Regulation of SIRT1 and Its Roles in Inflammation

The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in immunology Jg. 13; S. 831168
Hauptverfasser: Yang, Yunshu, Liu, Yang, Wang, Yunwei, Chao, Yongyi, Zhang, Jinxin, Jia, Yanhui, Tie, Jun, Hu, Dahai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 11.03.2022
Schlagworte:
ISSN:1664-3224, 1664-3224
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD + /NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
AbstractList The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD /NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD + /NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
Author Jia, Yanhui
Yang, Yunshu
Hu, Dahai
Chao, Yongyi
Zhang, Jinxin
Tie, Jun
Liu, Yang
Wang, Yunwei
AuthorAffiliation 3 State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University , Xi’an , China
1 Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University , Xi’an , China
2 Department of Emergency, Xijing Hospital, Fourth Military Medical University , Xi’an , China
AuthorAffiliation_xml – name: 1 Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University , Xi’an , China
– name: 2 Department of Emergency, Xijing Hospital, Fourth Military Medical University , Xi’an , China
– name: 3 State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University , Xi’an , China
Author_xml – sequence: 1
  givenname: Yunshu
  surname: Yang
  fullname: Yang, Yunshu
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 3
  givenname: Yunwei
  surname: Wang
  fullname: Wang, Yunwei
– sequence: 4
  givenname: Yongyi
  surname: Chao
  fullname: Chao, Yongyi
– sequence: 5
  givenname: Jinxin
  surname: Zhang
  fullname: Zhang, Jinxin
– sequence: 6
  givenname: Yanhui
  surname: Jia
  fullname: Jia, Yanhui
– sequence: 7
  givenname: Jun
  surname: Tie
  fullname: Tie, Jun
– sequence: 8
  givenname: Dahai
  surname: Hu
  fullname: Hu, Dahai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35359990$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNU7If9Ad7IXHqza06-JnMjSFE7UBDWeh2yycmakknqZEbw3zu720ormIskJO_7nMN5z8lJLhkJeQN0zbnu3oc4DPOaUcbWmgMo_YKcgVJixRkTJ0_up-Sy1ju6LNFxzuUrcsoll13X0TMCG9zNyU6x5KaE5lu_uYXGZt_0U202JWFtYm76HJIdhoPsNXkZbKp4-XBekO-fP91eXa9uvn7prz7erJzkMC27sGC37daxrVaeUVBULt1QoXXQjilOPbbBSQlcoKRgtfdCM-2hbTsh-QXpj1xf7J25H-Ngx9-m2GgOD2XcGTtO0SU0AR3zbQCtlBMguKXSoggegSFDjQvrw5F1P28H9A7zNNr0DPr8J8cfZld-Gd0pptS-mXcPgLH8nLFOZojVYUo2Y5mrYUqoloGUfJG-fVrrb5HHmS-C9ihwY6l1xGBcnA6jXUrHZICafcDmELDZB2yOAS9O-Mf5CP-_5w91CKe2
CitedBy_id crossref_primary_10_1002_jbt_70368
crossref_primary_10_3390_ijms242216210
crossref_primary_10_1186_s13018_025_06205_0
crossref_primary_10_3389_fimmu_2024_1422541
crossref_primary_10_7759_cureus_82663
crossref_primary_10_1080_15384101_2023_2297567
crossref_primary_10_1186_s13048_025_01661_y
crossref_primary_10_1111_cns_14764
crossref_primary_10_1039_D3FO04348G
crossref_primary_10_3390_antiox14091076
crossref_primary_10_3389_fcimb_2025_1589199
crossref_primary_10_1007_s11626_023_00808_9
crossref_primary_10_1007_s00204_025_04158_1
crossref_primary_10_1111_ejn_16167
crossref_primary_10_3390_ph15111337
crossref_primary_10_3390_ph17091144
crossref_primary_10_1111_jcmm_70408
crossref_primary_10_3389_fphar_2025_1425560
crossref_primary_10_1007_s00198_022_06652_z
crossref_primary_10_3390_medicina59122119
crossref_primary_10_1002_ptr_8301
crossref_primary_10_1007_s12640_023_00666_z
crossref_primary_10_3390_ijms232314722
crossref_primary_10_3390_ijms26041693
crossref_primary_10_1038_s41598_025_96192_3
crossref_primary_10_3390_ijms26051807
crossref_primary_10_1007_s00018_024_05214_2
crossref_primary_10_1021_acs_jafc_4c10129
crossref_primary_10_3748_wjg_v30_i27_3273
crossref_primary_10_1097_FJC_0000000000001653
crossref_primary_10_1007_s13167_024_00377_1
crossref_primary_10_3390_molecules29071521
crossref_primary_10_4239_wjd_v16_i2_93130
crossref_primary_10_1007_s11255_024_04162_x
crossref_primary_10_1007_s11357_025_01632_7
crossref_primary_10_3390_nu15132949
crossref_primary_10_1186_s12903_025_05610_5
crossref_primary_10_1186_s12877_025_06237_5
crossref_primary_10_7554_eLife_87873
crossref_primary_10_1038_s41598_025_02488_9
crossref_primary_10_1159_000541681
crossref_primary_10_1016_j_intimp_2024_111776
crossref_primary_10_3390_ijms25073646
crossref_primary_10_1007_s11033_024_09631_1
crossref_primary_10_1080_0886022X_2025_2495111
crossref_primary_10_1002_jbt_70465
crossref_primary_10_1002_ctm2_70417
crossref_primary_10_1186_s10020_024_01001_8
crossref_primary_10_1080_08923973_2025_2469218
crossref_primary_10_1097_MS9_0000000000003004
crossref_primary_10_3389_fcimb_2024_1303645
crossref_primary_10_1007_s12011_024_04503_y
crossref_primary_10_1007_s11033_024_09296_w
crossref_primary_10_3390_antiox12111925
crossref_primary_10_32947_ajps_v25i3_1215
crossref_primary_10_3892_mmr_2025_13573
crossref_primary_10_1186_s12951_025_03639_w
crossref_primary_10_3390_medicina61061073
crossref_primary_10_1002_ptr_8527
crossref_primary_10_1007_s11910_025_01410_0
crossref_primary_10_3390_biology14060643
crossref_primary_10_3389_fpubh_2022_991393
crossref_primary_10_1007_s11010_025_05299_8
crossref_primary_10_3390_molecules28062624
crossref_primary_10_1111_cbdd_14431
crossref_primary_10_3390_diagnostics13203287
crossref_primary_10_1186_s12944_025_02611_9
crossref_primary_10_3390_ph16010039
crossref_primary_10_1371_journal_pone_0321005
crossref_primary_10_3390_ijms241612555
crossref_primary_10_1186_s12944_023_01969_y
crossref_primary_10_3389_fendo_2024_1480847
crossref_primary_10_3748_wjg_v30_i33_3791
crossref_primary_10_4103_1673_5374_358612
crossref_primary_10_3389_fimmu_2022_955175
crossref_primary_10_1007_s12011_025_04828_2
crossref_primary_10_1111_1348_0421_13159
crossref_primary_10_1080_13813455_2024_2392298
crossref_primary_10_3390_ijms232012236
crossref_primary_10_4254_wjh_v17_i8_108182
crossref_primary_10_3390_ijms232315105
crossref_primary_10_1186_s12951_025_03447_2
crossref_primary_10_3390_antiox12020294
crossref_primary_10_1007_s10787_024_01517_9
crossref_primary_10_1080_14728222_2025_2482563
crossref_primary_10_1002_cph4_70013
crossref_primary_10_3389_fnagi_2025_1521353
crossref_primary_10_3390_ijms25147943
crossref_primary_10_1007_s10528_024_10846_x
crossref_primary_10_1007_s13577_025_01285_w
crossref_primary_10_3390_cells14141113
crossref_primary_10_3389_fimmu_2023_1225530
crossref_primary_10_3390_md21120635
crossref_primary_10_1007_s11255_024_04038_0
crossref_primary_10_3390_nu16234088
crossref_primary_10_3892_or_2025_8964
crossref_primary_10_3389_fgene_2025_1609439
crossref_primary_10_3390_genes16080886
crossref_primary_10_3724_abbs_2025096
crossref_primary_10_3390_biomedicines13061350
crossref_primary_10_1002_prot_70022
crossref_primary_10_3389_fphar_2023_1092943
crossref_primary_10_1002_dvg_23518
crossref_primary_10_1002_ptr_8057
crossref_primary_10_1186_s12964_024_01903_4
crossref_primary_10_1007_s11064_025_04424_9
crossref_primary_10_1007_s13577_024_01119_1
crossref_primary_10_3390_ijerph20010029
crossref_primary_10_1111_cbdd_70140
crossref_primary_10_33483_jfpau_1588979
crossref_primary_10_1007_s40203_024_00211_6
crossref_primary_10_1002_bab_2675
crossref_primary_10_1038_s41467_024_52201_z
crossref_primary_10_3389_fphys_2024_1490725
crossref_primary_10_1007_s00210_025_04465_5
crossref_primary_10_3390_genes16070844
crossref_primary_10_1089_ict_2023_29088_lne
crossref_primary_10_1186_s12872_022_02908_y
crossref_primary_10_3390_app14198768
crossref_primary_10_1111_1440_1681_70016
crossref_primary_10_1002_jbt_70318
crossref_primary_10_3390_antiox13040420
crossref_primary_10_1016_j_metabol_2025_156234
crossref_primary_10_1038_s41598_024_80119_5
crossref_primary_10_1186_s12967_024_05092_z
crossref_primary_10_3390_ijms26157601
crossref_primary_10_1097_TA_0000000000004212
crossref_primary_10_3390_cells11182921
crossref_primary_10_1007_s12672_025_02471_w
crossref_primary_10_1097_MD_0000000000042132
crossref_primary_10_3390_ijms26052077
crossref_primary_10_1177_17448069241232349
crossref_primary_10_1186_s13018_025_05898_7
crossref_primary_10_1007_s11033_024_09334_7
crossref_primary_10_1096_fj_202403418R
crossref_primary_10_7759_cureus_40463
crossref_primary_10_1080_1061186X_2024_2422882
crossref_primary_10_3389_fphar_2024_1456058
crossref_primary_10_3390_biom13081210
crossref_primary_10_3390_ph18030358
crossref_primary_10_33647_2074_5982_21_1_8_17
crossref_primary_10_1007_s11064_025_04513_9
crossref_primary_10_1111_jcmm_70371
crossref_primary_10_1007_s11883_023_01165_4
crossref_primary_10_3390_brainsci13040674
crossref_primary_10_1155_2024_5226432
crossref_primary_10_3389_fendo_2025_1573499
crossref_primary_10_1007_s11033_025_10568_2
crossref_primary_10_3389_fphar_2022_981578
crossref_primary_10_3390_antiox13091147
crossref_primary_10_1007_s12640_024_00723_1
crossref_primary_10_3389_fphar_2025_1662241
crossref_primary_10_3390_ijms26157362
crossref_primary_10_1007_s00210_024_03433_9
crossref_primary_10_1002_adhm_202301337
crossref_primary_10_3390_ijms26115285
crossref_primary_10_1038_s41401_024_01398_2
crossref_primary_10_1096_fj_202500520R
crossref_primary_10_3390_antibiotics13080714
crossref_primary_10_1186_s13148_025_01944_7
crossref_primary_10_3390_ijms26125759
crossref_primary_10_3788_CJL250452
crossref_primary_10_1080_17425255_2025_2491732
crossref_primary_10_2147_NSS_S489232
crossref_primary_10_1097_TP_0000000000005309
crossref_primary_10_31083_JIN25665
crossref_primary_10_1111_nep_70073
crossref_primary_10_3390_jcm13102883
crossref_primary_10_1055_a_2490_4278
crossref_primary_10_1007_s12013_024_01378_7
crossref_primary_10_1038_s41419_023_05656_9
crossref_primary_10_1002_dneu_22981
crossref_primary_10_3390_ani13203269
crossref_primary_10_3390_ijms25147694
crossref_primary_10_1111_jcmm_17941
crossref_primary_10_1007_s00011_024_01890_9
crossref_primary_10_1007_s00210_024_03170_z
crossref_primary_10_1038_s41392_025_02141_x
crossref_primary_10_3748_wjg_v30_i11_1588
crossref_primary_10_3390_cells13232009
crossref_primary_10_1007_s10735_025_10370_1
crossref_primary_10_3390_cells13181592
crossref_primary_10_1177_09731296221137420
crossref_primary_10_3390_medicina61020254
crossref_primary_10_3390_biomedicines12071442
crossref_primary_10_17116_jnevro202412401138
crossref_primary_10_1002_gch2_202400178
crossref_primary_10_3389_fphar_2025_1551843
crossref_primary_10_3390_foods13223698
crossref_primary_10_1038_s41420_023_01730_5
crossref_primary_10_1080_1028415X_2025_2457051
crossref_primary_10_1002_cbf_70074
crossref_primary_10_2478_bjmg_2022_0027
crossref_primary_10_3390_ijms26114967
crossref_primary_10_1111_jcmm_18454
crossref_primary_10_1186_s40246_025_00742_9
crossref_primary_10_2174_0118746098319674240827104612
crossref_primary_10_1002_ptr_8364
crossref_primary_10_1002_ame2_12438
crossref_primary_10_1007_s00210_024_03457_1
crossref_primary_10_1186_s43042_025_00770_z
crossref_primary_10_1038_s41419_025_07821_8
crossref_primary_10_2174_0118715249263300231116062740
crossref_primary_10_1038_s41598_024_67337_7
crossref_primary_10_3390_biomedicines13061502
crossref_primary_10_1007_s12010_024_04953_z
crossref_primary_10_1186_s10020_024_00915_7
crossref_primary_10_1038_s41435_024_00283_6
crossref_primary_10_1007_s10238_025_01759_z
crossref_primary_10_1007_s00408_023_00607_9
crossref_primary_10_1002_ptr_70098
crossref_primary_10_1007_s00018_023_05061_7
crossref_primary_10_1007_s00109_023_02364_x
crossref_primary_10_1182_blood_2023021901
crossref_primary_10_2147_DDDT_S456811
crossref_primary_10_3390_ijms25084248
crossref_primary_10_1007_s11010_023_04714_2
crossref_primary_10_1007_s12291_024_01203_1
crossref_primary_10_1007_s11914_023_00847_x
crossref_primary_10_1080_15592294_2025_2473770
crossref_primary_10_3389_fimmu_2024_1490623
crossref_primary_10_1007_s00592_025_02463_w
crossref_primary_10_1007_s10735_025_10487_3
crossref_primary_10_1007_s12026_024_09545_x
crossref_primary_10_3390_pharmaceutics15030808
crossref_primary_10_3390_cells14181442
crossref_primary_10_3390_pharmaceutics15092294
crossref_primary_10_7717_peerj_17612
crossref_primary_10_1098_rsob_240330
crossref_primary_10_3389_fimmu_2024_1444533
crossref_primary_10_1007_s44254_025_00113_6
crossref_primary_10_3390_biomedicines11041171
crossref_primary_10_3390_biom14080970
crossref_primary_10_3390_molecules30091913
crossref_primary_10_3390_foods11213372
crossref_primary_10_1161_CIRCEP_123_012452
crossref_primary_10_3390_jox15050137
crossref_primary_10_7554_eLife_87873_3
crossref_primary_10_1038_s44294_024_00034_y
crossref_primary_10_1096_fj_202501210R
crossref_primary_10_3390_antiox12010097
crossref_primary_10_3389_fpubh_2022_1083826
crossref_primary_10_1007_s12017_025_08862_0
crossref_primary_10_2174_0109298673293982240221050207
crossref_primary_10_3390_antiox13060678
crossref_primary_10_3390_targets3030023
crossref_primary_10_1515_biol_2022_1038
crossref_primary_10_3390_antiox14050605
crossref_primary_10_1007_s10522_025_10269_0
crossref_primary_10_3390_foods14050892
crossref_primary_10_1007_s00109_024_02458_0
crossref_primary_10_3390_life15020174
crossref_primary_10_3390_nu16172996
crossref_primary_10_1007_s11418_024_01859_2
crossref_primary_10_1038_s41598_025_11143_2
crossref_primary_10_1097_SHK_0000000000002418
crossref_primary_10_1021_acschemneuro_5c00207
crossref_primary_10_1080_15376516_2023_2215862
crossref_primary_10_1002_jev2_70099
crossref_primary_10_3389_fmed_2023_1287043
crossref_primary_10_1002_iid3_865
crossref_primary_10_1038_s41598_025_12901_y
crossref_primary_10_3389_fimmu_2025_1627433
crossref_primary_10_1002_ijc_70047
crossref_primary_10_1134_S1022795424701485
crossref_primary_10_3389_fimmu_2024_1525469
crossref_primary_10_3390_plants13111531
crossref_primary_10_1038_s44319_024_00152_3
crossref_primary_10_3390_nu15132992
crossref_primary_10_3389_fphar_2023_1103527
crossref_primary_10_1002_jbt_70298
crossref_primary_10_1186_s10020_024_00811_0
crossref_primary_10_1142_S0192415X24500198
crossref_primary_10_1155_2023_1387665
crossref_primary_10_1002_fsn3_70964
crossref_primary_10_1515_cclm_2023_1017
crossref_primary_10_1007_s11332_025_01353_6
crossref_primary_10_1007_s00210_024_03497_7
crossref_primary_10_1007_s12035_024_04534_5
crossref_primary_10_1186_s13098_024_01393_x
crossref_primary_10_1002_brb3_70728
crossref_primary_10_1186_s11658_024_00595_5
crossref_primary_10_3390_mi15020286
crossref_primary_10_1111_cns_70379
crossref_primary_10_3390_ph18010041
crossref_primary_10_1038_s41598_025_91027_7
crossref_primary_10_3390_cancers15154013
crossref_primary_10_3390_ijms26157468
crossref_primary_10_1183_16000617_0129_2024
crossref_primary_10_14336_AD_2024_0922
crossref_primary_10_3389_fmicb_2022_1001778
crossref_primary_10_1186_s12986_024_00792_1
crossref_primary_10_3389_fendo_2024_1356612
crossref_primary_10_1002_fsn3_70736
crossref_primary_10_3389_fvets_2024_1475564
crossref_primary_10_1007_s11357_025_01657_y
crossref_primary_10_2174_0113816128263943230920093609
crossref_primary_10_1080_07853890_2023_2284366
crossref_primary_10_3390_ijms26157328
crossref_primary_10_3389_fphar_2024_1450238
crossref_primary_10_1128_jvi_00088_24
crossref_primary_10_3390_ijms26114999
crossref_primary_10_3390_molecules30183740
crossref_primary_10_3390_jpm14030225
crossref_primary_10_3390_medsci13030100
crossref_primary_10_1155_2024_8520489
crossref_primary_10_1002_jbt_70274
crossref_primary_10_1007_s11064_023_04026_3
crossref_primary_10_3389_fimmu_2022_1054477
Cites_doi 10.1152/physrev.00022.2011
10.3389/fimmu.2020.00619
10.1083/jcb.200809167
10.1016/j.cmet.2011.10.007
10.1016/j.bbrc.2008.09.079
10.1038/s41374-021-00599-1
10.1016/j.ejphar.2011.10.015
10.1189/jlb.3MA0114-034RR
10.1016/j.cell.2008.01.020
10.1089/ars.2017.7403
10.1111/j.1440-1843.2012.02284.x
10.1038/ncomms6483
10.3389/fimmu.2018.00762
10.1016/s0140-6736(14)60687-5
10.1007/s10753-020-01242-9
10.1038/nature06515
10.1016/j.cmet.2009.02.006
10.1146/annurev.biochem.74.082803.133500
10.3390/antiox8080322
10.1016/j.cmet.2008.08.017
10.1016/s1097-2765(03)00226-0
10.1098/rsob.130130
10.3390/ijms19092738
10.1128/mcb.01098-06
10.1038/cddis.2016.368
10.1016/j.ajpath.2019.09.012
10.7150/ijbs.33044
10.1210/en.2009-1319
10.1016/j.cell.2005.08.011
10.1111/jcmm.13509
10.1111/cpr.12773
10.2174/0929867325666180214115438
10.1073/pnas.1420419112
10.1152/ajpendo.00417.2009
10.1080/15384101.2020.1788251
10.1016/j.molcel.2007.01.011
10.1016/j.mrrev.2018.03.004
10.1021/jacs.0c10836
10.1016/s0092-8674(04)00126-6
10.3389/fnins.2018.00778
10.1074/jbc.M110.174482
10.1155/2020/4751349
10.1038/s41556-020-00579-5
10.1096/fj.09-151308
10.1093/nar/gkr984
10.1038/nrc2562
10.1128/mcb.00006-17
10.1371/journal.pone.0004020
10.1371/journal.pone.0007350
10.1038/cdd.2015.75
10.1126/science.1101731
10.1038/s41467-017-01654-6
10.1016/j.yjmcc.2018.10.001
10.1111/1440-1681.12496
10.1007/s10059-013-0297-1
10.1089/ars.2010.3251
10.1038/ncomms13866
10.1152/ajplung.00249.2012
10.1073/pnas.1934713100
10.1016/j.bbrc.2015.04.119
10.1186/s13148-019-0806-y
10.1080/15548627.2021.1876342
10.1038/sj.emboj.7600244
10.1186/s12974-017-0841-6
10.1016/j.jss.2017.06.031
10.1371/journal.pone.0024307
10.3390/ijms22031003
10.1161/jaha.118.009700
10.1053/j.gastro.2013.11.008
10.1093/nar/gkr347
10.1016/j.arr.2018.02.004
10.1042/bj20070151
10.1186/s13045-018-0638-9
10.1038/s41401-018-0045-3
10.1016/j.intimp.2018.11.054
10.2174/0929867322666150209154420
10.1038/ncb1645
10.1038/nrm.2016.93
10.15252/embj.201695737
10.3892/mmr.2013.1444
10.1016/j.molcel.2004.08.031
10.1128/mcb.00552-08
10.15252/embr.201643803
10.1128/mcb.01343-09
10.2119/molmed.2014.00211
10.1038/srep21865
10.3892/mmr.2016.5942
10.1371/journal.pgen.1006819
10.1016/j.cellsig.2013.06.007
10.1074/jbc.M408748200
10.1073/pnas.1313753110
10.1073/pnas.1909943117
10.1016/j.redox.2020.101538
10.1016/j.molcel.2007.08.030
10.1074/jbc.M109.038604
10.1038/srep37578
10.1093/cvr/cvq376
10.1074/jbc.M110.102574
10.1093/nar/gkq227
10.1016/j.intimp.2004.08.008
10.1155/2018/2402593
10.1016/j.lfs.2018.11.055
10.1517/14728222.2016.1153067
10.1016/j.immuni.2016.05.009
10.1089/ars.2017.7373
10.1016/j.febslet.2014.03.020
10.1038/nature06500
10.1093/nar/gkz141
10.1016/j.gene.2014.01.037
10.1074/jbc.RA117.001387
10.1186/1868-7083-5-11
10.4161/cc.7.19.6799
10.1038/ki.2014.217
10.1038/ncb2114
10.1101/gad.334516.119
10.3390/antiox8090404
10.1139/bcb-2018-0126
10.1016/j.biopha.2019.109029
10.1074/jbc.M114.612796
10.1074/jbc.M111.228874
10.1016/j.jhep.2017.08.010
10.1016/j.ceb.2017.01.005
10.1074/jbc.M110.196790
10.1016/j.canlet.2017.12.035
10.1016/s0140-6736(18)30696-2
10.1371/journal.pone.0008414
10.1159/000362964
10.3390/cancers12082106
10.1371/journal.pone.0006611
10.1074/jbc.M112.365874
10.1074/jbc.M805711200
10.1007/s00134-017-4683-6
10.1182/blood-2011-04-350413
10.1371/journal.pone.0098909
10.1016/j.jhep.2016.11.004
10.1096/fj.201800242R
10.1126/scisignal.2005375
10.3390/nu11010146
10.1038/ncb1468
10.3892/ijmm.17.1.59
10.1371/journal.pone.0075139
10.3892/ijmm.2017.3150
10.1016/j.jcmgh.2021.12.010
10.1074/jbc.M109.087585
10.1016/j.cmet.2011.03.004
10.1038/s41388-020-1298-0
10.1016/j.bbrc.2016.02.059
10.1016/j.cmet.2011.03.013
10.1080/21691401.2019.1621328
10.1074/jbc.M112.362343
10.1155/2021/8818713
10.1016/j.molcel.2010.05.023
10.1016/j.bbrc.2008.04.176
10.1016/s0079-6603(08)60503-6
10.1097/shk.0000000000001429
10.1038/nri3552
10.1016/j.bbrc.2010.05.160
10.1093/nar/gkx468
10.1016/j.bbcan.2019.04.003
10.1016/j.tibs.2008.08.001
10.1016/j.ccr.2004.08.030
10.1371/journal.pone.0170391
10.1016/j.chest.2017.05.004
10.1158/0008-5472.can-12-0429
10.1016/j.freeradbiomed.2013.03.015
10.1371/journal.pone.0019194
10.4161/auto.26336
10.1016/j.it.2008.07.003
10.1073/pnas.250422697
10.1038/35001622
10.1016/j.dnarep.2020.102858
10.1074/jbc.M112.363747
10.1016/j.biochi.2019.12.001
10.1016/s0140-6736(18)31268-6
ContentType Journal Article
Copyright Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu.
Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu
Copyright_xml – notice: Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu.
– notice: Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2022.831168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_fec2d7f1866c4143a05ae4fde12e2e8e
PMC8962665
35359990
10_3389_fimmu_2022_831168
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 2021JM-249
– fundername: ;
  grantid: 81530064, 81773071, 81972226
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-c54a1ab7bc2b86d2016052240488f8c2630de7fc55134e501a8dd4828d1779453
IEDL.DBID DOA
ISICitedReferencesCount 481
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:50:48 EDT 2025
Tue Sep 30 16:47:52 EDT 2025
Thu Sep 04 16:28:43 EDT 2025
Thu Jan 02 22:54:00 EST 2025
Sat Nov 29 05:52:08 EST 2025
Tue Nov 18 21:44:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords post-translational modification
gene regulation
inflammation
SIRT1
enzyme activity
Language English
License Copyright © 2022 Yang, Liu, Wang, Chao, Zhang, Jia, Tie and Hu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-c54a1ab7bc2b86d2016052240488f8c2630de7fc55134e501a8dd4828d1779453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Bisheng Zhou, University of Illinois at Chicago, United States
Reviewed by: Haiying Wang, Peking University, China; Jiaxiang Chen, Mayo Clinic, United States
This article was submitted to Inflammation, a section of the journal Frontiers in Immunology
These authors have contributed equally to this work and share first authorship
OpenAccessLink https://doaj.org/article/fec2d7f1866c4143a05ae4fde12e2e8e
PMID 35359990
PQID 2646721553
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fec2d7f1866c4143a05ae4fde12e2e8e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962665
proquest_miscellaneous_2646721553
pubmed_primary_35359990
crossref_citationtrail_10_3389_fimmu_2022_831168
crossref_primary_10_3389_fimmu_2022_831168
PublicationCentury 2000
PublicationDate 2022-03-11
PublicationDateYYYYMMDD 2022-03-11
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Li (B108) 2020; 2020
Caito (B123) 2010; 24
Chen (B32) 2005; 123
Rhodes (B153) 2017; 43
Cheng (B19) 2003; 100
Sun (B46) 2019; 47
Wu (B167) 2012; 119
Chen (B28) 2019; 15
Zhang (B112) 2019; 217
Kang (B17) 2018; 32
Fulco (B54) 2003; 12
Bai (B64) 2011; 13
Ong (B30) 2018; 43
Feige (B70) 2008; 8
Zhang (B107) 2010; 285
Khadka (B121) 2018; 124
Joo (B141) 2015; 462
Zhou (B161) 2020; 190
de Mingo (B110) 2016; 7
Becker (B84) 1999; 62
Yoshizaki (B134) 2010; 298
Nemotomaria (B29) 2004; 306
El Dika (B36) 2020; 90
Abdelmohsen (B52) 2007; 25
Nguyen (B175) 2019; 11
Xu (B3) 2020; 22
Khader (B156) 2017; 219
Choi (B90) 2017; 37
Kwon (B38) 2008; 33
Bai (B142) 2020; 19
Zhang (B147) 2010; 285
Tan (B47) 2019; 97
Peng (B77) 2015; 290
Yuan (B44) 2009; 185
Magni (B56) 2018; 776
Carling (B69) 2017; 45
Smith (B116) 2020; 54
Bai (B63) 2011; 13
Conrad (B94) 2016; 23
Gao (B146) 2008; 376
Iqbal (B61) 2021; 17
Stankovic-Valentin (B33) 2007; 27
Jang (B55) 2012; 287
Islam (B27) 2020; 12
Li (B149) 2017; 14
Lord (B152) 2014; 384
Bräutigam (B104) 2013; 110
Kornberg (B100) 2010; 12
Rada (B7) 2018; 28
Voelter-Mahlknecht (B137) 2006; 17
Brooks (B34) 2009; 9
Kokkola (B68) 2014; 588
Zhang (B15) 2019; 67
Di Vincenzo (B164) 2018; 22
Sasaki (B83) 2008; 3
Qiang (B6) 2011; 14
Chu (B48) 2019; 116
Zou (B111) 2013; 8
Wang (B144) 2016; 44
Kim (B74) 2016; 6
Kong (B115) 2019; 47
Kim (B59) 2008; 451
Yu (B57) 2011; 39
Sanz-Ezquerro (B148) 2021; 22
Yu (B21) 2018; 418
Yanagisawa (B165) 2017; 152
Wang (B95) 2018; 293
Sasaki (B43) 2010; 151
Wang (B23) 2010; 285
Wong (B39) 2007; 407
Gao (B171) 2014; 9
Han (B96) 2017; 8
Autiero (B66) 2008; 4
Fu (B168) 2019; 40
Liu (B143) 2015; 112
Choi (B45) 2013; 36
Katto (B139) 2013; 5
Lau (B82) 2014; 4
Zhang (B138) 2010; 397
Yang (B79) 2007; 9
Ramirez (B160) 2017; 66
Nakazawa (B102) 2017; 12
Zhao (B58) 2008; 451
He (B4) 2021; 2021
Suave (B1) 2006; 75
Yang (B132) 2010; 30
Bi (B150) 2005; 5
Shinozaki (B101) 2014; 7
Braidy (B122) 2011; 6
Bejjani (B145) 2019; 1872
Lee (B81) 2012; 72
Liu (B114) 2011; 286
Yang (B128) 2016; 20
Nasrin (B93) 2009; 4
Cho (B25) 2017; 13
Kauppinen (B135) 2013; 25
Utani (B88) 2017; 45
Nakamura (B118) 2017; 67
Geng (B75) 2016; 471
Li (B51) 2018; 7
Guo (B86) 2010; 285
Vachharajani (B158) 2014; 96
Imai (B12) 2000; 403
Dor (B26) 2018; 392
Sun (B130) 2008; 29
Hasegawa (B174) 2008; 372
Kang (B119) 2021; 101
Lan (B24) 2008; 283
Kang (B89) 2009; 4
Li (B113) 2012; 40
Planavila (B136) 2011; 90
Granchi (B10) 2018; 25
Hotchkiss (B154) 2013; 13
Purushotham (B159) 2009; 9
Orecchia (B117) 2011; 6
Yin (B162) 2014; 146
Chen (B31) 2004; 6
Singh (B9) 2020; 43
Tanner (B11) 2000; 97
Tatomir (B18) 2020; 11
Isaacs-Ten (B163) 2021; 13
Fujita (B20) 2018; 12
Han (B124) 2020; 34
Chen (B16) 2016; 14
Yeung (B131) 2004; 23
Martin (B157) 2018; 2018
Ma (B53) 2015; 22
Park (B60) 2014; 5
Nogueiras (B14) 2012; 92
Vaquero (B13) 2004; 16
Hu (B109) 2017; 40
Wang (B50) 2016; 6
Knight (B67) 2013; 3
Chanda (B72) 2010; 38
Han (B80) 2016; 43
Fernando (B99) 2019; 8
Hwang (B127) 2013; 61
Lim (B140) 2010; 38
Yu (B78) 2020; 39
Boni (B85) 2020; 12
Slade (B62) 2020; 34
Nin (B71) 2012; 287
Chattopadhyay (B97) 2020; 117
Liang (B8) 2020; 170
Ichikawa (B125) 2013; 18
Wang (B169) 2020; 53
Gao (B92) 2011; 286
Shen (B76) 2018; 11
Stomberski (B98) 2019; 30
Cecconi (B151) 2018; 392
Wang (B155) 2018; 19
Jablonska (B40) 2016; 7
Kim (B65) 2007; 28
Li (B106) 2013; 7
Ao (B73) 2014; 33
Motta (B42) 2004; 116
Liu (B120) 2012; 287
Hayden (B129) 2008; 132
Lei (B133) 2012; 674
Huang (B5) 2021; 143
Chen (B126) 2013; 9
Bouras (B22) 2005; 280
Imperatore (B41) 2017; 36
Kim (B172) 2019; 8
Rabadi (B173) 2015; 87
Kong (B170) 2015; 21
Wang (B49) 2014; 539
Bonkowski (B2) 2016; 17
Ford (B91) 2008; 7
Yao (B166) 2013; 305
Bai (B105) 2018; 9
Wang (B35) 2006; 8
Pediconi (B37) 2009; 29
Lu (B87) 2017; 18
Zee (B103) 2010; 13
References_xml – volume: 92
  year: 2012
  ident: B14
  article-title: Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00022.2011
– volume: 11
  year: 2020
  ident: B18
  article-title: Histone Deacetylase Sirt1 Mediates C5b-9-Induced Cell Cycle in Oligodendrocytes
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00619
– volume: 185
  year: 2009
  ident: B44
  article-title: A C-Myc-Sirt1 Feedback Loop Regulates Cell Growth and Transformation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200809167
– volume: 14
  year: 2011
  ident: B6
  article-title: Proatherogenic Abnormalities of Lipid Metabolism in Sirt1 Transgenic Mice Are Mediated Through Creb Deacetylation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.10.007
– volume: 376
  year: 2008
  ident: B146
  article-title: Inhibition of Transcriptional Activity of C-Jun by Sirt1
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.09.079
– volume: 4
  year: 2014
  ident: B82
  article-title: Sirt1 Phosphorylation by Amp-Activated Protein Kinase Regulates P53 Acetylation
  publication-title: Am J Cancer Res
– volume: 101
  year: 2021
  ident: B119
  article-title: Nicotinamide Riboside, an Nad(+) Precursor, Attenuates Inflammation and Oxidative Stress by Activating Sirtuin 1 in Alcohol-Stimulated Macrophages
  publication-title: Lab Invest
  doi: 10.1038/s41374-021-00599-1
– volume: 674
  year: 2012
  ident: B133
  article-title: Resveratrol Inhibits Interleukin 1β-Mediated Inducible Nitric Oxide Synthase Expression in Articular Chondrocytes by Activating Sirt1 and Thereby Suppressing Nuclear Factor-Kb Activity
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2011.10.015
– volume: 96
  year: 2014
  ident: B158
  article-title: Sirt1 Inhibition During the Hypoinflammatory Phenotype of Sepsis Enhances Immunity and Improves Outcome
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.3MA0114-034RR
– volume: 132
  year: 2008
  ident: B129
  article-title: Shared Principles in Nf-Kappab Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.020
– volume: 30
  year: 2019
  ident: B98
  article-title: Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2017.7403
– volume: 18
  year: 2013
  ident: B125
  article-title: Sirtuin 1 Activator Srt1720 Suppresses Inflammation in an Ovalbumin-Induced Mouse Model of Asthma
  publication-title: Respirology
  doi: 10.1111/j.1440-1843.2012.02284.x
– volume: 5
  start-page: 5483
  year: 2014
  ident: B60
  article-title: Modification of Dbc1 by Sumo2/3 Is Crucial for P53-Mediated Apoptosis in Response to DNA Damage
  publication-title: Nat Commun
  doi: 10.1038/ncomms6483
– volume: 9
  year: 2018
  ident: B105
  article-title: Acetylation-Dependent Regulation of Notch Signaling in Macrophages by Sirt1 Affects Sepsis Development
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00762
– volume: 384
  year: 2014
  ident: B152
  article-title: The Systemic Immune Response to Trauma: An Overview of Pathophysiology and Treatment
  publication-title: Lancet
  doi: 10.1016/s0140-6736(14)60687-5
– volume: 43
  year: 2020
  ident: B9
  article-title: Role of Silent Information Regulator 1 (Sirt1) in Regulating Oxidative Stress and Inflammation
  publication-title: Inflammation
  doi: 10.1007/s10753-020-01242-9
– volume: 451
  year: 2008
  ident: B58
  article-title: Negative Regulation of the Deacetylase Sirt1 by Dbc1
  publication-title: Nature
  doi: 10.1038/nature06515
– volume: 9
  year: 2009
  ident: B159
  article-title: Hepatocyte-Specific Deletion of Sirt1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.02.006
– volume: 75
  year: 2006
  ident: B1
  article-title: The Biochemistry of Sirtuins
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133500
– volume: 8
  start-page: 322
  year: 2019
  ident: B172
  article-title: Pharmacological Activation of Sirt1 Ameliorates Cisplatin-Induced Acute Kidney Injury by Suppressing Apoptosis, Oxidative Stress, and Inflammation in Mice
  publication-title: Antioxidants (Basel Switzerland)
  doi: 10.3390/antiox8080322
– volume: 8
  year: 2008
  ident: B70
  article-title: Specific Sirt1 Activation Mimics Low Energy Levels and Protects Against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.08.017
– volume: 12
  start-page: 51
  year: 2003
  ident: B54
  article-title: Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State
  publication-title: Mol Cell
  doi: 10.1016/s1097-2765(03)00226-0
– volume: 3
  year: 2013
  ident: B67
  article-title: Active Regulator of Sirt1 Is Required for Cancer Cell Survival But Not for Sirt1 Activity
  publication-title: Open Biol
  doi: 10.1098/rsob.130130
– volume: 19
  start-page: 2738
  year: 2018
  ident: B155
  article-title: Sirtuins and Immuno-Metabolism of Sepsis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19092738
– volume: 27
  year: 2007
  ident: B33
  article-title: An Acetylation/Deacetylation-Sumoylation Switch Through a Phylogenetically Conserved Psikxep Motif in the Tumor Suppressor Hic1 Regulates Transcriptional Repression Activity
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.01098-06
– volume: 7
  start-page: e2464
  year: 2016
  ident: B110
  article-title: Cysteine Cathepsins Control Hepatic Nf-Kb-Dependent Inflammation Via Sirtuin-1 Regulation
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2016.368
– volume: 190
  start-page: 82
  year: 2020
  ident: B161
  article-title: Intestinal Sirt1 Deficiency Protects Mice From Ethanol-Induced Liver Injury by Mitigating Ferroptosis
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2019.09.012
– volume: 15
  year: 2019
  ident: B28
  article-title: Epigenetic Down-Regulation of Sirt 1 Via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.33044
– volume: 151
  year: 2010
  ident: B43
  article-title: Induction of Hypothalamic Sirt1 Leads to Cessation of Feeding Via Agouti-Related Peptide
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1319
– volume: 123
  year: 2005
  ident: B32
  article-title: Tumor Suppressor Hic1 Directly Regulates Sirt1 to Modulate P53-Dependent DNA-Damage Responses
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.011
– volume: 22
  year: 2018
  ident: B164
  article-title: Sirt1/Foxo3 Axis Alteration Leads to Aberrant Immune Responses in Bronchial Epithelial Cells
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13509
– volume: 53
  start-page: e12773
  year: 2020
  ident: B169
  article-title: Resveratrol Protects the Integrity of Alveolar Epithelial Barrier Via Sirt1/Pten/P-Akt Pathway in Methamphetamine-Induced Chronic Lung Injury
  publication-title: Cell Prolif
  doi: 10.1111/cpr.12773
– volume: 25
  year: 2018
  ident: B10
  article-title: Activators of Sirtuin-1 and Their Involvement in Cardioprotection
  publication-title: Curr Med Chem
  doi: 10.2174/0929867325666180214115438
– volume: 112
  year: 2015
  ident: B143
  article-title: Dendritic Cell Sirt1-Hif1α Axis Programs the Differentiation of Cd4+ T Cells Through Il-12 and Tgf-B1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1420419112
– volume: 298
  year: 2010
  ident: B134
  article-title: Sirt1 Inhibits Inflammatory Pathways in Macrophages and Modulates Insulin Sensitivity
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00417.2009
– volume: 19
  year: 2020
  ident: B142
  article-title: Sirt1 Relieves Necrotizing Enterocolitis Through Inactivation of Hypoxia-Inducible Factor (Hif)-1a
  publication-title: Cell Cycle (Georgetown Tex)
  doi: 10.1080/15384101.2020.1788251
– volume: 25
  year: 2007
  ident: B52
  article-title: Phosphorylation of Hur by Chk2 Regulates Sirt1 Expression
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.01.011
– volume: 776
  start-page: 1
  year: 2018
  ident: B56
  article-title: Cell Cycle and Apoptosis Regulator 2 at the Interface Between DNA Damage Response and Cell Physiology
  publication-title: Mutat Res Rev Mutat Res
  doi: 10.1016/j.mrrev.2018.03.004
– volume: 143
  year: 2021
  ident: B5
  article-title: A Sirt1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c10836
– volume: 116
  year: 2004
  ident: B42
  article-title: Mammalian Sirt1 Represses Forkhead Transcription Factors
  publication-title: Cell
  doi: 10.1016/s0092-8674(04)00126-6
– volume: 12
  start-page: 778
  year: 2018
  ident: B20
  article-title: Sirtuins in Neuroendocrine Regulation and Neurological Diseases
  publication-title: Neuroscience
  doi: 10.3389/fnins.2018.00778
– volume: 285
  year: 2010
  ident: B107
  article-title: Roles of Sirt1 in the Acute and Restorative Phases Following Induction of Inflammation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.174482
– volume: 2020
  year: 2020
  ident: B108
  article-title: Baicalin Ameliorates Cognitive Impairment and Protects Microglia From Lps-Induced Neuroinflammation Via the Sirt1/Hmgb1 Pathway
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2020/4751349
– volume: 22
  year: 2020
  ident: B3
  article-title: Sirt1 Is Downregulated by Autophagy in Senescence and Ageing
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-020-00579-5
– volume: 24
  year: 2010
  ident: B123
  article-title: Sirt1 Is a Redox-Sensitive Deacetylase That Is Post-Translationally Modified by Oxidants and Carbonyl Stress
  publication-title: FASEB J
  doi: 10.1096/fj.09-151308
– volume: 40
  year: 2012
  ident: B113
  article-title: Interferon Gamma (Ifn-Γ) Disrupts Energy Expenditure and Metabolic Homeostasis by Suppressing Sirt1 Transcription
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr984
– volume: 9
  year: 2009
  ident: B34
  article-title: How Does Sirt1 Affect Metabolism, Senescence and Cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2562
– volume: 37
  year: 2017
  ident: B90
  article-title: Obesity-Linked Phosphorylation of Sirt1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.00006-17
– volume: 3
  start-page: e4020
  year: 2008
  ident: B83
  article-title: Phosphorylation Regulates Sirt1 Function
  publication-title: PloS One
  doi: 10.1371/journal.pone.0004020
– volume: 4
  start-page: e7350
  year: 2008
  ident: B66
  article-title: Human Sirt-1: Molecular Modeling and Structure-Function Relationships of an Unordered Protein
  publication-title: PloS One
  doi: 10.1371/journal.pone.0007350
– volume: 23
  year: 2016
  ident: B94
  article-title: Hipk2 Restricts Sirt1 Activity Upon Severe DNA Damage by a Phosphorylation-Controlled Mechanism
  publication-title: Cell Death Diff
  doi: 10.1038/cdd.2015.75
– volume: 306
  year: 2004
  ident: B29
  article-title: Nutrient Availability Regulates Sirt1 Through a Forkhead-Dependent Pathway
  publication-title: Sci (New York NY)
  doi: 10.1126/science.1101731
– volume: 8
  start-page: 1491
  year: 2017
  ident: B96
  article-title: O-Glcnacylation of Sirt1 Enhances Its Deacetylase Activity and Promotes Cytoprotection Under Stress
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01654-6
– volume: 124
  start-page: 45
  year: 2018
  ident: B121
  article-title: Augmentation of Nad(+) Levels by Enzymatic Action of Nad(P)H Quinone Oxidoreductase 1 Attenuates Adriamycin-Induced Cardiac Dysfunction in Mice
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2018.10.001
– volume: 43
  year: 2016
  ident: B80
  article-title: Hdac4 Stabilizes Sirt1 Via Sumoylation Sirt1 to Delay Cellular Senescence
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/1440-1681.12496
– volume: 36
  year: 2013
  ident: B45
  article-title: Regulation of Sirt1 by Micrornas
  publication-title: Mol Cells
  doi: 10.1007/s10059-013-0297-1
– volume: 13
  year: 2010
  ident: B103
  article-title: Redox Regulation of Sirtuin-1 by S-Glutathiolation
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2010.3251
– volume: 7
  year: 2016
  ident: B40
  article-title: Sirt1 Regulates Glial Progenitor Proliferation and Regeneration in White Matter After Neonatal Brain Injury
  publication-title: Nat Commun
  doi: 10.1038/ncomms13866
– volume: 305
  year: 2013
  ident: B166
  article-title: Sirt1 Redresses the Imbalance of Tissue Inhibitor of Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Development of Mouse Emphysema and Human Copd
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00249.2012
– volume: 100
  year: 2003
  ident: B19
  article-title: Developmental Defects and P53 Hyperacetylation in Sir2 Homolog (Sirt1)-Deficient Mice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1934713100
– volume: 462
  start-page: 294
  year: 2015
  ident: B141
  article-title: Sirt1 Deacetylates and Stabilizes Hypoxia-Inducible Factor-1α (Hif-1α) Via Direct Interactions During Hypoxia
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.04.119
– volume: 12
  start-page: 12
  year: 2020
  ident: B27
  article-title: DNA Hypermethylation of Sirtuin 1 (Sirt1) Caused by Betel Quid Chewing-A Possible Predictive Biomarker for Malignant Transformation
  publication-title: Clin Epigenet
  doi: 10.1186/s13148-019-0806-y
– volume: 17
  year: 2021
  ident: B61
  article-title: Hydrogen Sulfide-Induced Gapdh Sulfhydration Disrupts the Ccar2-Sirt1 Interaction to Initiate Autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1876342
– volume: 23
  year: 2004
  ident: B131
  article-title: Modulation of Nf-Kappab-Dependent Transcription and Cell Survival by the Sirt1 Deacetylase
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600244
– volume: 14
  start-page: 67
  year: 2017
  ident: B149
  article-title: Interactions Between Sirt1 and Mapks Regulate Astrocyte Activation Induced by Brain Injury in Vitro and in Vivo
  publication-title: J Neuroinflamm
  doi: 10.1186/s12974-017-0841-6
– volume: 219
  year: 2017
  ident: B156
  article-title: Srt1720, a Sirtuin 1 Activator, Attenuates Organ Injury and Inflammation in Sepsis
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2017.06.031
– volume: 6
  start-page: e24307
  year: 2011
  ident: B117
  article-title: Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0024307
– volume: 22
  start-page: 1003
  year: 2021
  ident: B148
  article-title: P38 Signalling Pathway
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22031003
– volume: 7
  year: 2018
  ident: B51
  article-title: Sirt1 Antisense Long Noncoding Rna Promotes Cardiomyocyte Proliferation by Enhancing the Stability of Sirt1
  publication-title: J Am Heart Assoc
  doi: 10.1161/jaha.118.009700
– volume: 146
  year: 2014
  ident: B162
  article-title: Deletion of Sirt1 From Hepatocytes in Mice Disrupts Lipin-1 Signaling and Aggravates Alcoholic Fatty Liver
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.11.008
– volume: 39
  year: 2011
  ident: B57
  article-title: Reciprocal Roles of Dbc1 and Sirt1 in Regulating Estrogen Receptor A Activity and Co-Activator Synergy
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr347
– volume: 43
  start-page: 64
  year: 2018
  ident: B30
  article-title: Role of Sirtuin1-P53 Regulatory Axis in Aging, Cancer and Cellular Reprogramming
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2018.02.004
– volume: 407
  year: 2007
  ident: B39
  article-title: Deacetylation of the Retinoblastoma Tumour Suppressor Protein by Sirt1
  publication-title: Biochem J
  doi: 10.1042/bj20070151
– volume: 11
  start-page: 95
  year: 2018
  ident: B76
  article-title: Ube2v1-Mediated Ubiquitination and Degradation of Sirt1 Promotes Metastasis of Colorectal Cancer by Epigenetically Suppressing Autophagy
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-018-0638-9
– volume: 40
  year: 2019
  ident: B168
  article-title: Activation of Sirt1 Ameliorates Lps-Induced Lung Injury in Mice Via Decreasing Endothelial Tight Junction Permeability
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-018-0045-3
– volume: 67
  year: 2019
  ident: B15
  article-title: Sirt1 Alleviates Isoniazid-Induced Hepatocyte Injury by Reducing Histone Acetylation in the Il-6 Promoter Region
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2018.11.054
– volume: 22
  year: 2015
  ident: B53
  article-title: Nad+/Nadh Metabolism and Nad+-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications
  publication-title: Curr Med Chem
  doi: 10.2174/0929867322666150209154420
– volume: 9
  year: 2007
  ident: B79
  article-title: Sirt1 Sumoylation Regulates Its Deacetylase Activity and Cellular Response to Genotoxic Stress
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1645
– volume: 17
  year: 2016
  ident: B2
  article-title: Slowing Ageing by Design: The Rise of Nad+ and Sirtuin-Activating Compounds
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.93
– volume: 36
  year: 2017
  ident: B41
  article-title: Sirt1 Regulates Macrophage Self-Renewal
  publication-title: EMBO J
  doi: 10.15252/embj.201695737
– volume: 7
  year: 2013
  ident: B106
  article-title: Resveratrol Reduces Acute Lung Injury in a Lps−Induced Sepsis Mouse Model Via Activation of Sirt1
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2013.1444
– volume: 16
  start-page: 93
  year: 2004
  ident: B13
  article-title: Human Sirt1 Interacts With Histone H1 and Promotes Formation of Facultative Heterochromatin
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.08.031
– volume: 29
  year: 2009
  ident: B37
  article-title: Hsirt1-Dependent Regulation of the Pcaf-E2f1-P73 Apoptotic Pathway in Response to DNA Damage
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.00552-08
– volume: 18
  year: 2017
  ident: B87
  article-title: The Phosphorylation Status of T522 Modulates Tissue-Specific Functions of Sirt1 in Energy Metabolism in Mice
  publication-title: EMBO Rep
  doi: 10.15252/embr.201643803
– volume: 30
  year: 2010
  ident: B132
  article-title: Functional Interplay Between Acetylation and Methylation of the Rela Subunit of Nf-Kappab
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.01343-09
– volume: 21
  start-page: 87
  year: 2015
  ident: B170
  article-title: Sirtuin 1: A Target for Kidney Diseases
  publication-title: Mol Med (Cambr Mass)
  doi: 10.2119/molmed.2014.00211
– volume: 6
  year: 2016
  ident: B50
  article-title: Sirt1 as Lncrna Interacts With Its Mrna to Inhibit Muscle Formation by Attenuating Function of Mir-34a
  publication-title: Sci Rep
  doi: 10.1038/srep21865
– volume: 14
  year: 2016
  ident: B16
  article-title: Sirt1 Activator Represses the Transcription of Tnf−A in Thp−1 Cells of a Sepsis Model Via Deacetylation of H4k16
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2016.5942
– volume: 13
  year: 2017
  ident: B25
  article-title: Downregulation of Sirt1 Signaling Underlies Hepatic Autophagy Impairment in Glycogen Storage Disease Type Ia
  publication-title: PloS Genet
  doi: 10.1371/journal.pgen.1006819
– volume: 25
  year: 2013
  ident: B135
  article-title: Antagonistic Crosstalk Between Nf-Kappab and Sirt1 in the Regulation of Inflammation and Metabolic Disorders
  publication-title: Cell Signall
  doi: 10.1016/j.cellsig.2013.06.007
– volume: 280
  year: 2005
  ident: B22
  article-title: Sirt1 Deacetylation and Repression of P300 Involves Lysine Residues 1020/1024 Within the Cell Cycle Regulatory Domain 1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M408748200
– volume: 110
  year: 2013
  ident: B104
  article-title: Glutaredoxin Regulates Vascular Development by Reversible Glutathionylation of Sirtuin 1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1313753110
– volume: 117
  year: 2020
  ident: B97
  article-title: Spatiotemporal Gating of Sirt1 Functions by O-Glcnacylation Is Essential for Liver Metabolic Switching and Prevents Hyperglycemia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1909943117
– volume: 34
  year: 2020
  ident: B124
  article-title: Sirt1 Agonism Modulates Cardiac Nlrp3 Inflammasome Through Pyruvate Dehydrogenase During Ischemia and Reperfusion
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101538
– volume: 28
  year: 2007
  ident: B65
  article-title: Active Regulator of Sirt1 Cooperates With Sirt1 and Facilitates Suppression of P53 Activity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.08.030
– volume: 285
  year: 2010
  ident: B147
  article-title: Sirt1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.038604
– volume: 6
  year: 2016
  ident: B74
  article-title: Chfr Negatively Regulates Sirt1 Activity Upon Oxidative Stress
  publication-title: Sci Rep
  doi: 10.1038/srep37578
– volume: 90
  year: 2011
  ident: B136
  article-title: Sirt1 Acts in Association With Pparalpha to Protect the Heart From Hypertrophy, Metabolic Dysregulation, and Inflammation
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvq376
– volume: 285
  year: 2010
  ident: B86
  article-title: Dyrk1a and Dyrk3 Promote Cell Survival Through Phosphorylation and Activation of Sirt1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.102574
– volume: 38
  year: 2010
  ident: B72
  article-title: Transcriptional Corepressor Shp Recruits Sirt1 Histone Deacetylase to Inhibit Lrh-1 Transactivation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq227
– volume: 5
  year: 2005
  ident: B150
  article-title: Resveratrol Inhibits Nitric Oxide and Tnf-Alpha Production by Lipopolysaccharide-Activated Microglia
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2004.08.008
– volume: 2018
  year: 2018
  ident: B157
  article-title: Sirtuin1 Targeting Reverses Innate and Adaptive Immune Tolerance in Septic Mice
  publication-title: J Immunol Res
  doi: 10.1155/2018/2402593
– volume: 217
  start-page: 8
  year: 2019
  ident: B112
  article-title: Melatonin Protects Against Sepsis-Induced Cardiac Dysfunction by Regulating Apoptosis and Autophagy Via Activation of Sirt1 in Mice
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2018.11.055
– volume: 20
  year: 2016
  ident: B128
  article-title: Protective Role of Silent Information Regulator 1 Against Hepatic Ischemia: Effects on Oxidative Stress Injury, Inflammatory Response, and Mapks
  publication-title: Expert Opin Ther Targets
  doi: 10.1517/14728222.2016.1153067
– volume: 44
  year: 2016
  ident: B144
  article-title: Histone Deacetylase Sirt1 Negatively Regulates the Differentiation of Interleukin-9-Producing Cd4(+) T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.009
– volume: 28
  year: 2018
  ident: B7
  article-title: Sirt1 Controls Acetaminophen Hepatotoxicity by Modulating Inflammation and Oxidative Stress
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2017.7373
– volume: 588
  year: 2014
  ident: B68
  article-title: Aros Has a Context-Dependent Effect on Sirt1
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2014.03.020
– volume: 451
  year: 2008
  ident: B59
  article-title: Dbc1 Is a Negative Regulator of Sirt1
  publication-title: Nature
  doi: 10.1038/nature06500
– volume: 47
  year: 2019
  ident: B115
  article-title: Circ-Sirt1 Controls Nf-Kb Activation Via Sequence-Specific Interaction and Enhancement of Sirt1 Expression by Binding to Mir-132/212 in Vascular Smooth Muscle Cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz141
– volume: 539
  year: 2014
  ident: B49
  article-title: Identification, Stability and Expression of Sirt1 Antisense Long Non-Coding RNA
  publication-title: Gene
  doi: 10.1016/j.gene.2014.01.037
– volume: 293
  year: 2018
  ident: B95
  article-title: Jak1-Mediated Sirt1 Phosphorylation Functions as a Negative Feedback of the Jak1-Stat3 Pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA117.001387
– volume: 5
  year: 2013
  ident: B139
  article-title: Transcription Factor Nfκb Regulates the Expression of the Histone Deacetylase Sirt1
  publication-title: Clin Epigenet
  doi: 10.1186/1868-7083-5-11
– volume: 7
  year: 2008
  ident: B91
  article-title: Jnk2-Dependent Regulation of Sirt1 Protein Stability
  publication-title: Cell Cycle (Georgetown Tex)
  doi: 10.4161/cc.7.19.6799
– volume: 87
  start-page: 95
  year: 2015
  ident: B173
  article-title: High-Mobility Group Box 1 Is a Novel Deacetylation Target of Sirtuin1
  publication-title: Kidney Int
  doi: 10.1038/ki.2014.217
– volume: 12
  year: 2010
  ident: B100
  article-title: Gapdh Mediates Nitrosylation of Nuclear Proteins
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2114
– volume: 34
  year: 2020
  ident: B62
  article-title: Parp and Parg Inhibitors in Cancer Treatment
  publication-title: Genes Dev
  doi: 10.1101/gad.334516.119
– volume: 8
  start-page: 404
  year: 2019
  ident: B99
  article-title: S-Nitrosylation: An Emerging Paradigm of Redox Signaling
  publication-title: Antioxid (Basel Switzerland)
  doi: 10.3390/antiox8090404
– volume: 97
  year: 2019
  ident: B47
  article-title: Lncrna-Anril Inhibits Cell Senescence of Vascular Smooth Muscle Cells by Regulating Mir-181a/Sirt1
  publication-title: Biochem Cell Biol = Biochim Biol Cellulaire
  doi: 10.1139/bcb-2018-0126
– volume: 116
  year: 2019
  ident: B48
  article-title: Lncrna Mnx1-As1 Promotes Progression of Esophageal Squamous Cell Carcinoma by Regulating Mir-34a/Sirt1 Axis
  publication-title: Biomed Pharmacother = Biomed Pharmacother
  doi: 10.1016/j.biopha.2019.109029
– volume: 290
  year: 2015
  ident: B77
  article-title: Ubiquitinated Sirtuin 1 (Sirt1) Function Is Modulated During DNA Damage-Induced Cell Death and Survival
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.612796
– volume: 286
  year: 2011
  ident: B92
  article-title: Sirtuin 1 (Sirt1) Protein Degradation in Response to Persistent C-Jun N-Terminal Kinase 1 (Jnk1) Activation Contributes to Hepatic Steatosis in Obesity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.228874
– volume: 67
  year: 2017
  ident: B118
  article-title: Macrophage Heme Oxygenase-1-Sirt1-P53 Axis Regulates Sterile Inflammation in Liver Ischemia-Reperfusion Injury
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.08.010
– volume: 45
  year: 2017
  ident: B69
  article-title: Ampk Signalling in Health and Disease
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2017.01.005
– volume: 286
  year: 2011
  ident: B114
  article-title: Nad+-Dependent Sirt1 Deacetylase Participates in Epigenetic Reprogramming During Endotoxin Tolerance
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.196790
– volume: 418
  year: 2018
  ident: B21
  article-title: Sirt1 and Hif1alpha Signaling in Metabolism and Immune Responses
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.12.035
– volume: 392
  start-page: 75
  year: 2018
  ident: B151
  article-title: Sepsis and Septic Shock
  publication-title: Lancet
  doi: 10.1016/s0140-6736(18)30696-2
– volume: 4
  start-page: e8414
  year: 2009
  ident: B93
  article-title: Jnk1 Phosphorylates Sirt1 and Promotes Its Enzymatic Activity
  publication-title: PloS One
  doi: 10.1371/journal.pone.0008414
– volume: 33
  year: 2014
  ident: B73
  article-title: Ubiquitin-Specific Peptidase Usp22 Negatively Regulates the Stat Signaling Pathway by Deubiquitinating Sirt1
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000362964
– volume: 12
  start-page: 2106
  year: 2020
  ident: B85
  article-title: The Dyrk Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities
  publication-title: Cancers
  doi: 10.3390/cancers12082106
– volume: 4
  start-page: e6611
  year: 2009
  ident: B89
  article-title: Ck2 Is the Regulator of Sirt1 Substrate-Binding Affinity, Deacetylase Activity and Cellular Response to DNA-Damage
  publication-title: PloS One
  doi: 10.1371/journal.pone.0006611
– volume: 287
  year: 2012
  ident: B71
  article-title: Role of Deleted in Breast Cancer 1 (Dbc1) Protein in Sirt1 Deacetylase Activation Induced by Protein Kinase a and Amp-Activated Protein Kinase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.365874
– volume: 283
  year: 2008
  ident: B24
  article-title: Sirt1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of Lkb1. Possible Role in Amp-Activated Protein Kinase Activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M805711200
– volume: 43
  year: 2017
  ident: B153
  article-title: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-4683-6
– volume: 119
  year: 2012
  ident: B167
  article-title: Sirt1 Protects Against Thrombomodulin Down-Regulation and Lung Coagulation After Particulate Matter Exposure
  publication-title: Blood
  doi: 10.1182/blood-2011-04-350413
– volume: 9
  start-page: e98909
  year: 2014
  ident: B171
  article-title: Sirt1 Deletion Leads to Enhanced Inflammation and Aggravates Endotoxin-Induced Acute Kidney Injury
  publication-title: PloS One
  doi: 10.1371/journal.pone.0098909
– volume: 66
  year: 2017
  ident: B160
  article-title: Aging Aggravates Alcoholic Liver Injury and Fibrosis in Mice by Downregulating Sirtuin 1 Expression
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2016.11.004
– volume: 32
  year: 2018
  ident: B17
  article-title: Kdm2b Is a Histone H3k79 Demethylase and Induces Transcriptional Repression Via Sirtuin-1-Mediated Chromatin Silencing
  publication-title: FASEB J
  doi: 10.1096/fj.201800242R
– volume: 7
  year: 2014
  ident: B101
  article-title: Inflammatory Stimuli Induce Inhibitory S-Nitrosylation of the Deacetylase Sirt1 to Increase Acetylation and Activation of P53 and P65
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2005375
– volume: 11
  start-page: 146
  year: 2019
  ident: B175
  article-title: Sirt1 Attenuates Kidney Disorders in Male Offspring Due to Maternal High-Fat Diet
  publication-title: Nutrients
  doi: 10.3390/nu11010146
– volume: 8
  year: 2006
  ident: B35
  article-title: Interactions Between E2f1 and Sirt1 Regulate Apoptotic Response to DNA Damage
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1468
– volume: 17
  start-page: 59
  year: 2006
  ident: B137
  article-title: Cloning, Chromosomal Characterization and Mapping of the Nad-Dependent Histone Deacetylases Gene Sirtuin 1
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.17.1.59
– volume: 8
  start-page: e75139
  year: 2013
  ident: B111
  article-title: Resveratrol Inhibits Cd4+ T Cell Activation by Enhancing the Expression and Activity of Sirt1
  publication-title: PloS One
  doi: 10.1371/journal.pone.0075139
– volume: 40
  year: 2017
  ident: B109
  article-title: Tim4-Tim1 Interaction Modulates Th2 Pattern Inflammation Through Enhancing Sirt1 Expression
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2017.3150
– volume: 13
  year: 2021
  ident: B163
  article-title: Metabolic Regulation of Macrophages by Sirt1 Determines Activation During Cholestatic Liver Disease in Mice
  publication-title: Cell Mol Gastroenterol Hepatol
  doi: 10.1016/j.jcmgh.2021.12.010
– volume: 285
  year: 2010
  ident: B23
  article-title: Sirt1 Regulates Autoacetylation and Histone Acetyltransferase Activity of Tip60
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.087585
– volume: 13
  year: 2011
  ident: B63
  article-title: Parp-1 Inhibition Increases Mitochondrial Metabolism Through Sirt1 Activation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.03.004
– volume: 39
  year: 2020
  ident: B78
  article-title: Ubiquitination-Mediated Degradation of Sirt1 by Smurf2 Suppresses Crc Cell Proliferation and Tumorigenesis
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1298-0
– volume: 471
  year: 2016
  ident: B75
  article-title: Mst1 Regulates Hepatic Lipid Metabolism by Inhibiting Sirt1 Ubiquitination in Mice
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2016.02.059
– volume: 13
  year: 2011
  ident: B64
  article-title: Parp-2 Regulates Sirt1 Expression and Whole-Body Energy Expenditure
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.03.013
– volume: 47
  year: 2019
  ident: B46
  article-title: Long Noncoding Rna Snhg15 Enhances the Development of Colorectal Carcinoma Via Functioning as a Cerna Through Mir-141/Sirt1/Wnt/B-Catenin Axis
  publication-title: Artif Cells Nanomed Biotechnol
  doi: 10.1080/21691401.2019.1621328
– volume: 287
  year: 2012
  ident: B120
  article-title: Nad+-Dependent Sirtuin 1 and 6 Proteins Coordinate a Switch From Glucose to Fatty Acid Oxidation During the Acute Inflammatory Response
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.362343
– volume: 2021
  year: 2021
  ident: B4
  article-title: Sirt1 Inhibits Apoptosis by Promoting Autophagic Flux in Human Nucleus Pulposus Cells in the Key Stage of Degeneration Via Erk Signal Pathway
  publication-title: BioMed Res Int
  doi: 10.1155/2021/8818713
– volume: 38
  year: 2010
  ident: B140
  article-title: Sirtuin 1 Modulates Cellular Responses to Hypoxia by Deacetylating Hypoxia-Inducible Factor 1alpha
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.023
– volume: 372
  year: 2008
  ident: B174
  article-title: Sirt1 Protects Against Oxidative Stress-Induced Renal Tubular Cell Apoptosis by the Bidirectional Regulation of Catalase Expression
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.04.176
– volume: 62
  start-page: 1
  year: 1999
  ident: B84
  article-title: Structural and Functional Characteristics of Dyrk, a Novel Subfamily of Protein Kinases With Dual Specificity
  publication-title: Prog Nucleic Acid Res Mol Biol
  doi: 10.1016/s0079-6603(08)60503-6
– volume: 54
  start-page: 96
  year: 2020
  ident: B116
  article-title: Sirt1 Mediates Septic Cardiomyopathy in a Murine Model of Polymicrobial Sepsis
  publication-title: Shock
  doi: 10.1097/shk.0000000000001429
– volume: 13
  year: 2013
  ident: B154
  article-title: Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3552
– volume: 397
  year: 2010
  ident: B138
  article-title: Involvement of the P65/Rela Subunit of Nf-Kappab in Tnf-Alpha-Induced Sirt1 Expression in Vascular Smooth Muscle Cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.05.160
– volume: 45
  year: 2017
  ident: B88
  article-title: Phosphorylated Sirt1 Associates With Replication Origins to Prevent Excess Replication Initiation and Preserve Genomic Stability
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx468
– volume: 1872
  start-page: 11
  year: 2019
  ident: B145
  article-title: The Ap-1 Transcriptional Complex: Local Switch or Remote Command
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2019.04.003
– volume: 33
  year: 2008
  ident: B38
  article-title: The Ups and Downs of Sirt1
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2008.08.001
– volume: 6
  year: 2004
  ident: B31
  article-title: Epigenetic and Genetic Loss of Hic1 Function Accentuates the Role of P53 in Tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.08.030
– volume: 12
  year: 2017
  ident: B102
  article-title: Inos as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle After Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of P65 Nf-Kb and P53
  publication-title: PloS One
  doi: 10.1371/journal.pone.0170391
– volume: 152
  year: 2017
  ident: B165
  article-title: Decreased Serum Sirtuin-1 in Copd
  publication-title: Chest
  doi: 10.1016/j.chest.2017.05.004
– volume: 72
  year: 2012
  ident: B81
  article-title: Ampk Promotes P53 Acetylation Via Phosphorylation and Inactivation of Sirt1 in Liver Cancer Cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.can-12-0429
– volume: 61
  start-page: 95
  year: 2013
  ident: B127
  article-title: Redox Regulation of Sirt1 in Inflammation and Cellular Senescence
  publication-title: Free Radical Biol Med
  doi: 10.1016/j.freeradbiomed.2013.03.015
– volume: 6
  start-page: e19194
  year: 2011
  ident: B122
  article-title: Age Related Changes in Nad+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats
  publication-title: PloS One
  doi: 10.1371/journal.pone.0019194
– volume: 9
  year: 2013
  ident: B126
  article-title: Resveratrol Attenuates Vascular Endothelial Inflammation by Inducing Autophagy Through the Camp Signaling Pathway
  publication-title: Autophagy
  doi: 10.4161/auto.26336
– volume: 29
  year: 2008
  ident: B130
  article-title: New Insights Into Nf-Kappab Regulation and Function
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2008.07.003
– volume: 97
  year: 2000
  ident: B11
  article-title: Silent Information Regulator 2 Family of Nad- Dependent Histone/Protein Deacetylases Generates a Unique Product, 1-O-Acetyl-Adp-Ribose
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.250422697
– volume: 403
  start-page: 795
  year: 2000
  ident: B12
  article-title: Transcriptional Silencing and Longevity Protein Sir2 Is an Nad-Dependent Histone Deacetylase
  publication-title: Nature
  doi: 10.1038/35001622
– volume: 90
  year: 2020
  ident: B36
  article-title: Redirecting E2f1 to Ta-P73 Improves Cancer Therapy Through Apoptotic Induction
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2020.102858
– volume: 287
  year: 2012
  ident: B55
  article-title: Nicotinamide-Induced Mitophagy: Event Mediated by High Nad+/Nadh Ratio and Sirt1 Protein Activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.363747
– volume: 170
  start-page: 10
  year: 2020
  ident: B8
  article-title: Sirt1/Pgc-1 Pathway Activation Triggers Autophagy/Mitophagy and Attenuates Oxidative Damage in Intestinal Epithelial Cells
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2019.12.001
– volume: 392
  year: 2018
  ident: B26
  article-title: Principles of DNA Methylation and Their Implications for Biology and Medicine
  publication-title: Lancet (Lond Engl)
  doi: 10.1016/s0140-6736(18)31268-6
SSID ssj0000493335
Score 2.7035155
SecondaryResourceType review_article
Snippet The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD + -dependent deacetylase belonging to the sirtuin family, is a...
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD -dependent deacetylase belonging to the sirtuin family, is a...
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 831168
SubjectTerms enzyme activity
gene regulation
Histones - metabolism
Humans
Immunology
inflammation
Inflammation - metabolism
NAD - metabolism
post-translational modification
SIRT1
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Sirtuins - metabolism
Title Regulation of SIRT1 and Its Roles in Inflammation
URI https://www.ncbi.nlm.nih.gov/pubmed/35359990
https://www.proquest.com/docview/2646721553
https://pubmed.ncbi.nlm.nih.gov/PMC8962665
https://doaj.org/article/fec2d7f1866c4143a05ae4fde12e2e8e
Volume 13
WOSCitedRecordID wos000780512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VqkhcEC1fAVoZiRNSaPyVOEdArbqHVtVSpL1Zjj_EVjSLurtIXPjtzMTb1S5CcOHiQ-Io1nuxZ57svAF445XpZCtDGZ30pVItroOo2UrRmU5Fr1sl3VBsorm4MJNJe7lR6ovOhGV74AzccYpehCaRL5tXGNxdpV1UKUQuoogm0uqLWc-GmLrOea-UUudtTFRh7XGa3twsUQ8K8c5IzsladSMQDX79f0oyfz8ruRF8Th_Bw1XWyN7n0e7DTuwP4H6uI_njMfBxriiPGLNZYp9G4yvOXB_YaDFnY7JsYtOejfqE9OdfFZ_A59OTq49n5aoWQulxliywVY67ruk8olgHQcZwmsIxTsBkvKhlFWKTPNVrUVFX3JkQFMqpwBucclo-hd1-1sfnwFJwra5ESMYolXQkVgyGSq9F14g6FVDdAWP9yiic6lV8tSgYCEs7YGkJS5uxLODt-pFv2SXjb50_ENrrjmRwPVxA2u2Kdvsv2gt4fceVxQlBuxyuj7Pl3GKGV6Os1VoW8Cxzt36V1FJjRlwV0GyxujWW7Tv99Mtgum1alH61fvE_Bv8SHhAedJSN81ewu7hdxkPY898X0_ntEdxrJuZo-J6xPf958gseQPr2
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+SIRT1+and+Its+Roles+in+Inflammation&rft.jtitle=Frontiers+in+immunology&rft.au=Yunshu+Yang&rft.au=Yang+Liu&rft.au=Yunwei+Wang&rft.au=Yongyi+Chao&rft.date=2022-03-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.831168&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fec2d7f1866c4143a05ae4fde12e2e8e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon