Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake
In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods...
Gespeichert in:
| Veröffentlicht in: | Genome biology Jg. 8; H. 2; S. R22 - 1504 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
BioMed Central
21.02.2007
|
| Schlagworte: | |
| ISSN: | 1474-760X, 1465-6906, 1474-760X, 1465-6914 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider.
We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators.
Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available. |
|---|---|
| AbstractList | In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider.BACKGROUNDIn many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider.We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators.RESULTSWe describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators.Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available.CONCLUSIONOur new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available. BACKGROUND: In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. RESULTS: We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. CONCLUSION: Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available. In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent transcription terminators can shed light on the organization of bacterial genomes and can improve genome annotation. Previous computational methods to predict Rho-independent terminators have been slow or limited in the organisms they consider. We describe TransTermHP, a new computational method to rapidly and accurately detect Rho-independent transcription terminators. We predict the locations of terminators in 343 prokaryotic genomes, representing the largest collection of predictions available. In Bacillus subtilis, we can detect 93% of known terminators with a false positive rate of just 6%, comparable to the best-known methods. Outside the Firmicutes division, we find that Rho-independent termination plays a large role in the Neisseria and Vibrio genera, the Pasteurellaceae (including the Haemophilus genus) and several other species. In Neisseria and Pasteurellaceae, terminator hairpins are frequently formed by closely spaced, complementary instances of exogenous DNA uptake signal sequences. We quantify the propensity for terminators to include these sequences. In the process, we provide the first discussion of potential uptake signals in Haemophilus ducreyi and Mannheimia succiniciproducens, and we discuss the preference for a particular configuration of uptake signal sequences within terminators. Our new fast and accurate method for detecting transcription terminators has allowed us to identify and analyze terminators in many new genomes and to identify DNA uptake signal sequences in several species where they have not been previously reported. Our software and predictions are freely available. Using a novel computational method, an extensive collection of predicted Rho-independent transcription terminators is derived from 343 prokaryotes, offering insight into their relationship to DNA uptake |
| ArticleNumber | R22 |
| Author | Kingsford, Carleton L Salzberg, Steven L Ayanbule, Kunmi |
| AuthorAffiliation | 1 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA |
| AuthorAffiliation_xml | – name: 1 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA |
| Author_xml | – sequence: 1 givenname: Carleton L surname: Kingsford fullname: Kingsford, Carleton L – sequence: 2 givenname: Kunmi surname: Ayanbule fullname: Ayanbule, Kunmi – sequence: 3 givenname: Steven L surname: Salzberg fullname: Salzberg, Steven L |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17313685$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1vFSEUxYmpsR-6dmdYGRfFAsMM8zYmTa0fSaNJo4k7AszlPXQGRmCadOtfXl5fbaqJboAbzv3lwLmHaC_EAAg9Z_Q1Y313sjaEUypJTzhJnD9CB0xIQWRHv-09OO-jw5y_U8pWgndP0D6TDWu6vj1Avy717IdjrK1dki5wjG2c5qXo4mPQIx58tvEK0jWODl9uIvFhgBnqEgouSYdsk5-3YlwgTT7oElPGfhyX2wIyLhvwCScYb5l542dcIn776RQvc9E_4Cl67PSY4dndfoS-vjv_cvaBXHx-__Hs9ILYtmGFGCtN41bCAnfSWGcl00x2g6QrLXoGkrWOaS6MNq11naCdMz23VDq2GkCY5gi92XHnxUww2PqCpEc1Jz_pdK2i9urPm-A3ah2vFOtbLqiogJd3gBR_LpCLmurvwDjqAHHJSlJBKRdb4av_CmtklLVStl2Vvnho6t7N74SqoN0JbIo5J3DK-l061aMfFaNqOwlqbbZYqXrFVZ2E2nfyV989-h8dN-yIu4I |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0029435 crossref_primary_10_3389_fmicb_2022_941306 crossref_primary_10_1007_s00705_017_3366_5 crossref_primary_10_1093_nar_gkw749 crossref_primary_10_1093_nar_gkx959 crossref_primary_10_1038_nmeth_2515 crossref_primary_10_3390_ijms252413472 crossref_primary_10_1111_mmi_13611 crossref_primary_10_1534_genetics_110_119438 crossref_primary_10_1089_phage_2024_0049 crossref_primary_10_1016_j_resmic_2007_09_001 crossref_primary_10_1128_microbiolspec_MGM2_0029_2013 crossref_primary_10_1128_spectrum_03126_22 crossref_primary_10_1128_MRA_01046_19 crossref_primary_10_1186_s12934_023_02095_1 crossref_primary_10_1186_1471_2164_15_385 crossref_primary_10_1093_nar_gkr1141 crossref_primary_10_1128_MRA_01308_20 crossref_primary_10_3389_fcimb_2020_600325 crossref_primary_10_1128_JB_00711_15 crossref_primary_10_4137_BBI_S11213 crossref_primary_10_1093_nar_gkv422 crossref_primary_10_1128_MRA_01017_19 crossref_primary_10_1186_1471_2164_9_20 crossref_primary_10_1371_journal_pgen_1002252 crossref_primary_10_1128_MRA_01052_19 crossref_primary_10_1186_1471_2164_14_574 crossref_primary_10_3390_antibiotics9120841 crossref_primary_10_1038_s41396_020_00825_6 crossref_primary_10_1111_j_1365_2958_2009_06949_x crossref_primary_10_1371_journal_pcbi_1008214 crossref_primary_10_1371_journal_pone_0126325 crossref_primary_10_1093_nar_gkaf553 crossref_primary_10_1186_1471_2164_11_350 crossref_primary_10_1128_JB_02395_14 crossref_primary_10_1016_j_ymben_2013_11_004 crossref_primary_10_1128_JB_00134_09 crossref_primary_10_1371_journal_pgen_1003458 crossref_primary_10_1093_nar_gkq869 crossref_primary_10_1093_bioinformatics_btn077 crossref_primary_10_1155_2012_873589 crossref_primary_10_1371_journal_pgen_1001277 crossref_primary_10_1093_nar_gkr033 crossref_primary_10_1128_MRA_01093_19 crossref_primary_10_1089_phage_2020_0043 crossref_primary_10_1128_MRA_01051_19 crossref_primary_10_1093_nar_gky226 crossref_primary_10_1128_msystems_00590_19 crossref_primary_10_1128_MRA_01343_20 crossref_primary_10_1016_j_resmic_2012_10_010 crossref_primary_10_1073_pnas_1315374111 crossref_primary_10_1111_j_1574_6968_2008_01461_x crossref_primary_10_1186_s12934_022_01954_7 crossref_primary_10_1128_JB_01629_12 crossref_primary_10_1186_1471_2164_14_667 crossref_primary_10_1111_1462_2920_12689 crossref_primary_10_3390_ijms23010576 crossref_primary_10_1093_nar_gkp668 crossref_primary_10_1038_s41598_021_95435_3 crossref_primary_10_1093_nar_gkaf405 crossref_primary_10_1128_AEM_02808_14 crossref_primary_10_1038_s41598_017_05628_y crossref_primary_10_1101_gr_091561_109 crossref_primary_10_1371_journal_pone_0060401 crossref_primary_10_1128_msystems_00905_19 crossref_primary_10_1186_1471_2105_14_S2_S4 crossref_primary_10_1016_j_biochi_2023_07_018 crossref_primary_10_1371_journal_pone_0135295 crossref_primary_10_1371_journal_pone_0018509 crossref_primary_10_1093_nar_gkr168 crossref_primary_10_1128_JB_00771_09 crossref_primary_10_1093_nar_gku793 crossref_primary_10_1089_phage_2022_0003 crossref_primary_10_1016_j_copbio_2010_07_005 crossref_primary_10_1128_JB_00088_11 crossref_primary_10_1111_j_1462_2920_2009_02081_x crossref_primary_10_1089_phage_2022_0008 crossref_primary_10_1111_mmi_12738 crossref_primary_10_1128_msphere_00124_25 crossref_primary_10_7717_peerj_6304 crossref_primary_10_1016_j_plasmid_2015_09_001 crossref_primary_10_1089_omi_2009_0081 crossref_primary_10_1093_nar_gkae923 crossref_primary_10_7554_eLife_25100 crossref_primary_10_1093_nar_gky725 crossref_primary_10_1111_j_1574_6968_2010_01938_x crossref_primary_10_1371_journal_pgen_1004001 crossref_primary_10_1093_nar_gkw1316 crossref_primary_10_1073_pnas_1005066107 crossref_primary_10_1371_journal_pone_0100147 crossref_primary_10_1128_JB_01007_13 crossref_primary_10_1128_MRA_01411_19 crossref_primary_10_1371_journal_pone_0172783 crossref_primary_10_1073_pnas_1120788109 crossref_primary_10_1186_1471_2164_14_888 crossref_primary_10_1371_journal_pone_0172303 crossref_primary_10_1038_s41467_021_21941_7 crossref_primary_10_1016_j_bbagrm_2020_194506 crossref_primary_10_7717_peerj_2056 crossref_primary_10_1186_1471_2164_13_299 crossref_primary_10_1186_s12866_015_0494_5 crossref_primary_10_1038_nrmicro2477 crossref_primary_10_1186_gb_2008_9_3_r60 crossref_primary_10_1128_MRA_01422_19 crossref_primary_10_3390_v14040709 crossref_primary_10_1074_jbc_M113_536425 crossref_primary_10_3390_v15102095 crossref_primary_10_1186_1471_2164_11_666 crossref_primary_10_1111_j_1365_2958_2007_06033_x crossref_primary_10_1186_1471_2164_10_641 crossref_primary_10_1016_j_jbiotec_2014_05_033 crossref_primary_10_1186_1471_2180_11_102 crossref_primary_10_3389_fmicb_2021_747845 crossref_primary_10_1093_nar_gkaf471 crossref_primary_10_1093_nar_gkt163 crossref_primary_10_1007_s12257_021_0062_9 crossref_primary_10_1016_j_tube_2008_06_004 crossref_primary_10_1371_journal_pone_0117373 crossref_primary_10_3390_v10010005 crossref_primary_10_1038_s41598_018_35784_8 crossref_primary_10_1128_MRA_01097_19 crossref_primary_10_1371_journal_pone_0165694 crossref_primary_10_1016_j_jbiotec_2011_04_010 crossref_primary_10_1128_mra_00125_22 crossref_primary_10_1128_JB_05563_11 crossref_primary_10_1128_jb_00577_21 crossref_primary_10_1073_pnas_1920753117 crossref_primary_10_1093_nargab_lqae168 crossref_primary_10_1016_j_chom_2024_09_008 crossref_primary_10_1111_j_1365_2958_2009_06830_x crossref_primary_10_1371_journal_pone_0152363 crossref_primary_10_1128_MRA_01031_19 crossref_primary_10_1371_journal_pone_0064021 crossref_primary_10_1016_j_jbiotec_2016_03_020 crossref_primary_10_1007_s00253_021_11326_7 crossref_primary_10_1128_JB_00333_12 crossref_primary_10_1371_journal_pone_0039742 crossref_primary_10_1016_j_jinf_2016_04_010 crossref_primary_10_1016_j_mib_2014_11_011 crossref_primary_10_1128_MRA_00741_19 crossref_primary_10_1007_s12088_022_01050_9 crossref_primary_10_1038_s41598_017_15818_3 crossref_primary_10_1093_nar_gky383 crossref_primary_10_1128_AEM_00128_11 crossref_primary_10_1186_s12864_016_3211_3 crossref_primary_10_1016_j_synbio_2022_11_006 crossref_primary_10_1093_nar_gkaf686 crossref_primary_10_1186_1471_2180_10_202 crossref_primary_10_1128_jvi_00850_23 crossref_primary_10_1128_MRA_00905_20 crossref_primary_10_1093_nar_gkaf329 crossref_primary_10_1016_j_isci_2023_106465 crossref_primary_10_7717_peerj_11447 crossref_primary_10_1371_journal_pgen_1003485 crossref_primary_10_1128_mSystems_00250_20 crossref_primary_10_1186_1475_2859_10_S1_S12 crossref_primary_10_1128_MRA_01036_19 crossref_primary_10_1128_MRA_01053_19 crossref_primary_10_1371_journal_pone_0016537 crossref_primary_10_7554_eLife_61880 crossref_primary_10_1128_AEM_02722_07 crossref_primary_10_1128_MRA_01047_19 crossref_primary_10_1186_1471_2105_15_145 crossref_primary_10_3390_microorganisms11102486 crossref_primary_10_1186_1471_2105_12_40 crossref_primary_10_1016_j_ygeno_2012_01_001 crossref_primary_10_1128_JB_00864_07 crossref_primary_10_1038_s44259_023_00017_0 crossref_primary_10_1128_MRA_01421_19 crossref_primary_10_1261_rna_2689811 crossref_primary_10_3389_fmicb_2017_00346 crossref_primary_10_3389_fmicb_2017_00588 crossref_primary_10_3390_v10110624 crossref_primary_10_1093_nar_gkn898 crossref_primary_10_1186_s12864_015_1468_6 crossref_primary_10_3389_fcimb_2024_1473668 crossref_primary_10_1128_MRA_01095_19 crossref_primary_10_1038_s41564_021_00927_7 crossref_primary_10_1128_AEM_01828_17 crossref_primary_10_1128_MRA_01037_19 crossref_primary_10_1128_MRA_01403_20 crossref_primary_10_1186_s12864_016_2602_9 crossref_primary_10_1128_MRA_01518_19 crossref_primary_10_1371_journal_pone_0093833 crossref_primary_10_3390_genes2040925 crossref_primary_10_1128_JB_00194_12 crossref_primary_10_1007_s00253_021_11190_5 crossref_primary_10_1371_journal_pone_0262663 crossref_primary_10_1093_bfgp_elp025 crossref_primary_10_3389_fmicb_2018_00200 crossref_primary_10_1093_nar_gkn784 crossref_primary_10_1371_journal_pone_0168915 crossref_primary_10_2217_fmb_12_13 crossref_primary_10_1128_mSphere_01215_20 crossref_primary_10_1016_j_molcel_2018_04_017 crossref_primary_10_1111_hel_12390 crossref_primary_10_1111_j_1574_6968_2012_02572_x crossref_primary_10_1128_AEM_00195_09 crossref_primary_10_1371_journal_pone_0060465 crossref_primary_10_1093_nar_gkq1186 crossref_primary_10_1128_MRA_01055_19 crossref_primary_10_1016_j_ymben_2011_01_004 crossref_primary_10_1016_j_ymeth_2017_04_016 crossref_primary_10_1099_mgen_0_000069 crossref_primary_10_1186_s12934_014_0094_3 crossref_primary_10_1128_mra_01530_19 crossref_primary_10_1016_j_aquaculture_2024_740764 crossref_primary_10_3390_microorganisms10030587 crossref_primary_10_3390_ijms222212260 crossref_primary_10_1128_MRA_01049_19 crossref_primary_10_1186_s12864_019_5613_5 crossref_primary_10_1186_s12866_020_1720_3 crossref_primary_10_1007_s00253_023_12530_3 crossref_primary_10_1186_1471_2164_13_384 crossref_primary_10_1186_1471_2180_13_27 crossref_primary_10_1016_j_jmb_2024_168653 crossref_primary_10_1080_22221751_2019_1700762 crossref_primary_10_1093_nar_gkad979 crossref_primary_10_12688_f1000research_156998_1 crossref_primary_10_1016_j_synbio_2016_08_002 crossref_primary_10_1111_j_1365_2958_2007_05978_x crossref_primary_10_1002_cpe_8056 crossref_primary_10_1093_nar_gks640 crossref_primary_10_1128_MRA_01054_19 crossref_primary_10_1371_journal_pone_0023948 crossref_primary_10_1093_bioinformatics_btp537 crossref_primary_10_1101_gr_119370_110 crossref_primary_10_1128_JB_01142_09 crossref_primary_10_1073_pnas_1114152108 crossref_primary_10_1128_JB_00578_17 crossref_primary_10_1128_mra_00159_22 crossref_primary_10_1007_s00203_010_0592_6 crossref_primary_10_1371_journal_pone_0011970 crossref_primary_10_3389_fmicb_2023_1238855 crossref_primary_10_1007_s00792_021_01239_8 crossref_primary_10_1186_1471_2164_11_661 crossref_primary_10_1186_1471_2105_11_491 crossref_primary_10_1128_MRA_01048_19 crossref_primary_10_1186_s12866_021_02234_x crossref_primary_10_1128_JVI_00848_19 crossref_primary_10_1128_MRA_00748_19 crossref_primary_10_1128_JB_01198_10 crossref_primary_10_1093_synbio_ysae018 crossref_primary_10_1128_MRA_01420_19 crossref_primary_10_1186_s12863_021_00983_2 crossref_primary_10_1186_s12864_015_2293_7 crossref_primary_10_1002_cbic_201900163 crossref_primary_10_1128_JB_00445_10 crossref_primary_10_1128_MRA_01032_19 crossref_primary_10_1128_MRA_01096_19 crossref_primary_10_3389_fgene_2015_00189 crossref_primary_10_3389_fmicb_2016_00048 crossref_primary_10_1128_JB_05262_11 crossref_primary_10_1371_journal_pone_0029002 crossref_primary_10_1128_JB_05287_11 crossref_primary_10_1016_j_febslet_2015_07_029 crossref_primary_10_1016_j_jmb_2011_03_036 crossref_primary_10_1016_j_synbio_2022_06_003 crossref_primary_10_1128_AEM_00200_20 crossref_primary_10_3389_fmicb_2016_01806 crossref_primary_10_1007_s11033_021_06851_7 crossref_primary_10_1128_JB_05474_11 crossref_primary_10_1371_journal_pgen_1009943 crossref_primary_10_1016_j_mimet_2010_08_004 crossref_primary_10_1128_IAI_01289_07 crossref_primary_10_1186_1471_2164_14_714 crossref_primary_10_1080_07391102_2024_2325107 crossref_primary_10_1111_mmi_12338 crossref_primary_10_1128_mra_00123_22 crossref_primary_10_1128_MRA_00765_19 crossref_primary_10_1080_15476286_2015_1110674 crossref_primary_10_1186_gb_2012_13_4_r30 crossref_primary_10_1371_journal_pone_0075651 crossref_primary_10_1093_nar_gkaa047 crossref_primary_10_1093_nar_gkq847 crossref_primary_10_1186_gb_2011_12_5_r47 crossref_primary_10_1051_vetres_2009073 crossref_primary_10_1128_MRA_01033_19 crossref_primary_10_1186_s13068_023_02357_5 crossref_primary_10_1186_s12864_016_3400_0 crossref_primary_10_1016_j_ygeno_2012_10_006 crossref_primary_10_1128_MRA_01056_19 crossref_primary_10_1088_1742_5468_2013_10_P10013 crossref_primary_10_1016_j_ygeno_2009_04_004 crossref_primary_10_1093_nar_gkv177 crossref_primary_10_1093_nar_gky563 crossref_primary_10_1128_MRA_00573_19 crossref_primary_10_1128_MRA_01407_20 crossref_primary_10_1186_s12934_024_02620_w crossref_primary_10_1186_1471_2105_11_S3_S10 crossref_primary_10_1093_nar_gkv1227 crossref_primary_10_1128_mra_00942_24 crossref_primary_10_1111_j_1574_6968_2010_02095_x crossref_primary_10_3389_fmicb_2018_00228 crossref_primary_10_1371_journal_pone_0163425 crossref_primary_10_1038_nature09886 crossref_primary_10_1128_mra_00177_22 crossref_primary_10_1186_s12859_019_2704_x crossref_primary_10_1371_journal_pone_0033227 crossref_primary_10_1016_j_cell_2022_03_008 crossref_primary_10_1128_MRA_01094_19 crossref_primary_10_1186_1471_2164_10_123 crossref_primary_10_3390_v15030739 crossref_primary_10_1371_journal_pone_0100426 crossref_primary_10_1128_MRA_01038_19 crossref_primary_10_1093_bib_bbab162 crossref_primary_10_1093_bib_bbn019 crossref_primary_10_1128_AEM_06028_11 crossref_primary_10_1038_ncomms14737 crossref_primary_10_1093_gigascience_giy096 crossref_primary_10_1186_s12858_018_0093_9 crossref_primary_10_1371_journal_pgen_1005962 crossref_primary_10_1038_msb_2012_11 crossref_primary_10_1093_nar_gkad333 crossref_primary_10_1093_nar_gkt1048 crossref_primary_10_1038_ncomms14731 crossref_primary_10_1128_MRA_01045_19 crossref_primary_10_1128_MRA_01016_19 crossref_primary_10_1186_1471_2164_13_542 crossref_primary_10_1038_s41396_018_0099_8 crossref_primary_10_1186_1471_2105_13_S15_S4 crossref_primary_10_1186_s13068_017_0743_y crossref_primary_10_7717_peerj_10645 crossref_primary_10_1371_journal_pcbi_1010240 crossref_primary_10_1128_IAI_00687_19 crossref_primary_10_1002_bies_200800216 crossref_primary_10_1111_j_1365_2958_2011_07760_x crossref_primary_10_1038_ncomms7900 crossref_primary_10_1099_vir_0_043331_0 crossref_primary_10_1128_AEM_01037_13 crossref_primary_10_1111_j_1365_2958_2008_06172_x crossref_primary_10_1111_j_1462_2920_2010_02280_x crossref_primary_10_1093_nar_gkab360 crossref_primary_10_1128_aem_00807_24 crossref_primary_10_1038_emboj_2012_229 crossref_primary_10_1016_j_ijbiomac_2019_05_003 crossref_primary_10_1186_1471_2164_13_550 crossref_primary_10_1128_JB_00293_19 crossref_primary_10_1007_s00294_018_0815_y crossref_primary_10_1093_nar_gkt308 crossref_primary_10_1038_s41598_018_28843_7 crossref_primary_10_1111_mpp_12997 crossref_primary_10_1371_journal_pone_0003197 crossref_primary_10_1128_MRA_01050_19 crossref_primary_10_1128_mra_01430_20 crossref_primary_10_1128_AAC_04858_14 crossref_primary_10_1016_j_indcrop_2023_117229 crossref_primary_10_1128_JB_01293_13 crossref_primary_10_1371_journal_pone_0053085 crossref_primary_10_1128_MRA_01418_19 |
| Cites_doi | 10.1093/nar/29.17.3583 10.1101/gr.849004 10.1073/pnas.92.19.8793 10.1111/j.1365-2958.2005.04964.x 10.1006/jmbi.2000.3836 10.1093/nar/26.23.5456 10.1073/pnas.0306366101 10.1093/nar/18.20.6097 10.1126/science.7542802 10.1002/bies.10125 10.1016/0378-1119(80)90071-2 10.1371/journal.pcbi.0010025 10.1093/nar/30.3.675 10.1016/S0923-2508(99)00130-8 10.1146/annurev.micro.53.1.217 10.1016/S0022-2836(99)80005-9 10.1016/0378-1119(92)90723-3 10.1073/pnas.77.11.6309 10.1006/jmbi.1999.2700 10.1073/pnas.76.2.972 10.1128/AAC.45.4.1099-1103.2001 10.1073/pnas.85.18.6982 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 Kingsford et al.; licensee BioMed Central Ltd. 2007 Kingsford et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2007 Kingsford et al.; licensee BioMed Central Ltd. 2007 Kingsford et al.; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
| DOI | 10.1186/gb-2007-8-2-r22 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-760X 1465-6914 |
| EndPage | 1504 |
| ExternalDocumentID | PMC1852404 17313685 10_1186_gb_2007_8_2_r22 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM083873 – fundername: NLM NIH HHS grantid: R01-LM06845 – fundername: NLM NIH HHS grantid: R01-LM007938 – fundername: NLM NIH HHS grantid: R01 LM007938 – fundername: NLM NIH HHS grantid: R01 LM006845 |
| GroupedDBID | --- 0R~ 123 29H 4.4 53G 5GY 5VS 7X7 AAFWJ AAHBH AAJSJ AASML AAYXX ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION EBLON EBS GROUPED_DOAJ GX1 HYE IAO IGS IHR ISR ITC KPI ROL RPM RSV SJN SOJ 88E 8FE 8FH 8FI 8FJ 8R4 8R5 ABUWG AFKRA ALIPV BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBD ECM EIF EMOBN FYUFA H13 HCIFZ HMCUK LK8 M1P M7P NPM PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO SV3 UKHRP 7S9 L.6 7X8 2WC 5PM AENEX C1A CS3 E3Z EJD F5P HZ~ KQ8 O5R O5S O9- OK1 RBZ SBL TR2 WOQ |
| ID | FETCH-LOGICAL-c531t-bc7b3f94ce2f7bcfc71a176d709a481e715f1a24bab5cf6406fb82c07f19de4b3 |
| ISICitedReferencesCount | 418 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246076300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-760X 1465-6906 |
| IngestDate | Thu Aug 21 17:42:43 EDT 2025 Sun Nov 09 12:56:39 EST 2025 Wed Oct 01 13:30:40 EDT 2025 Fri May 30 10:49:35 EDT 2025 Sat Nov 29 05:33:05 EST 2025 Tue Nov 18 22:22:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c531t-bc7b3f94ce2f7bcfc71a176d709a481e715f1a24bab5cf6406fb82c07f19de4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC1852404 |
| PMID | 17313685 |
| PQID | 2000157756 |
| PQPubID | 24069 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1852404 proquest_miscellaneous_70400244 proquest_miscellaneous_2000157756 pubmed_primary_17313685 crossref_citationtrail_10_1186_gb_2007_8_2_r22 crossref_primary_10_1186_gb_2007_8_2_r22 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-02-21 |
| PublicationDateYYYYMMDD | 2007-02-21 |
| PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-21 day: 21 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Genome biology |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2007 |
| Publisher | BioMed Central |
| Publisher_xml | – name: BioMed Central |
| References | Y d'Aubenton Carafa (1504_CR4) 1990; 216 MD Ermolaeva (1504_CR8) 2000; 301 G Crooks (1504_CR26) 2004; 14 KL Sisco (1504_CR20) 1979; 76 1504_CR25 T Washio (1504_CR6) 1998; 26 EA Lesnik (1504_CR7) 2001; 29 M Bakkali (1504_CR23) 2004; 101 HO Smith (1504_CR10) 1995; 269 DB Daner (1504_CR21) 1980; 11 JS Kroll (1504_CR9) 1992; 114 S Banerjee (1504_CR2) 2006; 44 T Schneider (1504_CR27) 1990; 18 MS Waterman (1504_CR14) 1978 KS Wilson (1504_CR1) 1995; 92 M Zuker (1504_CR16) 1999 HO Smith (1504_CR11) 1999; 150 MJL de Hoon (1504_CR3) 2005; 1 D Mathews (1504_CR17) 1999; 288 HL Hamilton (1504_CR12) 2006; 59 TM Henkin (1504_CR24) 2002; 24 S Unniraman (1504_CR5) 2002; 30 1504_CR18 SD Goodman (1504_CR22) 1988; 85 R Nussinov (1504_CR15) 1980; 77 RS Washburn (1504_CR19) 2001; 45 D Dubnau (1504_CR13) 1999; 53 |
| References_xml | – volume: 29 start-page: 3583 year: 2001 ident: 1504_CR7 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.17.3583 – volume: 14 start-page: 1188 year: 2004 ident: 1504_CR26 publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 92 start-page: 8793 year: 1995 ident: 1504_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.19.8793 – volume: 59 start-page: 376 year: 2006 ident: 1504_CR12 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04964.x – volume: 301 start-page: 27 year: 2000 ident: 1504_CR8 publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3836 – ident: 1504_CR25 – volume: 26 start-page: 5456 year: 1998 ident: 1504_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/26.23.5456 – volume: 101 start-page: 4513 year: 2004 ident: 1504_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0306366101 – volume: 18 start-page: 6097 year: 1990 ident: 1504_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6097 – volume: 44 start-page: 11 year: 2006 ident: 1504_CR2 publication-title: J Microbiol – volume: 269 start-page: 538 year: 1995 ident: 1504_CR10 publication-title: Science doi: 10.1126/science.7542802 – volume: 24 start-page: 700 year: 2002 ident: 1504_CR24 publication-title: BioEssays doi: 10.1002/bies.10125 – volume: 11 start-page: 311 year: 1980 ident: 1504_CR21 publication-title: Gene doi: 10.1016/0378-1119(80)90071-2 – ident: 1504_CR18 – volume: 1 start-page: e25 year: 2005 ident: 1504_CR3 publication-title: PLoS Comp Biol doi: 10.1371/journal.pcbi.0010025 – volume: 30 start-page: 675 year: 2002 ident: 1504_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.3.675 – volume: 150 start-page: 603 year: 1999 ident: 1504_CR11 publication-title: Res Microbiol doi: 10.1016/S0923-2508(99)00130-8 – volume: 53 start-page: 217 year: 1999 ident: 1504_CR13 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.53.1.217 – volume: 216 start-page: 835 year: 1990 ident: 1504_CR4 publication-title: J Mol Biol doi: 10.1016/S0022-2836(99)80005-9 – volume: 114 start-page: 151 year: 1992 ident: 1504_CR9 publication-title: Gene doi: 10.1016/0378-1119(92)90723-3 – start-page: 167 volume-title: Studies in Foundations and Combinatorics, Advances in Mathematics, Supplementary Studies year: 1978 ident: 1504_CR14 – volume: 77 start-page: 6309 year: 1980 ident: 1504_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.77.11.6309 – volume: 288 start-page: 910 year: 1999 ident: 1504_CR17 publication-title: J Mol Biol doi: 10.1006/jmbi.1999.2700 – volume-title: RNA Biochemistry and Biotechnology. NATO ASI year: 1999 ident: 1504_CR16 – volume: 76 start-page: 972 year: 1979 ident: 1504_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.76.2.972 – volume: 45 start-page: 1099 year: 2001 ident: 1504_CR19 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.45.4.1099-1103.2001 – volume: 85 start-page: 6982 year: 1988 ident: 1504_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.85.18.6982 |
| SSID | ssj0019426 ssj0017866 |
| Score | 2.4230866 |
| Snippet | In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such Rho-independent... BACKGROUND: In many prokaryotes, transcription of DNA to RNA is terminated by a thymine-rich stretch of DNA following a hairpin loop. Detecting such... Using a novel computational method, an extensive collection of predicted Rho-independent transcription terminators is derived from 343 prokaryotes, offering... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | R22 |
| SubjectTerms | Algorithms Bacillus subtilis Bacteria - genetics Computational Biology - methods computer software DNA DNA - genetics genome Genomics - methods Haemophilus ducreyi Mannheimia Microsatellite Repeats - genetics Neisseria prediction prokaryotic cells Regulatory Sequences, Nucleic Acid - genetics RNA signal peptide Software transcription (genetics) Transcription, Genetic - genetics Vibrio |
| Title | Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17313685 https://www.proquest.com/docview/2000157756 https://www.proquest.com/docview/70400244 https://pubmed.ncbi.nlm.nih.gov/PMC1852404 |
| Volume | 8 |
| WOSCitedRecordID | wos000246076300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1474-760X databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ARIvE3c6oBiJB6QtkLhunDyWcZNAFSoDVbxEtut0EZ1Ttcm08cif4O9y7FyalFUaD7xEruu4ac_X43M_CD1nfeUqX0lnyikBBSWMHRGbanlEUEFhJFybKPyJjUbBZBJ-7nR-V7kwZ3OmdXB-Hi7-K6lhDohtUmf_gdz1pjABYyA6XIHscL0S4cd8kViycSlzUwjCjKVt3lAZ_kwqrgndtN718UnqJHUz3Mw0jdBrXlIGy9iePInpimxemLIQ1sGwrELpTMgXSLFvRsODfJHxH60Ao_dKp6fqoKz3tPb669mqCq0_Mk5_U-GjtkUPL7gWeRHs_DHXp0ltC-Lzn1VQWtGTrbypsl0wmwvuNdgtNdGgvjspTqNL5koeHTSgSC7n_NYRNROF8RUg4SyLhOd2je2Ns6-OSLS6UOBHM2Eac7IoiEgEG-yga4QNQsMux1--1e6pkJIiba181LJmFGzwauMJ2uLOXzrMZihuQ7Y5voX2SqUEDwsw3UYdpe-gG0Wb0ou76JeF1CGuAHWIW3DCNZxwGuMNOOEWnHADTrgBJ2zhhJtwwlmKAU64gNM99PXd2-OjD07Zu8ORwNUzR0gm-nFIpSIxEzKWzOMe86fMDTkNPMW8QexxQgUXAxn7IFbGIiDSZbEXThUV_ftoV6daPUSYK1ADAsXJlPfpgBKufNDBQ84DKYmKwy56Wf3EkSwL25v-KvNoC1G76EV9w6Ko6bJ96bOKZhHwXeNM41ql-cqsAkmasYHfRU-3rGHmhAT5uYseFFRefxzre6b1QxexFv3rBabqe_sdnZzY6u-m2gF16f7Vv8QjdHP953uMdrNlrp6g6_IsS1bLHtphk6BnbVFwHb_-3rNY_wN28dme |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%2C+accurate%2C+computational+discovery+of+Rho-independent+transcription+terminators+illuminates+their+relationship+to+DNA+uptake&rft.jtitle=Genome+biology&rft.au=Kingsford%2C+Carleton+L&rft.au=Ayanbule%2C+Kunmi&rft.au=Salzberg%2C+Steven+L&rft.date=2007-02-21&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1186%2Fgb-2007-8-2-r22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_gb_2007_8_2_r22 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |