State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing

Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research lea...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics Vol. 11; p. 610798
Main Authors: Krassowski, Michal, Das, Vivek, Sahu, Sangram K., Misra, Biswapriya B.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 10.12.2020
Subjects:
ISSN:1664-8021, 1664-8021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods’ limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.
AbstractList Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods’ limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.
Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods' limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods' limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.
Author Sahu, Sangram K.
Misra, Biswapriya B.
Krassowski, Michal
Das, Vivek
AuthorAffiliation 3 Independent Researcher , Bengaluru , India
1 Nuffield Department of Women’s & Reproductive Health, University of Oxford , Oxford , United Kingdom
2 Novo Nordisk Research Center Seattle, Inc , Seattle, WA , United States
4 Independent Researcher , Namburu , India
AuthorAffiliation_xml – name: 1 Nuffield Department of Women’s & Reproductive Health, University of Oxford , Oxford , United Kingdom
– name: 4 Independent Researcher , Namburu , India
– name: 2 Novo Nordisk Research Center Seattle, Inc , Seattle, WA , United States
– name: 3 Independent Researcher , Bengaluru , India
Author_xml – sequence: 1
  givenname: Michal
  surname: Krassowski
  fullname: Krassowski, Michal
– sequence: 2
  givenname: Vivek
  surname: Das
  fullname: Das, Vivek
– sequence: 3
  givenname: Sangram K.
  surname: Sahu
  fullname: Sahu, Sangram K.
– sequence: 4
  givenname: Biswapriya B.
  surname: Misra
  fullname: Misra, Biswapriya B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33362867$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAQjVARLaUfwAX5yCWLEzt2wgEJbVmo1FKJwtmaOONdV4m92A4Sf4-3KVXLAV_myfPeG8vzXhZHzjssitcVXTHWdu_MFh2ualrTlaio7NpnxUklBC9bWldHj_BxcRbjLc2Hd4wx_qI4zkXUrZAnhbpJkJB4Q9IOycbiOBDryNU8JlteT1ZH8g0jQtC792QT_ETWftrPWWS9g5F8RRwiSZ6cQwJyZZ11WwJuIDc7CBm_Kp4bGCOe3dfT4sfm0_f1l_Ly-vPF-uNlqRtWpVLrDqkUouaca92avtM9BT40gEYC1bJmpmlyz0gjdAuaAuPGCFo1sm60YafFxeI7eLhV-2AnCL-VB6vuLnzYKgjJ6hGVqfI_dKzvhdQZQc-rDmVDRc_oAEOXvT4sXvu5n3DQ6FKA8Ynp046zO7X1v5SUTdvQg8Hbe4Pgf84Yk5ps1DiO4NDPUdVcMk4Z7Wimvnk862HI3w1lQrUQdPAxBjQPlIqqQxDUXRDUIQhqCULWyH802i4by8-143-UfwBTGrj2
CitedBy_id crossref_primary_10_1038_s41587_023_01934_1
crossref_primary_10_1016_j_euroneuro_2024_05_014
crossref_primary_10_3390_jof9060688
crossref_primary_10_1007_s11306_021_01796_1
crossref_primary_10_1016_j_advnut_2023_02_005
crossref_primary_10_1016_j_talanta_2024_127442
crossref_primary_10_1161_CIRCGEN_124_004624
crossref_primary_10_1177_10597123241299462
crossref_primary_10_1016_j_csbj_2022_06_009
crossref_primary_10_3390_pharmaceutics14071464
crossref_primary_10_1038_s41467_022_34435_x
crossref_primary_10_1016_j_jbi_2024_104629
crossref_primary_10_1371_journal_pone_0295361
crossref_primary_10_3390_biom12040586
crossref_primary_10_1016_j_ajt_2022_11_015
crossref_primary_10_3389_fgene_2022_774113
crossref_primary_10_3389_fneur_2025_1559172
crossref_primary_10_3390_diagnostics13172832
crossref_primary_10_2174_1573412919666230406100948
crossref_primary_10_1002_qub2_70002
crossref_primary_10_1016_j_ab_2024_115756
crossref_primary_10_1038_s41575_024_00915_2
crossref_primary_10_12688_wellcomeopenres_23599_1
crossref_primary_10_1016_j_jdsr_2023_10_006
crossref_primary_10_1002_alz_13427
crossref_primary_10_3389_fnut_2024_1441685
crossref_primary_10_1016_j_drudis_2022_02_018
crossref_primary_10_3390_ijms25031655
crossref_primary_10_1002_pmic_202200289
crossref_primary_10_1038_s41598_023_41574_8
crossref_primary_10_1016_j_cmpbup_2025_100189
crossref_primary_10_1109_JBHI_2024_3439713
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1093_bib_bbad416
crossref_primary_10_1002_sim_9953
crossref_primary_10_3390_encyclopedia2030096
crossref_primary_10_1080_10495398_2025_2547344
crossref_primary_10_1093_bioadv_vbae147
crossref_primary_10_1007_s43657_023_00153_7
crossref_primary_10_3389_fmicb_2022_933373
crossref_primary_10_3390_app15010329
crossref_primary_10_1038_s43587_024_00775_0
crossref_primary_10_1038_s41597_022_01265_x
crossref_primary_10_1245_s10434_024_15449_9
crossref_primary_10_3390_ijerph19148758
crossref_primary_10_1093_bib_bbad293
crossref_primary_10_1186_s12864_023_09833_0
crossref_primary_10_1016_j_jceh_2025_102611
crossref_primary_10_1093_bib_bbaf116
crossref_primary_10_1371_journal_pone_0323657
crossref_primary_10_3389_fgene_2023_1179439
crossref_primary_10_1002_pmic_202200275
crossref_primary_10_1097_MCC_0000000000000966
crossref_primary_10_3390_ijms24044155
crossref_primary_10_3389_fcell_2023_1268540
crossref_primary_10_1016_j_jbi_2023_104373
crossref_primary_10_1093_icb_icaf006
crossref_primary_10_1016_j_csbj_2024_04_051
crossref_primary_10_3390_biomedicines12081904
crossref_primary_10_1016_j_labinv_2023_100282
crossref_primary_10_1093_bbb_zbac191
crossref_primary_10_1016_j_biotechadv_2023_108141
crossref_primary_10_3390_metabo11100678
crossref_primary_10_3389_fpls_2022_1062952
crossref_primary_10_1016_j_csbj_2023_11_045
crossref_primary_10_1016_j_cels_2024_10_001
crossref_primary_10_3390_ijms22062822
crossref_primary_10_1080_10253890_2025_2495918
crossref_primary_10_3389_fmicb_2025_1598221
crossref_primary_10_1128_mbio_00694_25
crossref_primary_10_3389_fphys_2024_1394740
crossref_primary_10_4103_NRR_NRR_D_24_00231
crossref_primary_10_3389_fcimb_2021_774340
crossref_primary_10_3390_metabo13010067
crossref_primary_10_1007_s00702_025_02930_2
crossref_primary_10_3390_jpm12081314
crossref_primary_10_3390_nu14030472
crossref_primary_10_3390_cells11101711
crossref_primary_10_3390_metabo14030168
crossref_primary_10_1016_j_psyneuen_2023_106364
crossref_primary_10_3390_ijms222111854
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_3390_metabo13070798
crossref_primary_10_1002_mco2_792
crossref_primary_10_1016_j_healun_2024_03_006
crossref_primary_10_1016_j_scitotenv_2024_173028
crossref_primary_10_1016_j_envint_2022_107243
crossref_primary_10_1016_j_cj_2024_10_007
crossref_primary_10_1016_j_nbd_2021_105558
crossref_primary_10_1111_all_15412
crossref_primary_10_1016_j_cag_2024_104115
crossref_primary_10_1371_journal_pone_0309921
crossref_primary_10_3390_plants11223067
crossref_primary_10_1007_s12033_024_01133_6
crossref_primary_10_3389_fmed_2022_1064003
crossref_primary_10_1093_gigascience_giae083
crossref_primary_10_1093_jxb_erae033
crossref_primary_10_1002_jms_5157
crossref_primary_10_3389_fcvm_2022_873582
crossref_primary_10_1038_s41467_025_60822_1
crossref_primary_10_1007_s00122_025_04948_2
crossref_primary_10_1186_s12967_025_06446_x
crossref_primary_10_3390_genes14010063
crossref_primary_10_3389_fmolb_2022_967205
crossref_primary_10_3390_biotech14030058
crossref_primary_10_1186_s13040_025_00452_x
crossref_primary_10_1186_s13213_025_01793_y
crossref_primary_10_1016_j_ajcnut_2022_12_021
crossref_primary_10_1038_s41437_022_00533_1
crossref_primary_10_1186_s41065_025_00528_y
crossref_primary_10_1007_s13167_022_00282_5
crossref_primary_10_1186_s12876_025_03884_1
crossref_primary_10_1016_j_csbj_2023_03_003
crossref_primary_10_3390_toxics13080653
crossref_primary_10_1371_journal_pgen_1010879
crossref_primary_10_3389_fcell_2022_1022457
crossref_primary_10_3748_wjg_v30_i14_1982
crossref_primary_10_7717_peerj_15023
crossref_primary_10_1016_j_mcpro_2023_100561
crossref_primary_10_3390_ph17070899
crossref_primary_10_3390_proteomes9010015
crossref_primary_10_1016_j_compbiolchem_2024_108267
crossref_primary_10_1016_j_jhazmat_2023_131243
crossref_primary_10_3390_ani15070991
crossref_primary_10_1002_med_21919
crossref_primary_10_1016_j_tips_2023_11_003
crossref_primary_10_1038_s41420_021_00811_7
crossref_primary_10_1007_s40471_023_00338_8
crossref_primary_10_3390_antiox12051072
crossref_primary_10_3389_fphys_2021_693067
crossref_primary_10_3390_metabo14010034
crossref_primary_10_3389_fgene_2021_638730
crossref_primary_10_1371_journal_pcbi_1011814
crossref_primary_10_3389_fimmu_2022_822324
crossref_primary_10_1186_s40104_025_01238_1
crossref_primary_10_3390_cancers13205034
crossref_primary_10_1089_hum_2023_139
crossref_primary_10_1186_s13059_023_03091_9
crossref_primary_10_1002_elps_202300105
crossref_primary_10_1089_omi_2023_0003
crossref_primary_10_1016_j_ccell_2022_09_011
crossref_primary_10_1016_j_jtcme_2024_08_002
crossref_primary_10_1093_femsle_fnad125
crossref_primary_10_3389_fmolb_2022_974799
crossref_primary_10_3390_diagnostics13040664
crossref_primary_10_1152_physrev_00043_2023
crossref_primary_10_3390_biology11020260
crossref_primary_10_1177_10998004241256031
crossref_primary_10_1038_s41467_025_61034_3
crossref_primary_10_1038_s41746_022_00640_7
crossref_primary_10_3389_fdata_2021_835353
crossref_primary_10_3390_healthcare11050658
crossref_primary_10_3389_fonc_2023_1170264
crossref_primary_10_3390_plants13192714
crossref_primary_10_1186_s40246_025_00718_9
crossref_primary_10_3389_fgene_2024_1488683
crossref_primary_10_3390_cells11223613
crossref_primary_10_1002_pmic_13983
crossref_primary_10_1093_bib_bbae331
crossref_primary_10_1161_CIRCRESAHA_123_321765
crossref_primary_10_3389_fcell_2023_1177774
crossref_primary_10_1002_bies_202300130
crossref_primary_10_3389_fvets_2024_1366128
crossref_primary_10_3390_proteomes12010007
crossref_primary_10_1093_icb_icad033
crossref_primary_10_1007_s00439_023_02560_2
crossref_primary_10_3389_fcell_2021_716604
crossref_primary_10_1016_j_jaci_2024_10_036
crossref_primary_10_1071_MA22019
crossref_primary_10_1016_j_pmpp_2025_102916
crossref_primary_10_1016_j_plipres_2021_101145
crossref_primary_10_3389_fcpxs_2023_1208066
crossref_primary_10_3390_ijms232012272
crossref_primary_10_3389_fmolb_2024_1483326
crossref_primary_10_1038_s41374_022_00822_7
crossref_primary_10_1038_s42256_025_01015_9
crossref_primary_10_1093_bib_bbae448
crossref_primary_10_1016_j_yfrne_2023_101113
crossref_primary_10_1093_bioadv_vbac065
crossref_primary_10_1093_gigascience_giad115
crossref_primary_10_1016_j_joca_2023_11_019
crossref_primary_10_3389_fphar_2025_1591696
crossref_primary_10_1002_fft2_369
crossref_primary_10_1007_s13571_023_00301_z
crossref_primary_10_3390_metabo12020194
crossref_primary_10_1038_s41467_024_48806_z
Cites_doi 10.1007/978-1-4939-3578-9_3
10.25080/majora-4af1f417-011
10.1186/1745-6150-7-27
10.1126/scisignal.2004088
10.1023/A:1013713905833
10.1038/s41523-019-0124-8
10.1016/j.csbj.2020.02.011
10.1093/nar/gkv1145
10.1038/nbt.2839
10.5195/jmla.2017.88
10.1200/JCO.2008.18.1370
10.1101/2020.04.01.020792
10.26508/lsa.201900517
10.1093/bioinformatics/bts480
10.1101/2020.01.14.905760
10.1101/385534
10.1101/2020.02.02.931394
10.1093/bioinformatics/btx192
10.1101/539569
10.1093/nar/gky466
10.1093/bioinformatics/bty1054
10.1038/s41592-018-0046-7
10.1093/nar/gks1193
10.1038/nbt.3597
10.1186/s12859-019-3224-4
10.1187/cbe.15-04-0105
10.1093/database/bar026
10.1093/nar/gkq1019
10.1093/bib/bbv108
10.1186/1752-0509-7-64
10.1177/1177932219899051
10.1016/j.tig.2016.12.003
10.15252/msb.20178124
10.1021/cn300100u
10.1038/s41592-020-0768-1
10.1038/s41467-019-09406-4
10.1186/1471-2105-15-162
10.1186/s12859-016-0994-9
10.1038/nrg.2018.4
10.1093/nar/gky889
10.1101/2020.04.16.044958
10.3390/genes10030238
10.1101/326470
10.1093/bioinformatics/btw324
10.3390/metabo9040076
10.1101/665307
10.1126/science.aal3321
10.3389/fgene.2017.00096
10.1128/mSystems.00038-16
10.1186/s13059-019-1738-8
10.1093/nar/gky1226
10.1186/s13059-020-02015-1
10.1038/nmeth.2810
10.1186/s13059-020-02021-3
10.1371/journal.pcbi.1005752
10.1038/s41467-020-16937-8
10.3390/genes10020087
10.1186/s13059-019-1758-4
10.1186/s12859-019-2992-1
10.1038/nature13182
10.1016/j.cell.2018.03.059
10.1073/pnas.1917259117
10.1038/nbt.3790
10.1098/rsif.2017.0387
10.1038/sdata.2016.18
10.1186/s12864-019-6287-8
10.1093/nar/gkx1081
10.1186/1752-0509-8-S2-I1
10.3389/fpls.2020.00944
10.1093/bioinformatics/btz318
10.3390/metabo9060117
10.1530/JME-18-0055
10.1038/nmeth.3144
10.1371/journal.pone.0192563
10.1093/nar/gkv1042
10.1016/j.bdq.2017.11.002
10.1016/j.cell.2019.05.006
10.6084/m9.figshare.3115156.v2
10.1093/gigascience/giaa025
10.1093/nar/gks1004
10.1093/database/baw117
10.1038/nbt.3820
10.1101/807214
ContentType Journal Article
Copyright Copyright © 2020 Krassowski, Das, Sahu and Misra.
Copyright © 2020 Krassowski, Das, Sahu and Misra. 2020 Krassowski, Das, Sahu and Misra
Copyright_xml – notice: Copyright © 2020 Krassowski, Das, Sahu and Misra.
– notice: Copyright © 2020 Krassowski, Das, Sahu and Misra. 2020 Krassowski, Das, Sahu and Misra
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgene.2020.610798
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_f149393bb67c493ab419e7506b30dad9
PMC7758509
33362867
10_3389_fgene_2020_610798
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-cc9e07662444cc8fb9cb0a4d5aef7a0c723f5544cf7f6c8ac0a34ff6015725cf3
IEDL.DBID DOA
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601285400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-8021
IngestDate Fri Oct 03 12:38:56 EDT 2025
Thu Aug 21 18:04:13 EDT 2025
Thu Sep 04 17:04:40 EDT 2025
Thu Jan 02 22:58:33 EST 2025
Sat Nov 29 03:49:37 EST 2025
Tue Nov 18 21:18:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords visualization
FAIR
benchmarking
data heterogeneity
reproducibility
multi-omics
integrated omics
machine learning
Language English
License Copyright © 2020 Krassowski, Das, Sahu and Misra.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-cc9e07662444cc8fb9cb0a4d5aef7a0c723f5544cf7f6c8ac0a34ff6015725cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID: Michal Krassowski, orcid.org/0000-0002-9638-7785; Vivek Das, orcid.org/0000-0003-0614-0373; Sangram K. Sahu, orcid.org/0000-0001-5010-9539; Biswapriya B. Misra, orcid.org/0000-0003-2589-6539
Reviewed by: Heinz Himmelbauer, University of Natural Resources and Life Sciences, Vienna, Austria; Subina Mehta, University of Minnesota Twin Cities, United States; Wan M. Aizat, National University of Malaysia, Malaysia
Edited by: Fatemeh Maghuly, University of Natural Resources and Life Sciences, Vienna, Austria
This article was submitted to Systems Biology, a section of the journal Frontiers in Genetics
OpenAccessLink https://doaj.org/article/f149393bb67c493ab419e7506b30dad9
PMID 33362867
PQID 2473403090
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f149393bb67c493ab419e7506b30dad9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7758509
proquest_miscellaneous_2473403090
pubmed_primary_33362867
crossref_primary_10_3389_fgene_2020_610798
crossref_citationtrail_10_3389_fgene_2020_610798
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Mangul (B55) 2019; 10
Subramanian (B85) 2020; 14
da Veiga Leprevost (B21) 2017; 33
Leinonen (B50) 2011; 39
Kellman (B43) 2020
Sharifi-Noghabi (B81) 2019; 35
(B12) 2020
(B72) 2020
(B82) 2020
Forrest (B88) 2014; 507
McGowan (B58) 2020; 9
(B100) 2020
Liu (B51) 2016; 2016
Chai (B15) 2019
Amodio (B1) 2018
Singh (B83) 2019; 35
Argelaguet (B4) 2018; 14
Ichihashi (B39) 2020; 117
Koonin (B47) 2012; 7
O’Connell (B67) 2016; 32
Mathews (B57) 2019; 5
Karczewski (B42) 2018; 19
Macaulay (B54) 2017; 33
Jamil (B40) 2020; 11
Misra (B63) 2019; 62
(B45) 2020
Liu (B52) 2017; 8
Wilson (B101) 2019; 20
Haug (B34) 2013; 41
Amstutz (B2) 2016
Herrmann (B36) 2020
Cao (B14) 2020
Perez-Riverol (B70) 2017; 35
Kok (B46) 2018; 15
Grüning (B33) 2018; 15
(B77) 2020
Meng (B60) 2016; 17
Nemes (B64) 2012; 3
Specht (B84) 2019
Rappoport (B74) 2018; 46
Zhang (B103) 2011; 2011
Baldwin (B6) 2020; 18
(B44) 2020
Sud (B86) 2016; 44
Welch (B98) 2019; 177
Blum (B11) 2018; 173
Wilkinson (B99) 2016; 3
Goldman (B30) 2019
Wang (B94) 2014; 11
Di Tommaso (B23) 2017; 35
Marx (B56) 2020; 17
Koster (B48) 2012; 28
Honaas (B37) 2016; 1418
Otasek (B68) 2019; 20
Wang (B95) 2016; 34
Tarazona (B87) 2020; 11
Fiehn (B27) 2002; 48
Neyton (B66) 2019
(B20) 2020
Reinagel (B76) 2016; 15
Gao (B29) 2013; 6
(B69) 2020
Ronen (B79) 2019; 2
Zeng (B102) 2019; 20
Mirza (B62) 2019; 10
Cantini (B13) 2020
Argelaguet (B3) 2020; 21
Rohart (B78) 2017; 13
Ching (B16) 2018; 15
Jupyter (B41) 2018
(B5) 2020
Thul (B89) 2017; 356
(B19) 2020
Hernández-de-Diego (B35) 2018; 46
Quinn (B73) 2016; 1
(B26) 2016
Rappoport (B75) 2019; 47
(B61) 2020
Way (B96) 2020; 21
Griss (B32) 2020
Gomez-Cabrero (B31) 2014; 8
Nesvizhskii (B65) 2014; 11
Pinu (B71) 2019; 9
(B93) 2020
(B10) 2020
Vizcaíno (B91) 2016; 44
Davis (B22) 2018; 46
(B24) 2020
Hu (B38) 2018
López, de Maturana (B53) 2019; 10
Ulfenborg (B90) 2019; 20
Vizcaíno (B92) 2014; 32
Kuo (B49) 2013; 7
Dwivedi (B25) 2018; 13
Bi (B9) 2016; 17
Barrett (B7) 2012; 41
Foster (B28) 2017; 105
(B18) 2020
Chu (B17) 2019; 9
Bernard (B8) 2009; 27
Meng (B59) 2014; 15
(B80) 2020
Weber (B97) 2019; 20
References_xml – volume: 1418
  start-page: 39
  year: 2016
  ident: B37
  article-title: Study Design for Sequencing Studies.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3578-9_3
– start-page: 113
  year: 2018
  ident: B41
  article-title: “Binder 2.0,” in
  publication-title: Proceedings of the 17th Python in Science Conference (SciPy)
  doi: 10.25080/majora-4af1f417-011
– volume: 7
  year: 2012
  ident: B47
  article-title: Does the central dogma still stand?
  publication-title: Biol. Direct.
  doi: 10.1186/1745-6150-7-27
– volume: 6
  year: 2013
  ident: B29
  article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2004088
– volume: 48
  start-page: 155
  year: 2002
  ident: B27
  article-title: Metabolomics – The link between genotypes and phenotypes.
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1013713905833
– volume: 5
  year: 2019
  ident: B57
  article-title: Robust and interpretable PAM50 reclassification exhibits survival advantage for myoepithelial and immune phenotypes.
  publication-title: npj Breast Cancer
  doi: 10.1038/s41523-019-0124-8
– volume: 18
  start-page: 509
  year: 2020
  ident: B6
  article-title: On fusion methods for knowledge discovery from multi-omics datasets.
  publication-title: Comput. Struct. Biotechnol. J
  doi: 10.1016/j.csbj.2020.02.011
– volume: 44
  start-page: D447
  year: 2016
  ident: B91
  article-title: 2016 update of the PRIDE database and its related tools.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1145
– volume: 32
  start-page: 223
  year: 2014
  ident: B92
  article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2839
– volume: 105
  start-page: 203
  year: 2017
  ident: B28
  article-title: Open science framework (OSF).
  publication-title: J. Med. Libr. Assoc.
  doi: 10.5195/jmla.2017.88
– volume: 27
  start-page: 1160
  year: 2009
  ident: B8
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes.
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.18.1370
– year: 2020
  ident: B45
  publication-title: KNIME4Bio | KNIME.
– year: 2020
  ident: B43
  article-title: Multiple freeze-thaw cycles lead to a loss of consistency in poly(A)-enriched RNA 1 sequencing.
  publication-title: bioRxiv
  doi: 10.1101/2020.04.01.020792
– volume: 2
  year: 2019
  ident: B79
  article-title: Evaluation of colorectal cancer subtypes and cell lines using deep learning.
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201900517
– volume: 28
  start-page: 2520
  year: 2012
  ident: B48
  article-title: Snakemake–a scalable bioinformatics workflow engine.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts480
– year: 2020
  ident: B13
  article-title: Benchmarking joint multi-omics dimensionality reduction approaches for cancer study.
  publication-title: bioRxiv
  doi: 10.1101/2020.01.14.905760
– year: 2020
  ident: B44
  publication-title: A Shiny App for Interactive Multi-OMICS Cancer Data Visualization and Analysis.
– year: 2016
  ident: B26
  publication-title: European Nucleotide Archive.
– year: 2020
  ident: B5
  publication-title: BACnet Stack.
– year: 2018
  ident: B38
  article-title: Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
  publication-title: bioRxiv
  doi: 10.1101/385534
– year: 2020
  ident: B14
  article-title: Unsupervised topological alignment for single-cell multi-omics integration.
  publication-title: bioRxiv
  doi: 10.1101/2020.02.02.931394
– volume: 33
  start-page: 2580
  year: 2017
  ident: B21
  article-title: BioContainers: an open-source and community-driven framework for software standardization.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx192
– year: 2019
  ident: B66
  article-title: Multiomic definition of generalizable endotypes in human acute pancreatitis.
  publication-title: bioRxiv
  doi: 10.1101/539569
– volume: 46
  start-page: W503
  year: 2018
  ident: B35
  article-title: PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky466
– volume: 35
  start-page: 3055
  year: 2019
  ident: B83
  article-title: DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– volume: 15
  start-page: 475
  year: 2018
  ident: B33
  article-title: Bioconda: sustainable and comprehensive software distribution for the life sciences.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0046-7
– volume: 41
  start-page: D991
  year: 2012
  ident: B7
  article-title: NCBI GEO: archive for functional genomics data sets—update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1193
– year: 2020
  ident: B77
  publication-title: Reticulate.
– volume: 34
  start-page: 828
  year: 2016
  ident: B95
  article-title: Sharing and community curation of mass spectrometry data with global natural products social molecular networking.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3597
– volume: 20
  year: 2019
  ident: B90
  article-title: Vertical and horizontal integration of multi-omics data with miodin.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3224-4
– year: 2020
  ident: B61
  publication-title: Microsoft Genomics.
– volume: 15
  year: 2016
  ident: B76
  article-title: Beyond the central dogma: model-based learning of how genes determine phenotypes.
  publication-title: CBE Life Sci. Educ.
  doi: 10.1187/cbe.15-04-0105
– volume: 2011
  year: 2011
  ident: B103
  article-title: International Cancer genome consortium data portal–a one-stop shop for cancer genomics data.
  publication-title: Database
  doi: 10.1093/database/bar026
– volume: 39
  start-page: D19
  year: 2011
  ident: B50
  article-title: The sequence read archive.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1019
– volume: 17
  start-page: 628
  year: 2016
  ident: B60
  article-title: Dimension reduction techniques for the integrative analysis of multi-omics data.
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbv108
– volume: 7
  year: 2013
  ident: B49
  article-title: 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data.
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-64
– year: 2020
  ident: B72
  publication-title: Plotly.
– volume: 14
  year: 2020
  ident: B85
  article-title: Multi-omics data integration, interpretation, and its application.
  publication-title: Bioinform. Biol. Insights
  doi: 10.1177/1177932219899051
– volume: 33
  start-page: 155
  year: 2017
  ident: B54
  article-title: Single-cell multiomics: multiple measurements from single cells.
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2016.12.003
– volume: 14
  year: 2018
  ident: B4
  article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178124
– volume: 3
  start-page: 782
  year: 2012
  ident: B64
  article-title: Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons.
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn300100u
– volume: 17
  start-page: 255
  year: 2020
  ident: B56
  article-title: Bench pressing with genomics benchmarkers.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0768-1
– volume: 10
  start-page: 1
  year: 2019
  ident: B55
  article-title: Systematic benchmarking of omics computational tools.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09406-4
– volume: 15
  year: 2014
  ident: B59
  article-title: A multivariate approach to the integration of multi-omics datasets.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-162
– volume: 17
  year: 2016
  ident: B9
  article-title: Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0994-9
– volume: 19
  start-page: 299
  year: 2018
  ident: B42
  article-title: Integrative omics for health and disease.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2018.4
– volume: 46
  start-page: 10546
  year: 2018
  ident: B74
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky889
– year: 2020
  ident: B93
  publication-title: voilà.
– year: 2020
  ident: B32
  article-title: ReactomeGSA – efficient multi-omics comparative pathway analysis.
  publication-title: bioRxiv
  doi: 10.1101/2020.04.16.044958
– volume: 10
  year: 2019
  ident: B53
  article-title: Challenges in the integration of omics and non-omics data.
  publication-title: Genes
  doi: 10.3390/genes10030238
– year: 2019
  ident: B30
  article-title: The UCSC Xena platform for public and private cancer genomics data visualization and interpretation.
  publication-title: bioRxiv
  doi: 10.1101/326470
– volume: 32
  start-page: 2877
  year: 2016
  ident: B67
  article-title: R.JIVE for exploration of multi-source molecular data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw324
– volume: 9
  year: 2019
  ident: B71
  article-title: Systems biology and multi-omics integration: viewpoints from the metabolomics research community.
  publication-title: Metabolites
  doi: 10.3390/metabo9040076
– year: 2019
  ident: B84
  article-title: Single-cell mass-spectrometry quantifies the emergence of macrophage heterogeneity.
  publication-title: bioRxiv
  doi: 10.1101/665307
– volume: 356
  year: 2017
  ident: B89
  article-title: A subcellular map of the human proteome.
  publication-title: Science
  doi: 10.1126/science.aal3321
– year: 2020
  ident: B10
  publication-title: Biotools.
– volume: 8
  year: 2017
  ident: B52
  article-title: Quantifying gene regulatory relationships with association measures: a comparative study.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00096
– volume: 1
  year: 2016
  ident: B73
  article-title: From sample to multi-omics conclusions in under 48 hours.
  publication-title: mSystems
  doi: 10.1128/mSystems.00038-16
– year: 2020
  ident: B100
  article-title: WIlsON
– year: 2020
  ident: B20
  publication-title: D3. js.
– volume: 20
  start-page: 1
  year: 2019
  ident: B97
  article-title: Essential guidelines for computational method benchmarking.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1738-8
– year: 2020
  ident: B12
  publication-title: Bokeh.
– volume: 47
  start-page: 1044
  year: 2019
  ident: B75
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1226
– year: 2020
  ident: B69
  publication-title: Packrat.
– volume: 21
  year: 2020
  ident: B3
  article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02015-1
– year: 2020
  ident: B18
  publication-title: Conda.
– volume: 11
  start-page: 333
  year: 2014
  ident: B94
  article-title: Similarity network fusion for aggregating data types on a genomic scale.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2810
– volume: 21
  year: 2020
  ident: B96
  article-title: Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02021-3
– year: 2020
  ident: B82
  publication-title: Shiny.
– volume: 13
  year: 2017
  ident: B78
  article-title: mixOmics: an R package for ‘omics feature selection and multiple data integration.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005752
– volume: 11
  year: 2020
  ident: B87
  article-title: Harmonization of quality metrics and power calculation in multi-omic studies.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16937-8
– volume: 10
  year: 2019
  ident: B62
  article-title: Machine learning and integrative analysis of biomedical big data.
  publication-title: Genes
  doi: 10.3390/genes10020087
– volume: 20
  year: 2019
  ident: B68
  article-title: Cytoscape Automation: empowering workflow-based network analysis.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1758-4
– volume: 20
  year: 2019
  ident: B101
  article-title: Multiple-kernel learning for genomic data mining and prediction.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2992-1
– year: 2020
  ident: B80
  publication-title: rpy2.
– volume: 507
  start-page: 462
  year: 2014
  ident: B88
  article-title: A promoter-level mammalian expression atlas.
  publication-title: Nature
  doi: 10.1038/nature13182
– volume: 173
  year: 2018
  ident: B11
  article-title: SnapShot: TCGA-analyzed tumors.
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.059
– volume: 117
  start-page: 14552
  year: 2020
  ident: B39
  article-title: Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1917259117
– year: 2020
  ident: B24
  publication-title: Docker.
– volume: 35
  start-page: 406
  year: 2017
  ident: B70
  article-title: Discovering and linking public omics data sets using the omics discovery index.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3790
– volume: 15
  year: 2018
  ident: B16
  article-title: Opportunities and obstacles for deep learning in biology and medicine.
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0387
– volume: 3
  start-page: 1
  year: 2016
  ident: B99
  article-title: The FAIR Guiding Principles for scientific data management and stewardship.
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– volume: 20
  year: 2019
  ident: B102
  article-title: Knowledge base commons (KBCommons) v1.1: a universal framework for multi-omics data integration and biological discoveries.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6287-8
– volume: 46
  start-page: D794
  year: 2018
  ident: B22
  article-title: The encyclopedia of DNA elements (ENCODE): data portal update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1081
– volume: 8
  year: 2014
  ident: B31
  article-title: Data integration in the era of omics: current and future challenges.
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-8-S2-I1
– year: 2020
  ident: B36
  article-title: Large-scale benchmark study of survival prediction methods using multi-omics data.
  publication-title: arXiv
– volume: 11
  year: 2020
  ident: B40
  article-title: Systematic multi-omics integration (MOI) approach in plant systems biology.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00944
– volume: 35
  start-page: i501
  year: 2019
  ident: B81
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– volume: 9
  year: 2019
  ident: B17
  article-title: Integration of metabolomic and other omics data in population-based study designs: an epidemiological perspective.
  publication-title: Metabolites
  doi: 10.3390/metabo9060117
– volume: 62
  start-page: R21
  year: 2019
  ident: B63
  article-title: Integrated omics: tools, advances and future approaches.
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/JME-18-0055
– volume: 11
  start-page: 1114
  year: 2014
  ident: B65
  article-title: Proteogenomics: concepts, applications and computational strategies.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3144
– volume: 13
  year: 2018
  ident: B25
  article-title: shinyGISPA: a web application for characterizing phenotype by gene sets using multiple omics data combinations.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192563
– volume: 44
  start-page: D463
  year: 2016
  ident: B86
  article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1042
– volume: 15
  start-page: 1
  year: 2018
  ident: B46
  article-title: Small sample sizes in high-throughput miRNA screens: a common pitfall for the identification of miRNA biomarkers.
  publication-title: Biomol. Detect. Quantif.
  doi: 10.1016/j.bdq.2017.11.002
– volume: 177
  start-page: 1873.e
  year: 2019
  ident: B98
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity.
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– year: 2016
  ident: B2
  publication-title: Common Workflow Language, v1.0 Common Workflow Language (CWL) Command Line Tool Description, v1.0.
  doi: 10.6084/m9.figshare.3115156.v2
– volume: 9
  year: 2020
  ident: B58
  article-title: Multi-omics visualization platform: an extensible galaxy plug-in for multi-omics data visualization and exploration.
  publication-title: Gigascience
  doi: 10.1093/gigascience/giaa025
– volume: 41
  start-page: D781
  year: 2013
  ident: B34
  article-title: MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1004
– volume: 2016
  year: 2016
  ident: B51
  article-title: MODEM: multi-omics data envelopment and mining in maize.
  publication-title: Database
  doi: 10.1093/database/baw117
– year: 2020
  ident: B19
  publication-title: Cytoscape.
– volume: 35
  start-page: 316
  year: 2017
  ident: B23
  article-title: Nextflow enables reproducible computational workflows.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3820
– start-page: 327
  year: 2018
  ident: B1
  article-title: “MAGAN: aligning biological manifolds,” in
  publication-title: 35th International Conference on Machine Learning ICML 2018
– year: 2019
  ident: B15
  article-title: Integrating multi-omics data with deep learning for predicting cancer prognosis.
  publication-title: bioRxiv
  doi: 10.1101/807214
SSID ssj0000493334
Score 2.6345315
SecondaryResourceType review_article
Snippet Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 610798
SubjectTerms benchmarking
FAIR
Genetics
integrated omics
machine learning
multi-omics
reproducibility
Title State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing
URI https://www.ncbi.nlm.nih.gov/pubmed/33362867
https://www.proquest.com/docview/2473403090
https://pubmed.ncbi.nlm.nih.gov/PMC7758509
https://doaj.org/article/f149393bb67c493ab419e7506b30dad9
Volume 11
WOSCitedRecordID wos000601285400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BBRKXquUzLVRG4oQU6o2dOOYGtCsOdOEAaG-WM7HVRTRBuykSF347Yzu72kUILlwiK7FlazzWvMmM3wA8awT3Hkl5Ze0wl567PHDC5KWQrWy1kCrSLn5-p2azej7XH7ZKfYWcsEQPnAR36gnCCy2aplJILdvIiXZk5iqapbVtvLpHqGfLmfqScK8QQqYwJnlh-tTTfgRazIK_IMSgdL1jiCJf_59A5u-5klvGZ3oA-yNqZK_Sag_hhuvuwu1UR_LHPTARMrLeM4JzbBqS0tiiY_Fybf7-aoErts6we8mmy_6KpWIO449ANiMTtmJDz87sYNlFrBnBbNeyQOdM7fvwaXr-8c3bfKyckCOdqSFH1I6rqiLbLRFr32hsuJVtaZ1XlqMqhCccIdErX2FtkVshvSfnrFRFiV48gL2u79wjYJPWWVFwF6LmstZ0fGVJg0pyWwgrOZsBX4vR4EgrHqpbfDXkXgTJmyh5EyRvkuQzeL4Z8i1xavyt8-uwN5uOgQ47viAlMaOSmH8pSQZP1ztr6PiEmIjtXH-9MgUpowxhJp7Bw7TTm6lIg8LFXZWB2tGBnbXsfukWl5GiWwU3jOuj_7H4Y7gT5BFyaCb8MewNy2v3BG7h92GxWp7ATTWvT6L20_Pi5_kv8ygItQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Field+in+Multi-Omics+Research%3A+From+Computational+Needs+to+Data+Mining+and+Sharing&rft.jtitle=Frontiers+in+genetics&rft.au=Michal+Krassowski&rft.au=Vivek+Das&rft.au=Sangram+K.+Sahu&rft.au=Biswapriya+B.+Misra&rft.date=2020-12-10&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=11&rft_id=info:doi/10.3389%2Ffgene.2020.610798&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f149393bb67c493ab419e7506b30dad9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon