Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake

In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome biology Jg. 8; H. 2; S. R22 - 1504
Hauptverfasser: Kingsford, Carleton L, Ayanbule, Kunmi, Salzberg, Steven L
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England BioMed Central 21.02.2007
Schlagworte:
ISSN:1474-760X, 1465-6906, 1474-760X, 1465-6914
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.
AbstractList In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider.BACKGROUNDIn many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider.We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators.RESULTSWe describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators.Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.CONCLUSIONOur new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.
BACKGROUND: In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. RESULTS: We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. CONCLUSION: Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.
In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.
Using a novel computational method, an extensive collection of predicted Rho-independent transcription terminators is derived from 343 prokaryotes, offering insight into their relationship to DNA uptake
ArticleNumber R22
Author Kingsford, Carleton L
Salzberg, Steven L
Ayanbule, Kunmi
AuthorAffiliation 1 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
AuthorAffiliation_xml – name: 1 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
Author_xml – sequence: 1
  givenname: Carleton L
  surname: Kingsford
  fullname: Kingsford, Carleton L
– sequence: 2
  givenname: Kunmi
  surname: Ayanbule
  fullname: Ayanbule, Kunmi
– sequence: 3
  givenname: Steven L
  surname: Salzberg
  fullname: Salzberg, Steven L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17313685$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFSEUxYmpsR-6dmdYGRfFAsMM8zYmTa0fSaNJo4k7AszlPXQGRmCadOtfXl5fbaqJboAbzv3lwLmHaC_EAAg9Z_Q1Y313sjaEUypJTzhJnD9CB0xIQWRHv-09OO-jw5y_U8pWgndP0D6TDWu6vj1Avy717IdjrK1dki5wjG2c5qXo4mPQIx58tvEK0jWODl9uIvFhgBnqEgouSYdsk5-3YlwgTT7oElPGfhyX2wIyLhvwCScYb5l542dcIn776RQvc9E_4Cl67PSY4dndfoS-vjv_cvaBXHx-__Hs9ILYtmGFGCtN41bCAnfSWGcl00x2g6QrLXoGkrWOaS6MNq11naCdMz23VDq2GkCY5gi92XHnxUww2PqCpEc1Jz_pdK2i9urPm-A3ah2vFOtbLqiogJd3gBR_LpCLmurvwDjqAHHJSlJBKRdb4av_CmtklLVStl2Vvnho6t7N74SqoN0JbIo5J3DK-l061aMfFaNqOwlqbbZYqXrFVZ2E2nfyV989-h8dN-yIu4I
CitedBy_id crossref_primary_10_1371_journal_pone_0029435
crossref_primary_10_3389_fmicb_2022_941306
crossref_primary_10_1007_s00705_017_3366_5
crossref_primary_10_1093_nar_gkw749
crossref_primary_10_1093_nar_gkx959
crossref_primary_10_1038_nmeth_2515
crossref_primary_10_3390_ijms252413472
crossref_primary_10_1111_mmi_13611
crossref_primary_10_1534_genetics_110_119438
crossref_primary_10_1089_phage_2024_0049
crossref_primary_10_1016_j_resmic_2007_09_001
crossref_primary_10_1128_microbiolspec_MGM2_0029_2013
crossref_primary_10_1128_spectrum_03126_22
crossref_primary_10_1128_MRA_01046_19
crossref_primary_10_1186_s12934_023_02095_1
crossref_primary_10_1186_1471_2164_15_385
crossref_primary_10_1093_nar_gkr1141
crossref_primary_10_1128_MRA_01308_20
crossref_primary_10_3389_fcimb_2020_600325
crossref_primary_10_1128_JB_00711_15
crossref_primary_10_4137_BBI_S11213
crossref_primary_10_1093_nar_gkv422
crossref_primary_10_1128_MRA_01017_19
crossref_primary_10_1186_1471_2164_9_20
crossref_primary_10_1371_journal_pgen_1002252
crossref_primary_10_1128_MRA_01052_19
crossref_primary_10_1186_1471_2164_14_574
crossref_primary_10_3390_antibiotics9120841
crossref_primary_10_1038_s41396_020_00825_6
crossref_primary_10_1111_j_1365_2958_2009_06949_x
crossref_primary_10_1371_journal_pcbi_1008214
crossref_primary_10_1371_journal_pone_0126325
crossref_primary_10_1093_nar_gkaf553
crossref_primary_10_1186_1471_2164_11_350
crossref_primary_10_1128_JB_02395_14
crossref_primary_10_1016_j_ymben_2013_11_004
crossref_primary_10_1128_JB_00134_09
crossref_primary_10_1371_journal_pgen_1003458
crossref_primary_10_1093_nar_gkq869
crossref_primary_10_1093_bioinformatics_btn077
crossref_primary_10_1155_2012_873589
crossref_primary_10_1371_journal_pgen_1001277
crossref_primary_10_1093_nar_gkr033
crossref_primary_10_1128_MRA_01093_19
crossref_primary_10_1089_phage_2020_0043
crossref_primary_10_1128_MRA_01051_19
crossref_primary_10_1093_nar_gky226
crossref_primary_10_1128_msystems_00590_19
crossref_primary_10_1128_MRA_01343_20
crossref_primary_10_1016_j_resmic_2012_10_010
crossref_primary_10_1073_pnas_1315374111
crossref_primary_10_1111_j_1574_6968_2008_01461_x
crossref_primary_10_1186_s12934_022_01954_7
crossref_primary_10_1128_JB_01629_12
crossref_primary_10_1186_1471_2164_14_667
crossref_primary_10_1111_1462_2920_12689
crossref_primary_10_3390_ijms23010576
crossref_primary_10_1093_nar_gkp668
crossref_primary_10_1038_s41598_021_95435_3
crossref_primary_10_1093_nar_gkaf405
crossref_primary_10_1128_AEM_02808_14
crossref_primary_10_1038_s41598_017_05628_y
crossref_primary_10_1101_gr_091561_109
crossref_primary_10_1371_journal_pone_0060401
crossref_primary_10_1128_msystems_00905_19
crossref_primary_10_1186_1471_2105_14_S2_S4
crossref_primary_10_1016_j_biochi_2023_07_018
crossref_primary_10_1371_journal_pone_0135295
crossref_primary_10_1371_journal_pone_0018509
crossref_primary_10_1093_nar_gkr168
crossref_primary_10_1128_JB_00771_09
crossref_primary_10_1093_nar_gku793
crossref_primary_10_1089_phage_2022_0003
crossref_primary_10_1016_j_copbio_2010_07_005
crossref_primary_10_1128_JB_00088_11
crossref_primary_10_1111_j_1462_2920_2009_02081_x
crossref_primary_10_1089_phage_2022_0008
crossref_primary_10_1111_mmi_12738
crossref_primary_10_1128_msphere_00124_25
crossref_primary_10_7717_peerj_6304
crossref_primary_10_1016_j_plasmid_2015_09_001
crossref_primary_10_1089_omi_2009_0081
crossref_primary_10_1093_nar_gkae923
crossref_primary_10_7554_eLife_25100
crossref_primary_10_1093_nar_gky725
crossref_primary_10_1111_j_1574_6968_2010_01938_x
crossref_primary_10_1371_journal_pgen_1004001
crossref_primary_10_1093_nar_gkw1316
crossref_primary_10_1073_pnas_1005066107
crossref_primary_10_1371_journal_pone_0100147
crossref_primary_10_1128_JB_01007_13
crossref_primary_10_1128_MRA_01411_19
crossref_primary_10_1371_journal_pone_0172783
crossref_primary_10_1073_pnas_1120788109
crossref_primary_10_1186_1471_2164_14_888
crossref_primary_10_1371_journal_pone_0172303
crossref_primary_10_1038_s41467_021_21941_7
crossref_primary_10_1016_j_bbagrm_2020_194506
crossref_primary_10_7717_peerj_2056
crossref_primary_10_1186_1471_2164_13_299
crossref_primary_10_1186_s12866_015_0494_5
crossref_primary_10_1038_nrmicro2477
crossref_primary_10_1186_gb_2008_9_3_r60
crossref_primary_10_1128_MRA_01422_19
crossref_primary_10_3390_v14040709
crossref_primary_10_1074_jbc_M113_536425
crossref_primary_10_3390_v15102095
crossref_primary_10_1186_1471_2164_11_666
crossref_primary_10_1111_j_1365_2958_2007_06033_x
crossref_primary_10_1186_1471_2164_10_641
crossref_primary_10_1016_j_jbiotec_2014_05_033
crossref_primary_10_1186_1471_2180_11_102
crossref_primary_10_3389_fmicb_2021_747845
crossref_primary_10_1093_nar_gkaf471
crossref_primary_10_1093_nar_gkt163
crossref_primary_10_1007_s12257_021_0062_9
crossref_primary_10_1016_j_tube_2008_06_004
crossref_primary_10_1371_journal_pone_0117373
crossref_primary_10_3390_v10010005
crossref_primary_10_1038_s41598_018_35784_8
crossref_primary_10_1128_MRA_01097_19
crossref_primary_10_1371_journal_pone_0165694
crossref_primary_10_1016_j_jbiotec_2011_04_010
crossref_primary_10_1128_mra_00125_22
crossref_primary_10_1128_JB_05563_11
crossref_primary_10_1128_jb_00577_21
crossref_primary_10_1073_pnas_1920753117
crossref_primary_10_1093_nargab_lqae168
crossref_primary_10_1016_j_chom_2024_09_008
crossref_primary_10_1111_j_1365_2958_2009_06830_x
crossref_primary_10_1371_journal_pone_0152363
crossref_primary_10_1128_MRA_01031_19
crossref_primary_10_1371_journal_pone_0064021
crossref_primary_10_1016_j_jbiotec_2016_03_020
crossref_primary_10_1007_s00253_021_11326_7
crossref_primary_10_1128_JB_00333_12
crossref_primary_10_1371_journal_pone_0039742
crossref_primary_10_1016_j_jinf_2016_04_010
crossref_primary_10_1016_j_mib_2014_11_011
crossref_primary_10_1128_MRA_00741_19
crossref_primary_10_1007_s12088_022_01050_9
crossref_primary_10_1038_s41598_017_15818_3
crossref_primary_10_1093_nar_gky383
crossref_primary_10_1128_AEM_00128_11
crossref_primary_10_1186_s12864_016_3211_3
crossref_primary_10_1016_j_synbio_2022_11_006
crossref_primary_10_1093_nar_gkaf686
crossref_primary_10_1186_1471_2180_10_202
crossref_primary_10_1128_jvi_00850_23
crossref_primary_10_1128_MRA_00905_20
crossref_primary_10_1093_nar_gkaf329
crossref_primary_10_1016_j_isci_2023_106465
crossref_primary_10_7717_peerj_11447
crossref_primary_10_1371_journal_pgen_1003485
crossref_primary_10_1128_mSystems_00250_20
crossref_primary_10_1186_1475_2859_10_S1_S12
crossref_primary_10_1128_MRA_01036_19
crossref_primary_10_1128_MRA_01053_19
crossref_primary_10_1371_journal_pone_0016537
crossref_primary_10_7554_eLife_61880
crossref_primary_10_1128_AEM_02722_07
crossref_primary_10_1128_MRA_01047_19
crossref_primary_10_1186_1471_2105_15_145
crossref_primary_10_3390_microorganisms11102486
crossref_primary_10_1186_1471_2105_12_40
crossref_primary_10_1016_j_ygeno_2012_01_001
crossref_primary_10_1128_JB_00864_07
crossref_primary_10_1038_s44259_023_00017_0
crossref_primary_10_1128_MRA_01421_19
crossref_primary_10_1261_rna_2689811
crossref_primary_10_3389_fmicb_2017_00346
crossref_primary_10_3389_fmicb_2017_00588
crossref_primary_10_3390_v10110624
crossref_primary_10_1093_nar_gkn898
crossref_primary_10_1186_s12864_015_1468_6
crossref_primary_10_3389_fcimb_2024_1473668
crossref_primary_10_1128_MRA_01095_19
crossref_primary_10_1038_s41564_021_00927_7
crossref_primary_10_1128_AEM_01828_17
crossref_primary_10_1128_MRA_01037_19
crossref_primary_10_1128_MRA_01403_20
crossref_primary_10_1186_s12864_016_2602_9
crossref_primary_10_1128_MRA_01518_19
crossref_primary_10_1371_journal_pone_0093833
crossref_primary_10_3390_genes2040925
crossref_primary_10_1128_JB_00194_12
crossref_primary_10_1007_s00253_021_11190_5
crossref_primary_10_1371_journal_pone_0262663
crossref_primary_10_1093_bfgp_elp025
crossref_primary_10_3389_fmicb_2018_00200
crossref_primary_10_1093_nar_gkn784
crossref_primary_10_1371_journal_pone_0168915
crossref_primary_10_2217_fmb_12_13
crossref_primary_10_1128_mSphere_01215_20
crossref_primary_10_1016_j_molcel_2018_04_017
crossref_primary_10_1111_hel_12390
crossref_primary_10_1111_j_1574_6968_2012_02572_x
crossref_primary_10_1128_AEM_00195_09
crossref_primary_10_1371_journal_pone_0060465
crossref_primary_10_1093_nar_gkq1186
crossref_primary_10_1128_MRA_01055_19
crossref_primary_10_1016_j_ymben_2011_01_004
crossref_primary_10_1016_j_ymeth_2017_04_016
crossref_primary_10_1099_mgen_0_000069
crossref_primary_10_1186_s12934_014_0094_3
crossref_primary_10_1128_mra_01530_19
crossref_primary_10_1016_j_aquaculture_2024_740764
crossref_primary_10_3390_microorganisms10030587
crossref_primary_10_3390_ijms222212260
crossref_primary_10_1128_MRA_01049_19
crossref_primary_10_1186_s12864_019_5613_5
crossref_primary_10_1186_s12866_020_1720_3
crossref_primary_10_1007_s00253_023_12530_3
crossref_primary_10_1186_1471_2164_13_384
crossref_primary_10_1186_1471_2180_13_27
crossref_primary_10_1016_j_jmb_2024_168653
crossref_primary_10_1080_22221751_2019_1700762
crossref_primary_10_1093_nar_gkad979
crossref_primary_10_12688_f1000research_156998_1
crossref_primary_10_1016_j_synbio_2016_08_002
crossref_primary_10_1111_j_1365_2958_2007_05978_x
crossref_primary_10_1002_cpe_8056
crossref_primary_10_1093_nar_gks640
crossref_primary_10_1128_MRA_01054_19
crossref_primary_10_1371_journal_pone_0023948
crossref_primary_10_1093_bioinformatics_btp537
crossref_primary_10_1101_gr_119370_110
crossref_primary_10_1128_JB_01142_09
crossref_primary_10_1073_pnas_1114152108
crossref_primary_10_1128_JB_00578_17
crossref_primary_10_1128_mra_00159_22
crossref_primary_10_1007_s00203_010_0592_6
crossref_primary_10_1371_journal_pone_0011970
crossref_primary_10_3389_fmicb_2023_1238855
crossref_primary_10_1007_s00792_021_01239_8
crossref_primary_10_1186_1471_2164_11_661
crossref_primary_10_1186_1471_2105_11_491
crossref_primary_10_1128_MRA_01048_19
crossref_primary_10_1186_s12866_021_02234_x
crossref_primary_10_1128_JVI_00848_19
crossref_primary_10_1128_MRA_00748_19
crossref_primary_10_1128_JB_01198_10
crossref_primary_10_1093_synbio_ysae018
crossref_primary_10_1128_MRA_01420_19
crossref_primary_10_1186_s12863_021_00983_2
crossref_primary_10_1186_s12864_015_2293_7
crossref_primary_10_1002_cbic_201900163
crossref_primary_10_1128_JB_00445_10
crossref_primary_10_1128_MRA_01032_19
crossref_primary_10_1128_MRA_01096_19
crossref_primary_10_3389_fgene_2015_00189
crossref_primary_10_3389_fmicb_2016_00048
crossref_primary_10_1128_JB_05262_11
crossref_primary_10_1371_journal_pone_0029002
crossref_primary_10_1128_JB_05287_11
crossref_primary_10_1016_j_febslet_2015_07_029
crossref_primary_10_1016_j_jmb_2011_03_036
crossref_primary_10_1016_j_synbio_2022_06_003
crossref_primary_10_1128_AEM_00200_20
crossref_primary_10_3389_fmicb_2016_01806
crossref_primary_10_1007_s11033_021_06851_7
crossref_primary_10_1128_JB_05474_11
crossref_primary_10_1371_journal_pgen_1009943
crossref_primary_10_1016_j_mimet_2010_08_004
crossref_primary_10_1128_IAI_01289_07
crossref_primary_10_1186_1471_2164_14_714
crossref_primary_10_1080_07391102_2024_2325107
crossref_primary_10_1111_mmi_12338
crossref_primary_10_1128_mra_00123_22
crossref_primary_10_1128_MRA_00765_19
crossref_primary_10_1080_15476286_2015_1110674
crossref_primary_10_1186_gb_2012_13_4_r30
crossref_primary_10_1371_journal_pone_0075651
crossref_primary_10_1093_nar_gkaa047
crossref_primary_10_1093_nar_gkq847
crossref_primary_10_1186_gb_2011_12_5_r47
crossref_primary_10_1051_vetres_2009073
crossref_primary_10_1128_MRA_01033_19
crossref_primary_10_1186_s13068_023_02357_5
crossref_primary_10_1186_s12864_016_3400_0
crossref_primary_10_1016_j_ygeno_2012_10_006
crossref_primary_10_1128_MRA_01056_19
crossref_primary_10_1088_1742_5468_2013_10_P10013
crossref_primary_10_1016_j_ygeno_2009_04_004
crossref_primary_10_1093_nar_gkv177
crossref_primary_10_1093_nar_gky563
crossref_primary_10_1128_MRA_00573_19
crossref_primary_10_1128_MRA_01407_20
crossref_primary_10_1186_s12934_024_02620_w
crossref_primary_10_1186_1471_2105_11_S3_S10
crossref_primary_10_1093_nar_gkv1227
crossref_primary_10_1128_mra_00942_24
crossref_primary_10_1111_j_1574_6968_2010_02095_x
crossref_primary_10_3389_fmicb_2018_00228
crossref_primary_10_1371_journal_pone_0163425
crossref_primary_10_1038_nature09886
crossref_primary_10_1128_mra_00177_22
crossref_primary_10_1186_s12859_019_2704_x
crossref_primary_10_1371_journal_pone_0033227
crossref_primary_10_1016_j_cell_2022_03_008
crossref_primary_10_1128_MRA_01094_19
crossref_primary_10_1186_1471_2164_10_123
crossref_primary_10_3390_v15030739
crossref_primary_10_1371_journal_pone_0100426
crossref_primary_10_1128_MRA_01038_19
crossref_primary_10_1093_bib_bbab162
crossref_primary_10_1093_bib_bbn019
crossref_primary_10_1128_AEM_06028_11
crossref_primary_10_1038_ncomms14737
crossref_primary_10_1093_gigascience_giy096
crossref_primary_10_1186_s12858_018_0093_9
crossref_primary_10_1371_journal_pgen_1005962
crossref_primary_10_1038_msb_2012_11
crossref_primary_10_1093_nar_gkad333
crossref_primary_10_1093_nar_gkt1048
crossref_primary_10_1038_ncomms14731
crossref_primary_10_1128_MRA_01045_19
crossref_primary_10_1128_MRA_01016_19
crossref_primary_10_1186_1471_2164_13_542
crossref_primary_10_1038_s41396_018_0099_8
crossref_primary_10_1186_1471_2105_13_S15_S4
crossref_primary_10_1186_s13068_017_0743_y
crossref_primary_10_7717_peerj_10645
crossref_primary_10_1371_journal_pcbi_1010240
crossref_primary_10_1128_IAI_00687_19
crossref_primary_10_1002_bies_200800216
crossref_primary_10_1111_j_1365_2958_2011_07760_x
crossref_primary_10_1038_ncomms7900
crossref_primary_10_1099_vir_0_043331_0
crossref_primary_10_1128_AEM_01037_13
crossref_primary_10_1111_j_1365_2958_2008_06172_x
crossref_primary_10_1111_j_1462_2920_2010_02280_x
crossref_primary_10_1093_nar_gkab360
crossref_primary_10_1128_aem_00807_24
crossref_primary_10_1038_emboj_2012_229
crossref_primary_10_1016_j_ijbiomac_2019_05_003
crossref_primary_10_1186_1471_2164_13_550
crossref_primary_10_1128_JB_00293_19
crossref_primary_10_1007_s00294_018_0815_y
crossref_primary_10_1093_nar_gkt308
crossref_primary_10_1038_s41598_018_28843_7
crossref_primary_10_1111_mpp_12997
crossref_primary_10_1371_journal_pone_0003197
crossref_primary_10_1128_MRA_01050_19
crossref_primary_10_1128_mra_01430_20
crossref_primary_10_1128_AAC_04858_14
crossref_primary_10_1016_j_indcrop_2023_117229
crossref_primary_10_1128_JB_01293_13
crossref_primary_10_1371_journal_pone_0053085
crossref_primary_10_1128_MRA_01418_19
Cites_doi 10.1093/nar/29.17.3583
10.1101/gr.849004
10.1073/pnas.92.19.8793
10.1111/j.1365-2958.2005.04964.x
10.1006/jmbi.2000.3836
10.1093/nar/26.23.5456
10.1073/pnas.0306366101
10.1093/nar/18.20.6097
10.1126/science.7542802
10.1002/bies.10125
10.1016/0378-1119(80)90071-2
10.1371/journal.pcbi.0010025
10.1093/nar/30.3.675
10.1016/S0923-2508(99)00130-8
10.1146/annurev.micro.53.1.217
10.1016/S0022-2836(99)80005-9
10.1016/0378-1119(92)90723-3
10.1073/pnas.77.11.6309
10.1006/jmbi.1999.2700
10.1073/pnas.76.2.972
10.1128/AAC.45.4.1099-1103.2001
10.1073/pnas.85.18.6982
ContentType Journal Article
Copyright Copyright © 2007 Kingsford et al.; licensee BioMed Central Ltd. 2007 Kingsford et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2007 Kingsford et al.; licensee BioMed Central Ltd. 2007 Kingsford et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1186/gb-2007-8-2-r22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage 1504
ExternalDocumentID PMC1852404
17313685
10_1186_gb_2007_8_2_r22
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM083873
– fundername: NLM NIH HHS
  grantid: R01-LM06845
– fundername: NLM NIH HHS
  grantid: R01-LM007938
– fundername: NLM NIH HHS
  grantid: R01 LM007938
– fundername: NLM NIH HHS
  grantid: R01 LM006845
GroupedDBID ---
0R~
123
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
CITATION
EBLON
EBS
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
88E
8FE
8FH
8FI
8FJ
8R4
8R5
ABUWG
AFKRA
ALIPV
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
FYUFA
H13
HCIFZ
HMCUK
LK8
M1P
M7P
NPM
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
SV3
UKHRP
7S9
L.6
7X8
2WC
5PM
AENEX
C1A
CS3
E3Z
EJD
F5P
HZ~
KQ8
O5R
O5S
O9-
OK1
RBZ
SBL
TR2
WOQ
ID FETCH-LOGICAL-c531t-bc7b3f94ce2f7bcfc71a176d709a481e715f1a24bab5cf6406fb82c07f19de4b3
ISICitedReferencesCount 418
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246076300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 17:42:43 EDT 2025
Sun Nov 09 12:56:39 EST 2025
Wed Oct 01 13:30:40 EDT 2025
Fri May 30 10:49:35 EDT 2025
Sat Nov 29 05:33:05 EST 2025
Tue Nov 18 22:22:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-bc7b3f94ce2f7bcfc71a176d709a481e715f1a24bab5cf6406fb82c07f19de4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC1852404
PMID 17313685
PQID 2000157756
PQPubID 24069
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1852404
proquest_miscellaneous_70400244
proquest_miscellaneous_2000157756
pubmed_primary_17313685
crossref_citationtrail_10_1186_gb_2007_8_2_r22
crossref_primary_10_1186_gb_2007_8_2_r22
PublicationCentury 2000
PublicationDate 2007-02-21
PublicationDateYYYYMMDD 2007-02-21
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-21
  day: 21
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome biology
PublicationTitleAlternate Genome Biol
PublicationYear 2007
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References Y d'Aubenton Carafa (1504_CR4) 1990; 216
MD Ermolaeva (1504_CR8) 2000; 301
G Crooks (1504_CR26) 2004; 14
KL Sisco (1504_CR20) 1979; 76
1504_CR25
T Washio (1504_CR6) 1998; 26
EA Lesnik (1504_CR7) 2001; 29
M Bakkali (1504_CR23) 2004; 101
HO Smith (1504_CR10) 1995; 269
DB Daner (1504_CR21) 1980; 11
JS Kroll (1504_CR9) 1992; 114
S Banerjee (1504_CR2) 2006; 44
T Schneider (1504_CR27) 1990; 18
MS Waterman (1504_CR14) 1978
KS Wilson (1504_CR1) 1995; 92
M Zuker (1504_CR16) 1999
HO Smith (1504_CR11) 1999; 150
MJL de Hoon (1504_CR3) 2005; 1
D Mathews (1504_CR17) 1999; 288
HL Hamilton (1504_CR12) 2006; 59
TM Henkin (1504_CR24) 2002; 24
S Unniraman (1504_CR5) 2002; 30
1504_CR18
SD Goodman (1504_CR22) 1988; 85
R Nussinov (1504_CR15) 1980; 77
RS Washburn (1504_CR19) 2001; 45
D Dubnau (1504_CR13) 1999; 53
References_xml – volume: 29
  start-page: 3583
  year: 2001
  ident: 1504_CR7
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.17.3583
– volume: 14
  start-page: 1188
  year: 2004
  ident: 1504_CR26
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 92
  start-page: 8793
  year: 1995
  ident: 1504_CR1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.19.8793
– volume: 59
  start-page: 376
  year: 2006
  ident: 1504_CR12
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04964.x
– volume: 301
  start-page: 27
  year: 2000
  ident: 1504_CR8
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3836
– ident: 1504_CR25
– volume: 26
  start-page: 5456
  year: 1998
  ident: 1504_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.23.5456
– volume: 101
  start-page: 4513
  year: 2004
  ident: 1504_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0306366101
– volume: 18
  start-page: 6097
  year: 1990
  ident: 1504_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6097
– volume: 44
  start-page: 11
  year: 2006
  ident: 1504_CR2
  publication-title: J Microbiol
– volume: 269
  start-page: 538
  year: 1995
  ident: 1504_CR10
  publication-title: Science
  doi: 10.1126/science.7542802
– volume: 24
  start-page: 700
  year: 2002
  ident: 1504_CR24
  publication-title: BioEssays
  doi: 10.1002/bies.10125
– volume: 11
  start-page: 311
  year: 1980
  ident: 1504_CR21
  publication-title: Gene
  doi: 10.1016/0378-1119(80)90071-2
– ident: 1504_CR18
– volume: 1
  start-page: e25
  year: 2005
  ident: 1504_CR3
  publication-title: PLoS Comp Biol
  doi: 10.1371/journal.pcbi.0010025
– volume: 30
  start-page: 675
  year: 2002
  ident: 1504_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.3.675
– volume: 150
  start-page: 603
  year: 1999
  ident: 1504_CR11
  publication-title: Res Microbiol
  doi: 10.1016/S0923-2508(99)00130-8
– volume: 53
  start-page: 217
  year: 1999
  ident: 1504_CR13
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.53.1.217
– volume: 216
  start-page: 835
  year: 1990
  ident: 1504_CR4
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(99)80005-9
– volume: 114
  start-page: 151
  year: 1992
  ident: 1504_CR9
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90723-3
– start-page: 167
  volume-title: Studies in Foundations and Combinatorics, Advances in Mathematics, Supplementary Studies
  year: 1978
  ident: 1504_CR14
– volume: 77
  start-page: 6309
  year: 1980
  ident: 1504_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.77.11.6309
– volume: 288
  start-page: 910
  year: 1999
  ident: 1504_CR17
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.2700
– volume-title: RNA Biochemistry and Biotechnology. NATO ASI
  year: 1999
  ident: 1504_CR16
– volume: 76
  start-page: 972
  year: 1979
  ident: 1504_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.76.2.972
– volume: 45
  start-page: 1099
  year: 2001
  ident: 1504_CR19
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.45.4.1099-1103.2001
– volume: 85
  start-page: 6982
  year: 1988
  ident: 1504_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.85.18.6982
SSID ssj0019426
ssj0017866
Score 2.4230866
Snippet In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent...
BACKGROUND: In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such...
Using a novel computational method, an extensive collection of predicted Rho-independent transcription terminators is derived from 343 prokaryotes, offering...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage R22
SubjectTerms Algorithms
Bacillus subtilis
Bacteria - genetics
Computational Biology - methods
computer software
DNA
DNA - genetics
genome
Genomics - methods
Haemophilus ducreyi
Mannheimia
Microsatellite Repeats - genetics
Neisseria
prediction
prokaryotic cells
Regulatory Sequences, Nucleic Acid - genetics
RNA
signal peptide
Software
transcription (genetics)
Transcription, Genetic - genetics
Vibrio
Title Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake
URI https://www.ncbi.nlm.nih.gov/pubmed/17313685
https://www.proquest.com/docview/2000157756
https://www.proquest.com/docview/70400244
https://pubmed.ncbi.nlm.nih.gov/PMC1852404
Volume 8
WOSCitedRecordID wos000246076300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ARIvE3c6oBiJB6QtkLhunDyWcZNAFSoDVbxEtut0EZ1Ttcm08cif4O9y7FyalFUaD7xEruu4ac_X43M_CD1nfeUqX0lnyikBBSWMHRGbanlEUEFhJFybKPyJjUbBZBJ-7nR-V7kwZ3OmdXB-Hi7-K6lhDohtUmf_gdz1pjABYyA6XIHscL0S4cd8kViycSlzUwjCjKVt3lAZ_kwqrgndtN718UnqJHUz3Mw0jdBrXlIGy9iePInpimxemLIQ1sGwrELpTMgXSLFvRsODfJHxH60Ao_dKp6fqoKz3tPb669mqCq0_Mk5_U-GjtkUPL7gWeRHs_DHXp0ltC-Lzn1VQWtGTrbypsl0wmwvuNdgtNdGgvjspTqNL5koeHTSgSC7n_NYRNROF8RUg4SyLhOd2je2Ns6-OSLS6UOBHM2Eac7IoiEgEG-yga4QNQsMux1--1e6pkJIiba181LJmFGzwauMJ2uLOXzrMZihuQ7Y5voX2SqUEDwsw3UYdpe-gG0Wb0ou76JeF1CGuAHWIW3DCNZxwGuMNOOEWnHADTrgBJ2zhhJtwwlmKAU64gNM99PXd2-OjD07Zu8ORwNUzR0gm-nFIpSIxEzKWzOMe86fMDTkNPMW8QexxQgUXAxn7IFbGIiDSZbEXThUV_ftoV6daPUSYK1ADAsXJlPfpgBKufNDBQ84DKYmKwy56Wf3EkSwL25v-KvNoC1G76EV9w6Ko6bJ96bOKZhHwXeNM41ql-cqsAkmasYHfRU-3rGHmhAT5uYseFFRefxzre6b1QxexFv3rBabqe_sdnZzY6u-m2gF16f7Vv8QjdHP953uMdrNlrp6g6_IsS1bLHtphk6BnbVFwHb_-3rNY_wN28dme
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%2C+accurate%2C+computational+discovery+of+Rho-independent+transcription+terminators+illuminates+their+relationship+to+DNA+uptake&rft.jtitle=Genome+biology&rft.au=Kingsford%2C+Carleton+L&rft.au=Ayanbule%2C+Kunmi&rft.au=Salzberg%2C+Steven+L&rft.date=2007-02-21&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1186%2Fgb-2007-8-2-r22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_gb_2007_8_2_r22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon