Regulation of SIRT1 and Its Roles in Inflammation
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of prote...
Uloženo v:
| Vydáno v: | Frontiers in immunology Ročník 13; s. 831168 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media S.A
11.03.2022
|
| Témata: | |
| ISSN: | 1664-3224, 1664-3224 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD
+
-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD
+
/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases. |
|---|---|
| AbstractList | The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases. The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD + /NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases. The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases. The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD /NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases. |
| Author | Jia, Yanhui Yang, Yunshu Hu, Dahai Chao, Yongyi Zhang, Jinxin Tie, Jun Liu, Yang Wang, Yunwei |
| AuthorAffiliation | 3 State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University , Xi’an , China 1 Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University , Xi’an , China 2 Department of Emergency, Xijing Hospital, Fourth Military Medical University , Xi’an , China |
| AuthorAffiliation_xml | – name: 1 Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University , Xi’an , China – name: 2 Department of Emergency, Xijing Hospital, Fourth Military Medical University , Xi’an , China – name: 3 State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University , Xi’an , China |
| Author_xml | – sequence: 1 givenname: Yunshu surname: Yang fullname: Yang, Yunshu – sequence: 2 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 3 givenname: Yunwei surname: Wang fullname: Wang, Yunwei – sequence: 4 givenname: Yongyi surname: Chao fullname: Chao, Yongyi – sequence: 5 givenname: Jinxin surname: Zhang fullname: Zhang, Jinxin – sequence: 6 givenname: Yanhui surname: Jia fullname: Jia, Yanhui – sequence: 7 givenname: Jun surname: Tie fullname: Tie, Jun – sequence: 8 givenname: Dahai surname: Hu fullname: Hu, Dahai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35359990$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kV1rFDEUhoNU7If9Ad7IXHqza06-JnMjSFE7UBDWeh2yycmakknqZEbw3zu720ormIskJO_7nMN5z8lJLhkJeQN0zbnu3oc4DPOaUcbWmgMo_YKcgVJixRkTJ0_up-Sy1ju6LNFxzuUrcsoll13X0TMCG9zNyU6x5KaE5lu_uYXGZt_0U202JWFtYm76HJIdhoPsNXkZbKp4-XBekO-fP91eXa9uvn7prz7erJzkMC27sGC37daxrVaeUVBULt1QoXXQjilOPbbBSQlcoKRgtfdCM-2hbTsh-QXpj1xf7J25H-Ngx9-m2GgOD2XcGTtO0SU0AR3zbQCtlBMguKXSoggegSFDjQvrw5F1P28H9A7zNNr0DPr8J8cfZld-Gd0pptS-mXcPgLH8nLFOZojVYUo2Y5mrYUqoloGUfJG-fVrrb5HHmS-C9ihwY6l1xGBcnA6jXUrHZICafcDmELDZB2yOAS9O-Mf5CP-_5w91CKe2 |
| CitedBy_id | crossref_primary_10_1002_jbt_70368 crossref_primary_10_3390_ijms242216210 crossref_primary_10_1186_s13018_025_06205_0 crossref_primary_10_3389_fimmu_2024_1422541 crossref_primary_10_7759_cureus_82663 crossref_primary_10_1080_15384101_2023_2297567 crossref_primary_10_1186_s13048_025_01661_y crossref_primary_10_1111_cns_14764 crossref_primary_10_1039_D3FO04348G crossref_primary_10_3390_antiox14091076 crossref_primary_10_3389_fcimb_2025_1589199 crossref_primary_10_1007_s11626_023_00808_9 crossref_primary_10_1007_s00204_025_04158_1 crossref_primary_10_1111_ejn_16167 crossref_primary_10_3390_ph15111337 crossref_primary_10_3390_ph17091144 crossref_primary_10_1111_jcmm_70408 crossref_primary_10_3389_fphar_2025_1425560 crossref_primary_10_1007_s00198_022_06652_z crossref_primary_10_3390_medicina59122119 crossref_primary_10_1002_ptr_8301 crossref_primary_10_1007_s12640_023_00666_z crossref_primary_10_3390_ijms232314722 crossref_primary_10_3390_ijms26041693 crossref_primary_10_1038_s41598_025_96192_3 crossref_primary_10_3390_ijms26051807 crossref_primary_10_1007_s00018_024_05214_2 crossref_primary_10_1021_acs_jafc_4c10129 crossref_primary_10_3748_wjg_v30_i27_3273 crossref_primary_10_1097_FJC_0000000000001653 crossref_primary_10_1007_s13167_024_00377_1 crossref_primary_10_3390_molecules29071521 crossref_primary_10_4239_wjd_v16_i2_93130 crossref_primary_10_1007_s11255_024_04162_x crossref_primary_10_1007_s11357_025_01632_7 crossref_primary_10_3390_nu15132949 crossref_primary_10_1186_s12903_025_05610_5 crossref_primary_10_1186_s12877_025_06237_5 crossref_primary_10_7554_eLife_87873 crossref_primary_10_1038_s41598_025_02488_9 crossref_primary_10_1159_000541681 crossref_primary_10_1016_j_intimp_2024_111776 crossref_primary_10_3390_ijms25073646 crossref_primary_10_1007_s11033_024_09631_1 crossref_primary_10_1080_0886022X_2025_2495111 crossref_primary_10_1002_jbt_70465 crossref_primary_10_1002_ctm2_70417 crossref_primary_10_1186_s10020_024_01001_8 crossref_primary_10_1080_08923973_2025_2469218 crossref_primary_10_1097_MS9_0000000000003004 crossref_primary_10_3389_fcimb_2024_1303645 crossref_primary_10_1007_s12011_024_04503_y crossref_primary_10_1007_s11033_024_09296_w crossref_primary_10_3390_antiox12111925 crossref_primary_10_32947_ajps_v25i3_1215 crossref_primary_10_3892_mmr_2025_13573 crossref_primary_10_1186_s12951_025_03639_w crossref_primary_10_3390_medicina61061073 crossref_primary_10_1002_ptr_8527 crossref_primary_10_1007_s11910_025_01410_0 crossref_primary_10_3390_biology14060643 crossref_primary_10_3389_fpubh_2022_991393 crossref_primary_10_1007_s11010_025_05299_8 crossref_primary_10_3390_molecules28062624 crossref_primary_10_1111_cbdd_14431 crossref_primary_10_3390_diagnostics13203287 crossref_primary_10_1186_s12944_025_02611_9 crossref_primary_10_3390_ph16010039 crossref_primary_10_1371_journal_pone_0321005 crossref_primary_10_3390_ijms241612555 crossref_primary_10_1186_s12944_023_01969_y crossref_primary_10_3389_fendo_2024_1480847 crossref_primary_10_3748_wjg_v30_i33_3791 crossref_primary_10_4103_1673_5374_358612 crossref_primary_10_3389_fimmu_2022_955175 crossref_primary_10_1007_s12011_025_04828_2 crossref_primary_10_1111_1348_0421_13159 crossref_primary_10_1080_13813455_2024_2392298 crossref_primary_10_3390_ijms232012236 crossref_primary_10_4254_wjh_v17_i8_108182 crossref_primary_10_3390_ijms232315105 crossref_primary_10_1186_s12951_025_03447_2 crossref_primary_10_3390_antiox12020294 crossref_primary_10_1007_s10787_024_01517_9 crossref_primary_10_1080_14728222_2025_2482563 crossref_primary_10_1002_cph4_70013 crossref_primary_10_3389_fnagi_2025_1521353 crossref_primary_10_3390_ijms25147943 crossref_primary_10_1007_s10528_024_10846_x crossref_primary_10_1007_s13577_025_01285_w crossref_primary_10_3390_cells14141113 crossref_primary_10_3389_fimmu_2023_1225530 crossref_primary_10_3390_md21120635 crossref_primary_10_1007_s11255_024_04038_0 crossref_primary_10_3390_nu16234088 crossref_primary_10_3892_or_2025_8964 crossref_primary_10_3389_fgene_2025_1609439 crossref_primary_10_3390_genes16080886 crossref_primary_10_3724_abbs_2025096 crossref_primary_10_3390_biomedicines13061350 crossref_primary_10_1002_prot_70022 crossref_primary_10_3389_fphar_2023_1092943 crossref_primary_10_1002_dvg_23518 crossref_primary_10_1002_ptr_8057 crossref_primary_10_1186_s12964_024_01903_4 crossref_primary_10_1007_s11064_025_04424_9 crossref_primary_10_1007_s13577_024_01119_1 crossref_primary_10_3390_ijerph20010029 crossref_primary_10_1111_cbdd_70140 crossref_primary_10_33483_jfpau_1588979 crossref_primary_10_1007_s40203_024_00211_6 crossref_primary_10_1002_bab_2675 crossref_primary_10_1038_s41467_024_52201_z crossref_primary_10_3389_fphys_2024_1490725 crossref_primary_10_1007_s00210_025_04465_5 crossref_primary_10_3390_genes16070844 crossref_primary_10_1089_ict_2023_29088_lne crossref_primary_10_1186_s12872_022_02908_y crossref_primary_10_3390_app14198768 crossref_primary_10_1111_1440_1681_70016 crossref_primary_10_1002_jbt_70318 crossref_primary_10_3390_antiox13040420 crossref_primary_10_1016_j_metabol_2025_156234 crossref_primary_10_1038_s41598_024_80119_5 crossref_primary_10_1186_s12967_024_05092_z crossref_primary_10_3390_ijms26157601 crossref_primary_10_1097_TA_0000000000004212 crossref_primary_10_3390_cells11182921 crossref_primary_10_1007_s12672_025_02471_w crossref_primary_10_1097_MD_0000000000042132 crossref_primary_10_3390_ijms26052077 crossref_primary_10_1177_17448069241232349 crossref_primary_10_1186_s13018_025_05898_7 crossref_primary_10_1007_s11033_024_09334_7 crossref_primary_10_1096_fj_202403418R crossref_primary_10_7759_cureus_40463 crossref_primary_10_1080_1061186X_2024_2422882 crossref_primary_10_3389_fphar_2024_1456058 crossref_primary_10_3390_biom13081210 crossref_primary_10_3390_ph18030358 crossref_primary_10_33647_2074_5982_21_1_8_17 crossref_primary_10_1007_s11064_025_04513_9 crossref_primary_10_1111_jcmm_70371 crossref_primary_10_1007_s11883_023_01165_4 crossref_primary_10_3390_brainsci13040674 crossref_primary_10_1155_2024_5226432 crossref_primary_10_3389_fendo_2025_1573499 crossref_primary_10_1007_s11033_025_10568_2 crossref_primary_10_3389_fphar_2022_981578 crossref_primary_10_3390_antiox13091147 crossref_primary_10_1007_s12640_024_00723_1 crossref_primary_10_3389_fphar_2025_1662241 crossref_primary_10_3390_ijms26157362 crossref_primary_10_1007_s00210_024_03433_9 crossref_primary_10_1002_adhm_202301337 crossref_primary_10_3390_ijms26115285 crossref_primary_10_1038_s41401_024_01398_2 crossref_primary_10_1096_fj_202500520R crossref_primary_10_3390_antibiotics13080714 crossref_primary_10_1186_s13148_025_01944_7 crossref_primary_10_3390_ijms26125759 crossref_primary_10_3788_CJL250452 crossref_primary_10_1080_17425255_2025_2491732 crossref_primary_10_2147_NSS_S489232 crossref_primary_10_1097_TP_0000000000005309 crossref_primary_10_31083_JIN25665 crossref_primary_10_1111_nep_70073 crossref_primary_10_3390_jcm13102883 crossref_primary_10_1055_a_2490_4278 crossref_primary_10_1007_s12013_024_01378_7 crossref_primary_10_1038_s41419_023_05656_9 crossref_primary_10_1002_dneu_22981 crossref_primary_10_3390_ani13203269 crossref_primary_10_3390_ijms25147694 crossref_primary_10_1111_jcmm_17941 crossref_primary_10_1007_s00011_024_01890_9 crossref_primary_10_1007_s00210_024_03170_z crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_3748_wjg_v30_i11_1588 crossref_primary_10_3390_cells13232009 crossref_primary_10_1007_s10735_025_10370_1 crossref_primary_10_3390_cells13181592 crossref_primary_10_1177_09731296221137420 crossref_primary_10_3390_medicina61020254 crossref_primary_10_3390_biomedicines12071442 crossref_primary_10_17116_jnevro202412401138 crossref_primary_10_1002_gch2_202400178 crossref_primary_10_3389_fphar_2025_1551843 crossref_primary_10_3390_foods13223698 crossref_primary_10_1038_s41420_023_01730_5 crossref_primary_10_1080_1028415X_2025_2457051 crossref_primary_10_1002_cbf_70074 crossref_primary_10_2478_bjmg_2022_0027 crossref_primary_10_3390_ijms26114967 crossref_primary_10_1111_jcmm_18454 crossref_primary_10_1186_s40246_025_00742_9 crossref_primary_10_2174_0118746098319674240827104612 crossref_primary_10_1002_ptr_8364 crossref_primary_10_1002_ame2_12438 crossref_primary_10_1007_s00210_024_03457_1 crossref_primary_10_1186_s43042_025_00770_z crossref_primary_10_1038_s41419_025_07821_8 crossref_primary_10_2174_0118715249263300231116062740 crossref_primary_10_1038_s41598_024_67337_7 crossref_primary_10_3390_biomedicines13061502 crossref_primary_10_1007_s12010_024_04953_z crossref_primary_10_1186_s10020_024_00915_7 crossref_primary_10_1038_s41435_024_00283_6 crossref_primary_10_1007_s10238_025_01759_z crossref_primary_10_1007_s00408_023_00607_9 crossref_primary_10_1002_ptr_70098 crossref_primary_10_1007_s00018_023_05061_7 crossref_primary_10_1007_s00109_023_02364_x crossref_primary_10_1182_blood_2023021901 crossref_primary_10_2147_DDDT_S456811 crossref_primary_10_3390_ijms25084248 crossref_primary_10_1007_s11010_023_04714_2 crossref_primary_10_1007_s12291_024_01203_1 crossref_primary_10_1007_s11914_023_00847_x crossref_primary_10_1080_15592294_2025_2473770 crossref_primary_10_3389_fimmu_2024_1490623 crossref_primary_10_1007_s00592_025_02463_w crossref_primary_10_1007_s10735_025_10487_3 crossref_primary_10_1007_s12026_024_09545_x crossref_primary_10_3390_pharmaceutics15030808 crossref_primary_10_3390_cells14181442 crossref_primary_10_3390_pharmaceutics15092294 crossref_primary_10_7717_peerj_17612 crossref_primary_10_1098_rsob_240330 crossref_primary_10_3389_fimmu_2024_1444533 crossref_primary_10_1007_s44254_025_00113_6 crossref_primary_10_3390_biomedicines11041171 crossref_primary_10_3390_biom14080970 crossref_primary_10_3390_molecules30091913 crossref_primary_10_3390_foods11213372 crossref_primary_10_1161_CIRCEP_123_012452 crossref_primary_10_3390_jox15050137 crossref_primary_10_7554_eLife_87873_3 crossref_primary_10_1038_s44294_024_00034_y crossref_primary_10_1096_fj_202501210R crossref_primary_10_3390_antiox12010097 crossref_primary_10_3389_fpubh_2022_1083826 crossref_primary_10_1007_s12017_025_08862_0 crossref_primary_10_2174_0109298673293982240221050207 crossref_primary_10_3390_antiox13060678 crossref_primary_10_3390_targets3030023 crossref_primary_10_1515_biol_2022_1038 crossref_primary_10_3390_antiox14050605 crossref_primary_10_1007_s10522_025_10269_0 crossref_primary_10_3390_foods14050892 crossref_primary_10_1007_s00109_024_02458_0 crossref_primary_10_3390_life15020174 crossref_primary_10_3390_nu16172996 crossref_primary_10_1007_s11418_024_01859_2 crossref_primary_10_1038_s41598_025_11143_2 crossref_primary_10_1097_SHK_0000000000002418 crossref_primary_10_1021_acschemneuro_5c00207 crossref_primary_10_1080_15376516_2023_2215862 crossref_primary_10_1002_jev2_70099 crossref_primary_10_3389_fmed_2023_1287043 crossref_primary_10_1002_iid3_865 crossref_primary_10_1038_s41598_025_12901_y crossref_primary_10_3389_fimmu_2025_1627433 crossref_primary_10_1002_ijc_70047 crossref_primary_10_1134_S1022795424701485 crossref_primary_10_3389_fimmu_2024_1525469 crossref_primary_10_3390_plants13111531 crossref_primary_10_1038_s44319_024_00152_3 crossref_primary_10_3390_nu15132992 crossref_primary_10_3389_fphar_2023_1103527 crossref_primary_10_1002_jbt_70298 crossref_primary_10_1186_s10020_024_00811_0 crossref_primary_10_1142_S0192415X24500198 crossref_primary_10_1155_2023_1387665 crossref_primary_10_1002_fsn3_70964 crossref_primary_10_1515_cclm_2023_1017 crossref_primary_10_1007_s11332_025_01353_6 crossref_primary_10_1007_s00210_024_03497_7 crossref_primary_10_1007_s12035_024_04534_5 crossref_primary_10_1186_s13098_024_01393_x crossref_primary_10_1002_brb3_70728 crossref_primary_10_1186_s11658_024_00595_5 crossref_primary_10_3390_mi15020286 crossref_primary_10_1111_cns_70379 crossref_primary_10_3390_ph18010041 crossref_primary_10_1038_s41598_025_91027_7 crossref_primary_10_3390_cancers15154013 crossref_primary_10_3390_ijms26157468 crossref_primary_10_1183_16000617_0129_2024 crossref_primary_10_14336_AD_2024_0922 crossref_primary_10_3389_fmicb_2022_1001778 crossref_primary_10_1186_s12986_024_00792_1 crossref_primary_10_3389_fendo_2024_1356612 crossref_primary_10_1002_fsn3_70736 crossref_primary_10_3389_fvets_2024_1475564 crossref_primary_10_1007_s11357_025_01657_y crossref_primary_10_2174_0113816128263943230920093609 crossref_primary_10_1080_07853890_2023_2284366 crossref_primary_10_3390_ijms26157328 crossref_primary_10_3389_fphar_2024_1450238 crossref_primary_10_1128_jvi_00088_24 crossref_primary_10_3390_ijms26114999 crossref_primary_10_3390_molecules30183740 crossref_primary_10_3390_jpm14030225 crossref_primary_10_3390_medsci13030100 crossref_primary_10_1155_2024_8520489 crossref_primary_10_1002_jbt_70274 crossref_primary_10_1007_s11064_023_04026_3 crossref_primary_10_3389_fimmu_2022_1054477 |
| Cites_doi | 10.1152/physrev.00022.2011 10.3389/fimmu.2020.00619 10.1083/jcb.200809167 10.1016/j.cmet.2011.10.007 10.1016/j.bbrc.2008.09.079 10.1038/s41374-021-00599-1 10.1016/j.ejphar.2011.10.015 10.1189/jlb.3MA0114-034RR 10.1016/j.cell.2008.01.020 10.1089/ars.2017.7403 10.1111/j.1440-1843.2012.02284.x 10.1038/ncomms6483 10.3389/fimmu.2018.00762 10.1016/s0140-6736(14)60687-5 10.1007/s10753-020-01242-9 10.1038/nature06515 10.1016/j.cmet.2009.02.006 10.1146/annurev.biochem.74.082803.133500 10.3390/antiox8080322 10.1016/j.cmet.2008.08.017 10.1016/s1097-2765(03)00226-0 10.1098/rsob.130130 10.3390/ijms19092738 10.1128/mcb.01098-06 10.1038/cddis.2016.368 10.1016/j.ajpath.2019.09.012 10.7150/ijbs.33044 10.1210/en.2009-1319 10.1016/j.cell.2005.08.011 10.1111/jcmm.13509 10.1111/cpr.12773 10.2174/0929867325666180214115438 10.1073/pnas.1420419112 10.1152/ajpendo.00417.2009 10.1080/15384101.2020.1788251 10.1016/j.molcel.2007.01.011 10.1016/j.mrrev.2018.03.004 10.1021/jacs.0c10836 10.1016/s0092-8674(04)00126-6 10.3389/fnins.2018.00778 10.1074/jbc.M110.174482 10.1155/2020/4751349 10.1038/s41556-020-00579-5 10.1096/fj.09-151308 10.1093/nar/gkr984 10.1038/nrc2562 10.1128/mcb.00006-17 10.1371/journal.pone.0004020 10.1371/journal.pone.0007350 10.1038/cdd.2015.75 10.1126/science.1101731 10.1038/s41467-017-01654-6 10.1016/j.yjmcc.2018.10.001 10.1111/1440-1681.12496 10.1007/s10059-013-0297-1 10.1089/ars.2010.3251 10.1038/ncomms13866 10.1152/ajplung.00249.2012 10.1073/pnas.1934713100 10.1016/j.bbrc.2015.04.119 10.1186/s13148-019-0806-y 10.1080/15548627.2021.1876342 10.1038/sj.emboj.7600244 10.1186/s12974-017-0841-6 10.1016/j.jss.2017.06.031 10.1371/journal.pone.0024307 10.3390/ijms22031003 10.1161/jaha.118.009700 10.1053/j.gastro.2013.11.008 10.1093/nar/gkr347 10.1016/j.arr.2018.02.004 10.1042/bj20070151 10.1186/s13045-018-0638-9 10.1038/s41401-018-0045-3 10.1016/j.intimp.2018.11.054 10.2174/0929867322666150209154420 10.1038/ncb1645 10.1038/nrm.2016.93 10.15252/embj.201695737 10.3892/mmr.2013.1444 10.1016/j.molcel.2004.08.031 10.1128/mcb.00552-08 10.15252/embr.201643803 10.1128/mcb.01343-09 10.2119/molmed.2014.00211 10.1038/srep21865 10.3892/mmr.2016.5942 10.1371/journal.pgen.1006819 10.1016/j.cellsig.2013.06.007 10.1074/jbc.M408748200 10.1073/pnas.1313753110 10.1073/pnas.1909943117 10.1016/j.redox.2020.101538 10.1016/j.molcel.2007.08.030 10.1074/jbc.M109.038604 10.1038/srep37578 10.1093/cvr/cvq376 10.1074/jbc.M110.102574 10.1093/nar/gkq227 10.1016/j.intimp.2004.08.008 10.1155/2018/2402593 10.1016/j.lfs.2018.11.055 10.1517/14728222.2016.1153067 10.1016/j.immuni.2016.05.009 10.1089/ars.2017.7373 10.1016/j.febslet.2014.03.020 10.1038/nature06500 10.1093/nar/gkz141 10.1016/j.gene.2014.01.037 10.1074/jbc.RA117.001387 10.1186/1868-7083-5-11 10.4161/cc.7.19.6799 10.1038/ki.2014.217 10.1038/ncb2114 10.1101/gad.334516.119 10.3390/antiox8090404 10.1139/bcb-2018-0126 10.1016/j.biopha.2019.109029 10.1074/jbc.M114.612796 10.1074/jbc.M111.228874 10.1016/j.jhep.2017.08.010 10.1016/j.ceb.2017.01.005 10.1074/jbc.M110.196790 10.1016/j.canlet.2017.12.035 10.1016/s0140-6736(18)30696-2 10.1371/journal.pone.0008414 10.1159/000362964 10.3390/cancers12082106 10.1371/journal.pone.0006611 10.1074/jbc.M112.365874 10.1074/jbc.M805711200 10.1007/s00134-017-4683-6 10.1182/blood-2011-04-350413 10.1371/journal.pone.0098909 10.1016/j.jhep.2016.11.004 10.1096/fj.201800242R 10.1126/scisignal.2005375 10.3390/nu11010146 10.1038/ncb1468 10.3892/ijmm.17.1.59 10.1371/journal.pone.0075139 10.3892/ijmm.2017.3150 10.1016/j.jcmgh.2021.12.010 10.1074/jbc.M109.087585 10.1016/j.cmet.2011.03.004 10.1038/s41388-020-1298-0 10.1016/j.bbrc.2016.02.059 10.1016/j.cmet.2011.03.013 10.1080/21691401.2019.1621328 10.1074/jbc.M112.362343 10.1155/2021/8818713 10.1016/j.molcel.2010.05.023 10.1016/j.bbrc.2008.04.176 10.1016/s0079-6603(08)60503-6 10.1097/shk.0000000000001429 10.1038/nri3552 10.1016/j.bbrc.2010.05.160 10.1093/nar/gkx468 10.1016/j.bbcan.2019.04.003 10.1016/j.tibs.2008.08.001 10.1016/j.ccr.2004.08.030 10.1371/journal.pone.0170391 10.1016/j.chest.2017.05.004 10.1158/0008-5472.can-12-0429 10.1016/j.freeradbiomed.2013.03.015 10.1371/journal.pone.0019194 10.4161/auto.26336 10.1016/j.it.2008.07.003 10.1073/pnas.250422697 10.1038/35001622 10.1016/j.dnarep.2020.102858 10.1074/jbc.M112.363747 10.1016/j.biochi.2019.12.001 10.1016/s0140-6736(18)31268-6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu. Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu |
| Copyright_xml | – notice: Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu. – notice: Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2022.831168 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_fec2d7f1866c4143a05ae4fde12e2e8e PMC8962665 35359990 10_3389_fimmu_2022_831168 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: ; grantid: 2021JM-249 – fundername: ; grantid: 81530064, 81773071, 81972226 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI CGR CUY CVF ECM EIF IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c531t-c54a1ab7bc2b86d2016052240488f8c2630de7fc55134e501a8dd4828d1779453 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 481 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Tue Sep 30 16:47:52 EDT 2025 Thu Sep 04 16:28:43 EDT 2025 Thu Jan 02 22:54:00 EST 2025 Sat Nov 29 05:52:08 EST 2025 Tue Nov 18 21:44:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | post-translational modification gene regulation inflammation SIRT1 enzyme activity |
| Language | English |
| License | Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-c54a1ab7bc2b86d2016052240488f8c2630de7fc55134e501a8dd4828d1779453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Bisheng Zhou, University of Illinois at Chicago, United States Reviewed by: Haiying Wang, Peking University, China; Jiaxiang Chen, Mayo Clinic, United States This article was submitted to Inflammation, a section of the journal Frontiers in Immunology These authors have contributed equally to this work and share first authorship |
| OpenAccessLink | https://doaj.org/article/fec2d7f1866c4143a05ae4fde12e2e8e |
| PMID | 35359990 |
| PQID | 2646721553 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fec2d7f1866c4143a05ae4fde12e2e8e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962665 proquest_miscellaneous_2646721553 pubmed_primary_35359990 crossref_citationtrail_10_3389_fimmu_2022_831168 crossref_primary_10_3389_fimmu_2022_831168 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-11 |
| PublicationDateYYYYMMDD | 2022-03-11 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Li (B108) 2020; 2020 Caito (B123) 2010; 24 Chen (B32) 2005; 123 Rhodes (B153) 2017; 43 Cheng (B19) 2003; 100 Sun (B46) 2019; 47 Wu (B167) 2012; 119 Chen (B28) 2019; 15 Zhang (B112) 2019; 217 Kang (B17) 2018; 32 Fulco (B54) 2003; 12 Bai (B64) 2011; 13 Ong (B30) 2018; 43 Feige (B70) 2008; 8 Zhang (B107) 2010; 285 Khadka (B121) 2018; 124 Joo (B141) 2015; 462 Zhou (B161) 2020; 190 de Mingo (B110) 2016; 7 Becker (B84) 1999; 62 Yoshizaki (B134) 2010; 298 Nemotomaria (B29) 2004; 306 El Dika (B36) 2020; 90 Abdelmohsen (B52) 2007; 25 Nguyen (B175) 2019; 11 Xu (B3) 2020; 22 Khader (B156) 2017; 219 Choi (B90) 2017; 37 Kwon (B38) 2008; 33 Bai (B142) 2020; 19 Zhang (B147) 2010; 285 Tan (B47) 2019; 97 Peng (B77) 2015; 290 Yuan (B44) 2009; 185 Magni (B56) 2018; 776 Carling (B69) 2017; 45 Smith (B116) 2020; 54 Bai (B63) 2011; 13 Conrad (B94) 2016; 23 Gao (B146) 2008; 376 Iqbal (B61) 2021; 17 Stankovic-Valentin (B33) 2007; 27 Jang (B55) 2012; 287 Islam (B27) 2020; 12 Li (B149) 2017; 14 Lord (B152) 2014; 384 Bräutigam (B104) 2013; 110 Kornberg (B100) 2010; 12 Rada (B7) 2018; 28 Voelter-Mahlknecht (B137) 2006; 17 Brooks (B34) 2009; 9 Kokkola (B68) 2014; 588 Zhang (B15) 2019; 67 Di Vincenzo (B164) 2018; 22 Sasaki (B83) 2008; 3 Qiang (B6) 2011; 14 Chu (B48) 2019; 116 Zou (B111) 2013; 8 Wang (B144) 2016; 44 Kim (B74) 2016; 6 Kong (B115) 2019; 47 Kim (B59) 2008; 451 Yu (B57) 2011; 39 Sanz-Ezquerro (B148) 2021; 22 Yu (B21) 2018; 418 Yanagisawa (B165) 2017; 152 Wang (B95) 2018; 293 Sasaki (B43) 2010; 151 Wang (B23) 2010; 285 Wong (B39) 2007; 407 Gao (B171) 2014; 9 Han (B96) 2017; 8 Autiero (B66) 2008; 4 Fu (B168) 2019; 40 Liu (B143) 2015; 112 Choi (B45) 2013; 36 Katto (B139) 2013; 5 Lau (B82) 2014; 4 Zhang (B138) 2010; 397 Yang (B79) 2007; 9 Ramirez (B160) 2017; 66 Nakazawa (B102) 2017; 12 Zhao (B58) 2008; 451 He (B4) 2021; 2021 Suave (B1) 2006; 75 Yang (B132) 2010; 30 Bi (B150) 2005; 5 Shinozaki (B101) 2014; 7 Braidy (B122) 2011; 6 Bejjani (B145) 2019; 1872 Lee (B81) 2012; 72 Liu (B114) 2011; 286 Yang (B128) 2016; 20 Nasrin (B93) 2009; 4 Cho (B25) 2017; 13 Kauppinen (B135) 2013; 25 Utani (B88) 2017; 45 Nakamura (B118) 2017; 67 Geng (B75) 2016; 471 Li (B51) 2018; 7 Guo (B86) 2010; 285 Vachharajani (B158) 2014; 96 Imai (B12) 2000; 403 Dor (B26) 2018; 392 Sun (B130) 2008; 29 Hasegawa (B174) 2008; 372 Kang (B119) 2021; 101 Lan (B24) 2008; 283 Kang (B89) 2009; 4 Li (B113) 2012; 40 Planavila (B136) 2011; 90 Granchi (B10) 2018; 25 Hotchkiss (B154) 2013; 13 Purushotham (B159) 2009; 9 Orecchia (B117) 2011; 6 Yin (B162) 2014; 146 Chen (B31) 2004; 6 Singh (B9) 2020; 43 Tanner (B11) 2000; 97 Tatomir (B18) 2020; 11 Isaacs-Ten (B163) 2021; 13 Fujita (B20) 2018; 12 Han (B124) 2020; 34 Chen (B16) 2016; 14 Yeung (B131) 2004; 23 Martin (B157) 2018; 2018 Ma (B53) 2015; 22 Park (B60) 2014; 5 Nogueiras (B14) 2012; 92 Vaquero (B13) 2004; 16 Hu (B109) 2017; 40 Wang (B50) 2016; 6 Knight (B67) 2013; 3 Chanda (B72) 2010; 38 Han (B80) 2016; 43 Fernando (B99) 2019; 8 Hwang (B127) 2013; 61 Lim (B140) 2010; 38 Yu (B78) 2020; 39 Boni (B85) 2020; 12 Slade (B62) 2020; 34 Nin (B71) 2012; 287 Chattopadhyay (B97) 2020; 117 Liang (B8) 2020; 170 Ichikawa (B125) 2013; 18 Wang (B169) 2020; 53 Gao (B92) 2011; 286 Shen (B76) 2018; 11 Stomberski (B98) 2019; 30 Cecconi (B151) 2018; 392 Wang (B155) 2018; 19 Jablonska (B40) 2016; 7 Kim (B65) 2007; 28 Li (B106) 2013; 7 Ao (B73) 2014; 33 Motta (B42) 2004; 116 Liu (B120) 2012; 287 Hayden (B129) 2008; 132 Lei (B133) 2012; 674 Huang (B5) 2021; 143 Chen (B126) 2013; 9 Bouras (B22) 2005; 280 Imperatore (B41) 2017; 36 Kim (B172) 2019; 8 Rabadi (B173) 2015; 87 Kong (B170) 2015; 21 Wang (B49) 2014; 539 Bonkowski (B2) 2016; 17 Ford (B91) 2008; 7 Yao (B166) 2013; 305 Bai (B105) 2018; 9 Wang (B35) 2006; 8 Pediconi (B37) 2009; 29 Lu (B87) 2017; 18 Zee (B103) 2010; 13 |
| References_xml | – volume: 92 year: 2012 ident: B14 article-title: Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism publication-title: Physiol Rev doi: 10.1152/physrev.00022.2011 – volume: 11 year: 2020 ident: B18 article-title: Histone Deacetylase Sirt1 Mediates C5b-9-Induced Cell Cycle in Oligodendrocytes publication-title: Front Immunol doi: 10.3389/fimmu.2020.00619 – volume: 185 year: 2009 ident: B44 article-title: A C-Myc-Sirt1 Feedback Loop Regulates Cell Growth and Transformation publication-title: J Cell Biol doi: 10.1083/jcb.200809167 – volume: 14 year: 2011 ident: B6 article-title: Proatherogenic Abnormalities of Lipid Metabolism in Sirt1 Transgenic Mice Are Mediated Through Creb Deacetylation publication-title: Cell Metab doi: 10.1016/j.cmet.2011.10.007 – volume: 376 year: 2008 ident: B146 article-title: Inhibition of Transcriptional Activity of C-Jun by Sirt1 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.09.079 – volume: 4 year: 2014 ident: B82 article-title: Sirt1 Phosphorylation by Amp-Activated Protein Kinase Regulates P53 Acetylation publication-title: Am J Cancer Res – volume: 101 year: 2021 ident: B119 article-title: Nicotinamide Riboside, an Nad(+) Precursor, Attenuates Inflammation and Oxidative Stress by Activating Sirtuin 1 in Alcohol-Stimulated Macrophages publication-title: Lab Invest doi: 10.1038/s41374-021-00599-1 – volume: 674 year: 2012 ident: B133 article-title: Resveratrol Inhibits Interleukin 1β-Mediated Inducible Nitric Oxide Synthase Expression in Articular Chondrocytes by Activating Sirt1 and Thereby Suppressing Nuclear Factor-Kb Activity publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2011.10.015 – volume: 96 year: 2014 ident: B158 article-title: Sirt1 Inhibition During the Hypoinflammatory Phenotype of Sepsis Enhances Immunity and Improves Outcome publication-title: J Leukoc Biol doi: 10.1189/jlb.3MA0114-034RR – volume: 132 year: 2008 ident: B129 article-title: Shared Principles in Nf-Kappab Signaling publication-title: Cell doi: 10.1016/j.cell.2008.01.020 – volume: 30 year: 2019 ident: B98 article-title: Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7403 – volume: 18 year: 2013 ident: B125 article-title: Sirtuin 1 Activator Srt1720 Suppresses Inflammation in an Ovalbumin-Induced Mouse Model of Asthma publication-title: Respirology doi: 10.1111/j.1440-1843.2012.02284.x – volume: 5 start-page: 5483 year: 2014 ident: B60 article-title: Modification of Dbc1 by Sumo2/3 Is Crucial for P53-Mediated Apoptosis in Response to DNA Damage publication-title: Nat Commun doi: 10.1038/ncomms6483 – volume: 9 year: 2018 ident: B105 article-title: Acetylation-Dependent Regulation of Notch Signaling in Macrophages by Sirt1 Affects Sepsis Development publication-title: Front Immunol doi: 10.3389/fimmu.2018.00762 – volume: 384 year: 2014 ident: B152 article-title: The Systemic Immune Response to Trauma: An Overview of Pathophysiology and Treatment publication-title: Lancet doi: 10.1016/s0140-6736(14)60687-5 – volume: 43 year: 2020 ident: B9 article-title: Role of Silent Information Regulator 1 (Sirt1) in Regulating Oxidative Stress and Inflammation publication-title: Inflammation doi: 10.1007/s10753-020-01242-9 – volume: 451 year: 2008 ident: B58 article-title: Negative Regulation of the Deacetylase Sirt1 by Dbc1 publication-title: Nature doi: 10.1038/nature06515 – volume: 9 year: 2009 ident: B159 article-title: Hepatocyte-Specific Deletion of Sirt1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation publication-title: Cell Metab doi: 10.1016/j.cmet.2009.02.006 – volume: 75 year: 2006 ident: B1 article-title: The Biochemistry of Sirtuins publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133500 – volume: 8 start-page: 322 year: 2019 ident: B172 article-title: Pharmacological Activation of Sirt1 Ameliorates Cisplatin-Induced Acute Kidney Injury by Suppressing Apoptosis, Oxidative Stress, and Inflammation in Mice publication-title: Antioxidants (Basel Switzerland) doi: 10.3390/antiox8080322 – volume: 8 year: 2008 ident: B70 article-title: Specific Sirt1 Activation Mimics Low Energy Levels and Protects Against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation publication-title: Cell Metab doi: 10.1016/j.cmet.2008.08.017 – volume: 12 start-page: 51 year: 2003 ident: B54 article-title: Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State publication-title: Mol Cell doi: 10.1016/s1097-2765(03)00226-0 – volume: 3 year: 2013 ident: B67 article-title: Active Regulator of Sirt1 Is Required for Cancer Cell Survival But Not for Sirt1 Activity publication-title: Open Biol doi: 10.1098/rsob.130130 – volume: 19 start-page: 2738 year: 2018 ident: B155 article-title: Sirtuins and Immuno-Metabolism of Sepsis publication-title: Int J Mol Sci doi: 10.3390/ijms19092738 – volume: 27 year: 2007 ident: B33 article-title: An Acetylation/Deacetylation-Sumoylation Switch Through a Phylogenetically Conserved Psikxep Motif in the Tumor Suppressor Hic1 Regulates Transcriptional Repression Activity publication-title: Mol Cell Biol doi: 10.1128/mcb.01098-06 – volume: 7 start-page: e2464 year: 2016 ident: B110 article-title: Cysteine Cathepsins Control Hepatic Nf-Kb-Dependent Inflammation Via Sirtuin-1 Regulation publication-title: Cell Death Dis doi: 10.1038/cddis.2016.368 – volume: 190 start-page: 82 year: 2020 ident: B161 article-title: Intestinal Sirt1 Deficiency Protects Mice From Ethanol-Induced Liver Injury by Mitigating Ferroptosis publication-title: Am J Pathol doi: 10.1016/j.ajpath.2019.09.012 – volume: 15 year: 2019 ident: B28 article-title: Epigenetic Down-Regulation of Sirt 1 Via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life publication-title: Int J Biol Sci doi: 10.7150/ijbs.33044 – volume: 151 year: 2010 ident: B43 article-title: Induction of Hypothalamic Sirt1 Leads to Cessation of Feeding Via Agouti-Related Peptide publication-title: Endocrinology doi: 10.1210/en.2009-1319 – volume: 123 year: 2005 ident: B32 article-title: Tumor Suppressor Hic1 Directly Regulates Sirt1 to Modulate P53-Dependent DNA-Damage Responses publication-title: Cell doi: 10.1016/j.cell.2005.08.011 – volume: 22 year: 2018 ident: B164 article-title: Sirt1/Foxo3 Axis Alteration Leads to Aberrant Immune Responses in Bronchial Epithelial Cells publication-title: J Cell Mol Med doi: 10.1111/jcmm.13509 – volume: 53 start-page: e12773 year: 2020 ident: B169 article-title: Resveratrol Protects the Integrity of Alveolar Epithelial Barrier Via Sirt1/Pten/P-Akt Pathway in Methamphetamine-Induced Chronic Lung Injury publication-title: Cell Prolif doi: 10.1111/cpr.12773 – volume: 25 year: 2018 ident: B10 article-title: Activators of Sirtuin-1 and Their Involvement in Cardioprotection publication-title: Curr Med Chem doi: 10.2174/0929867325666180214115438 – volume: 112 year: 2015 ident: B143 article-title: Dendritic Cell Sirt1-Hif1α Axis Programs the Differentiation of Cd4+ T Cells Through Il-12 and Tgf-B1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1420419112 – volume: 298 year: 2010 ident: B134 article-title: Sirt1 Inhibits Inflammatory Pathways in Macrophages and Modulates Insulin Sensitivity publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00417.2009 – volume: 19 year: 2020 ident: B142 article-title: Sirt1 Relieves Necrotizing Enterocolitis Through Inactivation of Hypoxia-Inducible Factor (Hif)-1a publication-title: Cell Cycle (Georgetown Tex) doi: 10.1080/15384101.2020.1788251 – volume: 25 year: 2007 ident: B52 article-title: Phosphorylation of Hur by Chk2 Regulates Sirt1 Expression publication-title: Mol Cell doi: 10.1016/j.molcel.2007.01.011 – volume: 776 start-page: 1 year: 2018 ident: B56 article-title: Cell Cycle and Apoptosis Regulator 2 at the Interface Between DNA Damage Response and Cell Physiology publication-title: Mutat Res Rev Mutat Res doi: 10.1016/j.mrrev.2018.03.004 – volume: 143 year: 2021 ident: B5 article-title: A Sirt1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons publication-title: J Am Chem Soc doi: 10.1021/jacs.0c10836 – volume: 116 year: 2004 ident: B42 article-title: Mammalian Sirt1 Represses Forkhead Transcription Factors publication-title: Cell doi: 10.1016/s0092-8674(04)00126-6 – volume: 12 start-page: 778 year: 2018 ident: B20 article-title: Sirtuins in Neuroendocrine Regulation and Neurological Diseases publication-title: Neuroscience doi: 10.3389/fnins.2018.00778 – volume: 285 year: 2010 ident: B107 article-title: Roles of Sirt1 in the Acute and Restorative Phases Following Induction of Inflammation publication-title: J Biol Chem doi: 10.1074/jbc.M110.174482 – volume: 2020 year: 2020 ident: B108 article-title: Baicalin Ameliorates Cognitive Impairment and Protects Microglia From Lps-Induced Neuroinflammation Via the Sirt1/Hmgb1 Pathway publication-title: Oxid Med Cell Longev doi: 10.1155/2020/4751349 – volume: 22 year: 2020 ident: B3 article-title: Sirt1 Is Downregulated by Autophagy in Senescence and Ageing publication-title: Nat Cell Biol doi: 10.1038/s41556-020-00579-5 – volume: 24 year: 2010 ident: B123 article-title: Sirt1 Is a Redox-Sensitive Deacetylase That Is Post-Translationally Modified by Oxidants and Carbonyl Stress publication-title: FASEB J doi: 10.1096/fj.09-151308 – volume: 40 year: 2012 ident: B113 article-title: Interferon Gamma (Ifn-Γ) Disrupts Energy Expenditure and Metabolic Homeostasis by Suppressing Sirt1 Transcription publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr984 – volume: 9 year: 2009 ident: B34 article-title: How Does Sirt1 Affect Metabolism, Senescence and Cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc2562 – volume: 37 year: 2017 ident: B90 article-title: Obesity-Linked Phosphorylation of Sirt1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver publication-title: Mol Cell Biol doi: 10.1128/mcb.00006-17 – volume: 3 start-page: e4020 year: 2008 ident: B83 article-title: Phosphorylation Regulates Sirt1 Function publication-title: PloS One doi: 10.1371/journal.pone.0004020 – volume: 4 start-page: e7350 year: 2008 ident: B66 article-title: Human Sirt-1: Molecular Modeling and Structure-Function Relationships of an Unordered Protein publication-title: PloS One doi: 10.1371/journal.pone.0007350 – volume: 23 year: 2016 ident: B94 article-title: Hipk2 Restricts Sirt1 Activity Upon Severe DNA Damage by a Phosphorylation-Controlled Mechanism publication-title: Cell Death Diff doi: 10.1038/cdd.2015.75 – volume: 306 year: 2004 ident: B29 article-title: Nutrient Availability Regulates Sirt1 Through a Forkhead-Dependent Pathway publication-title: Sci (New York NY) doi: 10.1126/science.1101731 – volume: 8 start-page: 1491 year: 2017 ident: B96 article-title: O-Glcnacylation of Sirt1 Enhances Its Deacetylase Activity and Promotes Cytoprotection Under Stress publication-title: Nat Commun doi: 10.1038/s41467-017-01654-6 – volume: 124 start-page: 45 year: 2018 ident: B121 article-title: Augmentation of Nad(+) Levels by Enzymatic Action of Nad(P)H Quinone Oxidoreductase 1 Attenuates Adriamycin-Induced Cardiac Dysfunction in Mice publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2018.10.001 – volume: 43 year: 2016 ident: B80 article-title: Hdac4 Stabilizes Sirt1 Via Sumoylation Sirt1 to Delay Cellular Senescence publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/1440-1681.12496 – volume: 36 year: 2013 ident: B45 article-title: Regulation of Sirt1 by Micrornas publication-title: Mol Cells doi: 10.1007/s10059-013-0297-1 – volume: 13 year: 2010 ident: B103 article-title: Redox Regulation of Sirtuin-1 by S-Glutathiolation publication-title: Antioxid Redox Signal doi: 10.1089/ars.2010.3251 – volume: 7 year: 2016 ident: B40 article-title: Sirt1 Regulates Glial Progenitor Proliferation and Regeneration in White Matter After Neonatal Brain Injury publication-title: Nat Commun doi: 10.1038/ncomms13866 – volume: 305 year: 2013 ident: B166 article-title: Sirt1 Redresses the Imbalance of Tissue Inhibitor of Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Development of Mouse Emphysema and Human Copd publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00249.2012 – volume: 100 year: 2003 ident: B19 article-title: Developmental Defects and P53 Hyperacetylation in Sir2 Homolog (Sirt1)-Deficient Mice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1934713100 – volume: 462 start-page: 294 year: 2015 ident: B141 article-title: Sirt1 Deacetylates and Stabilizes Hypoxia-Inducible Factor-1α (Hif-1α) Via Direct Interactions During Hypoxia publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.04.119 – volume: 12 start-page: 12 year: 2020 ident: B27 article-title: DNA Hypermethylation of Sirtuin 1 (Sirt1) Caused by Betel Quid Chewing-A Possible Predictive Biomarker for Malignant Transformation publication-title: Clin Epigenet doi: 10.1186/s13148-019-0806-y – volume: 17 year: 2021 ident: B61 article-title: Hydrogen Sulfide-Induced Gapdh Sulfhydration Disrupts the Ccar2-Sirt1 Interaction to Initiate Autophagy publication-title: Autophagy doi: 10.1080/15548627.2021.1876342 – volume: 23 year: 2004 ident: B131 article-title: Modulation of Nf-Kappab-Dependent Transcription and Cell Survival by the Sirt1 Deacetylase publication-title: EMBO J doi: 10.1038/sj.emboj.7600244 – volume: 14 start-page: 67 year: 2017 ident: B149 article-title: Interactions Between Sirt1 and Mapks Regulate Astrocyte Activation Induced by Brain Injury in Vitro and in Vivo publication-title: J Neuroinflamm doi: 10.1186/s12974-017-0841-6 – volume: 219 year: 2017 ident: B156 article-title: Srt1720, a Sirtuin 1 Activator, Attenuates Organ Injury and Inflammation in Sepsis publication-title: J Surg Res doi: 10.1016/j.jss.2017.06.031 – volume: 6 start-page: e24307 year: 2011 ident: B117 article-title: Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells publication-title: PloS One doi: 10.1371/journal.pone.0024307 – volume: 22 start-page: 1003 year: 2021 ident: B148 article-title: P38 Signalling Pathway publication-title: Int J Mol Sci doi: 10.3390/ijms22031003 – volume: 7 year: 2018 ident: B51 article-title: Sirt1 Antisense Long Noncoding Rna Promotes Cardiomyocyte Proliferation by Enhancing the Stability of Sirt1 publication-title: J Am Heart Assoc doi: 10.1161/jaha.118.009700 – volume: 146 year: 2014 ident: B162 article-title: Deletion of Sirt1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.11.008 – volume: 39 year: 2011 ident: B57 article-title: Reciprocal Roles of Dbc1 and Sirt1 in Regulating Estrogen Receptor A Activity and Co-Activator Synergy publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr347 – volume: 43 start-page: 64 year: 2018 ident: B30 article-title: Role of Sirtuin1-P53 Regulatory Axis in Aging, Cancer and Cellular Reprogramming publication-title: Ageing Res Rev doi: 10.1016/j.arr.2018.02.004 – volume: 407 year: 2007 ident: B39 article-title: Deacetylation of the Retinoblastoma Tumour Suppressor Protein by Sirt1 publication-title: Biochem J doi: 10.1042/bj20070151 – volume: 11 start-page: 95 year: 2018 ident: B76 article-title: Ube2v1-Mediated Ubiquitination and Degradation of Sirt1 Promotes Metastasis of Colorectal Cancer by Epigenetically Suppressing Autophagy publication-title: J Hematol Oncol doi: 10.1186/s13045-018-0638-9 – volume: 40 year: 2019 ident: B168 article-title: Activation of Sirt1 Ameliorates Lps-Induced Lung Injury in Mice Via Decreasing Endothelial Tight Junction Permeability publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-018-0045-3 – volume: 67 year: 2019 ident: B15 article-title: Sirt1 Alleviates Isoniazid-Induced Hepatocyte Injury by Reducing Histone Acetylation in the Il-6 Promoter Region publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2018.11.054 – volume: 22 year: 2015 ident: B53 article-title: Nad+/Nadh Metabolism and Nad+-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications publication-title: Curr Med Chem doi: 10.2174/0929867322666150209154420 – volume: 9 year: 2007 ident: B79 article-title: Sirt1 Sumoylation Regulates Its Deacetylase Activity and Cellular Response to Genotoxic Stress publication-title: Nat Cell Biol doi: 10.1038/ncb1645 – volume: 17 year: 2016 ident: B2 article-title: Slowing Ageing by Design: The Rise of Nad+ and Sirtuin-Activating Compounds publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.93 – volume: 36 year: 2017 ident: B41 article-title: Sirt1 Regulates Macrophage Self-Renewal publication-title: EMBO J doi: 10.15252/embj.201695737 – volume: 7 year: 2013 ident: B106 article-title: Resveratrol Reduces Acute Lung Injury in a Lps−Induced Sepsis Mouse Model Via Activation of Sirt1 publication-title: Mol Med Rep doi: 10.3892/mmr.2013.1444 – volume: 16 start-page: 93 year: 2004 ident: B13 article-title: Human Sirt1 Interacts With Histone H1 and Promotes Formation of Facultative Heterochromatin publication-title: Mol Cell doi: 10.1016/j.molcel.2004.08.031 – volume: 29 year: 2009 ident: B37 article-title: Hsirt1-Dependent Regulation of the Pcaf-E2f1-P73 Apoptotic Pathway in Response to DNA Damage publication-title: Mol Cell Biol doi: 10.1128/mcb.00552-08 – volume: 18 year: 2017 ident: B87 article-title: The Phosphorylation Status of T522 Modulates Tissue-Specific Functions of Sirt1 in Energy Metabolism in Mice publication-title: EMBO Rep doi: 10.15252/embr.201643803 – volume: 30 year: 2010 ident: B132 article-title: Functional Interplay Between Acetylation and Methylation of the Rela Subunit of Nf-Kappab publication-title: Mol Cell Biol doi: 10.1128/mcb.01343-09 – volume: 21 start-page: 87 year: 2015 ident: B170 article-title: Sirtuin 1: A Target for Kidney Diseases publication-title: Mol Med (Cambr Mass) doi: 10.2119/molmed.2014.00211 – volume: 6 year: 2016 ident: B50 article-title: Sirt1 as Lncrna Interacts With Its Mrna to Inhibit Muscle Formation by Attenuating Function of Mir-34a publication-title: Sci Rep doi: 10.1038/srep21865 – volume: 14 year: 2016 ident: B16 article-title: Sirt1 Activator Represses the Transcription of Tnf−A in Thp−1 Cells of a Sepsis Model Via Deacetylation of H4k16 publication-title: Mol Med Rep doi: 10.3892/mmr.2016.5942 – volume: 13 year: 2017 ident: B25 article-title: Downregulation of Sirt1 Signaling Underlies Hepatic Autophagy Impairment in Glycogen Storage Disease Type Ia publication-title: PloS Genet doi: 10.1371/journal.pgen.1006819 – volume: 25 year: 2013 ident: B135 article-title: Antagonistic Crosstalk Between Nf-Kappab and Sirt1 in the Regulation of Inflammation and Metabolic Disorders publication-title: Cell Signall doi: 10.1016/j.cellsig.2013.06.007 – volume: 280 year: 2005 ident: B22 article-title: Sirt1 Deacetylation and Repression of P300 Involves Lysine Residues 1020/1024 Within the Cell Cycle Regulatory Domain 1 publication-title: J Biol Chem doi: 10.1074/jbc.M408748200 – volume: 110 year: 2013 ident: B104 article-title: Glutaredoxin Regulates Vascular Development by Reversible Glutathionylation of Sirtuin 1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1313753110 – volume: 117 year: 2020 ident: B97 article-title: Spatiotemporal Gating of Sirt1 Functions by O-Glcnacylation Is Essential for Liver Metabolic Switching and Prevents Hyperglycemia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1909943117 – volume: 34 year: 2020 ident: B124 article-title: Sirt1 Agonism Modulates Cardiac Nlrp3 Inflammasome Through Pyruvate Dehydrogenase During Ischemia and Reperfusion publication-title: Redox Biol doi: 10.1016/j.redox.2020.101538 – volume: 28 year: 2007 ident: B65 article-title: Active Regulator of Sirt1 Cooperates With Sirt1 and Facilitates Suppression of P53 Activity publication-title: Mol Cell doi: 10.1016/j.molcel.2007.08.030 – volume: 285 year: 2010 ident: B147 article-title: Sirt1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages publication-title: J Biol Chem doi: 10.1074/jbc.M109.038604 – volume: 6 year: 2016 ident: B74 article-title: Chfr Negatively Regulates Sirt1 Activity Upon Oxidative Stress publication-title: Sci Rep doi: 10.1038/srep37578 – volume: 90 year: 2011 ident: B136 article-title: Sirt1 Acts in Association With Pparalpha to Protect the Heart From Hypertrophy, Metabolic Dysregulation, and Inflammation publication-title: Cardiovasc Res doi: 10.1093/cvr/cvq376 – volume: 285 year: 2010 ident: B86 article-title: Dyrk1a and Dyrk3 Promote Cell Survival Through Phosphorylation and Activation of Sirt1 publication-title: J Biol Chem doi: 10.1074/jbc.M110.102574 – volume: 38 year: 2010 ident: B72 article-title: Transcriptional Corepressor Shp Recruits Sirt1 Histone Deacetylase to Inhibit Lrh-1 Transactivation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq227 – volume: 5 year: 2005 ident: B150 article-title: Resveratrol Inhibits Nitric Oxide and Tnf-Alpha Production by Lipopolysaccharide-Activated Microglia publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2004.08.008 – volume: 2018 year: 2018 ident: B157 article-title: Sirtuin1 Targeting Reverses Innate and Adaptive Immune Tolerance in Septic Mice publication-title: J Immunol Res doi: 10.1155/2018/2402593 – volume: 217 start-page: 8 year: 2019 ident: B112 article-title: Melatonin Protects Against Sepsis-Induced Cardiac Dysfunction by Regulating Apoptosis and Autophagy Via Activation of Sirt1 in Mice publication-title: Life Sci doi: 10.1016/j.lfs.2018.11.055 – volume: 20 year: 2016 ident: B128 article-title: Protective Role of Silent Information Regulator 1 Against Hepatic Ischemia: Effects on Oxidative Stress Injury, Inflammatory Response, and Mapks publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.2016.1153067 – volume: 44 year: 2016 ident: B144 article-title: Histone Deacetylase Sirt1 Negatively Regulates the Differentiation of Interleukin-9-Producing Cd4(+) T Cells publication-title: Immunity doi: 10.1016/j.immuni.2016.05.009 – volume: 28 year: 2018 ident: B7 article-title: Sirt1 Controls Acetaminophen Hepatotoxicity by Modulating Inflammation and Oxidative Stress publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7373 – volume: 588 year: 2014 ident: B68 article-title: Aros Has a Context-Dependent Effect on Sirt1 publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.03.020 – volume: 451 year: 2008 ident: B59 article-title: Dbc1 Is a Negative Regulator of Sirt1 publication-title: Nature doi: 10.1038/nature06500 – volume: 47 year: 2019 ident: B115 article-title: Circ-Sirt1 Controls Nf-Kb Activation Via Sequence-Specific Interaction and Enhancement of Sirt1 Expression by Binding to Mir-132/212 in Vascular Smooth Muscle Cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz141 – volume: 539 year: 2014 ident: B49 article-title: Identification, Stability and Expression of Sirt1 Antisense Long Non-Coding RNA publication-title: Gene doi: 10.1016/j.gene.2014.01.037 – volume: 293 year: 2018 ident: B95 article-title: Jak1-Mediated Sirt1 Phosphorylation Functions as a Negative Feedback of the Jak1-Stat3 Pathway publication-title: J Biol Chem doi: 10.1074/jbc.RA117.001387 – volume: 5 year: 2013 ident: B139 article-title: Transcription Factor Nfκb Regulates the Expression of the Histone Deacetylase Sirt1 publication-title: Clin Epigenet doi: 10.1186/1868-7083-5-11 – volume: 7 year: 2008 ident: B91 article-title: Jnk2-Dependent Regulation of Sirt1 Protein Stability publication-title: Cell Cycle (Georgetown Tex) doi: 10.4161/cc.7.19.6799 – volume: 87 start-page: 95 year: 2015 ident: B173 article-title: High-Mobility Group Box 1 Is a Novel Deacetylation Target of Sirtuin1 publication-title: Kidney Int doi: 10.1038/ki.2014.217 – volume: 12 year: 2010 ident: B100 article-title: Gapdh Mediates Nitrosylation of Nuclear Proteins publication-title: Nat Cell Biol doi: 10.1038/ncb2114 – volume: 34 year: 2020 ident: B62 article-title: Parp and Parg Inhibitors in Cancer Treatment publication-title: Genes Dev doi: 10.1101/gad.334516.119 – volume: 8 start-page: 404 year: 2019 ident: B99 article-title: S-Nitrosylation: An Emerging Paradigm of Redox Signaling publication-title: Antioxid (Basel Switzerland) doi: 10.3390/antiox8090404 – volume: 97 year: 2019 ident: B47 article-title: Lncrna-Anril Inhibits Cell Senescence of Vascular Smooth Muscle Cells by Regulating Mir-181a/Sirt1 publication-title: Biochem Cell Biol = Biochim Biol Cellulaire doi: 10.1139/bcb-2018-0126 – volume: 116 year: 2019 ident: B48 article-title: Lncrna Mnx1-As1 Promotes Progression of Esophageal Squamous Cell Carcinoma by Regulating Mir-34a/Sirt1 Axis publication-title: Biomed Pharmacother = Biomed Pharmacother doi: 10.1016/j.biopha.2019.109029 – volume: 290 year: 2015 ident: B77 article-title: Ubiquitinated Sirtuin 1 (Sirt1) Function Is Modulated During DNA Damage-Induced Cell Death and Survival publication-title: J Biol Chem doi: 10.1074/jbc.M114.612796 – volume: 286 year: 2011 ident: B92 article-title: Sirtuin 1 (Sirt1) Protein Degradation in Response to Persistent C-Jun N-Terminal Kinase 1 (Jnk1) Activation Contributes to Hepatic Steatosis in Obesity publication-title: J Biol Chem doi: 10.1074/jbc.M111.228874 – volume: 67 year: 2017 ident: B118 article-title: Macrophage Heme Oxygenase-1-Sirt1-P53 Axis Regulates Sterile Inflammation in Liver Ischemia-Reperfusion Injury publication-title: J Hepatol doi: 10.1016/j.jhep.2017.08.010 – volume: 45 year: 2017 ident: B69 article-title: Ampk Signalling in Health and Disease publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2017.01.005 – volume: 286 year: 2011 ident: B114 article-title: Nad+-Dependent Sirt1 Deacetylase Participates in Epigenetic Reprogramming During Endotoxin Tolerance publication-title: J Biol Chem doi: 10.1074/jbc.M110.196790 – volume: 418 year: 2018 ident: B21 article-title: Sirt1 and Hif1alpha Signaling in Metabolism and Immune Responses publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.12.035 – volume: 392 start-page: 75 year: 2018 ident: B151 article-title: Sepsis and Septic Shock publication-title: Lancet doi: 10.1016/s0140-6736(18)30696-2 – volume: 4 start-page: e8414 year: 2009 ident: B93 article-title: Jnk1 Phosphorylates Sirt1 and Promotes Its Enzymatic Activity publication-title: PloS One doi: 10.1371/journal.pone.0008414 – volume: 33 year: 2014 ident: B73 article-title: Ubiquitin-Specific Peptidase Usp22 Negatively Regulates the Stat Signaling Pathway by Deubiquitinating Sirt1 publication-title: Cell Physiol Biochem doi: 10.1159/000362964 – volume: 12 start-page: 2106 year: 2020 ident: B85 article-title: The Dyrk Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities publication-title: Cancers doi: 10.3390/cancers12082106 – volume: 4 start-page: e6611 year: 2009 ident: B89 article-title: Ck2 Is the Regulator of Sirt1 Substrate-Binding Affinity, Deacetylase Activity and Cellular Response to DNA-Damage publication-title: PloS One doi: 10.1371/journal.pone.0006611 – volume: 287 year: 2012 ident: B71 article-title: Role of Deleted in Breast Cancer 1 (Dbc1) Protein in Sirt1 Deacetylase Activation Induced by Protein Kinase a and Amp-Activated Protein Kinase publication-title: J Biol Chem doi: 10.1074/jbc.M112.365874 – volume: 283 year: 2008 ident: B24 article-title: Sirt1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of Lkb1. Possible Role in Amp-Activated Protein Kinase Activation publication-title: J Biol Chem doi: 10.1074/jbc.M805711200 – volume: 43 year: 2017 ident: B153 article-title: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 publication-title: Intensive Care Med doi: 10.1007/s00134-017-4683-6 – volume: 119 year: 2012 ident: B167 article-title: Sirt1 Protects Against Thrombomodulin Down-Regulation and Lung Coagulation After Particulate Matter Exposure publication-title: Blood doi: 10.1182/blood-2011-04-350413 – volume: 9 start-page: e98909 year: 2014 ident: B171 article-title: Sirt1 Deletion Leads to Enhanced Inflammation and Aggravates Endotoxin-Induced Acute Kidney Injury publication-title: PloS One doi: 10.1371/journal.pone.0098909 – volume: 66 year: 2017 ident: B160 article-title: Aging Aggravates Alcoholic Liver Injury and Fibrosis in Mice by Downregulating Sirtuin 1 Expression publication-title: J Hepatol doi: 10.1016/j.jhep.2016.11.004 – volume: 32 year: 2018 ident: B17 article-title: Kdm2b Is a Histone H3k79 Demethylase and Induces Transcriptional Repression Via Sirtuin-1-Mediated Chromatin Silencing publication-title: FASEB J doi: 10.1096/fj.201800242R – volume: 7 year: 2014 ident: B101 article-title: Inflammatory Stimuli Induce Inhibitory S-Nitrosylation of the Deacetylase Sirt1 to Increase Acetylation and Activation of P53 and P65 publication-title: Sci Signal doi: 10.1126/scisignal.2005375 – volume: 11 start-page: 146 year: 2019 ident: B175 article-title: Sirt1 Attenuates Kidney Disorders in Male Offspring Due to Maternal High-Fat Diet publication-title: Nutrients doi: 10.3390/nu11010146 – volume: 8 year: 2006 ident: B35 article-title: Interactions Between E2f1 and Sirt1 Regulate Apoptotic Response to DNA Damage publication-title: Nat Cell Biol doi: 10.1038/ncb1468 – volume: 17 start-page: 59 year: 2006 ident: B137 article-title: Cloning, Chromosomal Characterization and Mapping of the Nad-Dependent Histone Deacetylases Gene Sirtuin 1 publication-title: Int J Mol Med doi: 10.3892/ijmm.17.1.59 – volume: 8 start-page: e75139 year: 2013 ident: B111 article-title: Resveratrol Inhibits Cd4+ T Cell Activation by Enhancing the Expression and Activity of Sirt1 publication-title: PloS One doi: 10.1371/journal.pone.0075139 – volume: 40 year: 2017 ident: B109 article-title: Tim4-Tim1 Interaction Modulates Th2 Pattern Inflammation Through Enhancing Sirt1 Expression publication-title: Int J Mol Med doi: 10.3892/ijmm.2017.3150 – volume: 13 year: 2021 ident: B163 article-title: Metabolic Regulation of Macrophages by Sirt1 Determines Activation During Cholestatic Liver Disease in Mice publication-title: Cell Mol Gastroenterol Hepatol doi: 10.1016/j.jcmgh.2021.12.010 – volume: 285 year: 2010 ident: B23 article-title: Sirt1 Regulates Autoacetylation and Histone Acetyltransferase Activity of Tip60 publication-title: J Biol Chem doi: 10.1074/jbc.M109.087585 – volume: 13 year: 2011 ident: B63 article-title: Parp-1 Inhibition Increases Mitochondrial Metabolism Through Sirt1 Activation publication-title: Cell Metab doi: 10.1016/j.cmet.2011.03.004 – volume: 39 year: 2020 ident: B78 article-title: Ubiquitination-Mediated Degradation of Sirt1 by Smurf2 Suppresses Crc Cell Proliferation and Tumorigenesis publication-title: Oncogene doi: 10.1038/s41388-020-1298-0 – volume: 471 year: 2016 ident: B75 article-title: Mst1 Regulates Hepatic Lipid Metabolism by Inhibiting Sirt1 Ubiquitination in Mice publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.02.059 – volume: 13 year: 2011 ident: B64 article-title: Parp-2 Regulates Sirt1 Expression and Whole-Body Energy Expenditure publication-title: Cell Metab doi: 10.1016/j.cmet.2011.03.013 – volume: 47 year: 2019 ident: B46 article-title: Long Noncoding Rna Snhg15 Enhances the Development of Colorectal Carcinoma Via Functioning as a Cerna Through Mir-141/Sirt1/Wnt/B-Catenin Axis publication-title: Artif Cells Nanomed Biotechnol doi: 10.1080/21691401.2019.1621328 – volume: 287 year: 2012 ident: B120 article-title: Nad+-Dependent Sirtuin 1 and 6 Proteins Coordinate a Switch From Glucose to Fatty Acid Oxidation During the Acute Inflammatory Response publication-title: J Biol Chem doi: 10.1074/jbc.M112.362343 – volume: 2021 year: 2021 ident: B4 article-title: Sirt1 Inhibits Apoptosis by Promoting Autophagic Flux in Human Nucleus Pulposus Cells in the Key Stage of Degeneration Via Erk Signal Pathway publication-title: BioMed Res Int doi: 10.1155/2021/8818713 – volume: 38 year: 2010 ident: B140 article-title: Sirtuin 1 Modulates Cellular Responses to Hypoxia by Deacetylating Hypoxia-Inducible Factor 1alpha publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.023 – volume: 372 year: 2008 ident: B174 article-title: Sirt1 Protects Against Oxidative Stress-Induced Renal Tubular Cell Apoptosis by the Bidirectional Regulation of Catalase Expression publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.04.176 – volume: 62 start-page: 1 year: 1999 ident: B84 article-title: Structural and Functional Characteristics of Dyrk, a Novel Subfamily of Protein Kinases With Dual Specificity publication-title: Prog Nucleic Acid Res Mol Biol doi: 10.1016/s0079-6603(08)60503-6 – volume: 54 start-page: 96 year: 2020 ident: B116 article-title: Sirt1 Mediates Septic Cardiomyopathy in a Murine Model of Polymicrobial Sepsis publication-title: Shock doi: 10.1097/shk.0000000000001429 – volume: 13 year: 2013 ident: B154 article-title: Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy publication-title: Nat Rev Immunol doi: 10.1038/nri3552 – volume: 397 year: 2010 ident: B138 article-title: Involvement of the P65/Rela Subunit of Nf-Kappab in Tnf-Alpha-Induced Sirt1 Expression in Vascular Smooth Muscle Cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.05.160 – volume: 45 year: 2017 ident: B88 article-title: Phosphorylated Sirt1 Associates With Replication Origins to Prevent Excess Replication Initiation and Preserve Genomic Stability publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx468 – volume: 1872 start-page: 11 year: 2019 ident: B145 article-title: The Ap-1 Transcriptional Complex: Local Switch or Remote Command publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2019.04.003 – volume: 33 year: 2008 ident: B38 article-title: The Ups and Downs of Sirt1 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2008.08.001 – volume: 6 year: 2004 ident: B31 article-title: Epigenetic and Genetic Loss of Hic1 Function Accentuates the Role of P53 in Tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.08.030 – volume: 12 year: 2017 ident: B102 article-title: Inos as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle After Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of P65 Nf-Kb and P53 publication-title: PloS One doi: 10.1371/journal.pone.0170391 – volume: 152 year: 2017 ident: B165 article-title: Decreased Serum Sirtuin-1 in Copd publication-title: Chest doi: 10.1016/j.chest.2017.05.004 – volume: 72 year: 2012 ident: B81 article-title: Ampk Promotes P53 Acetylation Via Phosphorylation and Inactivation of Sirt1 in Liver Cancer Cells publication-title: Cancer Res doi: 10.1158/0008-5472.can-12-0429 – volume: 61 start-page: 95 year: 2013 ident: B127 article-title: Redox Regulation of Sirt1 in Inflammation and Cellular Senescence publication-title: Free Radical Biol Med doi: 10.1016/j.freeradbiomed.2013.03.015 – volume: 6 start-page: e19194 year: 2011 ident: B122 article-title: Age Related Changes in Nad+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats publication-title: PloS One doi: 10.1371/journal.pone.0019194 – volume: 9 year: 2013 ident: B126 article-title: Resveratrol Attenuates Vascular Endothelial Inflammation by Inducing Autophagy Through the Camp Signaling Pathway publication-title: Autophagy doi: 10.4161/auto.26336 – volume: 29 year: 2008 ident: B130 article-title: New Insights Into Nf-Kappab Regulation and Function publication-title: Trends Immunol doi: 10.1016/j.it.2008.07.003 – volume: 97 year: 2000 ident: B11 article-title: Silent Information Regulator 2 Family of Nad- Dependent Histone/Protein Deacetylases Generates a Unique Product, 1-O-Acetyl-Adp-Ribose publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.250422697 – volume: 403 start-page: 795 year: 2000 ident: B12 article-title: Transcriptional Silencing and Longevity Protein Sir2 Is an Nad-Dependent Histone Deacetylase publication-title: Nature doi: 10.1038/35001622 – volume: 90 year: 2020 ident: B36 article-title: Redirecting E2f1 to Ta-P73 Improves Cancer Therapy Through Apoptotic Induction publication-title: DNA Repair doi: 10.1016/j.dnarep.2020.102858 – volume: 287 year: 2012 ident: B55 article-title: Nicotinamide-Induced Mitophagy: Event Mediated by High Nad+/Nadh Ratio and Sirt1 Protein Activation publication-title: J Biol Chem doi: 10.1074/jbc.M112.363747 – volume: 170 start-page: 10 year: 2020 ident: B8 article-title: Sirt1/Pgc-1 Pathway Activation Triggers Autophagy/Mitophagy and Attenuates Oxidative Damage in Intestinal Epithelial Cells publication-title: Biochimie doi: 10.1016/j.biochi.2019.12.001 – volume: 392 year: 2018 ident: B26 article-title: Principles of DNA Methylation and Their Implications for Biology and Medicine publication-title: Lancet (Lond Engl) doi: 10.1016/s0140-6736(18)31268-6 |
| SSID | ssj0000493335 |
| Score | 2.7035155 |
| SecondaryResourceType | review_article |
| Snippet | The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD
+
-dependent deacetylase belonging to the sirtuin family, is a... The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD -dependent deacetylase belonging to the sirtuin family, is a... The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 831168 |
| SubjectTerms | enzyme activity gene regulation Histones - metabolism Humans Immunology inflammation Inflammation - metabolism NAD - metabolism post-translational modification SIRT1 Sirtuin 1 - genetics Sirtuin 1 - metabolism Sirtuins - metabolism |
| Title | Regulation of SIRT1 and Its Roles in Inflammation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35359990 https://www.proquest.com/docview/2646721553 https://pubmed.ncbi.nlm.nih.gov/PMC8962665 https://doaj.org/article/fec2d7f1866c4143a05ae4fde12e2e8e |
| Volume | 13 |
| WOSCitedRecordID | wos000780512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access资源_DOAJ customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7SkEIvpU0fUZOGLfQUUKN9eVfHpiTUh4bgJuDbsk_qkMgltgu99LdnVusYu5T20otA0goN32h25mNX3wC8x5SsbZtcjdRL1CIkXjvucTLEUsILFqWMrm82oc7P9XjcXqy1-sp7woo8cAHuOEXPgkpZl80LTO62kTaKFCJlkUUd8-yLVc8amboudS_nXJZlTGRh7XGa3N4ukA8y9gHtoFladS0R9Xr9fyoyf98ruZZ8zp7B02XVSD4Wa5_DVux24XHpI_nzBdBR6SiPGJNpIl-Ho0tKbBfIcD4joyzZRCYdGXYJ3V9-VXwJV2enl58-18teCLXHKJnjUVhqnXKeOT0ILAvDyZyOMQCT9mzAmxBV8rlfi4iyoVaHIJBOBaow5CR_BdvdtIt7QFoeXdAuKa5whLOuFcLiaUIq57z2FTQPwBi_FArP_SpuDBKGjKXpsTQZS1OwrOBo9cj3opLxt8EnGe3VwCxw3V9At5ul282_3F7BuwdfGQyIvMphuzhdzAxWeAOktVLyCl4X361exSWXWBE3FagNr27Ysnmnm3zrRbd1i9RvIN_8D-P34UnGI29lo_QAtud3i_gWdvyP-WR2dwiP1Fgf9t8zHr_8Or0HIsv6wA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+SIRT1+and+Its+Roles+in+Inflammation&rft.jtitle=Frontiers+in+immunology&rft.au=Yang%2C+Yunshu&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Yunwei&rft.au=Chao%2C+Yongyi&rft.date=2022-03-11&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft.spage=831168&rft_id=info:doi/10.3389%2Ffimmu.2022.831168&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |