_54 – volume: 33 start-page: 344 issue: 6 year: 1990 ident: 981_CR6 publication-title: Human Development doi: 10.1159/000276535 – ident: 981_CR22 doi: 10.1109/CVPR.2009.5206772 – ident: 981_CR15 – ident: 981_CR46 doi: 10.1109/CVPR.2014.37 – ident: 981_CR80 doi: 10.1109/CVPR.2015.7298752 – ident: 981_CR10 doi: 10.1109/CVPR.2015.7298856 – ident: 981_CR32 doi: 10.1109/CVPR.2014.81 – ident: 981_CR48 doi: 10.1109/CVPR.2015.7298932 – ident: 981_CR57 – ident: 981_CR77 – volume: 24 start-page: 85 issue: 1 year: 1984 ident: 981_CR28 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(84)90038-9 – ident: 981_CR29 – volume: 34 start-page: 743 issue: 4 year: 2012 ident: 981_CR18 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.155 – ident: 981_CR34 – ident: 981_CR98 doi: 10.1109/CVPR.2015.7298935 – ident: 981_CR63 – ident: 981_CR112 doi: 10.1109/CVPR.2013.387 – ident: 981_CR104 doi: 10.1007/978-3-540-74198-5_14 – ident: 981_CR47 doi: 10.1109/CVPR.2015.7298990 – ident: 981_CR91 – ident: 981_CR11 doi: 10.3115/v1/D14-1110 – ident: 981_CR35 doi: 10.3115/1219840.1219893 – ident: 981_CR50 doi: 10.1145/2858036.2858115 – ident: 981_CR74 – ident: 981_CR23 doi: 10.1007/978-3-642-15561-1_2 – ident: 981_CR106 – ident: 981_CR73 doi: 10.1109/CVPR.2015.7298713 – ident: 981_CR99 – ident: 981_CR16 doi: 10.1109/CVPR.2009.5206848 – ident: 981_CR54 – ident: 981_CR82 doi: 10.1145/2702123.2702508 – ident: 981_CR68 – ident: 981_CR97 doi: 10.1109/ICCV.2015.292 – ident: 981_CR96 doi: 10.1109/CVPR.2015.7299087 – ident: 981_CR90 – ident: 981_CR76 doi: 10.5244/C.29.52 – ident: 981_CR101 – ident: 981_CR75 – ident: 981_CR85 doi: 10.18653/v1/W15-2812 – ident: 981_CR3 – ident: 981_CR100 doi: 10.1109/CVPR.2010.5539970 – ident: 981_CR92 doi: 10.1109/CVPR.2015.7298594 – ident: 981_CR61 – ident: 981_CR84 – ident: 981_CR69 – ident: 981_CR59 doi: 10.1109/ICCV.2015.9 – ident: 981_CR31 doi: 10.1109/ICCV.2015.169 – volume: 106 start-page: 59 issue: 1 year: 2007 ident: 981_CR24 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2005.09.012 – ident: 981_CR13 doi: 10.1109/CVPR.2013.12 – ident: 981_CR14 doi: 10.3115/1218955.1219009 – ident: 981_CR8 doi: 10.3115/v1/W14-2404 – ident: 981_CR2 doi: 10.1007/978-3-319-10593-2_27 – ident: 981_CR45 doi: 10.1109/CVPR.2015.7298744 – ident: 981_CR49 – volume: 30 start-page: 1958 issue: 11 year: 2008 ident: 981_CR94 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.128 – ident: 981_CR78 doi: 10.1007/s11263-015-0816-y – ident: 981_CR67 – ident: 981_CR44 – volume: 112 start-page: 3618 issue: 12 year: 2015 ident: 981_CR30 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1422953112 – ident: 981_CR38 – ident: 981_CR9 – ident: 981_CR103 doi: 10.1109/CVPR.2010.5540235 – ident: 981_CR5 doi: 10.3115/1225403.1225421 – ident: 981_CR107 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 981_CR40 publication-title: IEEE Intelligent Systems and their Applications doi: 10.1109/5254.708428 – volume: 47 start-page: 853 issue: 1 year: 2013 ident: 981_CR42 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.3994 – ident: 981_CR89 doi: 10.3115/1613715.1613751 – ident: 981_CR25 – volume: 108 start-page: 59 issue: 1–2 year: 2014 ident: 981_CR70 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0695-z – volume: 2 start-page: 67 year: 2014 ident: 981_CR105 publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00166 – ident: 981_CR86 – ident: 981_CR55 doi: 10.1007/978-3-319-10602-1_48 – volume: 62 start-page: 61 issue: 1–2 year: 2005 ident: 981_CR95 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-005-4635-4 – volume: 77 start-page: 157 issue: 1–3 year: 2008 ident: 981_CR79 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-007-0090-8 – volume: 31 start-page: 1775 issue: 10 year: 2009 ident: 981_CR37 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.83 – ident: 981_CR52 doi: 10.1109/CVPR.2009.5206594 – ident: 981_CR58 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 981_CR20 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0275-4 – volume: 8 start-page: 42 issue: 3 year: 2012 ident: 981_CR66 publication-title: International Journal on Semantic Web and Information Systems (IJSWIS) doi: 10.4018/jswis.2012070103 – volume: 31 start-page: 59 issue: 3 year: 2010 ident: 981_CR26 publication-title: AI Magazine doi: 10.1609/aimag.v31i3.2303 – ident: 981_CR81 doi: 10.1109/CVPR.2011.5995711 – ident: 981_CR71 doi: 10.1007/978-3-642-15561-1_11 – ident: 981_CR36 doi: 10.1007/978-3-540-88682-2_3 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 981_CR41 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – ident: 981_CR64 – ident: 981_CR21 doi: 10.1109/CVPR.2015.7298754 |
| SSID | ssj0002823 |
| Score | 2.7092626 |
| Snippet | Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Despite progress in perceptual tasks such as image classification, computers still... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).Despite progress in perceptual tasks such as image classification, computers still... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 32 |
| SubjectTerms | Analysis Annotations Artificial Intelligence Carriages Cognition & reasoning Cognitive tasks Computer Imaging Computer Science Computer simulation Computer vision Computers Crowdsourcing Datasets Genomes Genomics Graph representations Image Processing and Computer Vision Image processing systems Image retrieval Language Mathematical models Natural language processing Pattern Recognition Pattern Recognition and Graphics Questioning Studies Tasks Vision Vision systems |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global (OCUL) dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlgMXSnmoCwUZhIQEikjiPJxeqtXSlkpQIR7V3iy_gipRpzS7_H5mHGdLQfTSqzOO44xnPJ9nPAPwEvVdyByW4HaDAEWXOlGKBM-5LHeiULUVodhEfXws5vPmUzxw62NY5agTg6K2naEz8reZaHIqii6KvfOfCVWNIu9qLKFxCzbIsqGQvo_pbKWJEU4MpeQRIpVVk41ezXB1LsvJg5khnm5EltRX9qW_tfM_btKw-xxs3vS778HdaHey6bBQtmDN-fuwGW1QFiW8x6axzMPY9gDmJ6f9EvseOt-duV0WYmMMhUuzD_G0kylv2Um4ps5CEAKbIby3g2fAsneIlR07OiPKqffd4P7vH8K3g_2vs_dJLMiQGBTVRWJLw63O26LgznDUks4hd3PLm7SyNjWmUVVeK-2ETjV3wgicPAKWsi2dKlTOH8G677zbBlZVRcu5aqrWiELoQrfCWoNgUwtj8XdNIB3ZIU3MVk5FM37IyzzLxEFJEWrEQVlP4PWqy_mQquM64hfEY0kpMDzF2HxXy76XR18-yymCNrQ7M15O4FUkajsc3Kh4ZQGnQFmzrlDujNyXUQn08pL1E3i-eoziSz4Z5V23RJqGfM9oVSHNm3GN_fGK_33_4-sHfAJ3crI_QmTmDqwvLpbuKdw2vxan_cWzICW_AV7_FZo priority: 102 providerName: ProQuest |
| Title | Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations |
| URI | https://link.springer.com/article/10.1007/s11263-016-0981-7 https://www.proquest.com/docview/1892132984 https://www.proquest.com/docview/1904244064 |
| Volume | 123 |
| WOSCitedRecordID | wos000400276400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-1405 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-1405 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-1405 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-1405 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1405 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQde2MaH6Ngqg5CQQJGS2Ekc3krZYAKqqoNSeLH8FTRpS9DS8vdzdpyOjQ8JXiLFuThO7Pv45c53AE9Q3vnMYRGqGwQoKlORlI7xrE1Sy5ksDPfFJorJhC8W5TTs4277aPfeJekl9eVmtyR1PscEEXDJk6jYgC3UdtzVa5idzNfiFzFEVz8ecVGWl0nvyvxdF1eU0XWR_Itv1Kuco-3_GuwO3A4WJhl1S2IXbtj6DmwHa5MEXm6xqS_o0LfdhcX8tF3hva9t3ZzbF8RHwWgXGE3ehf-aRNaGzP2GdOLDDcgYgbzpfACGvEJUbMnxuaMc1XXTOfrbe_Dx6PDD-E0USi9EGplyGZlMU6PSijFqNUV5aC3OY2poGefGxFqXMk8LqSxXsaKWa87RzipYVmVWMpnS-7BZN7V9ACTPWUWpLPNKc8YVUxU3RiOsVFwbmpYDiPs5EDrkJXflMc7EZUZl9zGFi0VzH1MUA3i2vuVbl5Tjb8SP3cQKl-yidtE0X-WqbcXxyUyMEJ6hhZnQbABPA1HV4MO1DJsT8BVcfqwrlPv9AhGB3VuR4NsjrC85G8Cj9WVkVOd9kbVtVkhTOi8z2k9I87xfND918afx7_0T9UO4lTrDw4dk7sPm8mJlD-Cm_r48bS-GsFF8-jyErZeHk-kMz94WER7fx2M8TrMvQ89JPwApnhBw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NAwleNsaHVhjMIBASKKL5dpAQqjbGqpYKwZj6ZhzbQZOYM-qWiX-Kv5E7J-kYiL3tgVfnHMfx7853vvMdwGOUdz5zWIDbDRooZVoGUhLjGRNGhicy19wXm8gnEz6dFu9X4Gd3F4bCKjuZ6AW1rhWdkb8IeRFRUXSevD75FlDVKPKudiU0GliMzI9TNNncq-Euru-TKNp7c7CzH7RVBQKFeJsHOlWxLqMqSWKjYmR1Y_ATI43Gf6Z1X6lCZlEuS8PLfhkbrjiOjFp3WqVGJpISHaDIv5LEPCe-GuXBUvKj-dKUrkeTLM2KsPOi-qt6YUQe0xDt94KHQX5uH_xzN_jLLet3u731_-0_3YC1Vq9mg4YRNmDF2Juw3urYrJVgDpu6MhZd2y2YHh65BfZ9a2x9bF4yH_ujKBycjdvTXCatZof-Gj7zQRZsZ1af6sbzodmusc6w4TFRDqytm_AGdxs-XcqU78Cqra3ZBJZlSRXHssgqxRNeJmXFtVZoTJdcaVyeHvS75ReqzcZORUG-irM80oQYQRF4hBiR9-DZsstJk4rkIuJHhClBKT4sxRB9kQvnxPDjBzFAoxT16jBOe_C0JapqHFzJ9koGToGygp2j3OrQJloh58QZ1HrwcPkYxRP5nKQ19QJpCvKto9aINM87TP_2in99_92LB9yGa_sH78ZiPJyM7sH1iHQtH4W6Bavz2cLch6vq-_zIzR54DmXw-bKh_gsGyXOt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSEulKdYWsAgEBIo6ubtICG06rKwarVa8ahWXIxjO6hS65TNLhV_jV_HjONsKYjeeuCaTBIn-TwPz-cZgCeo71zlsADNDQYoZVoGUtLEMyaMDE9krrlrNpFPJnw2K6Zr8LPbC0O0yk4nOkWta0Vr5NshLyJqis6T7crTIqbD0evjbwF1kKJMa9dOo4XIrvlxguFb82o8xH_9NIpGbz7uvAt8h4FAIfYWgU5VrMuoSpLYqBinvTE43EjHRT_Tuq9UIbMol6XhZb-MDVccR4EeeFqlRiaSih6g-r-UY4xJdMJp-nllBTCUadvYY3iWZkXYZVTdtr0wouxpiLF8wcMgP2MT_7QMf6VoneUbbfzP3-w6XPP-Nhu0E-QGrBl7Eza87828ZmvwUNfeojt2C2b7B80Sr31rbH1kXjLHCVJEE2d7fpWXSavZvtuezxz5gu3M6xPdZkQ0GxrbGDY-IsmBtXVLe2huw6cLeeU7sG5ra-4Cy7KkimNZZJXiCS-TsuJaKwyyS640_qoe9DsoCOWrtFOzkENxWl-a0COImUfoEXkPnq8uOW5LlJwn_JjwJaj0hyVAfJXLphHjD-_FAINV9LfDOO3BMy9U1fhwJf1WDXwFqhZ2RnKrQ57wyq8Rp7DrwaPVaVRblIuS1tRLlCko547eJMq86PD92y3-Nf575z_wIVxBhIu98WR3E65G5II5cuoWrC_mS3MfLqvvi4Nm_sBNVgZfLhrpvwCnaXzR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Genome%3A+Connecting+Language+and+Vision+Using+Crowdsourced+Dense+Image+Annotations&rft.jtitle=International+journal+of+computer+vision&rft.au=Krishna%2C+Ranjay&rft.au=Zhu%2C+Yuke&rft.au=Groth%2C+Oliver&rft.au=Johnson%2C+Justin&rft.date=2017-05-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=123&rft.issue=1&rft.spage=32&rft_id=info:doi/10.1007%2Fs11263-016-0981-7&rft.externalDBID=ISR&rft.externalDocID=A550951135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |