State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing
Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research lea...
Gespeichert in:
| Veröffentlicht in: | Frontiers in genetics Jg. 11; S. 610798 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
10.12.2020
|
| Schlagworte: | |
| ISSN: | 1664-8021, 1664-8021 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods’ limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow. |
|---|---|
| AbstractList | Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods' limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods' limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow. Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods’ limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow. |
| Author | Sahu, Sangram K. Misra, Biswapriya B. Krassowski, Michal Das, Vivek |
| AuthorAffiliation | 3 Independent Researcher , Bengaluru , India 1 Nuffield Department of Women’s & Reproductive Health, University of Oxford , Oxford , United Kingdom 2 Novo Nordisk Research Center Seattle, Inc , Seattle, WA , United States 4 Independent Researcher , Namburu , India |
| AuthorAffiliation_xml | – name: 1 Nuffield Department of Women’s & Reproductive Health, University of Oxford , Oxford , United Kingdom – name: 4 Independent Researcher , Namburu , India – name: 2 Novo Nordisk Research Center Seattle, Inc , Seattle, WA , United States – name: 3 Independent Researcher , Bengaluru , India |
| Author_xml | – sequence: 1 givenname: Michal surname: Krassowski fullname: Krassowski, Michal – sequence: 2 givenname: Vivek surname: Das fullname: Das, Vivek – sequence: 3 givenname: Sangram K. surname: Sahu fullname: Sahu, Sangram K. – sequence: 4 givenname: Biswapriya B. surname: Misra fullname: Misra, Biswapriya B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33362867$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFu1DAQjVARLaUfwAX5yCWLEzt2wgEJbVmo1FKJwtmaOONdV4m92A4Sf4-3KVXLAV_myfPeG8vzXhZHzjssitcVXTHWdu_MFh2ualrTlaio7NpnxUklBC9bWldHj_BxcRbjLc2Hd4wx_qI4zkXUrZAnhbpJkJB4Q9IOycbiOBDryNU8JlteT1ZH8g0jQtC792QT_ETWftrPWWS9g5F8RRwiSZ6cQwJyZZ11WwJuIDc7CBm_Kp4bGCOe3dfT4sfm0_f1l_Ly-vPF-uNlqRtWpVLrDqkUouaca92avtM9BT40gEYC1bJmpmlyz0gjdAuaAuPGCFo1sm60YafFxeI7eLhV-2AnCL-VB6vuLnzYKgjJ6hGVqfI_dKzvhdQZQc-rDmVDRc_oAEOXvT4sXvu5n3DQ6FKA8Ynp046zO7X1v5SUTdvQg8Hbe4Pgf84Yk5ps1DiO4NDPUdVcMk4Z7Wimvnk862HI3w1lQrUQdPAxBjQPlIqqQxDUXRDUIQhqCULWyH802i4by8-143-UfwBTGrj2 |
| CitedBy_id | crossref_primary_10_1038_s41587_023_01934_1 crossref_primary_10_1016_j_euroneuro_2024_05_014 crossref_primary_10_3390_jof9060688 crossref_primary_10_1007_s11306_021_01796_1 crossref_primary_10_1016_j_advnut_2023_02_005 crossref_primary_10_1016_j_talanta_2024_127442 crossref_primary_10_1161_CIRCGEN_124_004624 crossref_primary_10_1177_10597123241299462 crossref_primary_10_1016_j_csbj_2022_06_009 crossref_primary_10_3390_pharmaceutics14071464 crossref_primary_10_1038_s41467_022_34435_x crossref_primary_10_1016_j_jbi_2024_104629 crossref_primary_10_1371_journal_pone_0295361 crossref_primary_10_3390_biom12040586 crossref_primary_10_1016_j_ajt_2022_11_015 crossref_primary_10_3389_fgene_2022_774113 crossref_primary_10_3389_fneur_2025_1559172 crossref_primary_10_3390_diagnostics13172832 crossref_primary_10_2174_1573412919666230406100948 crossref_primary_10_1002_qub2_70002 crossref_primary_10_1016_j_ab_2024_115756 crossref_primary_10_1038_s41575_024_00915_2 crossref_primary_10_12688_wellcomeopenres_23599_1 crossref_primary_10_1016_j_jdsr_2023_10_006 crossref_primary_10_1002_alz_13427 crossref_primary_10_3389_fnut_2024_1441685 crossref_primary_10_1016_j_drudis_2022_02_018 crossref_primary_10_3390_ijms25031655 crossref_primary_10_1002_pmic_202200289 crossref_primary_10_1038_s41598_023_41574_8 crossref_primary_10_1016_j_cmpbup_2025_100189 crossref_primary_10_1109_JBHI_2024_3439713 crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1093_bib_bbad416 crossref_primary_10_1002_sim_9953 crossref_primary_10_3390_encyclopedia2030096 crossref_primary_10_1080_10495398_2025_2547344 crossref_primary_10_1093_bioadv_vbae147 crossref_primary_10_1007_s43657_023_00153_7 crossref_primary_10_3389_fmicb_2022_933373 crossref_primary_10_3390_app15010329 crossref_primary_10_1038_s43587_024_00775_0 crossref_primary_10_1038_s41597_022_01265_x crossref_primary_10_1245_s10434_024_15449_9 crossref_primary_10_3390_ijerph19148758 crossref_primary_10_1093_bib_bbad293 crossref_primary_10_1186_s12864_023_09833_0 crossref_primary_10_1016_j_jceh_2025_102611 crossref_primary_10_1093_bib_bbaf116 crossref_primary_10_1371_journal_pone_0323657 crossref_primary_10_3389_fgene_2023_1179439 crossref_primary_10_1002_pmic_202200275 crossref_primary_10_1097_MCC_0000000000000966 crossref_primary_10_3390_ijms24044155 crossref_primary_10_3389_fcell_2023_1268540 crossref_primary_10_1016_j_jbi_2023_104373 crossref_primary_10_1093_icb_icaf006 crossref_primary_10_1016_j_csbj_2024_04_051 crossref_primary_10_3390_biomedicines12081904 crossref_primary_10_1016_j_labinv_2023_100282 crossref_primary_10_1093_bbb_zbac191 crossref_primary_10_1016_j_biotechadv_2023_108141 crossref_primary_10_3390_metabo11100678 crossref_primary_10_3389_fpls_2022_1062952 crossref_primary_10_1016_j_csbj_2023_11_045 crossref_primary_10_1016_j_cels_2024_10_001 crossref_primary_10_3390_ijms22062822 crossref_primary_10_1080_10253890_2025_2495918 crossref_primary_10_3389_fmicb_2025_1598221 crossref_primary_10_1128_mbio_00694_25 crossref_primary_10_3389_fphys_2024_1394740 crossref_primary_10_4103_NRR_NRR_D_24_00231 crossref_primary_10_3389_fcimb_2021_774340 crossref_primary_10_3390_metabo13010067 crossref_primary_10_1007_s00702_025_02930_2 crossref_primary_10_3390_jpm12081314 crossref_primary_10_3390_nu14030472 crossref_primary_10_3390_cells11101711 crossref_primary_10_3390_metabo14030168 crossref_primary_10_1016_j_psyneuen_2023_106364 crossref_primary_10_3390_ijms222111854 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_3390_metabo13070798 crossref_primary_10_1002_mco2_792 crossref_primary_10_1016_j_healun_2024_03_006 crossref_primary_10_1016_j_scitotenv_2024_173028 crossref_primary_10_1016_j_envint_2022_107243 crossref_primary_10_1016_j_cj_2024_10_007 crossref_primary_10_1016_j_nbd_2021_105558 crossref_primary_10_1111_all_15412 crossref_primary_10_1016_j_cag_2024_104115 crossref_primary_10_1371_journal_pone_0309921 crossref_primary_10_3390_plants11223067 crossref_primary_10_1007_s12033_024_01133_6 crossref_primary_10_3389_fmed_2022_1064003 crossref_primary_10_1093_gigascience_giae083 crossref_primary_10_1093_jxb_erae033 crossref_primary_10_1002_jms_5157 crossref_primary_10_3389_fcvm_2022_873582 crossref_primary_10_1038_s41467_025_60822_1 crossref_primary_10_1007_s00122_025_04948_2 crossref_primary_10_1186_s12967_025_06446_x crossref_primary_10_3390_genes14010063 crossref_primary_10_3389_fmolb_2022_967205 crossref_primary_10_3390_biotech14030058 crossref_primary_10_1186_s13040_025_00452_x crossref_primary_10_1186_s13213_025_01793_y crossref_primary_10_1016_j_ajcnut_2022_12_021 crossref_primary_10_1038_s41437_022_00533_1 crossref_primary_10_1186_s41065_025_00528_y crossref_primary_10_1007_s13167_022_00282_5 crossref_primary_10_1186_s12876_025_03884_1 crossref_primary_10_1016_j_csbj_2023_03_003 crossref_primary_10_3390_toxics13080653 crossref_primary_10_1371_journal_pgen_1010879 crossref_primary_10_3389_fcell_2022_1022457 crossref_primary_10_3748_wjg_v30_i14_1982 crossref_primary_10_7717_peerj_15023 crossref_primary_10_1016_j_mcpro_2023_100561 crossref_primary_10_3390_ph17070899 crossref_primary_10_3390_proteomes9010015 crossref_primary_10_1016_j_compbiolchem_2024_108267 crossref_primary_10_1016_j_jhazmat_2023_131243 crossref_primary_10_3390_ani15070991 crossref_primary_10_1002_med_21919 crossref_primary_10_1016_j_tips_2023_11_003 crossref_primary_10_1038_s41420_021_00811_7 crossref_primary_10_1007_s40471_023_00338_8 crossref_primary_10_3390_antiox12051072 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_3390_metabo14010034 crossref_primary_10_3389_fgene_2021_638730 crossref_primary_10_1371_journal_pcbi_1011814 crossref_primary_10_3389_fimmu_2022_822324 crossref_primary_10_1186_s40104_025_01238_1 crossref_primary_10_3390_cancers13205034 crossref_primary_10_1089_hum_2023_139 crossref_primary_10_1186_s13059_023_03091_9 crossref_primary_10_1002_elps_202300105 crossref_primary_10_1089_omi_2023_0003 crossref_primary_10_1016_j_ccell_2022_09_011 crossref_primary_10_1016_j_jtcme_2024_08_002 crossref_primary_10_1093_femsle_fnad125 crossref_primary_10_3389_fmolb_2022_974799 crossref_primary_10_3390_diagnostics13040664 crossref_primary_10_1152_physrev_00043_2023 crossref_primary_10_3390_biology11020260 crossref_primary_10_1177_10998004241256031 crossref_primary_10_1038_s41467_025_61034_3 crossref_primary_10_1038_s41746_022_00640_7 crossref_primary_10_3389_fdata_2021_835353 crossref_primary_10_3390_healthcare11050658 crossref_primary_10_3389_fonc_2023_1170264 crossref_primary_10_3390_plants13192714 crossref_primary_10_1186_s40246_025_00718_9 crossref_primary_10_3389_fgene_2024_1488683 crossref_primary_10_3390_cells11223613 crossref_primary_10_1002_pmic_13983 crossref_primary_10_1093_bib_bbae331 crossref_primary_10_1161_CIRCRESAHA_123_321765 crossref_primary_10_3389_fcell_2023_1177774 crossref_primary_10_1002_bies_202300130 crossref_primary_10_3389_fvets_2024_1366128 crossref_primary_10_3390_proteomes12010007 crossref_primary_10_1093_icb_icad033 crossref_primary_10_1007_s00439_023_02560_2 crossref_primary_10_3389_fcell_2021_716604 crossref_primary_10_1016_j_jaci_2024_10_036 crossref_primary_10_1071_MA22019 crossref_primary_10_1016_j_pmpp_2025_102916 crossref_primary_10_1016_j_plipres_2021_101145 crossref_primary_10_3389_fcpxs_2023_1208066 crossref_primary_10_3390_ijms232012272 crossref_primary_10_3389_fmolb_2024_1483326 crossref_primary_10_1038_s41374_022_00822_7 crossref_primary_10_1038_s42256_025_01015_9 crossref_primary_10_1093_bib_bbae448 crossref_primary_10_1016_j_yfrne_2023_101113 crossref_primary_10_1093_bioadv_vbac065 crossref_primary_10_1093_gigascience_giad115 crossref_primary_10_1016_j_joca_2023_11_019 crossref_primary_10_3389_fphar_2025_1591696 crossref_primary_10_1002_fft2_369 crossref_primary_10_1007_s13571_023_00301_z crossref_primary_10_3390_metabo12020194 crossref_primary_10_1038_s41467_024_48806_z |
| Cites_doi | 10.1007/978-1-4939-3578-9_3 10.25080/majora-4af1f417-011 10.1186/1745-6150-7-27 10.1126/scisignal.2004088 10.1023/A:1013713905833 10.1038/s41523-019-0124-8 10.1016/j.csbj.2020.02.011 10.1093/nar/gkv1145 10.1038/nbt.2839 10.5195/jmla.2017.88 10.1200/JCO.2008.18.1370 10.1101/2020.04.01.020792 10.26508/lsa.201900517 10.1093/bioinformatics/bts480 10.1101/2020.01.14.905760 10.1101/385534 10.1101/2020.02.02.931394 10.1093/bioinformatics/btx192 10.1101/539569 10.1093/nar/gky466 10.1093/bioinformatics/bty1054 10.1038/s41592-018-0046-7 10.1093/nar/gks1193 10.1038/nbt.3597 10.1186/s12859-019-3224-4 10.1187/cbe.15-04-0105 10.1093/database/bar026 10.1093/nar/gkq1019 10.1093/bib/bbv108 10.1186/1752-0509-7-64 10.1177/1177932219899051 10.1016/j.tig.2016.12.003 10.15252/msb.20178124 10.1021/cn300100u 10.1038/s41592-020-0768-1 10.1038/s41467-019-09406-4 10.1186/1471-2105-15-162 10.1186/s12859-016-0994-9 10.1038/nrg.2018.4 10.1093/nar/gky889 10.1101/2020.04.16.044958 10.3390/genes10030238 10.1101/326470 10.1093/bioinformatics/btw324 10.3390/metabo9040076 10.1101/665307 10.1126/science.aal3321 10.3389/fgene.2017.00096 10.1128/mSystems.00038-16 10.1186/s13059-019-1738-8 10.1093/nar/gky1226 10.1186/s13059-020-02015-1 10.1038/nmeth.2810 10.1186/s13059-020-02021-3 10.1371/journal.pcbi.1005752 10.1038/s41467-020-16937-8 10.3390/genes10020087 10.1186/s13059-019-1758-4 10.1186/s12859-019-2992-1 10.1038/nature13182 10.1016/j.cell.2018.03.059 10.1073/pnas.1917259117 10.1038/nbt.3790 10.1098/rsif.2017.0387 10.1038/sdata.2016.18 10.1186/s12864-019-6287-8 10.1093/nar/gkx1081 10.1186/1752-0509-8-S2-I1 10.3389/fpls.2020.00944 10.1093/bioinformatics/btz318 10.3390/metabo9060117 10.1530/JME-18-0055 10.1038/nmeth.3144 10.1371/journal.pone.0192563 10.1093/nar/gkv1042 10.1016/j.bdq.2017.11.002 10.1016/j.cell.2019.05.006 10.6084/m9.figshare.3115156.v2 10.1093/gigascience/giaa025 10.1093/nar/gks1004 10.1093/database/baw117 10.1038/nbt.3820 10.1101/807214 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Krassowski, Das, Sahu and Misra. Copyright © 2020 Krassowski, Das, Sahu and Misra. 2020 Krassowski, Das, Sahu and Misra |
| Copyright_xml | – notice: Copyright © 2020 Krassowski, Das, Sahu and Misra. – notice: Copyright © 2020 Krassowski, Das, Sahu and Misra. 2020 Krassowski, Das, Sahu and Misra |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fgene.2020.610798 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-8021 |
| ExternalDocumentID | oai_doaj_org_article_f149393bb67c493ab419e7506b30dad9 PMC7758509 33362867 10_3389_fgene_2020_610798 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IHR IPNFZ ISR NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c531t-cc9e07662444cc8fb9cb0a4d5aef7a0c723f5544cf7f6c8ac0a34ff6015725cf3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601285400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-8021 |
| IngestDate | Fri Oct 03 12:38:56 EDT 2025 Thu Aug 21 18:04:13 EDT 2025 Thu Sep 04 17:04:40 EDT 2025 Thu Jan 02 22:58:33 EST 2025 Sat Nov 29 03:49:37 EST 2025 Tue Nov 18 21:18:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | visualization FAIR benchmarking data heterogeneity reproducibility multi-omics integrated omics machine learning |
| Language | English |
| License | Copyright © 2020 Krassowski, Das, Sahu and Misra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-cc9e07662444cc8fb9cb0a4d5aef7a0c723f5544cf7f6c8ac0a34ff6015725cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ORCID: Michal Krassowski, orcid.org/0000-0002-9638-7785; Vivek Das, orcid.org/0000-0003-0614-0373; Sangram K. Sahu, orcid.org/0000-0001-5010-9539; Biswapriya B. Misra, orcid.org/0000-0003-2589-6539 Reviewed by: Heinz Himmelbauer, University of Natural Resources and Life Sciences, Vienna, Austria; Subina Mehta, University of Minnesota Twin Cities, United States; Wan M. Aizat, National University of Malaysia, Malaysia Edited by: Fatemeh Maghuly, University of Natural Resources and Life Sciences, Vienna, Austria This article was submitted to Systems Biology, a section of the journal Frontiers in Genetics |
| OpenAccessLink | https://doaj.org/article/f149393bb67c493ab419e7506b30dad9 |
| PMID | 33362867 |
| PQID | 2473403090 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f149393bb67c493ab419e7506b30dad9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7758509 proquest_miscellaneous_2473403090 pubmed_primary_33362867 crossref_primary_10_3389_fgene_2020_610798 crossref_citationtrail_10_3389_fgene_2020_610798 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in genetics |
| PublicationTitleAlternate | Front Genet |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Mangul (B55) 2019; 10 Subramanian (B85) 2020; 14 da Veiga Leprevost (B21) 2017; 33 Leinonen (B50) 2011; 39 Kellman (B43) 2020 Sharifi-Noghabi (B81) 2019; 35 (B12) 2020 (B72) 2020 (B82) 2020 Forrest (B88) 2014; 507 McGowan (B58) 2020; 9 (B100) 2020 Liu (B51) 2016; 2016 Chai (B15) 2019 Amodio (B1) 2018 Singh (B83) 2019; 35 Argelaguet (B4) 2018; 14 Ichihashi (B39) 2020; 117 Koonin (B47) 2012; 7 O’Connell (B67) 2016; 32 Mathews (B57) 2019; 5 Karczewski (B42) 2018; 19 Macaulay (B54) 2017; 33 Jamil (B40) 2020; 11 Misra (B63) 2019; 62 (B45) 2020 Liu (B52) 2017; 8 Wilson (B101) 2019; 20 Haug (B34) 2013; 41 Amstutz (B2) 2016 Herrmann (B36) 2020 Cao (B14) 2020 Perez-Riverol (B70) 2017; 35 Kok (B46) 2018; 15 Grüning (B33) 2018; 15 (B77) 2020 Meng (B60) 2016; 17 Nemes (B64) 2012; 3 Specht (B84) 2019 Rappoport (B74) 2018; 46 Zhang (B103) 2011; 2011 Baldwin (B6) 2020; 18 (B44) 2020 Sud (B86) 2016; 44 Welch (B98) 2019; 177 Blum (B11) 2018; 173 Wilkinson (B99) 2016; 3 Goldman (B30) 2019 Wang (B94) 2014; 11 Di Tommaso (B23) 2017; 35 Marx (B56) 2020; 17 Koster (B48) 2012; 28 Honaas (B37) 2016; 1418 Otasek (B68) 2019; 20 Wang (B95) 2016; 34 Tarazona (B87) 2020; 11 Fiehn (B27) 2002; 48 Neyton (B66) 2019 (B20) 2020 Reinagel (B76) 2016; 15 Gao (B29) 2013; 6 (B69) 2020 Ronen (B79) 2019; 2 Zeng (B102) 2019; 20 Mirza (B62) 2019; 10 Cantini (B13) 2020 Argelaguet (B3) 2020; 21 Rohart (B78) 2017; 13 Ching (B16) 2018; 15 Jupyter (B41) 2018 (B5) 2020 Thul (B89) 2017; 356 (B19) 2020 Hernández-de-Diego (B35) 2018; 46 Quinn (B73) 2016; 1 (B26) 2016 Rappoport (B75) 2019; 47 (B61) 2020 Way (B96) 2020; 21 Griss (B32) 2020 Gomez-Cabrero (B31) 2014; 8 Nesvizhskii (B65) 2014; 11 Pinu (B71) 2019; 9 (B93) 2020 (B10) 2020 Vizcaíno (B91) 2016; 44 Davis (B22) 2018; 46 (B24) 2020 Hu (B38) 2018 López, de Maturana (B53) 2019; 10 Ulfenborg (B90) 2019; 20 Vizcaíno (B92) 2014; 32 Kuo (B49) 2013; 7 Dwivedi (B25) 2018; 13 Bi (B9) 2016; 17 Barrett (B7) 2012; 41 Foster (B28) 2017; 105 (B18) 2020 Chu (B17) 2019; 9 Bernard (B8) 2009; 27 Meng (B59) 2014; 15 (B80) 2020 Weber (B97) 2019; 20 |
| References_xml | – volume: 1418 start-page: 39 year: 2016 ident: B37 article-title: Study Design for Sequencing Studies. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3578-9_3 – start-page: 113 year: 2018 ident: B41 article-title: “Binder 2.0,” in publication-title: Proceedings of the 17th Python in Science Conference (SciPy) doi: 10.25080/majora-4af1f417-011 – volume: 7 year: 2012 ident: B47 article-title: Does the central dogma still stand? publication-title: Biol. Direct. doi: 10.1186/1745-6150-7-27 – volume: 6 year: 2013 ident: B29 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. publication-title: Sci. Signal. doi: 10.1126/scisignal.2004088 – volume: 48 start-page: 155 year: 2002 ident: B27 article-title: Metabolomics – The link between genotypes and phenotypes. publication-title: Plant Mol. Biol. doi: 10.1023/A:1013713905833 – volume: 5 year: 2019 ident: B57 article-title: Robust and interpretable PAM50 reclassification exhibits survival advantage for myoepithelial and immune phenotypes. publication-title: npj Breast Cancer doi: 10.1038/s41523-019-0124-8 – volume: 18 start-page: 509 year: 2020 ident: B6 article-title: On fusion methods for knowledge discovery from multi-omics datasets. publication-title: Comput. Struct. Biotechnol. J doi: 10.1016/j.csbj.2020.02.011 – volume: 44 start-page: D447 year: 2016 ident: B91 article-title: 2016 update of the PRIDE database and its related tools. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1145 – volume: 32 start-page: 223 year: 2014 ident: B92 article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2839 – volume: 105 start-page: 203 year: 2017 ident: B28 article-title: Open science framework (OSF). publication-title: J. Med. Libr. Assoc. doi: 10.5195/jmla.2017.88 – volume: 27 start-page: 1160 year: 2009 ident: B8 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes. publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.18.1370 – year: 2020 ident: B45 publication-title: KNIME4Bio | KNIME. – year: 2020 ident: B43 article-title: Multiple freeze-thaw cycles lead to a loss of consistency in poly(A)-enriched RNA 1 sequencing. publication-title: bioRxiv doi: 10.1101/2020.04.01.020792 – volume: 2 year: 2019 ident: B79 article-title: Evaluation of colorectal cancer subtypes and cell lines using deep learning. publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900517 – volume: 28 start-page: 2520 year: 2012 ident: B48 article-title: Snakemake–a scalable bioinformatics workflow engine. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts480 – year: 2020 ident: B13 article-title: Benchmarking joint multi-omics dimensionality reduction approaches for cancer study. publication-title: bioRxiv doi: 10.1101/2020.01.14.905760 – year: 2020 ident: B44 publication-title: A Shiny App for Interactive Multi-OMICS Cancer Data Visualization and Analysis. – year: 2016 ident: B26 publication-title: European Nucleotide Archive. – year: 2020 ident: B5 publication-title: BACnet Stack. – year: 2018 ident: B38 article-title: Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. publication-title: bioRxiv doi: 10.1101/385534 – year: 2020 ident: B14 article-title: Unsupervised topological alignment for single-cell multi-omics integration. publication-title: bioRxiv doi: 10.1101/2020.02.02.931394 – volume: 33 start-page: 2580 year: 2017 ident: B21 article-title: BioContainers: an open-source and community-driven framework for software standardization. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx192 – year: 2019 ident: B66 article-title: Multiomic definition of generalizable endotypes in human acute pancreatitis. publication-title: bioRxiv doi: 10.1101/539569 – volume: 46 start-page: W503 year: 2018 ident: B35 article-title: PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky466 – volume: 35 start-page: 3055 year: 2019 ident: B83 article-title: DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1054 – volume: 15 start-page: 475 year: 2018 ident: B33 article-title: Bioconda: sustainable and comprehensive software distribution for the life sciences. publication-title: Nat. Methods doi: 10.1038/s41592-018-0046-7 – volume: 41 start-page: D991 year: 2012 ident: B7 article-title: NCBI GEO: archive for functional genomics data sets—update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1193 – year: 2020 ident: B77 publication-title: Reticulate. – volume: 34 start-page: 828 year: 2016 ident: B95 article-title: Sharing and community curation of mass spectrometry data with global natural products social molecular networking. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3597 – volume: 20 year: 2019 ident: B90 article-title: Vertical and horizontal integration of multi-omics data with miodin. publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3224-4 – year: 2020 ident: B61 publication-title: Microsoft Genomics. – volume: 15 year: 2016 ident: B76 article-title: Beyond the central dogma: model-based learning of how genes determine phenotypes. publication-title: CBE Life Sci. Educ. doi: 10.1187/cbe.15-04-0105 – volume: 2011 year: 2011 ident: B103 article-title: International Cancer genome consortium data portal–a one-stop shop for cancer genomics data. publication-title: Database doi: 10.1093/database/bar026 – volume: 39 start-page: D19 year: 2011 ident: B50 article-title: The sequence read archive. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1019 – volume: 17 start-page: 628 year: 2016 ident: B60 article-title: Dimension reduction techniques for the integrative analysis of multi-omics data. publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv108 – volume: 7 year: 2013 ident: B49 article-title: 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-64 – year: 2020 ident: B72 publication-title: Plotly. – volume: 14 year: 2020 ident: B85 article-title: Multi-omics data integration, interpretation, and its application. publication-title: Bioinform. Biol. Insights doi: 10.1177/1177932219899051 – volume: 33 start-page: 155 year: 2017 ident: B54 article-title: Single-cell multiomics: multiple measurements from single cells. publication-title: Trends Genet. doi: 10.1016/j.tig.2016.12.003 – volume: 14 year: 2018 ident: B4 article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178124 – volume: 3 start-page: 782 year: 2012 ident: B64 article-title: Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. publication-title: ACS Chem. Neurosci. doi: 10.1021/cn300100u – volume: 17 start-page: 255 year: 2020 ident: B56 article-title: Bench pressing with genomics benchmarkers. publication-title: Nat. Methods doi: 10.1038/s41592-020-0768-1 – volume: 10 start-page: 1 year: 2019 ident: B55 article-title: Systematic benchmarking of omics computational tools. publication-title: Nat. Commun. doi: 10.1038/s41467-019-09406-4 – volume: 15 year: 2014 ident: B59 article-title: A multivariate approach to the integration of multi-omics datasets. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-162 – volume: 17 year: 2016 ident: B9 article-title: Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0994-9 – volume: 19 start-page: 299 year: 2018 ident: B42 article-title: Integrative omics for health and disease. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2018.4 – volume: 46 start-page: 10546 year: 2018 ident: B74 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky889 – year: 2020 ident: B93 publication-title: voilà. – year: 2020 ident: B32 article-title: ReactomeGSA – efficient multi-omics comparative pathway analysis. publication-title: bioRxiv doi: 10.1101/2020.04.16.044958 – volume: 10 year: 2019 ident: B53 article-title: Challenges in the integration of omics and non-omics data. publication-title: Genes doi: 10.3390/genes10030238 – year: 2019 ident: B30 article-title: The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. publication-title: bioRxiv doi: 10.1101/326470 – volume: 32 start-page: 2877 year: 2016 ident: B67 article-title: R.JIVE for exploration of multi-source molecular data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw324 – volume: 9 year: 2019 ident: B71 article-title: Systems biology and multi-omics integration: viewpoints from the metabolomics research community. publication-title: Metabolites doi: 10.3390/metabo9040076 – year: 2019 ident: B84 article-title: Single-cell mass-spectrometry quantifies the emergence of macrophage heterogeneity. publication-title: bioRxiv doi: 10.1101/665307 – volume: 356 year: 2017 ident: B89 article-title: A subcellular map of the human proteome. publication-title: Science doi: 10.1126/science.aal3321 – year: 2020 ident: B10 publication-title: Biotools. – volume: 8 year: 2017 ident: B52 article-title: Quantifying gene regulatory relationships with association measures: a comparative study. publication-title: Front. Genet. doi: 10.3389/fgene.2017.00096 – volume: 1 year: 2016 ident: B73 article-title: From sample to multi-omics conclusions in under 48 hours. publication-title: mSystems doi: 10.1128/mSystems.00038-16 – year: 2020 ident: B100 article-title: WIlsON – year: 2020 ident: B20 publication-title: D3. js. – volume: 20 start-page: 1 year: 2019 ident: B97 article-title: Essential guidelines for computational method benchmarking. publication-title: Genome Biol. doi: 10.1186/s13059-019-1738-8 – year: 2020 ident: B12 publication-title: Bokeh. – volume: 47 start-page: 1044 year: 2019 ident: B75 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1226 – year: 2020 ident: B69 publication-title: Packrat. – volume: 21 year: 2020 ident: B3 article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. publication-title: Genome Biol. doi: 10.1186/s13059-020-02015-1 – year: 2020 ident: B18 publication-title: Conda. – volume: 11 start-page: 333 year: 2014 ident: B94 article-title: Similarity network fusion for aggregating data types on a genomic scale. publication-title: Nat. Methods doi: 10.1038/nmeth.2810 – volume: 21 year: 2020 ident: B96 article-title: Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations. publication-title: Genome Biol. doi: 10.1186/s13059-020-02021-3 – year: 2020 ident: B82 publication-title: Shiny. – volume: 13 year: 2017 ident: B78 article-title: mixOmics: an R package for ‘omics feature selection and multiple data integration. publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005752 – volume: 11 year: 2020 ident: B87 article-title: Harmonization of quality metrics and power calculation in multi-omic studies. publication-title: Nat. Commun. doi: 10.1038/s41467-020-16937-8 – volume: 10 year: 2019 ident: B62 article-title: Machine learning and integrative analysis of biomedical big data. publication-title: Genes doi: 10.3390/genes10020087 – volume: 20 year: 2019 ident: B68 article-title: Cytoscape Automation: empowering workflow-based network analysis. publication-title: Genome Biol. doi: 10.1186/s13059-019-1758-4 – volume: 20 year: 2019 ident: B101 article-title: Multiple-kernel learning for genomic data mining and prediction. publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2992-1 – year: 2020 ident: B80 publication-title: rpy2. – volume: 507 start-page: 462 year: 2014 ident: B88 article-title: A promoter-level mammalian expression atlas. publication-title: Nature doi: 10.1038/nature13182 – volume: 173 year: 2018 ident: B11 article-title: SnapShot: TCGA-analyzed tumors. publication-title: Cell doi: 10.1016/j.cell.2018.03.059 – volume: 117 start-page: 14552 year: 2020 ident: B39 article-title: Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1917259117 – year: 2020 ident: B24 publication-title: Docker. – volume: 35 start-page: 406 year: 2017 ident: B70 article-title: Discovering and linking public omics data sets using the omics discovery index. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3790 – volume: 15 year: 2018 ident: B16 article-title: Opportunities and obstacles for deep learning in biology and medicine. publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0387 – volume: 3 start-page: 1 year: 2016 ident: B99 article-title: The FAIR Guiding Principles for scientific data management and stewardship. publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 20 year: 2019 ident: B102 article-title: Knowledge base commons (KBCommons) v1.1: a universal framework for multi-omics data integration and biological discoveries. publication-title: BMC Genomics doi: 10.1186/s12864-019-6287-8 – volume: 46 start-page: D794 year: 2018 ident: B22 article-title: The encyclopedia of DNA elements (ENCODE): data portal update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1081 – volume: 8 year: 2014 ident: B31 article-title: Data integration in the era of omics: current and future challenges. publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-8-S2-I1 – year: 2020 ident: B36 article-title: Large-scale benchmark study of survival prediction methods using multi-omics data. publication-title: arXiv – volume: 11 year: 2020 ident: B40 article-title: Systematic multi-omics integration (MOI) approach in plant systems biology. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00944 – volume: 35 start-page: i501 year: 2019 ident: B81 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – volume: 9 year: 2019 ident: B17 article-title: Integration of metabolomic and other omics data in population-based study designs: an epidemiological perspective. publication-title: Metabolites doi: 10.3390/metabo9060117 – volume: 62 start-page: R21 year: 2019 ident: B63 article-title: Integrated omics: tools, advances and future approaches. publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-18-0055 – volume: 11 start-page: 1114 year: 2014 ident: B65 article-title: Proteogenomics: concepts, applications and computational strategies. publication-title: Nat. Methods doi: 10.1038/nmeth.3144 – volume: 13 year: 2018 ident: B25 article-title: shinyGISPA: a web application for characterizing phenotype by gene sets using multiple omics data combinations. publication-title: PLoS One doi: 10.1371/journal.pone.0192563 – volume: 44 start-page: D463 year: 2016 ident: B86 article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1042 – volume: 15 start-page: 1 year: 2018 ident: B46 article-title: Small sample sizes in high-throughput miRNA screens: a common pitfall for the identification of miRNA biomarkers. publication-title: Biomol. Detect. Quantif. doi: 10.1016/j.bdq.2017.11.002 – volume: 177 start-page: 1873.e year: 2019 ident: B98 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity. publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – year: 2016 ident: B2 publication-title: Common Workflow Language, v1.0 Common Workflow Language (CWL) Command Line Tool Description, v1.0. doi: 10.6084/m9.figshare.3115156.v2 – volume: 9 year: 2020 ident: B58 article-title: Multi-omics visualization platform: an extensible galaxy plug-in for multi-omics data visualization and exploration. publication-title: Gigascience doi: 10.1093/gigascience/giaa025 – volume: 41 start-page: D781 year: 2013 ident: B34 article-title: MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1004 – volume: 2016 year: 2016 ident: B51 article-title: MODEM: multi-omics data envelopment and mining in maize. publication-title: Database doi: 10.1093/database/baw117 – year: 2020 ident: B19 publication-title: Cytoscape. – volume: 35 start-page: 316 year: 2017 ident: B23 article-title: Nextflow enables reproducible computational workflows. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3820 – start-page: 327 year: 2018 ident: B1 article-title: “MAGAN: aligning biological manifolds,” in publication-title: 35th International Conference on Machine Learning ICML 2018 – year: 2019 ident: B15 article-title: Integrating multi-omics data with deep learning for predicting cancer prognosis. publication-title: bioRxiv doi: 10.1101/807214 |
| SSID | ssj0000493334 |
| Score | 2.6345315 |
| SecondaryResourceType | review_article |
| Snippet | Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 610798 |
| SubjectTerms | benchmarking FAIR Genetics integrated omics machine learning multi-omics reproducibility |
| Title | State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33362867 https://www.proquest.com/docview/2473403090 https://pubmed.ncbi.nlm.nih.gov/PMC7758509 https://doaj.org/article/f149393bb67c493ab419e7506b30dad9 |
| Volume | 11 |
| WOSCitedRecordID | wos000601285400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6KHgRv60fSwRPQt1MkzaJNz928LKjB4W5hfQ1wVncVma6ghf_dt9LOsOMiF68lNCmNLzfC-_3mvfB2HNRB6WgUoiA0qVqZrilZI2AtK0h--wb06VmE3qxMMul_bjX6otiwnJ54Cy4k4gUXlrZto0GHPlWzWxAM9e0UnS-S6l7yHr2nKnzzHullCofY6IXZk8i4kFlMSvxEhmDtubAEKV6_X8imb_HSu4Zn_ktdnNijfx1Xu1tdiX0d9j13Efyx13mEmXkQ-RI5_icgtL4qucpubb8cLGCDd9G2L3i8_VwwXMzh-lHIF-gCdvwceDv_Oj5WeoZwX3fcSrnjON77PP89NPb9-XUOaEE3FNjCWCD0E2DtlsBmNhaaIVXXe1D1F6ArmREHqEg6tiA8SC8VDGic1brqoYo77OjfujDQ8rprqxC5KQPHp2_xoKAYAjUUJuqqwomtmJ0MJUVp-4WXx26FyR5lyTvSPIuS75gL3avfMs1Nf42-Q1hs5tI5bDTDVQSNymJ-5eSFOzZFlmH24fORHwfhsuNq5SWio6ZRMEeZKR3n0INosRdXTB9oAMHazl80q--pBLdmtwwYR_9j8U_ZjdIHhRDMxNP2NG4vgxP2TX4Pq4262N2VS_NcdJ-vJ79PP0FVlUIpw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Field+in+Multi-Omics+Research%3A+From+Computational+Needs+to+Data+Mining+and+Sharing&rft.jtitle=Frontiers+in+genetics&rft.au=Krassowski%2C+Michal&rft.au=Das%2C+Vivek&rft.au=Sahu%2C+Sangram+K.&rft.au=Misra%2C+Biswapriya+B.&rft.date=2020-12-10&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=11&rft_id=info:doi/10.3389%2Ffgene.2020.610798&rft_id=info%3Apmid%2F33362867&rft.externalDocID=PMC7758509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |